
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Uncertainty-Aware Pseudo-Labeling and Dual Graph Driven
Network for Incomplete Multi-View Multi-Label Classification

Anonymous Authors

Abstract
Multi-viewmulti-label classification has recently received extensive
attention due to its wide-ranging applications across various fields,
such as medical imaging and bioinformatics. However, views and
labels are usually incomplete in practical scenarios, attributed to the
uncertainties in data collection and manual labeling. To cope with
this issue, we propose an uncertainty-aware pseudo-labeling and
dual graph driven network (UPDGD-Net), which can fully lever-
age the supervised information of the available labels and feature
information of available views. Different from the existing works,
we leverage the label matrix to impose dual graph constraints on
the embedded features of both view-level and label-level, which
enables the method to maintain the inherent structure of the real
data during the feature extraction stage. Furthermore, our network
incorporates an uncertainty-aware pseudo-labeling strategy to fill
the missing labels, which not only addresses the learning issue
of incomplete multi-labels but also enables the method to explore
more reliable supervised information to guide the network train-
ing. Extensive experiments on five datasets demonstrate that our
method outperforms other state-of-the-art methods.

CCS Concepts
• Computing methodologies → Supervised learning by classifica-
tion.

Keywords
incomplete multi-view learning, incomplete multi-label classifica-
tion, graph constraint, pseudo-labeling

1 Introduction
With the development of data acquisition technology, many re-
searchers have found that multi-view data integrated from different
sources can provide a more nuanced and diverse representation
of an object. For example, an image can be described by different
feature descriptors such as SIFT, Gist, and HSV. As a result, multi-
view learning has emerged as an important approach in the realm
of data analysis, and many related works are based on subspace
learning [21] [23] [26] and matrix factorization [13] [25] have been
proposed. On the other hand, as a classical classification problem,
multi-label classification (MLC) has also gaining prominence in the
field of pattern recognition for a long time. Unlike single-label data
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which requires mutual exclusivity among labels, multi-label data
contains various category tags and naturally maintains complex
label correlations. For instance, an image might be described by
multiple elements such as “neon signs", “sidewalks", and “passing
cars", each contributing to a more comprehensive understanding
of the scene. However, traditional multi-label classification meth-
ods often suffer from a significant issue as they primarily depend
on features extracted from a single perspective, which limits their
performance. By integrating multi-view learning into multi-label
classification, this limitation can be effectively mitigated. As a re-
sult, a composite multi-view multi-label classification (MvMLC)
has emerged and attracted increasing attention from researchers.

MVMLC synergistically combines the strengths of both multi-
view learning and multi-label classification, offering a more ro-
bust and comprehensive framework for understanding complex
multi-view multi-label data and plenty of related works have been
proposed in recent years. For example, Sun and Zong proposed a
Latent Conditional Bernoulli Mixture model called LCBM, which
leverages a latent conditional Bernoulli mixture approach to in-
tegrate features from multiple views and using a shared latent
subspace for label dependency construction [18]. Zhang et al. pro-
posed a Latent Semantic Aware Multi-view Multi-label Learning
approach, which utilizes matrix factorization and Hilbert-Schmidt
Independence Criterion in kernel spaces to align latent semantic
components across multiple views [27]. However, a significant chal-
lenge in MvMLC is the frequent occurrence of incomplete data,
both in terms of views and labels. This challenge directly leads to
the necessity of Incomplete Multi-View Multi-Label Classification
(iMvMLC), which focuses on scenarios where some views or labels
are missing. For instance, Tan et al. proposed the iMVWL, which
attempts to learn a shared subspace that integrates weak label in-
formation and local label correlations [19]. Li et al. proposed an
iMvMLC method based on matrix factorization, named NAIM3L,
which bridges non-aligned views through common labels and ex-
ploits both global and local structural relations within multiple la-
bels [9]. More recently, DNN-based methods have been introduced,
offering improved performance by leveraging high-level feature
extraction and complex model architectures, such as LMVCAT [12]
and DICNet [11]. Despite these advances, existing methods struggle
to fully utilize supervision information to help the model extract
more discriminative features due to the incompleteness problem.

To bridge this gap, our research introduces a novel network
called UPDGD-Net for the iMvMLC task. Different from the exist-
ing works, the proposed UPDGD-Net tries to impute missing labels
with credible pseudo-labels through an uncertainty-aware pseudo-
labeling strategy and then utilizes the filled label matrix to impose
dual graph constraints on high-dimensional features extracted by
the model. Specifically, we first design two distinct transformer-
based modules, one dedicated to cross-view aggregation and the
other for multi-label classification. Additionally, we apply average

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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view token (AVT) in the former to better learn the consistent infor-
mation across multiple views. Furthermore, our network harnesses
the semantic guidance offered by the label matrix to largely main-
tain the intrinsic relationship of the original data by constraining
the embedded features of both view-level and label-level. Last but
not least, inspired by the self-paced learning [14] and uncertainty
analysis from the Monte-Carlo Dropout [3], we propose a novel
uncertainty-aware pseudo-labeling strategy that maximizes the use
of available data while maintaining the integrity and richness of
the multi-label information. Overall, compared to existing methods,
the contributions of our method can be summarized as follows:

• To address the challenge of incomplete data learning, we
propose the UPGDG-Net that incorporates information con-
tained within missing labels through a novel uncertainty-
aware pseudo-labeling strategy. UPDGD-Net attempts to
maximize the use of available data while maintaining the
integrity and richness of the multi-label information, thus
enhancing the accuracy of the classification.

• We introduce a label-guided dual-constraints approach in
our network, which capitalizes on the untapped potential of
multi-label semantics to preserve the intrinsic relationship
of the original data in the embedding space.

• We apply average view token (AVT) in our transformers-
based architecture to better learn and synthesize the con-
sistent information across multiple views. Extensive exper-
iment results on five datasets confirm the effectiveness of
our method.

2 Related work
2.1 Multi-View Multi-Label Classification
Multi-view Multi-label classification(MvMLC) is the combination
of multi-view learning and multi-label classification which need to
handle multi-view multi-label data at the same time and thus in-
crease the complexity of this issue. Compared to traditional single-
view multi-label classification, applying multi-view learning to
MLC tasks has demonstrated superior performance, and thus many
related works have been proposed. For example, Zhao et al. intro-
duced LVSL, enhancing consistency and diversity in multi-view
learning by leveraging both global and local structural label infor-
mation [28]. Zhao et al. developed CDMM, an approach integrating
the Hilbert–Schmidt Independence Criterion to incorporate label
correlation and view contribution factors [29]. Liu et al. developed
a multi-view multi-label learning method named ELSMML that
enhances label correlation understanding through a high-order
strategy label correlation matrix and integrates multi-view learn-
ing with dimension reduction for capturing high-level semantic
label and latent feature information. [10] Tan et al. proposed a deep
learning method for MvMLC that exploits both shared subspace
and view-specific information to integrate diverse representations
and semantics [20]. Ma et al. proposed MMC-GFLS that addresses
the limitations of global feature and label selection by incorpo-
rating local patterns through group-specific feature selection and
label correlations.[16] Zhang et al. introduced LSA-MML, a matrix
factorization technique to align the latent semantic components
across views, effectively managing multi-view data complexity and
preserving label integrity [27].

2.2 Incomplete Multi-view Multi-label
Classification

Previous studies in multi-view multi-label classification (MvMLC)
have primarily relied on the completeness assumption of multi-
view multi-label data, which neglects the incompleteness scenarios
in real-world applications. As a result, the incomplete multi-view
multi-label classification (iMvMLC) task has received attention from
plenty of researchers and corresponding methods need to consider
the incompleteness issue in multi-view multi-label data. For in-
stance, Tan et al. proposed iMvML, which learns a shared subspace
that includes weak label information and local label correlations
to manage cross-view relationships and incomplete label scenar-
ios effectively [19]. Li and Chen introduced NAIM3L, focusing on
both the global high rankness and the local low rankness in the
label embedding space [9]. Zhu et al. proposed a method named
WCC-MVML-ID, which integrates within-view, cross-view, and
consensus-view representations to effectively process incomplete
multi-viewmulti-label datasets. [30]. In addition to these traditional
methods, DNN-based frameworks in iMvMLC have also shown sig-
nificant performance. For example, Liu et al. proposed the deep
iMvPMLC framework DICNet, which utilizes stacked autoencoders
for view-specific feature extraction and introduces an incomplete
instance-level contrastive learning scheme [11]. LMVCAT leverages
the self-attention mechanism to extract high-level features and ex-
ploit inter-class correlations to enhance classification performance
[12].

2.3 Notations and Problem Definition

Assume that we are given a multi-view data
{
𝑋 (𝑣) ∈ R𝑛×𝑑𝑣

}𝑚
𝑣=1

, in
which𝑚 denotes the number of views and𝑑𝑣 represents the original
feature dimension of the 𝑣-th view. And we define 𝑌 ∈ {0, 1}𝑛×𝑐 as
label matrix, where 𝑐 denotes the number of categories. Specifically,
𝑌𝑖, 𝑗 = 1 represents the 𝑖-th sample is annotated as 𝑗-th category,
otherwise𝑌𝑖, 𝑗 = 0. Furthermore, we design two prior matrices,𝑊 ∈
{0, 1}𝑛×𝑚 denotes the missing-view indicator and 𝐺 ∈ {0, 1}𝑛×𝑐
denotes the missing-label indicator, where𝑊𝑖, 𝑗 = 1 and 𝐺𝑖, 𝑗 = 1
represent the 𝑗-th view and category of the 𝑖-th sample is available,
respectively, and𝑊𝑖, 𝑗 = 0 and 𝐺𝑖, 𝑗 = 0 mean the 𝑗-th view and
category of the 𝑖-th sample is missing, respectively. To simplify, the
missing data in

{
𝑋 (𝑣) ∈ R𝑛×𝑑𝑣

}𝑚
𝑣=1

and 𝑌 ∈ {0, 1}𝑛×𝑐 is initialized
as ‘0’ in the data-preparation stage. The target of our method is to
train a multi-label classification network on incomplete multi-view
partial multi-label data, which can accurately predict the categories
of unlabeled incomplete multi-view data.

3 The Proposed Method
In this section, we will introduce each component of the proposed
UPDGD-Net, including a multi-view semantic representation learn-
ing framework, dynamically weighted fusion module, multi-label
interaction module, label-guided dual constraints, and uncertainty-
aware pseudo-labeling module. Fig.1 shows the framework of our
UPDGD-Net and Fig.2 shows the process of our uncertainty-aware
pseudo-labeling strategy.
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Figure 1: An overview of our UPDGD-Net. In our network, CVEncoder and CCEncoder both leverage transformer-based
architectures to facilitate cross-view and cross-label interaction respectively. Label-guided dual constraints exploit semantic
information within multi-label to construct graph constraints on embedding features and the detail of our uncertainty-aware
pseudo-labeling strategy is shown in Figure 2
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Figure 2: An overview of our pseudo-labeling strategy. Given
trained model parameters 𝑃𝑡Θ during 𝑡-th epoch, we can sam-
ple Bernoulli distribution 𝑇 times using the dropout tech-
nique and obtain𝑇 groups of model parameter sets. Then we
perform stochastic forward propagation 𝑇 times with these
parameter sets and obtain𝑇 sets of output. Then we calculate
the mean values and variance of outputs. Finally, we calcu-
late the uncertainty of outputs based on variance and select
pseudo-labels for 𝑇 + 1-th epoch from mean values based on
uncertainty.

3.1 Multi-View Semantic Representation
Learning Framework

As is well-known, the success of multi-view learning lies in exploit-
ing the consistency and complementary information of multi-view

data. To achieve this, similar to [12], we design a new cross-view
transformer encoder (CVEncoder) to facilitate the cross-view in-
teraction and extract high-quality cross-view features. To ensure
a uniform feature dimension across various views, we first em-
ploy Multilayer Perceptrons (MLP) to map the original multi-view
data into a shared embedding space denoted as {Φ(𝑣) : 𝑋 (𝑣) ∈
R𝑛×𝑑𝑣 → 𝑋 (𝑣) ∈ R𝑛×𝑑𝑒 }𝑚

𝑣=1, where 𝑑𝑒 denotes the mapped dimen-
sion of multi-view data. Additionally, to ensure the consistency
of multi-view features, we introduce some identical Average View
Tokens (AVT) calculated by the average of all available views of
each sample as extra inputs for CVEncoder. The calculation of the
AVT corresponding to the 𝑖-th sample is formulated as follows:

Λ𝑖 =
1∑𝑚

𝑣=1𝑊𝑖,𝑣

𝑚∑︁
𝑣=1

𝑋
(𝑣)
𝑖,: 𝑊𝑖,𝑣 (1)

where Λ𝑖 ∈ R1×𝑑𝑒 represents the AVT for the 𝑖-th sample. In (1),
the missing view indicator matrix𝑊 ∈ R𝑛×𝑚 is introduced to dis-
regard the missing views in each sample. Since the self-attention
mechanism dynamically adjusts token influence based on the dis-
tribution of attention scores, allowing multiple identical tokens
can amplify their impact within the sequence. In our method, we
adopt �̂� AVTs with the same value for each sample. Considering
these tokens, the input of CVEncoder for the 𝑖-th sample can be
expressed as: 𝑉𝑖 = Concat

(
𝑋𝑖 ;Λ1

𝑖
; ...;Λ�̂�

𝑖

)
where 𝑉𝑖 ∈ R(𝑚+�̂�)×𝑑𝑒

and Λ1
𝑖
= ... = Λ�̂�

𝑖
. Specifically, to mitigate the negative impact of

missing views when calculating attention scores in the CVEncoder,
we also utilize the missing view indicator matrix𝑊 to mask the
missing views during the computation of multi-head self-attention
scores. The process for our masked multi-head self-attention layer



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

is detailed as follows: As shown in Fig.1, each input is linearly
projected to obtain queries, keys, and values, utilizing ℎ groups of

projective matrices
{
𝑃𝑞𝑡 , 𝑃𝑘𝑡 , 𝑃𝑣𝑡 ,

}ℎ
𝑡=1

, whereℎ represents the num-
ber of attention heads. To effectively mask the embedding features
by the missing-view distribution, we expand the mask matrix𝑊 to
�̃� ∈ R𝑛×(𝑚+�̂�) by adding �̂� column vectors with all one. Then we
construct a mask matrix of sample 𝑖:𝑀𝑖 = �̃�

𝑇
𝑖
�̃�𝑖 ∈ R(𝑚+�̂�)×(𝑚+�̂�) ,

where �̃�𝑖 is 𝑖-th row vector of �̃� . Then for 𝑖-th sample’s input 𝑉𝑖 ,
the view correlations 𝐴𝑡

𝑖
and output 𝐻𝑡

𝑖
is calculated as follows:

𝐴𝑡𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
©«
𝑓 𝑖𝑙𝑙

(
(𝑉𝑖𝑃𝑞𝑡 ) (𝑉𝑖𝑃𝑘𝑡 )𝑇 , 𝑀𝑖

)
√︁
𝑑ℎ

ª®®¬ (2)

𝐻𝑡
𝑖 = 𝐴𝑡𝑖

(
𝑉𝑖𝑃

𝑣𝑡
)

(3)
where 𝑑ℎ = 𝑑𝑒/ℎ represents the dimensionality per attention head
and 𝐻𝑡

𝑖
∈ R(𝑚+�̂�)×𝑑ℎ is the output of 𝑡-th attention head. 𝑃𝑞𝑡 ∈

R𝑑𝑒×𝑑ℎ , 𝑃𝑘𝑡 ∈ R𝑑𝑒×𝑑ℎ , and 𝑃𝑣𝑡 ∈ R𝑑𝑒×𝑑ℎ are projective matrices.
Additionally, we introduce a fill function 𝑓 𝑖𝑙𝑙 (𝐴, 𝐵) before the soft-
max active function in the CVEncoder to set 𝐴𝑖, 𝑗 = −1𝑒9 if 𝐵𝑖, 𝑗 = 0.
With such a fill operation, the softmax can ignore the negative af-
fect of missing views when calculating the attention scores. Finally,
we obtain the output of CVEncoder for sample 𝑖 by concatenat-
ing the outputs of ℎ attention heads: �̃�𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻1

𝑖
, ..., 𝐻ℎ

𝑖
) ∈

R(𝑚+𝐵)×𝑑𝑒 . Overall, our CVEncoder can be simply formulated as:
Γ :

{
𝑉𝑖 ∈ R(𝑚+�̂�)×𝑑𝑒

}𝑛
𝑖=1

→
{
�̃�𝑖 ∈ R(𝑚+�̂�)×𝑑𝑒

}𝑛
𝑖=1

and the first

𝑚 rows of CVEncoder’s output
{
�̃�𝑖 ∈ R(𝑚+�̂�)×𝑑𝑒

}𝑛
𝑖=1

, i.e., {𝑍𝑖 ∈
R𝑚×𝑑𝑒 }𝑛

𝑖=1 is regarded as the embedding feature of each sample.

3.2 Dynamically Weighted Fusion Module and
Multi-label Interaction Module

After obtaining the embedding features of each view using CVEn-
coder, our goal is to create a unified and consistent representation
that fully characterizes the multi-view data. However, different
views may contribute differently to this representation. To account
for varying discriminative abilities among multiple views, we adopt
a dynamically weighted fusion approach inspired by [12]. We define
the fused feature 𝑓𝑖 for sample 𝑖 as follows:

𝑓𝑖 =

𝑚∑︁
𝑣=1

𝑒𝑎𝑣𝑧
(𝑣)
𝑖
𝑊𝑖,𝑣∑

𝑣𝑒
𝑎𝑣𝑊𝑖,𝑣

(4)

where 𝑧 (𝑣)
𝑖

denotes the embedding feature of the 𝑣-th view/row in
𝑍𝑖 and 𝑎𝑣 represents a learnable scalar weight for the 𝑣-th view and
𝑎𝑣 is updated by network. Notably, to mitigate the negative impact
of missing views during multi-view fusion, we introduce a missing-
view indicator matrix𝑊 into our fusion module. This equation
captures an adaptive weighting mechanism for each view, result-
ing in a comprehensive feature representation that incorporates
information from all available views.

When we obtain a consistent common representation from in-
complete multi-view data, another crucial issue is how to utilize the
relationships between multiple labels to enhance the discriminative
power of the multi-view representation. To achieve this purpose,

inspired by [7]. we introduce label embeddings to map each cate-
gory directly into the feature space, leveraging the self-attention
mechanism to capture category correlations. More specifically, we
randomly initialize 𝑐 label embedding features as 𝑐 class tokens{
𝑐𝑙𝑠𝑖 ∈ R𝑑𝑒

}𝑐
𝑖=1

, and introduce them into a cross-category trans-
former encoder (CCEncoder) along with the fusion features of sam-
ples. The input to the CCEncoder is thus

{
𝐶𝑖 ∈ R(𝑐+1)×𝑑𝑒

}𝑛
𝑖=1

where
𝐶𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑓𝑖 ; 𝑐𝑙𝑠1; ...; 𝑐𝑙𝑠𝑐 ). The CCEncoder, like CVEncoder, fos-
ters information exchange between fusion features and class tokens.
This process ensures that view-fusion features capture subcate-
gory information based on similarities, aligning them closely with
class tokens. The CCEncoder’s output is

{
𝐶𝑖 ∈ R(𝑐+1)×𝑑𝑒

}𝑛
𝑖=1

and

the first row in
{
𝐶𝑖

}𝑛
𝑖=1, i.e.,

{
𝑓𝑖 ∈ R1×𝑑𝑒

}𝑛
𝑖=1

is regarded as the
final discriminative feature for classification. Finally, our CCEn-
coder can be simply formulated as: Υ :

{
𝐶𝑖 ∈ R(𝑐+1)×𝑑𝑒

}𝑛
𝑖=1

→{
𝐶𝑖 ∈ R(𝑐+1)×𝑑𝑒

}𝑛
𝑖=1

3.3 Label-Guided Dual Constraints
In our work, we attempt to introduce two label-guided constraints
to enhance the quality of the latent representation and the initialized
class tokens.

Label-guided constraint on latent representations: Generally
speaking, original data typically exhibit a natural topological struc-
ture, where a part of samples (such as nearest neighbor samples)
or categories share similarities while differing from others. For
example, some samples may simultaneously annotated with two
or more identical labels. Unfortunately, most deep learning meth-
ods overlook this structure when transforming data into feature
space. To address the above issue and obtain a more reasonable
representation yet good classification performance, following [12],
we introduce a label-guided constraint on latent representations{
𝑍𝑖 ∈ R𝑚×𝑑𝑒

}𝑛
𝑖=1

that leverages the rich semantic information of
multiple categories to guide the network training. Firstly, based on
the smoothness assumption that if two samples have more identical
labels, they should also have more similarity [24], we construct a
label-based correlation graph 𝑄 ∈ R𝑛×𝑛 according to the available
label data as follows:

𝑄 = (𝑌 ⊙ 𝐺) (𝑌 ⊙ 𝐺)𝑇 ./𝐺𝐺𝑇 (5)

where ⊙ denotes Hadamard product.𝐺𝐺𝑇 is used for normalization
in the calculation of the label-based correlation matrix 𝑄 . This
equation quantifies the similarity between samples based on the
number of common positive labels they share. In simpler terms,
two samples are considered more similar if they share a larger
number of common positive tags. To this end, we further calculate
the similarity between two embedding features within each view
using cosine similarity:

𝑆
(𝑣)
𝑖,𝑗

=
𝑧
(𝑣)
𝑖

𝑧
(𝑣)𝑇
𝑗

+ 1

2
𝑧 (𝑣)𝑖

 𝑧 (𝑣)𝑗

 (6)

where 𝑧 (𝑣)
𝑖

and 𝑧 (𝑣)
𝑗

are the embedding features of the 𝑣-th view
of the 𝑖-th and 𝑗-th sample that are output by CVEncoder. Then
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we introduce the following graph-based cross-entropy loss to align
the structure of latent representation to the target structure of
supervised label-based graph 𝑄 :

ℓ𝑔𝑐𝑠 = − 1
2
∑𝑚

𝑣=1
∑𝑛

𝑖=1
𝑗≠𝑖

𝑊𝑖,𝑣𝑊𝑗,𝑣

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗≠𝑖

(
𝑄𝑖,𝑗

log𝑆 (𝑣)
𝑖,𝑗

+ (1 − 𝑄𝑖,𝑗 ) log(1 − 𝑆
(𝑣)
𝑖,𝑗

)
)
(𝑊𝑖,𝑣𝑊𝑗,𝑣 )

(7)

where
∑𝑚

𝑣=1
∑𝑛
𝑖=1, 𝑗≠𝑖𝑊𝑖,𝑣𝑊𝑗,𝑣 represents the count of available sam-

ple pairs across all𝑚 views.
Label-guided constraint on class tokens: In our network, we

introduce 𝑐 class tokens as input of the CCencoder to improve the
interaction of the multi-view features and labels. Correspondingly,
we obtain 𝑐 label embedding features, which can be regarded as
the discriminative representation of 𝑐 categories. For these label
embeddings, we also expect them to preserve similar label correla-
tions as the original labels. To this end, similar to [5], we introduce
a label-guided constraint on these label embeddings. Firstly, we
construct a new label correlation graph ℑ ∈ R𝑐×𝑐 in which each
element represents the probability of a sample having both the 𝑖-th
and 𝑗-th labels simultaneously as follows:

ℑ𝑖, 𝑗 =

∑𝑛
𝑘=1 𝑌𝑘,𝑖𝑌𝑘,𝑗

2
∑𝑛
𝑘=1 (𝑌𝑘,𝑖 + 𝑌𝑘,𝑗 )

(8)

where
∑𝑛
𝑘=1 𝑌𝑘,𝑖𝑌𝑘,𝑗 calculates the total number of co-occurrences

of category 𝑖 and category 𝑗 .
∑𝑛
𝑘=1 (𝑌𝑘,𝑖 + 𝑌𝑘,𝑗 ) refer to the sum of

the number of occurrences of category 𝑖 and category 𝑗 .
Similarly, for the label embedding features corresponding to the

outputted class tokens from CCEncoder, we can calculate their
cosine distance-based similarities as follows:

𝐾𝑖, 𝑗 =
˜𝑐𝑙𝑠𝑖 ˜𝑐𝑙𝑠 𝑗

𝑇 + 1

2
 ˜𝑐𝑙𝑠𝑖

  ˜𝑐𝑙𝑠 𝑗
 (9)

where ˜𝑐𝑙𝑠𝑖 denotes the label embedding of 𝑖-th category.
Then, to preserve the similar structure as labels, we introduce

the following loss on the label embeddings:

ℓ𝑔𝑐𝑙 =
1

𝑐 (𝑐 − 1)

𝑐∑︁
𝑖=1

𝑐∑︁
𝑗≠𝑖

(
𝐾𝑖, 𝑗 − ℑ𝑖, 𝑗

)2 (10)

3.4 Uncertainty-Aware Pseudo-Labeling and
Classifier

Pseudo-label strategy has proven its effectiveness in semi-supervised
learning and unsupervised learning tasks. For the incomplete label
learning network, we also design an uncertainty-aware pseudo-
labeling strategy to explore more supervised information of the
incomplete label data. In the designation of our pseudo-labeling
strategy, the key challenges are evaluating the uncertainty of the
predicted labels and selecting the credible pseudo-label to guide the
model training. Inspired by [3], we apply the Monte-Carlo Dropout
(MC dropout) approach to quantify the uncertainty of the predicted
labels. Dropout is implemented by probabilistically deactivating
neurons using a Bernoulli distribution, making the network’s out-
put 𝑦∗ for an input 𝑥∗ follow a predictive distribution rather than
a definite value. Considering a deep neural network with 𝐿 layers,
each layer has 𝑁𝑖 neurons in the 𝑖-th layer, the network parameters

is denoted as {𝜃𝑖 }𝐿𝑖=1 where 𝜃𝑖 =
{
𝜃𝑖, 𝑗

}𝑁𝑖

𝑗=1. According to standard
dropout, which follows a Bernoulli distribution, we approximate
the prediction distribution by sampling this distribution 𝑇 times
and obtain 𝑇 sets of binary vectors, each representing a unique
dropout operation across the layers, denoted as

{
𝜗𝑡1, 𝜗

𝑡
2, ...𝜗

𝑡
𝐿

}𝑇
𝑡=1

where 𝜗𝑡
𝑖
=

{
𝜗𝑡
𝑖 𝑗

}𝑁𝑖

𝑗=1
is the binary vector for the 𝑖-th layer in the

𝑡-th dropout operation. Each neuron’s dropout, 𝜗𝑡
𝑖, 𝑗
, is drawn from

a Bernoulli distribution 𝜗𝑡
𝑖, 𝑗

∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝), with 𝑝 equal to the
dropout ratio used during training. Then we can obtain 𝑇 groups
of network parameter sets as follows:{

Θ𝑡
1,Θ

𝑡
2, ...Θ

𝑡
𝐿

}𝑇
𝑡=1 =

{
𝜃1 ◦ 𝜗𝑡1, 𝜃2 ◦ 𝜗

𝑡
2, ..., 𝜃𝐿 ◦ 𝜗𝑡𝐿

}𝑇
𝑡=1 (11)

where ◦ denotes the Hadamard product.
As shown in Fig.2, given dataset 𝑋 with 𝑛 samples, we can per-

form stochastic forward propagation𝑇 timeswith
{
Θ𝑡
1,Θ

𝑡
2, ...Θ

𝑡
𝐿

}𝑇
𝑡=1

and obtain𝑇 sets of outputs
{
𝑌 1, ..., 𝑌𝑇

}
, where 𝑌 𝑡 ∈ R𝑛×𝑐 . We can

estimate the mean of the outputs as follows:

E
𝑞

(
𝑌 |𝑋

) (
𝑌𝑖, 𝑗

)
≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑌 𝑡𝑖, 𝑗 (12)

where 𝑞
(
𝑌 |𝑋

)
represents the approximate predictive distribution

after 𝑇 sampling times. Then we estimate:

E
𝑞

(
𝑌 |𝑋

) ((
𝑌𝑖 𝑗

)2)
≈ 1
𝑇

𝑇∑︁
𝑡=1

(
𝑌 𝑡𝑖, 𝑗

)2
(13)

Finally, we can calculate the variance of the model’s output:

𝑉𝑎𝑟
𝑞

(
�̂� |𝑋

) (𝑌𝑖,𝑗 ) ≈E
𝑞

(
�̂� |𝑋

) ((
𝑌𝑖,𝑗

)2)
−

(
E
𝑞

(
�̂� |𝑋

) (
𝑌𝑖,𝑗

))2 (14)

Then we can normalize the variance to obtain the uncertainty of
the output:

𝑈𝑖, 𝑗 =

𝑉𝑎𝑟
𝑞

(
𝑌 |𝑋

) (𝑌𝑖, 𝑗 ) −
(
𝑉𝑎𝑟

𝑞

(
𝑌 |𝑋

)𝑌 )
𝑚𝑖𝑛(

𝑉𝑎𝑟
𝑞

(
𝑌 |𝑋

)𝑌 )
𝑚𝑎𝑥

−
(
𝑉𝑎𝑟

𝑞

(
𝑌 |𝑋

)𝑌 )
𝑚𝑖𝑛

(15)

where 𝑈𝑖, 𝑗 denotes the uncertainty of the 𝑗-th output of the 𝑖-th
sample and 𝑈 ∈ [0, 1]𝑛×𝑐 . After that, we can treat the predictive
mean of 𝑇 outputs E

𝑞

(
𝑌 |𝑋

) (
𝑌

)
as candidate pseudo-labels and

select credible pseudo-labels from it based on uncertainty. Inspired
by [15], we apply a self-paced selection strategy to select these
reliable pseudo-labels. Firstly, we introduce an age parameter 𝜆 and
initialize its value as 0 and progressively increment its value as
follows:

𝜆 =
log (1 + 𝜏 · 𝑒)
log (1 + 𝜏 · 𝑒) (16)

where 𝑒 denotes the 𝑒-th epoch and 𝑒 denotes the overall training
epochs. Specifically, we introduce a temperature coefficient 𝜏 to
control the growth rate of 𝜆. Gradually increasing 𝜆 allows for the
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selection of more credible candidate pseudo-labels over time. Then
we construct weight matrix 𝐷 ∈ R𝑛×𝑐 as follows:

𝐷𝑖, 𝑗 =

{
1, if𝑈𝑖, 𝑗 < 𝜆,
0, otherwise.

(17)

where 𝜆 is a gradually increasing dynamic threshold and we mark
output positions with uncertainty less than this threshold as 1 on
𝐷 for subsequent selection. To select pseudo-labels for the missing
label, we need to adjust weight matrix 𝐷 based on missing-label
indicator𝐺 : �̃� = 𝐷⊙�̃� where �̃�𝑖, 𝑗 = 1−𝐺𝑖, 𝑗 indicates the position of
missing labels in label matrix. Then we can select soft pseudo-labels
from candidate pseudo-labels for the next epoch:

�̃�𝑡+1 = E
𝑞

(
𝑌 |𝑋

) (
𝑌

)
⊙ �̃� (18)

Finally, we can obtain the final output 𝑂 = Ψ
(
𝑓

)
∈ [0, 1]𝑛×𝑐 ,

where Ψ is the final classifier. Then we compute the following
multi-label classification loss using a masked binary cross-entropy
function, which incorporates both observed labels and pseudo-
labels as follows:

ℓ𝑐𝑒 = − 1∑
𝑖,𝑗 𝐺𝑖,𝑗

( 𝑛∑︁
𝑖=1

𝑐∑︁
𝑗=1

𝑌𝑖,𝑗 log(𝑂𝑖,𝑗 )

+ (1 − 𝑌𝑖,𝑗 ) log(1 −𝑂𝑖,𝑗 )
)
𝐺𝑖,𝑗 −

1∑
𝑖,𝑗 �̃�𝑖,𝑗( 𝑛∑︁

𝑖=1

𝑐∑︁
𝑗=1

�̃�𝑖,𝑗 log(𝑂𝑖,𝑗 ) + (1 − �̃�𝑖,𝑗 ) log(1 −𝑂𝑖,𝑗 )
)
�̃�𝑖,𝑗

(19)

where 𝐺 is introduced to calculate the loss from observed labels in
the first term and �̃� in the second term represents the soft pseudo-
labels selected from the previous training round.

Overall, our total function will be:

ℓ𝑡𝑜𝑡𝑎𝑙 = ℓ𝑐𝑒 + 𝛼ℓ𝑔𝑐𝑠 + 𝛽ℓ𝑔𝑐𝑙 (20)

where 𝛼 and 𝛽 are penalty coefficients. The training process is
described in Algorithm 1

4 EXPERIMENT
4.1 Experimental Setup
Dataset Description and Preparation: Following [9, 11, 19], we
train and validate our model on five well-known multi-view multi-
label datasets: Corel5k [1], Pascal07 [2], ESPGame [22], IAPRTC12
[4], andMIRFLICKR [6]. Each dataset includes six views represented
by GIST, HSV, Hue, Sift, RGB, and LAB features extracted from their
respective datasets. To simulate real-world scenarios with missing
views and partial labels, we construct incomplete multi-view partial
multi-label data as follows: (1) We randomly mask 50% of samples
for each view, ensuring at least one available view per sample. (2) For
each category, 50% of both positive and negative tags are randomly
removed. Subsequently, 70% of these samples are randomly chosen
as the training set.

Method Comparison: We evaluated our method’s effective-
ness by comparing it with six well-known methods: iMvWL [19],
NAIM3L [9], CDMM [29], DeepIMV [8], DICNet [11], and LMVCAT
[12]. iMvWL and NAIM3L are non-DNN iMvMLC models, while
the rest are DNN-based. Notably, CDMM and DeepIMV, which are

Algorithm 1 Training process of UPDGD-Net

Input:Incomplete multi-view data {𝑋 𝑣}𝑚𝑣=1, Incomplete multi-
label matrix 𝑌 , missing view indicator𝑊 , missing label indicator
𝐺 . Hyperparameters 𝛼 , 𝛽 , �̂�,𝑇 , learning rate, and training epochs
𝑒 .
Initialization: Initialize MLPs

{
Φ(𝑣)

}𝑚
𝑣=1

, CVEncoder Γ, CCEn-
coder Υ, cls tokens {𝑐𝑙𝑠1, ...𝑐𝑙𝑠𝑐 }, classifier Ψ.
for 𝑒=0 to 𝑒 do

for v=1 to m do
Compute �̃� (𝑣) = Φ(𝑣)

(
𝑋 (𝑣)

)
end for
Compute AVT using Eq.(1).
Compute �̃� = Γ (𝑉 ).
Extract embedding feature 𝑍 from 𝐼 .
Compute ℓ𝑔𝑐𝑠 using Eq.(7).
Compute 𝑓 using Eq.(4).
Compute 𝐶 = Υ (𝐶).
Compute ℓ𝑔𝑐𝑙 using Eq.(10).
Extract discriminative feature 𝑓 from �̃� .
Compute 𝑂 = Ψ(𝑓 ).
Compute𝑈 using Eq.(15).
Obtain pseudo-labels �̃� by Eq.(17).
Compute ℓ𝑐𝑒 using Eq.(18).
Compute ℓ𝑡𝑜𝑡𝑎𝑙 using Eq.(19).
Update

{
Φ(𝑣)

}𝑚
𝑣=1

, Γ, Υ, {𝑐𝑙𝑠1, ...𝑐𝑙𝑠𝑐 }, Ψ.
end for
Output: Trained model parameters

MvMLC methods, cannot handle missing data natively. To imple-
ment the two methods on the incomplete multi-view multi-label
classification tasks, we used mean imputation for missing views
and set ‘0’ for unknown tags. DICNet is a contrastive learning
framework with InfoNCE loss, and LMVCAT is a transformer-based
method. The above two methods can handle incomplete multi-view
and partial multi-label data. Parameters for these methods were set
as per recommendations in their original publications for fairness.

4.2 Experimental Results and Analysis
In this section, we evaluate the performance of our method for
the classification task by comparing it with six state-of-the-art
algorithms on the five datasets. Table 1 shows the experiment results
of the five evaluation metrics, in which the missing-view rate and
missing-label rate are both arranged as 50%. Fig 3 shows more
results related to different missing views and missing label ratios
on the Corel5k dataset to investigate the impact of missing data.
According to the statistical results in Table 1, it is evident to make
the following observations:

• On all metrics of both five datasets, our method achieves
superior performance compared with other methods, which
fully demonstrates the effectiveness of our method on the
iMvMLC task.

• Compared to traditionalmethods, themethods that are specif-
ically designed for double incompleteness show obvious
advantages compared to other methods. This indicates the
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Table 1: The performance of different methods on various datasets.

DATA METRIC iMvWL NAIM3L CDMM DeepIMV DICNet LMVCAT OURS

AP 0.283±0.011 0.309±0.004 0.309±0.004 0.354±0.004 0.381±0.004 0.382±0.004 0.413±0.004
1-RL 0.865±0.005 0.878±0.002 0.884±0.003 0.863±0.005 0.882±0.004 0.880±0.002 0.903±0.003

Corel5k AUC 0.868±0.005 0.881±0.002 0.888±0.003 0.866±0.005 0.884±0.004 0.883±0.002 0.905±0.004
OE 0.689±0.015 0.650±0.009 0.590±0.007 0.539±0.015 0.532±0.007 0.547±0.006 0.520±0.020
Cov 0.298±0.008 0.275±0.005 0.277±0.007 0.298±0.010 0.273±0.011 0.273±0.006 0.223±0.008
AP 0.437±0.018 0.488±0.003 0.508±0.005 0.548±0.008 0.505±0.012 0.519±0.005 0.552±0.003
1-RL 0.736±0.015 0.783±0.001 0.812±0.004 0.815±0.008 0.783±0.008 0.811±0.004 0.832±0.007

Pascal07 AUC 0.767±0.015 0.811±0.001 0.838±0.003 0.835±0.009 0.809±0.006 0.834±0.004 0.853±0.003
OE 0.638±0.023 0.579±0.006 0.581±0.008 0.537±0.014 0.573±0.015 0.579±0.006 0.539±0.007
Cov 0.323±0.015 0.273±0.002 0.241±0.003 0.232±0.009 0.269±0.006 0.237±0.005 0.215±0.009
AP 0.244±0.005 0.246±0.002 0.289±0.003 0.294±0.004 0.297±0.002 0.294±0.004 0.312±0.004
1-RL 0.808±0.002 0.818±0.002 0.832±0.001 0.832±0.002 0.832±0.001 0.828±0.002 0.847±0.002

ESPGame AUC 0.813±0.002 0.824±0.002 0.836±0.001 0.835±0.002 0.836±0.001 0.833±0.002 0.852±0.002
OE 0.657±0.013 0.661±0.003 0.604±0.005 0.567±0.008 0.561±0.007 0.566±0.009 0.549±0.010
Cov 0.452±0.004 0.429±0.003 0.426±0.004 0.394±0.004 0.407±0.003 0.410±0.004 0.372±0.005
AP 0.237±0.003 0.261±0.001 0.305±0.004 0.325±0.004 0.323±0.001 0.317±0.003 0.339±0.003
1-RL 0.833±0.002 0.848±0.001 0.862±0.002 0.873±0.004 0.873±0.001 0.870±0.001 0.886±0.002

IAPRTC12 AUC 0.835±0.001 0.850±0.001 0.864±0.002 0.875±0.004 0.874±0.000 0.872±0.001 0.888±0.004
OE 0.648±0.008 0.610±0.005 0.568±0.008 0.543±0.008 0.532±0.002 0.557±0.005 0.537±0.002
Cov 0.436±0.005 0.408±0.004 0.403±0.004 0.335±0.007 0.351±0.001 0.352±0.003 0.312±0.007
AP 0.490±0.012 0.551±0.002 0.570±0.002 0.612±0.005 0.589±0.005 0.594±0.005 0.611±0.002
1-RL 0.803±0.008 0.844±0.001 0.856±0.001 0.871±0.002 0.865±0.003 0.863±0.004 0.875±0.001

Mirflickr AUC 0.787±0.012 0.837±0.001 0.846±0.001 0.856±0.003 0.853±0.003 0.849±0.004 0.862±0.001
OE 0.489±0.022 0.415±0.003 0.369±0.004 0.331±0.007 0.358±0.008 0.363±0.007 0.338±0.006
Cov 0.428±0.013 0.369±0.002 0.360±0.001 0.323±0.003 0.333±0.003 0.348±0.007 0.319±0.003

necessity of considering possible missing views and labels
during the model design process.

To demonstrate the effectiveness of our uncertainty-aware pseudo-
labeling strategy, similar to [17], we empirically analyze our strat-
egy in different way on various datasets, each with half of the views
and labels missing, and figure 5 illustrates our findings. Fig.5a shows
the relationship of mean absolute error (MAE) and the uncertainty
of output predictions on three different datasets. It is evident that
with the increase of uncertainty, the MAE of outputs increases
accordingly, thereby confirming our model’s ability to accurately
estimate prediction uncertainty. Fig.5b, Fig.5c and Fig.5d explore
the MAE, accuracy, and the number of pseudo-labels selected across
different epochs of training. It is noteworthy that the accuracy of
the pseudo-labels chosen by our model remains consistently high,
irrespective of the number of labels selected during the training
process, which proves the effectiveness of our self-paced-based
selection strategy and the robustness of our uncertainty-aware
pseudo-labeling strategy. Furthermore, Fig.5c and Fig.5d show that
our pseudo-labeling strategy can select more credible pseudo-labels

(a) different missing-view ratios (b) different missing-label ratios

Figure 3: Experimental results on the Corel5k dataset: (a)
different missing-view ratios and a 50% missing-label ratio
and (b) different missing-label ratios and a 50% missing-view
ratio.

compared to conventional pseudo-labeling strategy. This observa-
tion illustrates the superiority of our uncertainty-aware pseudo-
labeling strategy in identifying and selecting the most credible
pseudo-labels for our model, further reinforcing its effectiveness.
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Figure 4: The AP values for hyper-parameters 𝛼 and 𝛽 on the
Corel5k (Fig. a) and Pascal07 (Fig. b) datasets; AP values for
hyper-parameter �̂� on both Corel5k and Pascal07 datasets
(Fig. c); and AP values for hyper-parameter𝑇 on Corel5k and
Pascal07 (Fig. d) datasets are presented. Both datasets contain
50% available views and labels, with a 70% training sample
rate.

4.3 Hyper-parameter Study
On𝛼 and 𝛽 : Ourmodel’s overall loss involves two hyperparameters,
𝛼 and 𝛽 . We explored their sensitivity by varying their values and
reporting the corresponding AP values on the Corel5k and Pascal07
datasets, with conditions of 50% available instances per view, 50%
missing labels, and 70% training samples. As shown in Fig 4a and
Fig 4b, the optimal ranges for 𝛼 and 𝛽 on Corel5k are [1,10] and
[0.1,5], and on Pascal07, they are [1,10] and [0.1,10], respectively.

On �̂� and 𝑇 : From Fig 4c, it can be seen that too large or too
small of the number of average view tokens is not conducive to
achieving optimal performance. Based on experiments, we set �̂� as 3
for all datasets. Fig 4d shows the AP value versus hyper-parameters
𝑇 , which can be seen that when 𝑇 is greater than 4, our method is
not sensitive to it, so we set 𝑇 = 5 for all five datasets.

4.4 Ablation Study
The ablation experiments are conducted on the Corel5k and ESPGame
datasets, with 50% missing views, 50% missing labels, and 70%
training samples. We sequentially removed AVT, ℓ𝑔𝑐𝑠 , ℓ𝑔𝑐𝑙 , and
the uncertainty-aware pseudo-labeling strategy (PLS). Notably, we
leverage pseudo-labels selected from PSL as extra supervised infor-
mation to calculate the classification loss in our network. Conse-
quently, we remove the cross-entropy loss between the predictions
and pseudo-labels to validate the effectiveness of our PSL. The re-
sults presented in Table 2, reflect two key observations: (i) Each
component of our UPDGD-Net is crucial and contributes positively,
emphasizing the significance of every component in enhancing

(a) (b)

(c) (d)

Figure 5: Fig. a shows the relationship between output uncer-
tainty and MAE values on various datasets; Fig. b shows the
MAE values of pseudo-labels during the training stage on
different datasets. Fig. c and Fig.d compare the accuracy and
number of pseudo-labels selected by conventional pseudo-
labeling strategy and our uncertainty-aware pseudo-labeling
strategy on the Corel5k dataset.

Table 2: The ablation experiment result on Corel5k dataset
and Pascal07 dataset.

Backbone AVT 𝐿𝑔𝑐𝑠 𝐿𝑔𝑐𝑙 PLS Core15k Pascal07

AP AUC AP AUC

✓ 0.366 0.890 0.520 0.835
✓ ✓ 0.378 0.891 0.528 0.839
✓ ✓ 0.388 0.892 0.524 0.837
✓ ✓ 0.384 0.893 0.524 0.837
✓ ✓ 0.380 0.903 0.534 0.844
✓ ✓ ✓ 0.394 0.895 0.530 0.838
✓ ✓ ✓ 0.396 0.899 0.533 0.842
✓ ✓ ✓ ✓ 0.404 0.899 0.538 0.843
✓ ✓ ✓ ✓ ✓ 0.413 0.905 0.552 0.853

multi-label classification performance. (ii) The most significant
enhancement is observed with the integration of the SPL.

5 Conclusion
In this paper, we propose an uncertainty-aware pseudo-labeling and
dual graph driven network (UPDGD-Net) for iMvMLC tasks, design-
ing an uncertainty-aware pseudo-labeling strategy to harness the
semantic information in missing labels. We also utilize multi-label
topological relationships to guide representation learning in em-
bedding space and propose the average view token to enhance the
multi-view information synthesis. Extensive experiments validate
the effectiveness of our approach.
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