
Under review as a conference paper at ICLR 2023

LEARNING REDUCED FLUID DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting the state evolution of ultra high-dimensional, time-reversible fluid dy-
namic systems is a crucial but computationally expensive task. Model reduction
has been proven an effective method to reduce computational costs by learning
a low-dimensional state embedding. However, existing reduced models are irre-
spective of either the time reversible property or the nonlinear dynamics, leading
to sub-optimal performance. We propose a model-based approach to identify lo-
cally optimal, model-reduced, time reversible, nonlinear fluid dynamic systems.
Our main idea is to use stochastic Riemann optimization to obtain a high-quality
reduced fluid model by minimizing the expected trajectory-wise model reduction
error over a given distribution of initial conditions. To this end, our method for-
mulates the reduced fluid dynamics as an invertible state transfer function param-
eterized by the reduced subspace. We further show that the reduced trajectories
are differentiable with respect to the subspace bases over the entire Grassman-
nian manifold, under proper choices of timestep sizes and numerical integrators.
Finally, we propose a loss function measuring the trajectory-wise discrepancy
between the original and reduced models. By tensor precomputation, we show
that gradient information of such loss function can be evaluated efficiently over
a long trajectory without time-integrating the high-dimensional dynamic system.
Through evaluations on a row of simulation benchmarks, we show that our method
reduces the discrepancy by 50% − 90% over conventional reduced models.

1 INTRODUCTION

High-dimensional Partial Differential Equations (PDE), especially fluid dynamic systems, find vast
applications in the field of scientific computation Moin & Mahesh (1998); Alfonsi (2009), PDE-
constrained optimization Biegler et al. (2003); Herzog & Kunisch (2010), design prototyping Baysal
& Eleshaky (1992); Zang & Green (1999), fluidic devices design Du et al. (2020); Li et al. (2022),
and digital entertainment Bridson & Batty (2010); Bridson (2015), to name a few. A fundamen-
tal task of all these applications lies in the efficient prediction of numerical solutions over a long
horizon. In design prototyping, for example, a designer needs to quickly preview the fluid flow
surrounding an aerial vehicle in order to refine its form factor. In a game engine, a fluid simulator
needs to achieve real-time performance to provide interactive special effects for players. Although
abundant numerical tools Petrila & Trif (2004); Demkowicz et al. (1989) have been developed over
the past decades with improved efficacy, their algorithmic complexity is still challenging the limits
of current computational resources. As a parallel effort, the idealized, incompressible, inviscid Eu-
lerian fluid should be time reversible and energy preserving Duponcheel et al. (2008), and dedicated
numerical schemes are proposed to faithfully preserve these properties in a discrete setting Row-
ley & Marsden (2002); Pavlov et al. (2011). This implies that the initial condition of a trajectory
can be recovered from any state thereafter and the discrete total energy is a constant throughout the
predicted trajectory. Although idealized fluid models are not pursued in applications, their accurate
prediction is an important criterion of reliable numerical schemes.

Since their proposal Berkooz et al. (1993); Rowley (2005), model reduction has been quickly estab-
lished as one of the most effective approaches that can significantly reduce the PDE prediction cost.
By restricting the state variables to low-dimensional linear and nonlinear sub-manifolds, the dimen-
sion of associated dynamic system can be reduced by orders of magnitude. Over the years, several
data-driven and data-free approaches have been proposed to identify sub-manifolds that can capture
the complex dynamic behaviors of fluids. The earliest data-driven method of Proper Orthogonal

1



Under review as a conference paper at ICLR 2023

Decomposition (POD) Berkooz et al. (1993) finds the optimal linear subspace that best explains the
variation of the state distribution. However, POD is flawed in that it ignores the temporal dependence
of state variables. This problem is remedied by the Dynamic Model Decomposition (DMD) Schmid
(2010) that finds the optimal linear subspace that best approximates the Koopman operator. How-
ever, these data-driven algorithms are irrespective of the nonlinearity in the underlying PDE. Com-
paratively, data-free methods, such as balanced POD Rowley (2005), H2-optimization Gugercin
et al. (2006), and modal analysis Taira et al. (2017), identify bases corresponding to the intrinsic
property of PDE by analyzing the system transfer matrices in the frequency domain, and are thus
independent of data. Unfortunately, these techniques are largely limited to linear systems and their
extensions to nonlinear fluid dynamics, such as Yang et al. (2019), are in their infancy.

More generally, the construction of reduced fluid models has been formulated as machine learning
problems for system identification. The vast majority of prior works generalize the non-intrusive
approach and identify the state transfer function via supervised learning in an existing sub-manifold,
where the transfer functions are parameterized via radial basis functions Zhang et al. (2016), feed-
forward networks Hsieh & Tang (1998), recurrent networks Pearlmutter (1989); Wang et al. (2018),
etc. More recent approaches jointly learn the state transfer function and identify the sub-manifold
via convolutional autoencoder Wu et al. (2021); Hasegawa et al. (2020). Unfortunately, all these
non-intrusive learning techniques cannot preserve the time reversible property of idealized fluid,
potentially leading to large prediction error or requiring a large dataset.

...
Ū

I v̄+(v̄0, Ū) v̄+(v̄1, Ū) v̄+(v̄T , Ū)

Ldyn Ldyn Ldyn

Figure 1: Given a distribution of initial conditions
I, we identify a reduced-order fluid model v̄+(v̄, Ū)
by optimizing the bases Ū that minimize the expected
trajectory-wise discrepancy loss Ldyn. Our output
model v̄+(v̄, Ū) can perform efficient and as-accurate-
as-possible fluid trajectory predictions.

We propose a machine learning approach to identify locally optimal, time reversible, reduced-order
fluid dynamic models. We first interpret the linear subspace of fluid velocities as a point on the
Grassmannian manifold and study the dependence of reduced trajectories on the choice of subspace.
Thanks to the time reversibility, we show that the map from the subspace bases to reduced trajec-
tories is globally differentiable, which allows us to optimize the reduced model via gradient-based
Riemannian optimization. We further propose a trajectory-wise discrepancy loss that penalizes the
difference between the full-order and the reduced trajectories. To make the optimization tractable,
we propose a tensor precomputation scheme to accelerate the back-propagation of gradient informa-
tion. Figure 1 illustrates the high-level pipeline of our method that fine-tunes the reduced fluid model
to minimize the expected trajectory-wise discrepancy loss over the distribution of initial conditions.
In essence, our method extends prior optimal reduced bases construction algorithm Berkooz et al.
(1993); Schmid (2010) to the nonlinear, idealized fluid dynamic model. As an intrusive approach,
our method preserves the desirable property of time reversibility. When compared with POD-type
reduced model baseline on a row of idealized fluid simulation benchmarks, our method lowers the
discrepancy by 50% − 90%.

2 RELATED WORK

We review related works on machine learning for solving ODE and PDE, reduced physics models
beyond fluid dynamics, and finally learning under hard constraints.

Learning for Solving ODE and PDE: To study the complex behavior of dynamic systems, var-
ious mathematical models have been proposed for idealized models of fluid, solid, elasto-magnetic
fields, etc. However, there are oftentimes subtle discrepancies between these models and real-world
observations that are hard to model, in which cases machine learning stands out as an effective ap-
proach for acquiring these behaviors from groundtruth data. Chen et al. (2018) propose to learn
such dynamics as a general Ordinary Differential Equation (ODE) with the time derivative of state
predicted via a neural network. Although this method is applicable to general dynamic systems,
it does not reflect the spatial and temporal structures of certain systems, which limits its accuracy,
data-efficacy, and scalability to high-dimensional systems such as fluids. Several follow-up works
improve the network architecture to reflect additional structures. For example, the inter-dependency

2



Under review as a conference paper at ICLR 2023

among spatial variables is oftentimes local and sparse, which could be modeled via neighborhood
message passing Battaglia et al. (2016); Li et al. (2019). Hamiltonian dynamics are time reversible
and energy preserving, which is modeled by learning the Hamiltonian operator in “canonical” co-
ordinates Greydanus et al. (2019), generalized coordinates Cranmer et al. (2020), or ambient space
with additional constraints Finzi et al. (2020). However, the above techniques are using La-
grangian coordinates, while fluid mechanics are oftentimes modeled via an Eulerian grid, see
e.g. Takahashi et al. (2021), which is a major point of difference from our method. Parallel
efforts have been made to learn Eulerian fluid mechanics Um et al. (2020); Takahashi et al.
(2021); Holl et al. (2020); Prantl et al. (2019); Kim et al. (2019). Some of these works Um et al.
(2020); Takahashi et al. (2021); Holl et al. (2020) learn to control fluids via differentiable sim-
ulators but the dynamic systems are not learned. Other works Prantl et al. (2019); Kim et al.
(2019) learn to predict short future trajectories of free-surface flows. As the major difference
from these techniques, our goal is to predict arbitrarily long trajectories by utilizing the time
reversible structure of the dynamic system to guarantee stability. On the downside, however,
our method cannot predict free-surface flows.

Learning Reduced Physical Models: Model reduction is a special kind of dimension reduction
technique dealing with time series datasets and we refer readers to Rowley & Dawson (2017) for a
review of its application in fluid mechanics. Other than fluid, reduced models have been adopted in
predicting the behaviors of solid Sampaio & Soize (2007), electromagnetic fields Ralph-Uwe et al.
(2008), quantum and molecular mechanics Mohan & Fredrickson (2020), neuron propagations Am-
sallem & Nordstrom (2016), etc. A successful reduced model involves two steps: 1) embed the data
into a proper subspace that well explains the data variations; 2) project the dynamic system into the
subspace. Conventional techniques for model reduction are restricted to linear dynamic systems, for
which optimal linear subspace can be identified via POD or DMD Berkooz et al. (1993); Rowley
(2005) and the projected dynamic system can be precomputed via Galerkin projection. More gen-
eral machine learning techniques have been proposed for an extension to nonlinear dynamics. For
example, convolution autoencoder has been used to identify nonlinear subspaces Wu et al. (2021);
Hasegawa et al. (2020). The ROM-net Daniel et al. (2020) learns to select a suitable subspace from a
dictionary. Li et al. (2017) proposes to represent the linear subspace bases as the output of a univer-
sal neural network. In order to efficiently project the nonlinear dynamic system into the subspace,
the Discrete Empirical Interpolation Method (DEIM) Chaturantabut & Sorensen (2010) has been
proposed to select a sparse set of interpolation points. The interpolation points are then contracted
with the subspace bases in an intrusive manner. Non-intrusive approaches use universal neural net-
works to learn the entire nonlinear transfer function Wu et al. (2021); Hasegawa et al. (2020); Lee
et al. (2021) or part of the nonlinear terms Maulik et al. (2019). It has been noticed in Amsallem &
Nordstrom (2016); Liu et al. (2015) that time reversibility and energy preservation features can be
preserved by using an intrusive approach, which is a main reason behind our technical choice.

Learning Under Hard Constraints: Our work deals with idealized fluid satisfying two hard con-
straints: 1) incompressibility and 2) time reversibility. Since prominent training algorithms Duchi
et al. (2011); Kingma & Ba (2014) and neural network architectures are designed for unconstrained
optimization, dealing with hard constraints has been a long-standing problem Márquez-Neila et al.
(2017). There are two general approaches to inform a learned model of hard constraints: soften-
ing and constraint layers. Softening transforms the hard constraint into soft losses and relies on
unconstrained optimizations. Some hard constraints model invariant variables, in which case data
augmentation could be used to enforce a neural network gives the same output over all invariant
transforms of inputs. In the learning of physical models, softening has been adopted to enforce
physical correctness Sirignano & Spiliopoulos (2018); Ober-Blöbaum & Offen (2022), fluid incom-
pressible Ajuria Illarramendi et al. (2020), and collision-free constraints Tan et al. (2022), and data
augmentation has been used to enforce invariance to rigid Morozov et al. (2021) and Galilean trans-
formations Ling et al. (2016). A common problem with all these approaches lies in the unpredictable
constraint violation in regions of insufficient data coverage. To exactly impose hard constraints, a
series of works Amos & Kolter (2017); Agrawal et al. (2019) propose to formulate the constrained
optimization as a differentiable layer in the neural network architecture. In particular, the entire
fluid simulator has been formulated as a differentiable layer Schenck & Fox (2018); Takahashi et al.
(2021) for model-based control and system identification. The incompressible constraint has also
been formulated as an elliptic PDE solver layer in Mohan et al. (2020). Although these techniques
can enforce hard constraints, the cost of forward- and back-propagations through these layers are

3



Under review as a conference paper at ICLR 2023

prohibitive. Even worse, these layers must be evaluated during both training and test time. Our
method uses the constraint layer approach to enforce fluid incompressibility and time reversibility,
by incorporating the reduced model Liu et al. (2015) as our differentiable layer. However, we en-
code the constraint property into the reduced bases, which is fixed during test time, leading to the
low computational cost of trajectory prediction.

3 TIME REVERSIBLE REDUCED FLUID MODEL

We briefly review the underlying geometric structure and associated computational model of ideal-
ized, incompressible, inviscid fluid Pavlov et al. (2011). Given a simulation domain M, the fluid
configuration can be described as a vector field v ∈ V(M) where v(x) for any x ∈ M represents the
velocity of fluid at x. The governing equation for v is:

v̇ +∇ × v × v +∇λ = 0 s.t. ∇ ⋅ v = 0, (1)

where λ is the pressure field, which is also the Lagrangian multiplier for the divergence-free con-
straint ∇ ⋅ v = 0. The above system is closed with appropriate initial and boundary conditions.
Pavlov et al. (2011) proposed time-reversible, energy preserving spatial and temporal discretization
schemes for Equation 1. However, directly time integrating the discrete system requires solving
large-scale nonlinear system equations. Reduced-order model Liu et al. (2015) scales down the cost
by embedding v into a p-dimensional subspace with divergence-free, orthogonal basis U , giving
v = Uz where z is the coefficient vector. The reduced-order governing equation can be derived via
Galerkin projection:

ż + ∫
M

UT
∇× (Uz) × (Uz) = 0, (2)

where the second term is the reduced-order advector, which could be succinctly written as a con-
traction with a third-order tensor Ckij :

żk +∑
i

∑
j

Ckijzizj = 0 s.t. Ckij ≜ ∫
M

⟨Uk,∇×Ui ×Uj⟩ , (3)

where we use zk (resp. Uk) to denote the kth element (resp. column). For fast reduced trajectory
prediction, the tensor Ckij is precomputed, and a small p is used. An essential feature of Ckij

is antisymmetry: Ckij = −Cjik, which implies that the continuous-time, reduced system is also
energy-preserving as:

d

dt
∥z∥2 =2∑

kij

Ckijzkzizj = ∑
kij

(Ckij −Cjik)zkzizj = 0.

Using a variational integrator, e.g. the trapezoidal rule, the energy will also be conserved in a
time-discrete computational model. We use a superscript + to denote variables at the next time
instance, the superscript d denotes the variable at the dth timestep, and δt denotes timestep size. The
trapezoidal rule relates z+ and z by:

z+(z) ∶
z+ − z

δt
+C(z+) = 0 s.t. C(z+) ≜ ∑

ij

C∶ij
z+i + zi

2

z+j + zj

2
, (4)

from which z+ can be solved via the Newton-Raphson method to satisfy ∥z+∥2 = ∥z∥2, i.e. energy
conservation, as well as discrete-time reversibility. These remarked features, originally discovered
in Pavlov et al. (2011); Liu et al. (2015), achieve an ideal balance between computational efficacy
and numerical stability. As pointed out by Pavlov et al. (2011), although real-world flows are
not ideally energy-preserved, simulating ideal flows is a crucial benchmark for evaluating the
stability and fidelity of a simulator. More general non-reversible flows can be modeled by
adding additional constitutive terms. As an example, we could add a viscous term µ∇(∇ ⋅ v)
to model energy dissipation and this term can be projected to the reduced space via Galerkin
projection. In Figure 2, we plot the procedure of energy dissipation under different µ using
both our learned reduced model and the groundtruth fullspace model. We formalize and prove
these properties in Appendix A and Appendix B. In particular, Equation 4 defines a unique z+ given
z and a sufficiently small δt, so we define the function z+(z) by a slight abuse of notations. The
accuracy of a reduced model relies on a proper choice of the basis vector U , which remains a difficult
but underappreciated problem.

4



Under review as a conference paper at ICLR 2023

0 2 4
0.0

2.5

5.0

7.5

10.0

12.5

diffuse=0
diffuse=1
diffuse=10
diffuse=100

(a)

0 2 4

4

6

8

10

12

diffuse=0
diffuse=1
diffuse=10
diffuse=100

(b)

Figure 2: We plot the energy dissipation cause by a viscous term under µ = 0,1,10,100, simulated using
our learned reduced model (a) and the groundtruth fullspace model (b).

4 REDUCED MODEL OPTIMIZATION

As illustrated in Figure 1, we propose to identify reduce-order fluid models via gradient-based op-
timization of U to minimize the trajectory-wise discrepancy between a reduced-order model (Equa-
tion 3) and the full-order model (Equation 1). In this section, we first discretize the spatial computa-
tional domain (Section 4.1), we then propose our discrepancy loss function (Section 4.3), and finally
discuss our optimization algorithm (Section 4.4).

4.1 SPATIAL DISCRETIZATION

We assume thatM is discretized using a tetrahedron mesh or a rectangular grid via Discrete Exterior
Calculus (DEC) as in Pavlov et al. (2011). As a result, each vector field has a finite dimension
n ≫ p. We use a bar to denote discrete variable so v̄ ∈ Rn. Ū belongs to the intersection of Stiefel
manifold St(n, p) and the divergence-free basis subspace: D(n, p) = {Ū ∈ Rn×p∣∇̄ ⋅ Ū = 0}, where
∇̄⋅ ∈ R(n−m)×n is the discrete divergence operator and m ≫ p is the dimension of divergence-free
velocity subspace. The elements of Ū can also be identified with the elements of St(m,p). Indeed,
we can find a set of unit, orthogonal bases D̄ ∈ Rn×m spanning the subspace of divergence-free
velocity fields. For each Ū , we can identify some Ūm ∈ St(m,p) such that Ū = D̄Ūm. As illustrated
in Figure 8, a point on St(n, p) is the bases of a p-dimensional velocity field subspace, while a point
on St(m,p) is the bases of a p-dimensional divergence-free velocity field subspace. Since we merely
use Ū to project the velocity field into a subspace, we are only interested in the lower-dimensional
Grassmannian Manifold (the manifold of velocity subspace irrespective of the particular bases), but
we use Stiefel representation for better memory and computational efficacy. In other words, we treat
Ū as our decision variable. We further write the tensor coefficient Ckij as a function C(Ūk, Ūi, Ūj),
which is derived by discretizing the continuous definition of Ckij in Equation 3 using DEC.

4.2 LIFTING TRANSFER FUNCTION FROM REDUCED- TO FULL-SPACE

In order to optimize the accuracy of reduced dynamic system, we first need to compare simulated
trajectories generated by different bases Ū . However, the coordinate vector z of different Ū is
incomparable, as they reside in different linear subspaces. To resolve this problem, we propose to
lift z to v̄ = Ūz in the ambient space Rn, so that two vectors can be compared by the induced metric
in the Euclidean space. Further, we can smoothly extend the reduced-order simulator function to the
ambient space using the projection operator P̄ = Ū ŪT and P̄⊥ = I − P̄ :

v̄+(v̄, Ū) ≜ Ūz+(ŪT v̄) + P̄⊥v̄. (5)

In other words, the velocity component orthogonal to the subspace is stationary, and the tangential
velocity is governed by the reduced dynamic system. As detailed in Appendix C, the above extension
can be written as a function defined on the Grassmannian manifold: v̄+(v̄, P̄m) ∶ Rn ×Gr(m,p) ↦

Rn, where we denote P̄m = Ūm [Ūm]
T

. With the smooth extension, we can evaluate the derivatives
of v̄+ with respect to v̄ and the subspace. We can also compare two velocity fields generated by
reduced-order simulators using different subspaces. Note the full-order dynamics (Equation 1) can
be identified with Um = Im×m. The above lifting is not unique, and a useful alternative is to discard
the orthogonal component, i.e. setting P̄⊥v̄

+ = 0, which is discussed in Appendix C.2. As our major

5



Under review as a conference paper at ICLR 2023

contribution, we show in Appendix C that the above function v̄+ is a well-defined smooth function
on Gr(m,p). We further show that for any differentiable loss function L(v̄+), its derivatives with
respect to the bases can be efficiently computed under a proper representation of Ū as a manifold
point.

Algorithm 1 Forward-Backward(v̄0,Ū )

1: Precompute tensor Ckij = C(Ūk, Ūi, Ūj)

2: Precompute tensor C(D̄D̄T , Ūi, Ūj)

3: for d = 0,⋯, T − 1 do ▷ forward propagation
4: v̄d+1 ← v̄+(v̄d, Ū)

5: G← 0 ▷ backward propagation

6: Evaluate ∇L ← ∂γT
Ldyn(v̄

T
)

∂v̄T

7: for d = T − 1,⋯,1 do
8: G← G + Equation 12

9: ∇L ← ∂v̄d+1

∂v̄d

T
∇L+

∂γd
Ldyn(v̄

d
)

∂v̄d

10: Compute ∇ŪL via Equation 11 ▷ divergence-free projection
11: Return ∇ŪL

Algorithm 2 RAMSGRAD(I,Ū )
Input: β1, β2, α, δt

1: m← 0, τ ← 0, ν ← 0, ν̂ ← 0
2: while Not converge do
3: Sample v0 ∼ I ▷ we always use batch size equals to 1
4: g ←Forward-Backward(v0,Ū )
5: m← β1τ + (1 − β1)g
6: ν ← β2ν + (1 − β2)∥g∥

2

7: ν̂ = max(ν̂, ν)

8: Ū ← Retract(Ū ,−αm/
√
ν̂) ▷ by QR factorization

9: τ ← P̄⊥m ▷ approximate parallel transport
10: Return Ū

4.3 REDUCED DISCREPANCY LOSS

The differentiable structure of reduced fluid allows us to minimize the discrepancy between reduced-
and full-order model in an efficient model-based manner. Given two velocity fields v̄ and v̄+, a full-
order model should satisfy the governing equation of motion, which inspires the following discrep-
ancy measure:

Ldyn(v̄
+, v̄) ≜ ∥D̄D̄T v̄+ − v̄

δt
+C(D̄D̄T ,

v̄+ + v̄

2
,
v̄+ + v̄

2
)∥

2

. (6)

This is similar to the physics correctness loss used in Sirignano & Spiliopoulos (2018); Ober-
Blöbaum & Offen (2022) and we absorb the linear divergence-free constraint by using the projection
operator D̄D̄T . Again, evaluating L involves a sparse linear solve for each of the T timesteps. But
we can accelerate this computation thanks to the low-rank property of the velocity fields. Since, v̄
and v̄+ both reside in low-rank spaces, we can write:

C(D̄D̄T ,
v̄+ + v̄

2
,
v̄+ + v̄

2
) = ∑

ij

C(D̄D̄T , Ūi, Ūj)
z̄+i + z̄i

2

v̄+j + v̄j

2
,

and precompute the tensor C(D̄D̄T , Ūi, Ūj) via p2 sparse linear solves at the cost ofO(nωp2). For
a trajectory with T ≫ p2 timesteps, this operator reduces the cost of evaluating Ldyn from O(nωT )
to O(nωp2 + Tnp2).

6



Under review as a conference paper at ICLR 2023

4.4 STOCHASTIC RIEMANN OPTIMIZATION

Using a low-dimensional subspace, it is impossible to approximate all fluid simulation trajectories
with sufficient accuracy. Instead, reduced models are designed to optimize a subset of trajectories
with a given distribution I of initial conditions, i.e. v̄0 ∼ I and our goal is to solve the following
problem via stochastic Riemann optimization:

argmin
Ū∈D(n,p)∩St(n,p)

Ev̄0∼I [
T

∑
d=1

γd
Ldyn(v̄

d, v̄d−1)] , (7)

where T is the horizon of trajectory and γ ∈ (0,1] is a constant discount factor. Riemann op-
timization is a well-studied problem in both deterministic and stochastic settings and we use the
RAMSGRAD algorithm proposed in Becigneul & Ganea (2019). This algorithm requires both the
retraction and parallel transport operators on St(n, p). We use QR-factorization for the retraction
operator Bendokat et al. (2020). Unfortunately, there is no efficient way to compute the parallel
transport operator Edelman et al. (1998), so we approximate the transport operator by projecting out
the non-tangential component. This corresponds to using a single step of forward Euler integrator
to solve the associated ODE of the transport operator. Again due to time reversibility, the objec-
tive function is globally differentiable with respect to Ū under compact I and sufficiently small δt.
We outline our forward-backward gradient propagation in Algorithm 1 and adapted RAMSGRAD
in Algorithm 2. These algorithms are well-defined due to the following lemma:

Lemma 4.1. For any compact initial distribution I, there exists a sufficiently small δt, such that
the objective function ∑T

d=0 γ
dLdyn(v̄

d) is globally differentiable, i.e. for any z0 ∈ I and Ū ∈
D(n, p) ∩ St(n, p).

Proof. Since I is compact, v̄0 is uniformly upper bounded by some r and ∥z0∥ = ∥ŪT v̄0∥ ≤ r. By
Corollary A.5, there exists a sufficiently small δt making any zd a differentiable, reversible function
of z0. This also implies v̄d is a differentiable, reversible function of v̄0 under the definition of
Equation 5, and our result follows.

5 EVALUATION

10 20 30 40 50
p

2

4

6

8

Ti
m

e(
m

s)

Figure 3: The cost of evaluating
z+(z) plotted against p.

We implement our method using Pytorch with a fluid simulator im-
plemented via native C++ with CPU parallelization, and perform
all the computations on an AMD Threadripper 3970X CPU having
32 cores. We initialize our method using a conventional POD-type
algorithm. Given I, we first sample a set of N trajectories using
the full-order dynamics (Equation 1) and then perform a POD-type
basis extraction. The number of extracted bases is determined by
truncating the eigenvalues below ϵ of the largest eigenvalue. We
always use a batch size of 1. The performance of our method is
summarized in Table 1. We consider two variants of our method:
coupled case, where Ckij is treated as a function C(Uk, Ui, Uj) as discussed in Section 4, and de-
coupled case, where Ckij is treated as an antisymmetric independent decision variable. Our main
experiments are performed with the coupled case. Experiments with the decoupled case and a sum-
mary of decision variables are included in Appendix D. The efficacy of trajectory prediction using
a reduced-order model depends on p as illustrated in Figure 3, so the runtime performance of both
the POD baseline and our method are the same, while the cost of evaluating the full-order model is
252ms (26× slower than the reduced-order model with p = 49).

Benchmark ϵ = 0.05 ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001
p Loss-POD Loss-Ours p Loss-POD Loss-Ours p Loss-POD Loss-Ours p Loss-POD Loss-Ours

Taylor Vortices 8 4.84 0.58 11 3.93 0.39 16 1.99 0.17 25 0.70 0.07
Plume Rise 6 57.04 6.37 9 28.23 5.38 15 18.53 2.30 26 5.96 1.44
Plume Rise+Obstacle 5 133.16 10.48 8 46.47 8.60 16 17.57 2.57 30 5.71 1.05
Spherical Plume - - - 36 120.89 44.89 - - - - - -
Two Plume - - - 59 103.23 49.22 - - - - - -

Table 1: Summary of benchmarks for comparing POD and our method under different ϵ and p.

7



Under review as a conference paper at ICLR 2023

(a)
10 15 20 25

#Bases

0

1

2

3

4

5

Di
sc

re
pa

nc
y

POD
Our Method

(b)
0 10 20

Elapsed Time (hr)

0

1

2

3

4

5

Di
sc

re
pa

nc
y

coupled(8)
coupled(11)
coupled(16)
coupled(25)

(c)
Figure 4: (a) Velocity magnitude field snapshots of the Taylor vortices benchmark, generated by full-order
model (top row), our method with ϵ = 0.0001 and p = 25 (middle row), and POD with ϵ = 0.0001 and
p = 25 (bottom row). (b) Trajectory-wise discrepancy loss of POD and our method, under different p. (c) The
convergence history of our method over 24 hours.

Our first benchmark is Taylor vortices Pavlov et al. (2011), where two vortices are separated by a
distance slightly larger than the critical threshold. We use a velocity field discretized on a 64 × 64
rectangular grid with the periodic boundary condition, leading to n = 8192. This is a single trajectory
(I is deterministic) and we set T = 500, δt = 0.01. We experiment with four parameters ϵ = 0.05,
0.01, 0.001, and 0.0001 and the number of bases is p = 8, 11, 16, and 25, correspondingly. With
each Ū as the initial guess, we run our optimizer for 24 hours. In Figure 4bc, we plot the trajectory-
wise discrepancy loss against the number of bases p and the convergence history of our method.
Compared with POD bases, our method reduces the discrepancy loss by 87.93%, 90.12%, 91.47%,
and 90.16%, respectively. Snapshots are shown in Figure 4a, where our method predicts a velocity
field closer to the full-order groundtruth.

Our second benchmark involves having a smoke plume rise at a constant speed. We use a rectangular
domain of [0,1]2 with all Dirichlet boundary conditions. The region of [0.25,0.75]×[0.125,0.375]
is occupied by the smoke with a constant speed (0, 1), the remaining regions have zero velocity, and
we use T = 1000. All other settings are the same as our first benchmark. The discrepancy loss and
convergence history are plotted in Figure 13bc. We experiment with four parameters ϵ = 0.05, 0.01,
0.001, and 0.0001, the corresponding numbers of bases p are 6, 9, 15, and 26, respectively. Our
method reduces the discrepancy loss by 88.82%, 80.94%, 87.60%, and 75.79%, respectively. We
have also tested a variant of our method with an obstacle in the simulation domain, where our method
reduces the discrepancy loss by 92.13%, 81.49%, 85.38%, and 81.70%, respectively. Snapshots of
our second benchmark are shown in Figure 13a and Figure 14 of Appendix H.

0 2500 5000 7500 10000 12500
#Iteration

0

5

10

15

20

Di
sc

re
pa

nc
y

coupled(8)(0.01)
coupled(8)(0.05)
coupled(8)(0.25)
coupled(8)(0.5)
coupled(8)(0.5) More Iter.
coupled(8)(noise)

ϵ̃ Loss-Init. Loss-8k-Iter. Loss-12k-Iter.

0.01 4.84 0.79 N/A
0.05 5.04 0.83 N/A
0.25 10.16 1.23 N/A
0.5 22.77 1.51 1.08

Noise 21.06 2.37 N/A

Figure 5: The convergence history of four instances of learning reduced Taylor vortices with ϵ = 0.05, p = 8,
and difference noise levels ϵ̃ = 0.01,0.05,0.25,0.5. We first run the four training instances for 8000 iterations,
which already brings the ultimate discrepancy loss down to similarly low levels. We then give the ϵ̃ = 0.5
instance another 4500 iterations (purple after red curve) and it could outperform the ϵ̃ = 0.25 instance. Finally,
we tried using a fully noisy initialization of Ū and the result is much worse than other instances.

In our first benchmark, Taylor vortices Pavlov et al. (2011), we further analyze the sensitivity of
our method with respect to the initial guess Ū . To this end, we first compute Ū via POD and then
corrupt Ū using a random noise bases Ũ with each element sampled according to the truncated
normal distribution with µ = 0, σ = 1 and truncated to range [−1,1]. We then use the following
initial guess: Retract(Ũ , D̄D̄T ŨΣ), where Σ is a scaling diagonal matrix such that each column of
ŨΣ has l2-norm equals to some ϵ̃ and ϵ̃ controls the magnitude of random noise. Here multiplying
by D̄D̄T ensures that our noise is divergence-free. In Figure 5, we profile the convergence history
with ϵ̃ = 0.01,0.05,0.25,0.5. Although the noise can drastically change the initial discrepancy
loss, all four instances can reduce the loss to similar levels after sufficiently many iterations. Our
analysis also implies that the POD baseline provides a good initial guess of Ū , because a fully noisy
initialization of Ū can lead to a worse result.

8



Under review as a conference paper at ICLR 2023

0 500 1000 1500 2000 2500 3000
#Iteration

10

20

30

40

50

Di
sc

re
pa

nc
y

coupled(6)
coupled(6) One-Step
coupled(9)
coupled(9) One-Step

Mode ϵ/p Loss-POD Loss-3k-Iter.

One-Step 0.05/6 57.39 24.12
Full-Unrolling 0.05/6 57.39 6.37

One-Step 0.01/9 28.23 15.71
Full-Unrolling 0.01/9 28.23 5.38

Figure 6: The convergence history over 3000 iterations of four instances of learning reduced smoke plume
rising trajectory. We use two sets of instances: ϵ = 0.05, p = 6 and ϵ = 0.01, p = 9. For each set, we compare
one-step and full-unrolling mode of training.

In the recent work Brandstetter et al. (2022), authors proposed two training modes for learning
neural PDE solver, one-step training and full-unrolling. One-step training cuts off the gradient after
a single timestep, while the full-unrolling mode considers the full gradient of Equation 7 over the
entire trajectory. We compare the two modes in Figure 6 in terms of trajectory-wise discrepancy loss,
using our second benchmark scenario, rising smoke plume. Both modes can reduce the loss after
3000 iterations, although there is some initial fluctuation in one-step training, while full-unrolling
leads to significantly faster convergence. We use the full-unrolling mode for all other examples.

0°

45°

90°

135°

180°

225°

270°

315°

0
50

100
150

Discrepancy - Our Method
POD

(a) 1

0.1
0.3

0.5
0.7

0.9

2

0.1
0.3

0.5
0.7

0.9
Di

sc
re

pa
nc

y

0
25
50
75
100
125
150
175

(b) 1

0.1
0.3

0.5
0.7

0.9

2

0.1
0.3

0.5
0.7

0.9

Di
sc

re
pa

nc
y

0
25
50
75
100
125
150
175

(c)

Figure 7: (a): The trajectory-wise discrepancy with respect to θ for our third benchmark. (bc): The initial (b)
and final (c) trajectory-wise discrepancy with respect to θ1, θ2 for our forth benchmark.

Our third benchmark involves a spherical smoke plume, with initial diameter 1/3 and speed 1.0 lo-
cated in the center of a [0,1]2 domain, moving in varying directions. We assume the direction of mo-
tion is parameterized by the angle θ ∈ [0,2π] sampled from the initial distribution I = U([0,2π]).
We use a velocity field discretized on a 64 × 64 rectangular grid with Dirichlet boundary condition
(n = 8320). Our training dataset for the POD baseline contains N = 8 trajectories with evenly
sampled θ = 0○,45○,90○,⋯. With T = 500, δt = 0.01, ϵ = 0.01, p = 36, we run our method for
12200 iterations, taking 72 hours to converge. We then test our method on another 24 evenly
sampled θ = 7.5○,22.5○,30○,⋯, which are not covered by the training dataset (some snapshots
can be found in Figure 15 of Appendix H). As plotted in Figure 7a, our method reduces the dis-
crepancy by 54.65% on average.

Our fourth benchmark extends the third one by involving two smoke plumes, located at (0.5, 0.25)
and (0.5, 0.75). The directions of motion θ1, θ2 ∈ [0, π] are sampled from the initial distribution
I = U([0, π]2) and we set ϵ = 0.01, p = 59. Our training dataset for the POD baseline contains
N = 25 trajectories with 5 evenly sampled θ1,2 = 0○,72○,144○,216○,288○. Other parameters
are the same as those of our third benchmark. We run our method for 18000 iterations, taking
72 hours to converge (some snapshots can be found in Figure 16 of Appendix H). Afterwards,
we test our method on another 25 evenly sampled θ1,2 = 36

○,108○,180○,252○,324○ that are not
covered by the training dataset. As plotted in Figure 7bc, our method reduces the discrepancy by
59.28% on average.

6 CONCLUSION

We propose a model-based approach to fine-tune reduced fluid dynamic systems. Our main idea
is to rely on the differentiable structure between the state transfer function and the linear subspace
bases to minimize the expected trajectory-wise discrepancy loss, over a distribution of initial con-
ditions. By evaluating several simulation benchmarks, we show that our method outperforms the
POD baseline. As our major limitation, our trajectory prediction has sequential dependence and
cannot exploit GPU parallelization. Even with our tensor precomputation technique, the training

9



Under review as a conference paper at ICLR 2023

still takes hours on a desktop machine, which is orders of magnitude slower than the simple POD or
DMD method. In addition, our method uses a linear subspace with limited expressivity as compared
with universal neural networks Wu et al. (2021); Hasegawa et al. (2020); Lee et al. (2021) used by
non-intrusive model reduction techniques. We speculate that using neural networks to represent the
reduced bases Ū is possible as done in Li et al. (2017), although the orthogonal and divergence-free
constraints will be more difficult to enforce. Enforcing these constraints exactly as in Mohan et al.
(2020) would compromise the efficacy of reduced time integration.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

V.C. Aitken and H.M. Schwartz. On the exponential stability of discrete-time systems with applica-
tions in observer design. IEEE Transactions on Automatic Control, 39(9):1959–1962, 1994. doi:
10.1109/9.317135.

Ekhi Ajuria Illarramendi, Antonio Alguacil, Michaël Bauerheim, Antony Misdariis, Benedicte
Cuenot, and Emmanuel Benazera. Towards an hybrid computational strategy based on deep learn-
ing for incompressible flows. In AIAA AVIATION 2020 FORUM, pp. 3058, 2020.

Giancarlo Alfonsi. Reynolds-averaged navier–stokes equations for turbulence modeling. Applied
Mechanics Reviews, 62(4), 2009.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

David Amsallem and Jan Nordstrom. Energy stable model reduction of neurons by nonnegative
discrete empirical interpolation. SIAM Journal on Scientific Computing, 38(2):B297–B326, 2016.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Oktay Baysal and Mohamed E Eleshaky. Aerodynamic design optimization using sensitivity analy-
sis and computational fluid dynamics. AIAA journal, 30(3):718–725, 1992.

Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In Inter-
national Conference on Learning Representations, 2019.

Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A grassmann manifold handbook: Basic
geometry and computational aspects. arXiv preprint arXiv:2011.13699, 2020.

Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the
analysis of turbulent flows. Annual review of fluid mechanics, 25(1):539–575, 1993.

Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloemen Waanders. Large-
scale pde-constrained optimization: an introduction. In Large-Scale PDE-Constrained Optimiza-
tion, pp. 3–13. Springer, 2003.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Robert Bridson. Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.

Robert Bridson and Christopher Batty. Computational physics in film. Science, 330(6012):1756–
1757, 2010.

Saifon Chaturantabut and Danny C Sorensen. Nonlinear model reduction via discrete empirical
interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

10



Under review as a conference paper at ICLR 2023

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Thomas Daniel, Fabien Casenave, Nissrine Akkari, and David Ryckelynck. Model order reduction
assisted by deep neural networks (rom-net). Advanced Modeling and Simulation in Engineering
Sciences, 7(1):1–27, 2020.

Leszek Demkowicz, J Tinsely Oden, Waldemar Rachowicz, and Oliver Hardy. Toward a universal hp
adaptive finite element strategy, part 1. constrained approximation and data structure. Computer
Methods in Applied Mechanics and Engineering, 77(1-2):79–112, 1989.

Nicola Demo, Marco Tezzele, and Gianluigi Rozza. Pydmd: Python dynamic mode decomposition.
Journal of Open Source Software, 3(22):530, 2018.

Tao Du, Kui Wu, Andrew Spielberg, Wojciech Matusik, Bo Zhu, and Eftychios Sifakis. Functional
optimization of fluidic devices with differentiable stokes flow. ACM Trans. Graph., 39(6), nov
2020. ISSN 0730-0301.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

M. Duponcheel, P. Orlandi, and G. Winckelmans. Time-reversibility of the euler equations as a
benchmark for energy conserving schemes. Journal of Computational Physics, 227(19):8736–
8752, 2008. ISSN 0021-9991.

Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality
constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

Marc Finzi, Ke Alexander Wang, and Andrew G Wilson. Simplifying hamiltonian and lagrangian
neural networks via explicit constraints. Advances in neural information processing systems, 33:
13880–13889, 2020.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

S Gugercin, C Beattie, and AC Antoulas. Rational krylov methods for optimal h2 model reduction.
submitted for publication, 2006.

Kazuto Hasegawa, Kai Fukami, Takaaki Murata, and Koji Fukagata. Cnn-lstm based reduced or-
der modeling of two-dimensional unsteady flows around a circular cylinder at different reynolds
numbers. Fluid Dynamics Research, 52(6):065501, 2020.

Roland Herzog and Karl Kunisch. Algorithms for pde-constrained optimization. GAMM-
Mitteilungen, 33(2):163–176, 2010.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable
physics. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HyeSin4FPB.

William W Hsieh and Benyang Tang. Applying neural network models to prediction and data anal-
ysis in meteorology and oceanography. Bulletin of the American Meteorological Society, 79(9):
1855–1870, 1998.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
graphics forum, volume 38, pp. 59–70. Wiley Online Library, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

SiHun Lee, Kijoo Jang, Haeseong Cho, Haedong Kim, and SangJoon Shin. Parametric non-intrusive
model order reduction for flow-fields using unsupervised machine learning. Computer Methods
in Applied Mechanics and Engineering, 384:113999, 2021.

11

https://openreview.net/forum?id=HyeSin4FPB
https://openreview.net/forum?id=HyeSin4FPB


Under review as a conference paper at ICLR 2023

Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111,
2017.

Yifei Li, Tao Du, Sangeetha Grama Srinivasan, Kui Wu, Bo Zhu, Eftychios Sifakis, and Wojciech
Matusik. Fluidic topology optimization with an anisotropic mixture model. ACM Trans. Graph.,
nov 2022.

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake.
Propagation networks for model-based control under partial observation. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 1205–1211. IEEE, 2019.

Julia Ling, Reese Jones, and Jeremy Templeton. Machine learning strategies for systems with in-
variance properties. Journal of Computational Physics, 318:22–35, 2016.

Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu Desbrun. Model-reduced
variational fluid simulation. ACM Trans. Graph., 34(6), oct 2015. ISSN 0730-0301.

Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep net-
works: Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.

Romit Maulik, Vishwas Rao, Sandeep Madireddy, Bethany Lusch, and Prasanna Balaprakash. Using
recurrent neural networks for nonlinear component computation in advection-dominated reduced-
order models. arXiv preprint arXiv:1909.09144, 2019.

Aruna Mohan and Glenn H Fredrickson. Reduced-order computational model for the molecular
dynamics simulation of entangled polymers. arXiv preprint arXiv:2009.00216, 2020.

Arvind T Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embedding hard
physical constraints in neural network coarse-graining of 3d turbulence. arXiv preprint
arXiv:2002.00021, 2020.

Parviz Moin and Krishnan Mahesh. Direct numerical simulation: a tool in turbulence research.
Annual review of fluid mechanics, 30(1):539–578, 1998.

Alexander Morozov, Davide Zgyatti, and Petr Popov. Equidistant and uniform data augmentation
for 3d objects. IEEE Access, 10:3766–3774, 2021.

Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction to robotic
manipulation. CRC press, 2017.

Sina Ober-Blöbaum and Christian Offen. Variational learning of euler–lagrange dynamics from
data. arXiv preprint arXiv:2112.12619, 2022.

Dmitry Pavlov, Patrick Mullen, Yiying Tong, Eva Kanso, Jerrold E Marsden, and Mathieu Desbrun.
Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena,
240(6):443–458, 2011.

Barak A Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Com-
putation, 1(2):263–269, 1989.

Titus Petrila and Damian Trif. Basics of fluid mechanics and introduction to computational fluid
dynamics, volume 3. Springer Science & Business Media, 2004.

Lukas Prantl, Boris Bonev, and Nils Thuerey. Generating liquid simulations with deformation-
aware neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyeGBj09Fm.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

12

https://openreview.net/forum?id=HyeGBj09Fm


Under review as a conference paper at ICLR 2023

Börner Ralph-Uwe, Oliver G Ernst, and Klaus Spitzer. Fast 3-d simulation of transient electro-
magnetic fields by model reduction in the frequency domain using krylov subspace projection.
Geophysical Journal International, 173(3):766–780, 2008.

Clarence W Rowley. Model reduction for fluids, using balanced proper orthogonal decomposition.
International Journal of Bifurcation and Chaos, 15(03):997–1013, 2005.

Clarence W Rowley and Scott TM Dawson. Model reduction for flow analysis and control. Annu.
Rev. Fluid Mech, 49(1):387–417, 2017.

Clarence W Rowley and Jerrold E Marsden. Variational integrators for degenerate lagrangians,
with application to point vortices. In Proceedings of the 41st IEEE Conference on Decision and
Control, 2002., volume 2, pp. 1521–1527. IEEE, 2002.

Rubens Sampaio and Christian Soize. Remarks on the efficiency of pod for model reduction in
non-linear dynamics of continuous elastic systems. International Journal for numerical methods
in Engineering, 72(1):22–45, 2007.

Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural networks.
In Conference on Robot Learning, pp. 317–335. PMLR, 2018.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5–28, 2010.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Georg Still. Lectures on parametric optimization: An introduction. Optimization Online, 2018.

Kunihiko Taira, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim Colonius, Bev-
erley J McKeon, Oliver T Schmidt, Stanislav Gordeyev, Vassilios Theofilis, and Lawrence S
Ukeiley. Modal analysis of fluid flows: An overview. Aiaa Journal, 55(12):4013–4041, 2017.

Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, and Ming C Lin. Differentiable fluids with solid
coupling for learning and control. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 6138–6146, 2021.

Qingyang Tan, Zherong Pan, Breannan Smith, Takaaki Shiratori, and Dinesh Manocha. N-penetrate:
Active learning of neural collision handler for complex 3d mesh deformations. In International
Conference on Machine Learning, pp. 21037–21049. PMLR, 2022.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Zheng Wang, Dunhui Xiao, Fangxin Fang, Rajesh Govindan, Christopher C Pain, and Yike Guo.
Model identification of reduced order fluid dynamics systems using deep learning. International
Journal for Numerical Methods in Fluids, 86(4):255–268, 2018.

Pin Wu, Siquan Gong, Kaikai Pan, Feng Qiu, Weibing Feng, and Christopher Pain. Reduced order
model using convolutional auto-encoder with self-attention. Physics of Fluids, 33(7):077107,
2021.

Ping Yang, Yao-Lin Jiang, and Kang-Li Xu. A trust-region method for h2 model reduction of bilinear
systems on the stiefel manifold. Journal of the Franklin Institute, 356(4):2258–2273, 2019. ISSN
0016-0032.

Thomas Zang and Lawrence Green. Multidisciplinary design optimization techniques-implications
and opportunities for fluid dynamics research. In 30th Fluid Dynamics Conference, pp. 3798,
1999.

Jun Zhang. Fast and high accuracy multigrid solution of the three dimensional poisson equation.
Journal of Computational Physics, 143(2):449–461, 1998.

Weiwei Zhang, Jiaqing Kou, and Ziyi Wang. Nonlinear aerodynamic reduced-order model for limit-
cycle oscillation and flutter. Aiaa Journal, 54(10):3304–3311, 2016.

13



Under review as a conference paper at ICLR 2023

A DISCRETE ENERGY PRESERVATION

We prove that energy preservation and time reversibility hold in a time-discrete setting.
Lemma A.1. The tensor Ckij is antisymmetric.

Proof. This follows from the definition of Ckij :

Ckij =∫
M

⟨Uk,∇×Ui ×Uj⟩ = ∫
M

UT
k (∇Ui −∇U

T
i )Uj

= − ∫
M

UT
j (∇Ui −∇U

T
i )Uk = −∫

M

⟨Uj ,∇×Ui ×Uk⟩ = −Cjik,

where we used elementary vector identity that (∇ ×A) ×B = B ⋅ (∇A −∇AT ).

Using the antisymmetry of Ckij , we can show that trapezoidal rule is indeed energy preserving.
Lemma A.2. For any z+ satisfying the trapezoidal rule, ∥z+∥ = ∥z∥.

Proof. Multiplying the lefthand side of Equation 4 by z+k + zk and summing over k, we have:

∥z+∥2 − ∥z∥2

δt
+ 2∑

kij

[Ckij
z+k + zk

2

z+i + zi
2

z+j + zj

2
]

=
∥z+∥2 − ∥z∥2

δt
+∑

kij

[(Ckij +Cjik)
z+k + zk

2

z+i + zi
2

z+j + zj

2
] =
∥z+∥2 − ∥z∥2

δt
= 0,

from which our result follows.

Next, we show that the trapezoidal integrator (Equation 4) must have a solution by a proper choice
of sufficiently small δt.
Lemma A.3. There exists a sufficiently small δt such that Equation 4 can be solved for z+ via the
following negative gradient flow:

f(z+) ≜ z+ − z + δtC(z+) ż+ ≜ −∇f(z+)T f(z+)/2,

with initial guess z+ = z.

Proof. We consider the Lyapunov candidate V (z+) ≜ ∥f(z+)∥2 on the ball Br(z) = {z+∣∥z+ − z∥ ≤
r}. The negative gradient flow satisfies:

V̇ (z+) = − ∥∇f(z+)T f(z+)∥2 = −∥(I + δt∇C(z+)T )f(z+)∥2

= − V (z+) − 2δtf(z+)T∇C(z+)T f(z+) − δt2∥∇C(z+)T f(z+)∥2

≤ − (1 − δt)V (z+) + (δt − δt2)∥∇C(z+)T f(z+)∥2.

Now since the eigenvalue of a Hermitian matrix is a Lipschitz function of matrix entries Golub &
Van Loan (2013), we must have:

ρ(∥z∥, r) ≤ ρ(∇C(z+)∇C(z+)T ) ≤ ρ̄(∥z∥, r),

for some ρ, ρ̄ and any z+ ∈ Br(z). Combining the above estimation, we have:

V̇ (z+) ≤ −(1 − δt)V (z+) + (δt − δt2)ρ̄(∥z∥, r)V (z+).

Obviously, with sufficiently small δt, we have V̇ (z+) ≤ −ϵV (z+) for some ϵ ∈ (0,1) and z+ ∈ Br(z).
Next, consider the boundary case z+ ∈ ∂Br(z), where we have:

V (z+) − V (z) =r2 + δtC(z+)T (z+ − z) + 2δt2 [∥C(z+)∥2 − ∥C(z)∥2]

≥(1 − δt)r2 + (δt2 − δt)∥C(z+)∥2 − δt2∥C(z)∥2,

and we can choose sufficiently small δt such that V (z+) > V (z) for all z+ ∈ ∂Br(z). Our result
follows from the exponential stability condition Murray et al. (2017).

14



Under review as a conference paper at ICLR 2023

In practice, however, continuous gradient flow cannot be realized, but a similar argument
as Lemma A.3 can be used to show that the Newton–Raphson method is guaranteed to converge
when minimizing V (z+) under sufficiently small δt:

Lemma A.4. There exists a sufficiently small δt such that Equation 4 can be solved for z+ via the
Newton-Raphson method:

z(d) = z(d−1) −∇f(z(d−1))−1f(z(d−1)),

with initial guess z(0) = z. Here we use superscript with bracket to denote iteration index.

Proof. Consider the reduction of Lyapunov candidate V (z) after one iteration, we have:

V (z(d)) =∥f(z(d−1) −∇f(z(d−1))−1f(z(d−1)))∥2 = ∑
k

∥
δt

2
f(z(d−1))THk(z

(d−1)
)f(z(d−1))∥2

Hk(z
(d−1)

) ≜∇f(z(d−1))−T
Ck∶∶ +C

T
k∶∶

2
∇f(z(d−1))−1.

By a similar argument as in Lemma A.3, we can choose sufficiently small δt such that:

ρ(Hk(z
(d−1)

)) ≤ ρ̄(∥z∥, r) V (z(d)) ≤
pδt2ρ̄(∥z∥, r)2

4
∥f(z(d−1))∥4,

as long as z(d−1) ∈ Br(z). We can also choose sufficiently small δt such that:

V (z(d)) ≤ ϵV (z(d−1)) ∀z(d−1) ∈ Br(z) ∧ ∥f(z
(d−1)

)∥ ≤ 1, (8)

for some ϵ ∈ (0,1). Next, we consider the Hessian of V (z+):

∇
2V (z+) = [I − δt∇C(z+)T ] [I − δt∇C(z+)] + δt∇2C(z+)f(z+) ≜ I +O(δt)R(z+),

where R(z+) is a smooth, symmetric matrix function. We can further choose sufficiently small δt
such that V (z+) is 1/2-strongly convex and for any z+ ∈ B3r(z)/Br(z):

V (z+) − V (z) ≥ r2/2 +∇V (z)T (z+ − z) = r2/2 + δt2C(z)T∇C(z)(z+ − z).

By the smallness of δt, we have:

⎧⎪⎪
⎨
⎪⎪⎩

V (z+) > V (z) ∀z+ ∈ B3r(z)/Br(z)

∥∇f(z(d−1))−1f(z(d−1))∥ ≤ 2r ∀z(d−1) ∈ Br(z) ∧ V (z
(d−1)) ≤ min(1, r2/2) . (9)

Combining Equation 8 and Equation 9, we have for small enough δt:

{
z(d) ∈ Br(z)

V (z(d)) ≤ ϵV (z(d−1))
∀z(d−1) ∈ Br(z) ∧ V (z

(d−1)
) ≤ min(1, r2/2).

Our result follows by choosing sufficiently small δt such that V (z(0)) ≤ min(1, r2/2) and invoke
the discrete exponential stability condition Aitken & Schwartz (1994).

Note the choice of δt is only dependent on ∥z∥ and r, which can be used to show that the timestep
size can be fixed throughout the trajectory for time reversible fluid systems:

Corollary A.5. Given an initial condition z0, an energy preserving discrete trajectory can be com-
puted by repeatedly solving Equation 4 for zk using a fixed timestep size δt via the Newton-Raphson
method.

Proof. This result can be derived by induction on two facts: 1) ∥zk∥ = ∥zk−1∥ by Lemma A.2; 2) To
solve for zk, δt can be determined as a function δt(∥zk−1∥, r) by Lemma A.4.

15



Under review as a conference paper at ICLR 2023

B DISCRETE TIME REVERSIBILITY

The above result guarantees energy preservation throughout the trajectory. We now move on to show
time reversibility in the discrete setting:

Lemma B.1. There exists a sufficiently small δt, such that for any z ∈ Br(0), the negative gradient
flow Equation 4 defines a invertible map from z to z+.

Proof. Following the same argument as in Lemma A.4, we can choose sufficiently small δt such
that V (z+) is strongly convex when restricted to B2r(0) and the map z+(z) = argmin

z+
V (z+) is

well-defined and differentiable Still (2018). The derivative of function z+(z) can then be derived
via the implicit function theorem as:

∇z+(z) = − [I + δt∇C(z+)]−1 [I − δt∇C(z+)] .

By Lemma A.2, we know that z+ ∈ Br(0) as well. Again by the lipschitz continuity of singular
values, we can choose sufficiently small δt such that det(∇z+(z)) ≠ 0 throughout Br(0) and our
result follows by the inverse function theorem.

Lemma B.1 can also be extended to the entire trajectory via induction:

Corollary B.2. Given an initial condition z0 ∈ Br(0) for some r, an energy preserving discrete
trajectory can be computed by repeated solving Equation 4 for zk using a fixed timestep size δt,
such that the resulting map zk(z0) is invertible.

Proof. By induction on Lemma A.2 and Lemma B.1, we know that zk(zk−1) is invertible for any
k > 0 and our result follows by composition of invertible functions.

Ūm ∈ St(m,p) Ū ∈ St(n,p)

P̄m ∈ Gr(m,p) P̄ ∈ Gr(n,p)

dŪm

dP̄m

dŪ

dP̄

πSt(m,p)↦Gr(m,p) πSt(n,p)↦Gr(n,p)

πGr(m,p)↦Gr(n,p)

πSt(m,p)↦St(n,p)

Our Method
Figure 8: We illustrate the four man-
ifolds: St(n, p) for the velocity bases;
St(m,p) for the divergence-free veloc-
ity bases; Gr(n, p) for the velocity sub-
space; Gr(m,p) for the divergence-free
velocity subspace. Our method main-
tains Ū ∈ St(n, p) and represents the gra-
dient as some ∇ŪL ∈ TŪSt(n, p), which
is both memory efficient and computa-
tionally tractable.

C DERIVATIVE FORMULATION

In this section, we analyze the differentiability of our lifted transfer function Equation 5. To com-
pute derivatives of the forward dynamic function with respect to the bases Ū , we need to utilize
the implicit function theorem and special representation of the bases as a manifold point, which
cannot be exploited by automatic differentiation. First, we show that the function is well-defined
on the manifold Gr(m,p) via the following lemma:

Lemma C.1. The lifted transfer function Equation 5 can be written as a function v̄+(v̄, P̄m).

Proof. By the incompressibility of bases Ū = D̄Ūm, we have: P̄ = D̄P̄mD̄T . Plugging this into
Equation 5 and we have the follow rewrite:

v̄+(v̄, P̄m
) ∶ {

P̄⊥v̄
+ = P̄⊥v̄

P̄ v̄+−v̄
δt
+C(P̄ , P̄ v̄++v̄

2
, P̄ v̄++v̄

2
) = 0

,

from which our result follows. We can derive the original definition (Equation 5) by multiplying the
second equation by ŪT from the left.

16



Under review as a conference paper at ICLR 2023

Although the function is well-defined, the complexity of its derivative computation relies on an
efficient representation of bases. A straightforward representation is to use matrix P̄m and consider
the function v̄+(v̄, P̄m). However, this representation requires storing the large matrix P̄m which
is computationally impractical. In this section, we exploit equivalent manifold representations to
derive the computationally tractable formulas for the derivatives of arbitrary loss functions L ○ v̄+.
The relevant manifolds are illustrated in Figure 8. We first derive the partial derivative ∂v̄+/∂v̄ via
the implicit function theorem:

∂v̄+

∂v̄
= [Ū [I + δt∇C(z+)]−1 [I − δt∇C(z+)] ŪT

+ P̄⊥] . (10)

The inverse of the system matrix above is well-defined when the timestep size δt is sufficiently small
according to Appendix A. It can be verified that the above derivative is invariant to the orthogonal
basis transform. Next, we derive the partial derivative with respect to P̄m ∈ Gr(m,p). We denote
Ūm
⊥

as the complement of Ūm and Qm = (Ūm, Ūm
⊥
) ∈ O(m). An element of TP̄mGr(m,p) can be

identified with a matrix dB ∈ R(m−p)×p via:

dP̄m
= Qm

(
dBT

dB
) [Qm

]
T
.

We can lift Gr(m,p) to St(m,p) via the map πSt(m,p)↦Gr(m,p)(Ū
m) = Ūm [Ūm]

T
. Under this map,

an element dŪm ∈ TŪmSt(m,p) horizontal of TP̄mGr(m,p) must satisfy the condition dŪm =

Ūm
⊥
dB (we refer readers to Bendokat et al. (2020) for the derivation). Representing gradient as

some dB is the most memory efficient method, since the dimension of Gr(m,p) equals that of dB.
However, we have to multiply dB with Ūm

⊥
and then with D̄ to recover divergence-free velocity

bases, while computing either Ūm
⊥

or D̄ is intractable. Instead, we choose to work with dŪ directly
and rely on the following result that establishes a connection between dB and dŪ :

Lemma C.2. For a divergence-free velocity bases Ū , a direction dŪ belongs to the tangent plane
of D(n, p) ∩ S(n, p) at Ū if and only if dŪ ∈ D(n, p) and ŪT dŪ = 0.

Proof. If dŪ belongs to the tangent plane, then it must satisfy dŪ = D̄dŪm for some dŪm = Ūm
⊥
dB,

so dŪ ∈ D(n, p). Further, ŪT dŪ = ŪT D̄Ūm
⊥
dB = [Ūm]T Ūm

⊥
dB = 0. Conversely, dŪ ∈ D(n, p)

implies dŪ = D̄dŪm for some dŪm. Further, ŪT dŪ = 0 implies [Ūm]
T
dŪm = 0, which in turn

implies dŪm = Ūm
⊥
dB for some dB.

Suppose we have a loss function L ○ v̄+(v̄, P̄m) with v̄ as the constant, we can composite the loss
function with the map πSt(n,p)↦Gr(m,p)(Ū) = D̄T Ū ŪT D̄ = P̄m. The domain of this composite
function is the intersection of D(n, p) and St(n, p), which is an embedded sub-manifold of Rn×p.
In order to calculate the gradient on the manifold, we can smoothly extend the composite function
to the entire Rn×p, calculate the Euclidean-space gradient denoted by G ∈ Rn×p, and then project
the gradient onto the tangent space. Such projection is defined by Lemma C.2 as:

∇ŪL = P̄⊥D̄D̄TG, (11)

where multiplying by D̄D̄T ensures ∇ŪL ∈ D(n, p) and multiplying by P̄⊥ ensures ŪT∇ŪL = 0.
Note that, although computing the entire D̄ is intractable, evaluating D̄D̄TG is tractable. Indeed,
this involves projecting each column of G into the divergence-free vector subspace, which can be
calculated by solving a discrete Poisson’s equation Petrila & Trif (2004) via a sparse linear solve at
a complexity of O(nω) Zhang (1998), where ω ≥ 1 depends on the numerical linear system solver.
Therefore, the entire projection has a cost of O(nωp), as compared with the complexity of com-
puting D̄ being O(nωm). We refer readers to Appendix C.1 for the derivation of Euclidean space
gradient G. The computation of ∇ŪL over a long trajectory with T ≫ p timesteps is rather efficient.
Indeed, we can precompute and accumulate G for each timestep, and finally apply divergence-free
projection operator to compute ∇ŪL, the total cost of which is O(nωp + Tnp + Tp3).

C.1 DERIVATIVE FORMULATION IN EUCLIDEAN SPACE

We derive the formula for G in the following lemma:

17



Under review as a conference paper at ICLR 2023

Lemma C.3. If we introduce the third order tensor:

Φαβγ ≜∑
ij

C(eβ , Ūi, Ūj)δαγ
z+i + zi

2

z+j + zj

2
+∑

j

C(Ūα, eβ , Ūj)
z+γ + zγ

2

z+j + zj

2
+

∑
i

C(Ūα, Ūi, eβ)
z+i + zi

2

z+γ + zγ

2
,

and consider an arbitrary differentiable function L(v̄), then the Euclidean space gradient G of
function L ○ v̄+(v̄, Ū) with respect to Ū is defined as:

G =v̄∇LT Ū[I + δt∇C(z+)]−1[I − δt∇C(z+)] − ∇LT Ū[I + δt∇C(z+)]−1Φ+

∇L[z+ − z]
T
− v̄∇LT Ū . (12)

Proof. Assuming v̄ is fixed, we first derive some useful fundamental results:

dz = [dŪm]
T
D̄T v̄ = dBT [Ūm

⊥
]
T
D̄T v̄

d [P̄ v̄] =d [D̄Ūmz] = D̄dŪmz + D̄Ūmdz =

=D̄ [Ūm
⊥
dB [Ūm]

T
+ ŪmdBT [Ūm

⊥
]
T
] D̄T v̄

=D̄Qm
(

dBT

dB
) [Qm

]
T
D̄T v̄ = dP̄ v̄ = −dP̄⊥v̄.

Plugging Φ into the first-order expansion of Equation 4 and we have:

[I + δt∇C(z+)]dz+ +Φ ∶ dŪ = [I − δt∇C(z+)]dz = [I − δt∇C(z+)]dŪT v̄,

where ∶ denotes tensor contraction of the last two indices. The remaining derivation follows the
chain rule:

dv̄+ =Ūdz+ + dŪz+ + dP̄⊥v̄ = Ū[I + δt∇C(z+)]−1 [[I − δt∇C(z+)]dŪT v̄ −Φ ∶ dŪ]+

dŪ [z+ − z] − ŪdŪT v̄

dL =∇LT dv̄+ = tr(dŪTG).

By comparing the two sides of the last equation, our result follows.

C.2 ALTERNATIVE LIFTED FUNCTION

The above derivation is based on the definition of v̄+(v̄, Ū) in Equation 5, which assumes that the
orthogonal component of v̄ is kept across timesteps. An useful alternative is to assume that the
orthogonal component is discarded, which is:

v̄+(v̄, Ū) ≜ Ūz+(ŪT v̄). (13)

By a similar argument, we can derive the following derivatives for Equation 13:

∂v̄+

∂v̄
=Ū [I + δt∇C(z+)]−1 [I − δt∇C(z+)] ŪT

G =v̄∇LT Ū[I + δt∇C(z+)]−1[I − δt∇C(z+)] − ∇LT Ū[I + δt∇C(z+)]−1Φ +∇L[z+]T .

D DECOUPLED REDUCED-ORDER MODEL

We observe that energy preservation and time-reversibility discussed in Appendix A only requires
the tensor Ckij to be antisymmetric. In other words, the construction of the tensor Ckij via Equa-
tion 3 is not necessary. We speculate that using a learned antisymmetric tensor Ckij can expose a
larger search space, leading to a better match with the full-order model. We denote such model as
decoupled reduced-order model, where Ckij are separate decision variables not constructed from

18



Under review as a conference paper at ICLR 2023

Benchmark n p coupled #variable (np) decoupled #variable (np + p3)
Taylor Vortices 8192 8/11/16/25 65536/90112/131072/204800 66048/91443/135168/220425
Plume Rise 8064 6/9/15/26 48384/72576/120960/209664 48600/73305/124335/227240
Plume Rise+Obstacles 7416 5/8/16/30 37080/59328/118656/222480 37205/59840/122752/249480
Spherical Plume 8064 36 290304 -
Two Plume 8064 59 475776 -

Table 2: We summarized the number of decision variables in each example. In the coupled case, our
decision parameter is Ū having np variables. In the decoupled case, our decision variables are Ū ,Ckij

having np + p3 variables.

Ū . The formula for ∂v̄+/∂v̄ Equation 10 stays the same and the formula for G takes the following
simpler form:

G =v̄∇LT Ū[I + δt∇C(z+)]−1[I − δt∇C(z+)] + ∇L[z+ − z]T − v̄∇LT Ū .

Finally, the derivative with respect to Cijk reads:
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

L ≜ [I + δt∇C(z+)]−T ŪT∇L

∂L
∂Ckij

= 1
2
[Lk

z+i +zi
2

z+j +zj

2
−Lj

z+i +zi
2

z+k+zk
2
]
,

where we have projected the derivative onto the antisymmetric subspace. On the downside, there
is no universally valid δt to make our objective function globally differentiable for all Ū and Ckij ,
because discrete time reversibility requires a sufficiently small δt that depends on Ckij . Empirically,
however, we have not observed any convergence issue. In Figure 9, we compare the coupled and de-
coupled versions on the Taylor vortices and the smoke plume benchmark, their convergence histories
are almost identical. Therefore, we recommend always using the coupled model due to its theoret-
ical differentiability guarantee. In Table 2, we summarize the number of decision variables in
our various experiments.

0 10 20
Elapsed Time (hr)

1

2

3

4

Di
sc

re
pa

nc
y

coupled(11)
decoupled(11)

(a)

0 10 20
Elapsed Time (hr)

5

10

15

20

25

Di
sc

re
pa

nc
y

coupled(9)
decoupled(9)

(b)

Benchmark Loss-Init. Loss-10k-Iter.

Taylor Vortices Coupled 3.93 0.39
Taylor Vortices Decoupled 3.93 0.42

Plume Rise Coupled 28.23 5.38
Plume Rise Decoupled 28.23 3.84

Figure 9: We compare the performance of coupled and decoupled versions on the Taylor vortices benchmark
(a), with ϵ = 0.01 and p = 11, and the smoke plume benchmark (b), with ϵ = 0.01 and p = 9.

E COMPARISON WITH ALTERNATIVE LOSS

To highlight the effectiveness of our physics correctness loss, we conduct a comparison with
two other loss functions: the L1 and L2 losses defined as:

L1(v̄
+, v̂) ≜ ∥v̄+ − v̂∥1 L2(v̄

+, v̂) ≜ ∥v̄+ − v̂∥2,

where we denote v̂ as the velocity generated by the groundtruth fullspace fluid simula-
tor Pavlov et al. (2011). We note that these loss functions are impractical for large-scale test
cases because they require solving for the groundtruth data of a different initial condition dur-
ing each iteration of training. Therefore, we choose to only evaluate them on our first three
benchmarks in Table 1, where there is only a single trajectory so v̂ can be precomputed. For
these benchmarks, we both train and evaluate them on the three losses Ldyn,L1,L2, and sum-
marize the results in Table 3. We also plot the convergence history of the first benchmark
(Taylor Vertices) in Figure 10. Our plots show that, when the first benchmark is trained using
L1,2, L1,2 will both decrease by at most 64%, but our Ldyn can increase drastically by at most
1083%. Instead, when trained using Ldyn, L1,2 will increase or decrease by at most 3.3% but
our Ldyn can decrease significantly by 76.8%. Considering these properties and the fact that
L1,L2 is impractical to compute by requiring the groundtruth data, we conclude that our Ldyn
is overall more practical in training reduced fluid systems.

19



Under review as a conference paper at ICLR 2023

Taylor Vertices (p=8)
PPPPPPPTrain

Eval.
Ldyn L1(10

−4) L2(10
−4)

Ldyn 0.58 1.23 0.27
L1 37.81 0.44 0.04
L2 165.41 0.27 0.06

Plume Rise (p=6)
PPPPPPPTrain

Eval.
Ldyn L1(10

−4) L2(10
−4)

Ldyn 6.37 2.37 0.79
L1 57.50 0.67 0.07
L2 114.20 0.43 0.05

Plume Rise+Obstacle (p=5)
PPPPPPPTrain

Eval.
Ldyn L1(10

−4) L2(10
−4)

Ldyn 10.48 1.92 0.53
L1 132.68 0.49 0.06
L2 87.83 0.69 0.06

Table 3: We evaluate our first three benchmarks when trained and evaluated using Ldyn,L1,L2.

0.0 0.5 1.0 1.5
#Iteration 1e4

0.5

1.0

1.5

2.0

2.5

Ou
r L

os
s

Our Loss

0.4

0.6

0.8

1.0

1.2

l 1
,2

 L
os

s

1e 4

l1 Loss
l2 Loss

(a) 0.0 0.5 1.0 1.5
#Iteration 1e4

50

100

150

Ou
r L

os
s

Our Loss

2

4

6

8

l 1
,2

 L
os

s

1e 5
l1 Loss
l2 Loss

(b) 0.0 0.5 1.0 1.5 2.0
#Iteration 1e4

10

20

30

Ou
r L

os
s

Our Loss

0.00

0.25

0.50

0.75

1.00

l 1
,2

 L
os

s

1e 4
l1 Loss
l2 Loss

(c)

Figure 10: For our first benchmark (Taylor Vortices), we plot the convergence history when trained
using Ldyn (a), L1 (b), and L2 (c). The scale of Ldyn is shown on the left and L1,2 is shown on the right of
each plot.

F COMPARISON WITH DMD

We have shown that our method works best with POD initialization. In this section, we con-
duct additional experiments with DMD. DMD extends POD by assuming that the data is gen-
erated from a linear dynamic system. DMD can be used both as an intrusive and non-intrusive
method. In the intrusive mode, we use DMD to compute a bases Ū and compute Ckij from
Ū via Equation 3. In the non-intrusive mode, we simply use the DMD-assumed linear dy-
namic system as the surrogate. To evaluate the performance of DMD, we use two metrics. For
the intrusive DMD, we use our physics correctness loss Equation 6. Unfortunately, our physics
correctness loss is not suitable for evaluating non-intrusive methods that can be non-reversible.
Indeed, it is always possible to let Ldyn = 0 by setting v̄+ = v̄ = 0. Therefore, we also measure
the energy gain ∆e = (∥v̄T ∥ − ∥v̄0∥)/∥v̄0∥ as an indication of dynamic system stability.

We perform the experiments using the open source DMD library Demo et al. (2018) on our
first three benchmarks. Their results are shown in Table 4. The results show that the per-
formance of intrusive DMD is worse than either POD or our method, in terms of the physics
correctness loss. This is because the main assumption of DMD, i.e., the dynamic system being
linear, is invalid for the bilinear dynamic system Equation 3. Instead, POD does not make any
assumption on the time dependency between frames and serves as a better initialization for
our method. On the other hand, the non-intrusive DMD leads to better performance in terms
of Ldyn but the dynamic system tends to be rather unstable due to a drastic energy gain of
1.9 × −73.3×.

Benchmark Ldyn/∆e
p POD I-DMD NI-DMD Ours

Taylor Vortices 8 4.84/0 20.81/0 4.77/4.77 0.58/0
Plume Rise 6 57.04/0 127.18/0 2.21/1.94 6.37/0
Plume Rise+Obstacle 5 133.16/0 245.20/0 2.32/73.3 10.48/0

Table 4: We compare the POD baseline and our method with intrusive DMD (I-DMD) and non-intrusive
DMD (NI-DMD) in terms of trajectory-wise physics correctness loss and energy gain.

G COMPARISON WITH PINNS

We conduct comparisons with PINNs Raissi et al. (2019). PINNs was originally designed for
solving PDEs, while our divergence-free Navier-Stokes equation is an DAE. In order to ex-
tend PINNs to handle DAE, we learn a neural network DAE solution function, denoted as

20



Under review as a conference paper at ICLR 2023

NN(x, y, t) = (vx, vy, λ) and represented as an MLP with 3 hidden layers each having H
neurons and Tanh activation function, and minimize the following physics violation loss:

∥v̇ +∇ × v × v +∇λ∥2 + ∥∇ ⋅ v∥2.

We also enforce additional temporal and spatial boundary conditions as loss functions. All the
loss functions have weights equal to 1. For fairness of comparison, we use the same training
data for both our method and PINNs. Note that our method uses grid-based spatial discretiza-
tion, so we use all the grid centers as spatial samples of training data and we sample the tem-
poral domain at a regular interval of δt = 0.01, which equals to our timestep size. We aim to
predict a trajectory of the same length as our method, i.e. Tδt. We use Adam as our optimizer
and we train both methods on CPU for 24 hours. Since PINNs can lead to non-divergent-free
velocity fields, we measure the accuracy of both methods via three metrics: Ldyn, ∆e, and av-
erage divergence error: ∥v̄ − v̄∗∥∞ where v̄∗ is the closest divergence-free velocity field to v̄.
The results are summarized in Table 5.

Benchmark PINNs(H = 64) PINNs(H = 128) Ours
Ldyn/∆e ∥v − v∗∥∞ Ldyn/∆e ∥v − v∗∥∞ Ldyn/∆e ∥v − v∗∥∞

Taylor Vortices 17.46/0.32 0.000027 8.96/0.64 0.000018 0.58/0 0
Plume Rise 6.74/1.06 0.005159 6.29/0.91 0.004466 6.37/0 0

Table 5: We compare our method and PINNs in terms of Ldyn and ∥v̄ − v̄∗∥∞.

PINNs mostly perform worse than our method in terms of Ldyn. In the Taylor Vortices bench-
mark using H = 128, the Ldyn metric generated by PINNs is slightly better than our method.
But this is again because Ldyn is only designed for measuring time-reversible flows, which is
not an effective metric for comparing reversible and non-reversible flows due to its trivial so-
lutions. Such trivial solutions are indeed exhibited in PINNs, as illustrated in Figure 11. After
a very short period of time, the solution predicted by PINNs become significantly smeared out
and meaningless.

(a)

(b)

(c)

Figure 11: We compare frames generated by groundtruth (a), PINNs(H = 128) (b) and our
method (ϵ = 0.0001, p = 25) (c) on the Taylor Vortices benchmark. After very short time period,
the results generated by PINNs become significantly smeared out and meaningless.

H ADDITIONAL RESULTS

We demonstrate additional experimental results. Some snapshots of our 4 benchmark scenarios are
shown in Figure 12, 13, 14, 15, and 16, respectively.

21



Under review as a conference paper at ICLR 2023

(a)

(b)

(c)

Figure 12: Velocity magnitude field snapshots of the Taylor vortices benchmark, generated by full-order model
(a), our method with ϵ = 0.0001 and p = 25 (b), and POD with ϵ = 0.0001 and p = 25 (c).

(a)

5 10 15 20 25
#Bases

0

20

40

Di
sc

re
pa

nc
y

POD
Our Method

(b)
0 10 20

Elapsed Time (hr)

0

20

40

Di
sc

re
pa

nc
y

coupled(6)
coupled(9)
coupled(15)
coupled(26)

(c)

Figure 13: (a) Velocity magnitude field snapshots of the smoke plume benchmark, generated by full-order
model (top row), our method with ϵ = 0.0001 and p = 26 (middle row), and POD with ϵ = 0.0001 and p = 26
(bottom). (b) Trajectory-wise discrepancy loss of POD and our method, under different p. (c) The convergence
history of our method over 24 hours.

22



Under review as a conference paper at ICLR 2023

(a)

(b)

(c)

Figure 14: Velocity magnitude field snapshots of the smoke plume benchmark with an spherical obstacle,
generated by full-order model (a), our method with ϵ = 0.0001 and p = 26 (b), and POD with ϵ = 0.0001 and
p = 26 (c).

→

(a)

→

(b)

→

(c)

Figure 15: Velocity magnitude field snapshots of the spherical plume benchmark, generated by full-order
model (a), our method with ϵ = 0.01 and p = 36 (b), and POD with ϵ = 0.01 and p = 36 (c). The plume moves
along θ = 7.5○ (arrow), which is not covered by our training dataset.

23



Under review as a conference paper at ICLR 2023

→

→

→

→

→

→

→

→

Figure 16: Fluid dye field snapshots of the two cubical plume benchmark generated by our method (time flows
to the right). The fluid dye field is initialized as the two cubes (black) and passively advected by the velocity
field. With ϵ = 0.01 and only p = 59 bases, we can predict a family of trajectories with the two plumes moving
at different directions (arrow).

24


	Introduction
	Related Work
	Time Reversible Reduced Fluid Model
	Reduced Model Optimization
	Spatial Discretization
	Lifting Transfer Function from Reduced- to Full-Space
	Reduced Discrepancy Loss
	Stochastic Riemann Optimization

	Evaluation
	Conclusion
	Discrete Energy Preservation
	Discrete Time Reversibility
	Derivative Formulation
	 Derivative Formulation in Euclidean Space
	Alternative Lifted Function

	Decoupled Reduced-Order Model
	Comparison with Alternative Loss
	Comparison with DMD
	Comparison with PINNs
	Additional Results

