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Abstract
In reinforcement learning (RL), there are two ma-
jor settings for interacting with the environment:
online and offline. Online methods explore the
environment at significant time cost, and offline
methods efficiently obtain reward signals by sac-
rificing exploration capability. We propose semi-
offline RL, a novel paradigm that smoothly tran-
sits from offline to online settings, balances explo-
ration capability and training cost, and provides a
theoretical foundation for comparing different RL
settings. Based on the semi-offline formulation,
we present the RL setting that is optimal in terms
of optimization cost, asymptotic error, and overfit-
ting error bound. Extensive experiments show that
our semi-offline approach is efficient and yields
comparable or often better performance compared
with state-of-the-art methods. Our code is avail-
able at https://github.com/ChangyuChen347/semi-
offline-RL.

1. Introduction
Pretrained language models have achieved great success
in improving text generation quality (Devlin et al., 2019;
Liu et al., 2019). Recent research shows that a key for fur-
ther improving pretrained language models is reinforcement
learning (RL), which provides a principled solution for di-
rectly optimizing the final objective such as ROUGE (Lin
& Hovy, 2003), factual correctness (Goodrich et al., 2019),
and human feedback (Ouyang et al., 2022). Recent large pre-
trained models that incorporate reinforcement learning, e.g.,
InstructGPT (Ouyang et al., 2022), ChatGPT1, and GPT-42,
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have demonstrated superior performance in aligning with
user intent compared to GPT-3 (Zhao et al., 2023).

In reinforcement learning, there are two major settings for
interacting with the environment: online and offline.

Online RL (Fig. 1(a)). The language model in this set-
ting generates word token ŷt by sampling from its output
probability distribution, and obtains the reward signal about
the samples to learn how well they fulfill the final objec-
tive (Paulus et al., 2018; Li et al., 2019; Schulman et al.,
2017; Le et al., 2022). The online setting allows the lan-
guage model to fully explore the environment: the model
can interact with the environment to see the reward of differ-
ent samples and hence obtains a comprehensive understand-
ing about the final objective, which is crucial for finding the
optimal generation. While good generation can usually be
found when the number of samples approaches infinity, it
is empirically time-intensive to obtain even only a few sam-
ples from large pretrained language models. While there are
many aspects of time cost in online RL (Wang et al., 2018;
Zhao et al., 2020; Wang et al., 2022; Feng et al., 2022; Yang
et al., 2022), this paper focuses on the forward propaga-
tions of language models. In particular, optimizing with K
samples requires KT forward propagations (FPs) through
the language models, where T is the maximum number of
tokens in the generated text. This cost is quite large and
impractical in some real-world scenarios (Wang et al., 2021)
considering the complexity of large language models.

Offline RL (Fig. 1(b)). This setting eliminates the need for
generating text during the training process by utilizing a
static dataset for learning. Example static data y1, · · · , yT
includes demonstrations or ground-truth labels (Pang & He,
2020; Jaques et al., 2019; Serban et al., 2017; Zhu et al.,
2023) for an input x, as well as text pre-generated with
beam search (Liu et al., 2022). By avoiding generating text
in an autoregressive manner during training, offline methods
mitigate the expensive optimization costs associated with
online methods and reduces the cost from KT forward prop-
agations to K. However, offline methods cannot explore
the environment to find the optimal generation: language
models are only given the reward signals for specific static
data, which prevents them from better understanding the
final objective and converging to a better solution.

The above analysis shows that different RL settings have
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State

Setting (a) Online (b) Offline (c) Semi-offline

Optimization 
Cost (FP)

Language Model

(c1) Fully Observable (c2) Partially Observable

T 1 Tpm 1 

Exploration √ √ √×

KT K KTpm 1 

Language Model Language ModelLanguage Model

1 sample

K samples

Observation Same as the state Same as the state Same as the state

Figure 1. The comparison of different RL settings: (a) online methods explore the environment with a large optimization cost; (b) offline
methods efficiently obtain reward signals by sacrificing the capability for exploration; (c) our proposed semi-offline setting enables
exploration with minimum optimization cost. Here, Mt = 1 (or Mt = 0) means that the token at time t is sampled based on the language
model (or comes from static data), 0 ≤ pm ≤ 1 is the probability for Mt to be 1, FP denotes the number of forward propagations through
the language model, and T is the maximum number of word tokens in an output.

entirely different exploration capabilities and optimization
costs. A fundamental research question is: can we refine
the RL setting so that effective exploration is achieved
with minimum optimization cost? In this paper, we ad-
dress this question by making three contributions.

First, we define the design space of different RL settings by
proposing semi-offline RL, which bridges the gap between
online and offline RL and provides a theoretical foundation
to compare different RL settings. As shown in Fig. 1(c),
semi-offline RL composes a sample by mixing tokens gen-
erated by the language model and tokens from the static
dataset with a probability pm ∈ [0, 1]. Different values of
pm correspond to different MDPs allowing for a smooth
transition from offline to online settings. In particular, for
a fully observable scenario in which the model input (ob-
servation) is equal to the environment state (Fig. 1(c1)), the
semi-offline setting becomes offline when pm = 0, and
becomes online when pm = 1. When pm ∈ (0, 1), we
optimize the reward with an intermediate optimization cost
KTpm while keeping the capability for exploring the en-
vironment. Compared with the offline setting, semi-offline
methods only utilize the static data as initial points for ex-
ploration, thereby allowing the model to identify better im-
provement directions. Compared with the online setting,
semi-offline methods may find the optimal improvement
directions with a fewer number of samples by more quickly
estimating token-wise rewards (Sec. 3.3, Proposition 3).

Second, based on the semi-offline MDP formulation, we
present the RL setting that is optimal in terms of the follow-
ing desirable properties:

DP1. Minimum optimization cost: the policy can be opti-
mized by using only 1 FP per input.

DP2. Minimum asymptotic bias: the estimated error when
the number of instances is unlimited is minimal among

all possible RL settings that satisfy DP1.
DP3. Minimum overfitting error bound: the chosen RL

setting has the lowest bound of error (François-Lavet
et al., 2019) when data is limited, among all settings that
satisfy DP1 and DP2.

We prove that the optimal RL setting in terms of DP1−DP3
is easily implemented by mixing static data and the mask
token, as shown in Fig. 1(c2). This masked language model
(MLM) setting fits naturally into existing pretrained lan-
guage models, can explore K samples with only 1 FP, and
effectively find improvement directions by using static data
points as a starting point.

Third, we evaluate our semi-offline RL approach in various
text generation tasks and datasets, and show that it yields
comparable or usually better performance compared to state-
of-the-art methods while improving efficiency.

2. Background
2.1. Preliminares about Reinforcement Learning

In text generation, we often use a human-annotated corpus
as ground truth for performing supervised learning. Re-
inforcement learning (RL) provides an additional way of
learning in which the agent can optimize its behavior by
interacting with the environment (Hyun et al., 2022; Wang
et al., 2022; Chen et al., 2022). An agent-environment in-
teraction can be described by the following process: 1) the
environment tells the agent the current state, 2) the agent
outputs an action given the state through a function called
policy, and 3) after the agent acts, the environment shifts to
a new state and the environment gives a reward based on the
agent’s action and the updated state. The goal of the agent
is to learn a policy that yields the maximum cumulative
reward. We use a pretrained language model as the policy.
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In RL, the environment is typically formulated as a Markov
Decision Process (MDP). An MDP is defined as a tuple
M = {S,A,R, T }, where S and A denote the state space
and action space, respectively. The reward function, R :
S ×A → R, maps a state-action pair to a scalar value, and
the transition function, T : S × A × S → R, describes
the probability of transitioning from one state-action pair
to another. Given an MDP, various methods of RL can be
applied in the search space of the environment to learn a
policy that maximizes the cumulative reward.

2.2. Reinforcement Learning for Text Generation

The MDP for text generation is usually defined as follows:

State st ∈ S consists of the input sequence x and the
part of output text that has already been derived: st =
(x, ys0, · · · , yst−1). Here, yst ∈ V is the output token at time
t, and V denotes the vocabulary.

Action at = yst ∈ A is one of the |V| tokens.

Transition: T (st+1|st, at) transits st to st+1 at time step t:
st+1 = st ∪ yst . This deterministic transition appends the
next token to the previous state.

Reward: R(st) = f(x, ys0, · · · , yst−1) quantifies how good
the derived sentence ys0, · · · , yst−1 is according to the final
objective like the BLEU score or user satisfaction. In text
generation, we often consider terminal reward, which means
that the reward is computed after the whole text is generated,
in other words R(st) ̸= 0 only when t = T .

Both online and offline RL methods can be depicted by
using this MDP.

In the online setting, each action is obtained by sampling
from the probability distribution (Fig. 1(a)), i.e., at = yst =
ŷt, where ŷt ∼ p(ŷt|st; θ), where θ is the parameter for
the language model. Accordingly, the reward is computed
by considering state st = (x, ŷ0, · · · , ŷt−1). Online RL
methods have a large search space, allowing them to search
for the optimal solution across the entire space. However,
this can make them difficult to optimize with high variance
in reward signals. To address this, methods such as actor-
critic (Konda & Tsitsiklis, 1999; Bahdanau et al., 2016; Le
et al., 2022), self-critic (Zhang et al., 2019b; Paulus et al.,
2018; Li et al., 2019), and PPO (Schulman et al., 2017;
Ouyang et al., 2022) have been developed. However, these
methods still explore the environment at great optimization
cost due to the auto-regressive generation of output text.

In the offline setting, each action is derived by using the to-
ken in the static data (Fig. 1(b)), i.e., at = yst = yt, where yt
is the t-th token in the static data. Accordingly, the reward
is computed by considering state st = (x, y0, · · · , yt−1).
RAML (Norouzi et al., 2016) can be viewed as one of the
pioneering offline RL methods. It obtains the static dataset

for offline learning by edit-distance sampling and weighs
the samples according to the reward, resulting in a formula-
tion of reward augmented maximum likelihood. SPG (Ding
& Soricut, 2017) and ERPO (Tan et al., 2018) improve
upon RAML (Norouzi et al., 2016) by exploring a larger
region but introducing more decoding cost and they fall into
the category of online methods. Offline methods are also
widely used in dialogue systems to reduce the number of
interactions with people in real-time Serban et al. (2017);
Jaques et al. (2019). Recently, GOLD (Pang & He, 2020)
posits that acquisition of useful data through exploration can
be challenging. Therefore, it directly employs the ground-
truth. BRIO (Liu et al., 2022), on the other hand, harnesses
a contrastive loss and generates multiple candidates for each
instance as the static dataset. Unlike previous methods,
ILQL (Snell et al., 2022) involves training a value network
on a static dataset. During deployment, this value network
is used to perturb the output distribution of another language
model trained with supervised learning. While offline meth-
ods efficiently obtain reward signals by leveraging the static
dataset, they sacrifice the exploration capability.

3. Semi-Offline MDP
3.1. Formulation of Semi-Offline MDP

In order to lay a theoretical foundation for comparing differ-
ent RL settings, we define the design space of different RL
settings by proposing semi-offline RL, which can smoothly
transit from offline methods to online methods by using
different values of hyperparamter pm. More specifically,
semi-offline RL composes a sample by mixing tokens gen-
erated by the language model and tokens from the static
dataset with a probability pm ∈ [0, 1], as shown in Fig. 1(c).
The formal definition is as follows.
Definition 1 (MDP of semi-offline RL). In semi-offline RL:

State st = (x,M0, y
s
0, · · · ,Mt−1, y

s
t−1,Mt) consists of

the input sequence x, the part of output text that has already
been derived ys0, · · · , yst−1, as well as the binary values
M0, · · · ,Mt, each Mt ∈ {0, 1} denotes whether the next
token yst will be determined according to the agent’s gener-
ation (Mt = 1) or the static dataset (Mt = 0).

Action at is the output token of agent at time t. If Mt = 1,
the agent will output one of the |V| tokens by sampling from
the probability distribution of the language model: at = ŷt.
If Mt = 0, The agent will give a NULL token.

Transition: T (st+1|st, at) transits st to st+1 at time t with

st+1 = st ∪ yst ∪Mt+1, (1)

yst =

{
ŷt, if Mt = 1

yt, if Mt = 0
(2)

M t+1 ∼ Bernoulli(pm) (3)
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where ŷt is a token generated by the language model,
yt is a token from the dataset (e.g., the t-th token in the
ground-truth), and Mt+1 is sampled from a Bernoulli
distribution parameterized with pm, which means that
Mt+1 takes the value of 1 with a probability pm and takes
the value 0 with a probability 1− pm.

Reward: R(st) = f(x, ys0, · · · , yst−1) quantifies how good
the generated sentence ys0, · · · , yst−1 is according to the
ultimate goal like the BLEU score or user satisfaction.

Semi-offline RL is most comparable to online and offline
settings in the fully observable scenario shown in Fig. 1(c1).
Fully observable means that the model input (observation)
is equal to the state of the environment, meaning that the
language model is aware of all information in the state when
making a decision, i.e., ŷt ∼ p(ŷt|st; θ).

In this fully observable scenario, pm = 0 is equivalent
to the offline setting where the model optimizes its policy
from a completely static dataset. Conversely, when pm =
1, the configuration is in the online mode, allowing for
dynamic exploration of the maximum search space. When
pm ∈ (0, 1) is an intermediate value, the semi-offline MDP
balances between dynamic exploration of the search space
and knowledge obtained from the static dataset, while also
finding an equilibrium between exploration and time cost.
More specifically, the time cost for semi-offline methods
can be computed with the following proposition.

Proposition 1 (Time cost when fully observable). Consider-
ing the fully observable scenario in which all information in
the states is observed by the language model to get sampled
tokens. Let us denote the minimum number of FPs required
to sample st as Ct and its expectation as E(Ct). We have

Ct =

t−1∑
t′=0

Mt′ , E(Ct) = tpm (4)

The proof is given in Appendix A.1. Proposition 1 shows
that when pm ∈ (0, 1), we could optimize the reward with
an intermediate optimization cost controlled by pm while
keeping the capability for exploring the environment.

In addition to the time cost, the intermediate methods whose
pm ∈ (0, 1) provides an additional view for exploration.
Compared with the offline setting, semi-offline methods
only utilize the static data as initial points for exploration in-
stead of seeing only the reward of static data points, thereby
allowing the model to get a more comprehensive understand-
ing about the final objective and identify better improvement
directions. Compared with the online setting, semi-offline
methods may find the optimal improvement directions with
a fewer number of samples. This sampling efficiency is
achieved by only exploring a vicinity of the static data point.

Thus, the space to be explored for semi-offline methods
(|V|Tpm) is exponentially smaller than that of the online
methods (|V|T ), making it easier for the language model
to understand the reward gain brought by different choices.
Even though the exploration space is limited, it is possible
that the knowledge explored in the vicinity of specific output
text can be generalized to other output text considering the
generalization ability of neural networks. This is verified
by our experiments, which show that semi-offline usually
performs equally good or better with much less time cost
compared with existing online or offline methods (Sec. 4).

3.2. RL Setting with Minimum Optimization Cost

Next, we move towards achieving the minimum opti-
mization cost while maintaining the effective exploration
capability of the agent. In particular, we are interested in
finding a semi-offline RL setting that can be optimized
with only 1 FP per instance, so that even large pretrained
language models could be optimized efficiently. Meanwhile,
we hope that the agent can still freely decide the degree for
exploration by choosing different values of pm.

We can see from Propsition 1 that the time cost in the fully
observable scenario cannot always be 1 FP for different
values of pm. In order to further accelerate the optimization
method, we must remove the condition of full observation,
i.e. not requiring at to be a decision made after observing all
information in st. This scenario can be formulated by using
Partially Observable Markov Decision Process (POMDP).
Definition 2 (Semi-offline MDP when partially observable).
The MDP of the environment is the same as that in Def. 1.
However, the agent in POMDP takes action at based on
observation ot, which does not contain all information in st:

at = ŷt ∼ p(ŷt|ot; θ), when Mt = 1 (5)

ot is a sub-sequence of st = (x,M0, y
s
0,M1 · · · , yst−1,Mt).

Losing information in st may significantly decrease the
probability of achieving optimal results. To derive an opti-
mal RL setting under the minimum time cost constraint, we
consider two research questions:

RQ1. Which information has to be removed from the obser-
vation in order to meet the minimum time cost constraint?

RQ2. What information needs to be retained in the obser-
vation to maximize the performance?

RQ1 can be answered with the following proposition.
Proposition 2 (Information loss with minimum time cost).
If sT can always be sampled within 1FP for ∀pm ∈ [0, 1],
then ot must not contain any exact information about sam-
pled tokens ŷt′ , for ∀t′ ∈ [0, t− 1] and ∀t ∈ [1, T ).

The proof is given in Appendix A.2. This proposition can
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be easily understood: when aiming for parallel generation
of different tokens, the generation of one token ŷt should
not rely on the information of another token ŷt′ generated
simultaneously.

Proposition 2 allows us to define the maximum set of obser-
vations we can get at time step t when minimum time cost
can be achieved, which is important for answering RQ2.

Definition 3 (Maximum observation with minimum time
cost). If sT can always be sampled within 1FP for ∀pm ∈
[0, 1], the observation with the maximum information in st
is omax

t = (x,M0, y
o
0, · · · ,Mt−1, y

o
t−1,Mt), where

yot =

{
NULL Mt = 1

yt Mt = 0
(6)

With Def. 3, we can answer RQ2 by characterizing the
asymmetric bias of RL methods, which refers to the error
of an agent with unlimited data. This characterization is
achieved by using the following lemma.

Lemma 1 (Criteria for 0 asymmetric bias). According to
Theorem 1 and Definition 2.4 in (François-Lavet et al.,
2019), the additional error introduced by changing omax

t to
ot when the data is unlimited is 0, if for ∀t and ∀s

p(s|ot) = p(s|omax
t ) (7)

Another measure for performance is the overfitting error,
which depicts the additional error introduced due to limited
data. The following lemma shows the criterion for achieving
minimum overfitting error bound.

Lemma 2 (Criteria for minimum overfitting error bound).
Accordingly to Theorem 3 in (François-Lavet et al., 2019),
the overfitting error bound is minimized when the number
of possible observations |Ot| is minimized, where each ot ∈
Ot is an element in set Ot.

Lemmas 1 and 2 provide a theoretical foundation to de-
cide whether a RL setting can achieve optimal performance.
Lemma 1 shows that all information useful for predicting
s should be kept in the observation, and Lemma 2 claims
that the observation should contain as little redundant infor-
mation as possible to avoid overfitting. This allows us to
rule out methods such as Scheduled Sampling (Bengio et al.,
2015; Mihaylova & Martins, 2019), which does not contain
the information of Mt and thus cannot satisfy Lemma 1.
They also help exclude observations that include additional
information such as yt when Mt = 1, which fails to satisfy
Lemma 2.

According to these lemmas, we define optimal RL setting
under the minimum time cost constraint as follows:

Definition 4 (Optimal RL setting). In the optimal RL set-
ting, its observation o∗t should satisfy

DP1. Minimum time cost: sT can always be sampled
within 1 FP.

DP2. Minimum asymmetric bias: o∗t satisfies the criteria
for 0 asymmetric bias given by Lemma 1.

DP3. Minimum overfitting error bound: o∗t satisfies the
minimum overfitting error bound criteria in Lemma 2.

We then prove that the optimal RL setting in Def. 4 could
be easily implemented by mixing static data and the mask
token, as shown in Fig. 1(c2), where [M] denotes a mask
token. This masked observation setting fits naturally into
existing pretrained language models and can explore K
samples with only 1 FP. Formally, we define the RL setting
with masked observations as follows.

Definition 5 (RL setting with masked observations). The
masked observation is defined as oMt =x, yM0 , yM1 , · · · , yMt−1

where

yMt =

{
[M] Mt = 1
yt Mt = 0

(8)

We then formally prove the optimality of masked observa-
tion with the following theorem.

Theorem 1 (Optimality of masked observation). oMt in
Def. 5 is o∗t in Def. 4.

The proof of Theorem 1 is given in Appendix A.3.

3.3. Optimization

3.3.1. RL LOSS FOR SOLVING MDP

POMDP defined in Def. 5 can be solved in the same way
as traditional MDPs. Here we use policy gradient because
pretrained language models provide a natural initialization
of the policy. Specifically, we adopt the REINFORCE with
baseline (Williams, 1992) to reduce the variance among
different trajectories. Accordingly, the policy is optimized
with the following RL loss:

LRL = 1
K

∑K
k=1 −(R(Y k)− b)

∑
t log p(akt |oMt )

b =
∑

k R(Y k)

K
(9)

where K is the number of samples, k denotes the sample
index, Y k = (ak0 , · · · , akT−1) is the k-th sampled sentence,
and b is the baseline computed by averaging the rewards of
sampled sentences to reduce the variance.

Analysis of optimization cost. We can easily see that the
number of FPs needed for computing LRL is always 1, re-
gardless of the number of samples. This is because different
samples are obtained by using the same observation oMt ,
and thus can be obtained together with 1 FP.
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Efficient estimation of token-wise rewards. Decomposing
LRL into token-wise rewards using the following proposi-
tion allows us to see that the RL setting with masked observa-
tions enables more efficient learning of token-wise rewards.
Proposition 3 (Token-level reward assignment). LRL in
Eq. 9 can be decomposed into token-wise loss Li

t of the i-th
token in the vocabulary at time step t:

LRL =
∑

t

∑|V|
i=1 Li

t

Li
t = −Ci

t

K log p(Vi|oMt )(

∑K

k=1,Vi=ak
t
R(Y k)

Ci
t

− b)

b =
∑K

k=1 R(Y k)

K
(10)

where Vi is the i-th token in the vocabulary, and Ci
t denotes

the number of samples that select Vi as the action at time
step t. akt is the t-th token of output Y k.

The proof is in Appendix A.4. Proposition 3 shows that we
evaluate how well the token Vi performs at time t by com-

puting
∑K

k=1,Vi=ak
t
R(Y k)

Ci
t

−
∑K

k=1 R(Y k)

K , which estimates
EY∼p(Y |o=oMt ,a=Vi)R(Y ) − EY∼p(Y |o=oMt )R(Y ), the ex-
pected advantage of generating Vi under observation oMt .

The accurate estimation of this expected advantage requires
a large number of samples under the same observation o.
This can be easily achieved in our semi-offline RL setting
with masked observations as oMt remains constant for differ-
ent sampled tokens. In comparison, observation o is usually
different for different samples in the online and offline RL
setting. Thus, they may require more samples to accurately
understand the contribution of a single token Vi.

3.3.2. OVERALL OPTIMIZATION LOSS

We follow existing paradigm for RL training. Specifically,
pretrained language models are first fine-tuned with the
ground-truth labels to ensure a good starting point for RL
training. This is achieved by optimizing the MLE loss

LMLE =

|ygt|∑
t=1

log p(ygtt |x, ygt1 , , · · · , ygtt−1) (11)

where ygt is the ground-truth in the dataset. During this
phase, we replace some tokens in the input ygt1 , · · · , ygtt−1

with [M] so that the model can be better adapt to masks in
the inputs.

We then perform RL training by simultaneously consider-
ing both the MLE loss and the RL loss. The MLE loss is
considered here to prevent the policy from drifting away
from the original dataset, which may lead to a reduction in
generation quality. This is achieved by minimizing

L = LMLE + λLRL (12)

where λ > 0 is a hyperparameter.

4. Experiment
4.1. Experimental Setup

4.1.1. DATASETS

We conduct experiments on 1) a summarization dataset
CNN/DM (Hermann et al., 2015), where the goal is to
generate summaries for news articles; 2) a dialogue summa-
rization dataset SAMSum (Gliwa et al., 2019), in which the
focus is summarizing dialogues instead of news articles; 3)
a natural question generation dataset SQuAD (Rajpurkar
et al., 2016), where the task is to generate questions that can
be answered by a specific segment of an article; 4) an ex-
treme summarization dataset XSum (Narayan et al., 2018),
which focus on generating highly abstractive summaries for
news articles from the BBC. More statistical information
about these datasets can be found in Appendix C. We have
also experimented with other tasks such as advertisement
generation, and the results can be found in Appendix G.

4.1.2. COMPARED METHODS

Base models. We fine-tune (FT) pre-trained language mod-
els such as BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020) for each task. Specifically, for CNN/DM and SAM-
Sum we use BART-large (406M). For SQuAD and XSum
we use T5-large (737M) and Pegasus-large (570M) (Zhang
et al., 2020) respectively.

Additionally, we fine-tune the tasks with masks (M-FT) to
study the influence of involving masks during training. This
method is similar to FT but with the added step of randomly
masking a portion of the tokens in the targets, giving the
model the ability to predict the next token when given the
special token [M] on these downstream tasks.

Online methods. The online methods we compare include
the online generation of single-sample methods Self-Critic
(SC) (Paulus et al., 2018; Li et al., 2019) and Actor-Critic
(AC) (Le et al., 2022). Both methods are optimized using
REINFORCE with baseline (Sutton et al., 1999), where the
baseline for SC is the greedy decoding result of the agent,
and AC uses a quality scoring critic model to compute
the reward. Average baseline (AVG) is a multiple-sample
approach, in which its RL loss using the average rewards of
the multiple samples as the baseline. The RL loss of AVG
is also a variant of the contrastive loss used by BRIO (Liu
et al., 2022)3.

Offline methods. The offline methods we compare are
GOLD (Pang & He, 2020) and BRIO (Liu et al., 2022),
where GOLD uses the original ground truth as the static
dataset in offline training, and BRIO uses the generated
results of the BASE model as the static dataset.

3The proof of deriving BRIO to AVG can be found in Ap-
pendix D.
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Table 1. Overall performance. FP denotes the number of forward propagations required for optimization, N is number the instances
consumed by the model, K is the number of samples used, and L is the sentence length.

GROUPS MODELS FP CNN/DM SAMSUM SQUAD XSUM

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L MTR R-1 R-2 R-L

BASE
FT N 44.16 21.28 40.90 53.32 28.53 49.03 27.21 54.13 27.70 47.46 24.69 39.53
M-FT N 45.10 21.76 41.86 53.09 28.17 49.02 27.43 54.30 27.82 47.65 24.85 39.56

OFFLINE
GOLD N 45.51 22.10 42.30 53.18 28.90 49.11 27.20 54.43 27.59 47.75 24.92 39.70
BRIO NK 47.83 23.75 44.65 53.98 29.11 49.56 27.17 54.53 27.64 48.91 25.71 40.60

ONLINE
SC NT 45.45 21.85 42.16 53.47 28.54 48.99 27.14 54.36 27.58 47.90 24.95 39.73
AC NT 45.71 22.07 42.42 53.41 28.29 48.90 27.35 54.48 27.62 47.88 24.92 39.71
AVG NTK 48.28 24.16 45.00 54.10 29.21 49.58 27.50 54.79 27.77 48.48 25.21 40.23

SEMI OURS N 48.54 24.40 45.35 54.27 29.19 50.57 27.79 54.95 28.32 49.02 25.37 40.52

To ensure a fair comparison, we employ M-FT as the initial-
ization method and keep the base model the same for ours
and all RL methods. For BRIO and ours, we use the same
static dataset. For more implementation details of how we
collect trajectory for online, offline, and our semi-offline
method, one can refer to Appendix B.

4.1.3. METRICS

Following (Liu et al., 2022; Bengio et al., 2015), We use
ROUGE scores including R-1, R-2, and R-L (Lin & Hovy,
2003) to evaluate the results on the summarization tasks:
CNN/DM, SAMSum, and XSum. For SQuAD, we fol-
low (Ushio et al., 2022) and adopt the BLEU score B-4 (Pa-
pineni et al., 2002), ROUGE scores (Lin & Hovy, 2003),
and METEOR score MTR (Banerjee & Lavie, 2005). We
directly use the corresponding metrics as the reward to be
optimized. For more implementation details of the reward
and other hyperparameters, one can refer to Appendix B.
In addition to these metrics, we have also tested how our
method performs when optimizing other metrics such as
factuality (Appendix G) and whether humans consider the
generated text to be better (Appendix H).

4.2. Overall Performance

Tab. 1 shows the overall performance of different models
as well as their optimization cost (FP). We have three main
observations by analyzing the table.

First, our performance is significantly higher compared with
other methods with the same FPs (i.e., FP=N ). This is
because that our method is the only one that has the explo-
ration capability when FP is N . Other methods that have
the same optimization cost are either base models or offline
methods that only consider one sample.

Second, methods that only utilize one sample usually per-
forms worse than multi-sample methods, even when they are
time-expensive online methods such as SC and AC). This
demonstrates the necessity to obtain more reward signals by

Table 2. The results of combining the loss of BRIO and OURS.

MODELS
XSUM

R-1 R-2 R-L

BRIO 48.91 25.71 40.60
OURS 49.02 25.37 40.52
BRIO+OURS 49.23 25.98 41.01

exploring the environment. Our method is the only one that
can increase the number of samples without increasing the
number of FPs required for optimization.

Third. our method performs as well as or better than state-
of-the-art methods that are much more costly than ours
(e.g., AVG). We achieve the best result on three datasets,
demonstrating the superiority of our semi-offline setting
in addition to the significantly reduced optimization cost.
Although our result in XSUM is only similar to BRIO, we
show that our method still brings additional benefits. More
specifically, Tab. 2 shows that combining our method with
BRIO results in improved performance.

We also provide human evaluation and results on more met-
rics in Appendix H.

4.3. Optimization Efficiency

To fully evaluate the performance of our method, it is im-
portant to consider not only the number of FPs, but also the
real time cost during optimization. To this end, we fix the
number of instances and compared the optimization speed
as well as model performance in Tab. 4. The experiments
are run on a machine with an Nvidia A40 GPU (memory:
48 GB) using a learning rate of 1e-6 and a batch size of 8
for all compared methods. The results show that our method
not only has the lowest training time consumption, but also
the best optimization speed on both the SQuAD and SAM-
Sum datasets. It is also worth noting that BRIO and AVG
use multiple target texts for the same source text for one
instance, which leads to increased memory usage on GPUs.
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Table 3. Ablation study on variants that do not satisfy Lemma 1 or Lemma 2.

MODELS
CNN/DM SAMSUM SQUAD XSUM

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L MTR R-1 R-2 R-L

OURS 48.54 24.40 45.35 54.27 29.19 50.57 27.79 54.95 28.32 49.02 25.37 40.52

-MASK 47.95 24.00 44.85 54.19 28.65 50.23 27.78 54.92 28.28 48.80 25.34 40.40
-MASK, pm=1 47.43 23.67 44.48 53.64 28.50 50.16 27.57 54.94 28.07 48.88 25.37 40.49
+NOISY MASK 48.14 24.03 45.03 54.01 29.07 50.22 27.50 54.91 28.00 48.55 25.27 40.34

+ALL 47.90 23.98 44.82 53.95 28.89 50.04 27.65 54.74 27.98 48.71 25.22 40.41
+PRE 48.34 23.86 45.30 54.04 29.00 50.17 27.68 54.71 28.10 48.44 25.13 40.17

Table 4. Optimization efficiency on SQuAD and SAMSum. Time
is measured in minutes.

MODELS #DATA
SQUAD SAMSUM

B-4 R-L TIME R-L TIME

OURS
8K 27.66 54.80 14.7 49.75 8.9

16K 27.64 54.75 29.3 49.96 18.0

BRIO 8K 27.42 54.36 18.8 49.39 9.3
16K 27.50 54.46 37.5 49.35 19.0

AVG
8K 27.62 54.70 121.0 49.09 135.8

16K 27.58 54.72 243.0 49.49 271.0

In contrast, our method is more memory efficient as it only
uses one target for each instance.

4.4. Ablation Study

This ablation study investigates 1) the impact of using an
MDP that does not satisfy Lemma 1 or Lemma 2, and 2) the
effect of using different offline datasets for training.

4.4.1. DESIGN OF MDP: LEMMA1

As mentioned in Sec.3, failing to satisfy Lemma 1 will result
in suboptimal results. We evaluate the correctness of this
statement by devising the following variants:

1. -MASK: remove the mask information, and the pm of the
environment is consistent with the main experiment (0.4). In
this variant, we obtain the trajectory by Scheduled Sampling
with a fixed choosing probability of 0.4 (Bengio et al., 2015;
Mihaylova & Martins, 2019);

2. -MASK, pm=1: also remove the mask information and
pm of the environment is set to 1;

3. +NOISY MASK: with mask information included, the
model receives part of the wrong mask information, i.e. the
environment tells the model that Mt = 0 when in fact the
environment’s Mt = 1;

As shown in Tab. 3, All methods that violate Lemma 1
have a certain degree of performance drop. +NOISY MASK
partially removes the mask information while -MASK and

-MASK, pm=1 completely remove the mask information.
Without mask information, the model is unable to account
for how the environment mixes the dataset and model pre-
dictions, leading to inaccurate estimation of the reward for
current actions, resulting in a large variance of the reward
signal and poor optimization results.

4.4.2. DESIGN OF MDP: LEMMA2

For Lemma 2, we design two new baselines that incorporate
additional information by adding the complete sequence of
the offline static data, denoted as Y d, to the current observa-
tion, represented as ot = ot ∩Y d. . We empirically validate
if this will result in overfitting and a drop in results on the
test set.

1. +ALL: we replace the input source X in the encoder as a
concatenated sequence X + [END] + Y d.

2.+PRE: we modify the decoder input by adding the
embedding of the corresponding token in the target se-
quence Y d

i to the embedding of the token [M] at the
i-th position, i.e., Embedding([M]) is replaced with
Embedding([M])+Embedding(Y d

i ).

If we ignore the difference in input method of Y d, |Ot| of
+ALL is larger than that of +PRE: for the t-th position,
+ALL can see the full sequence Y d = (Y d

1 , · · · , Y d
|Y d|),

while +PRE can only see the prefix (Y d
1 , · · · , Y d

t ). The
results from Tab. 3 show that +ALL and +PRE are both
worse than ours.

4.4.3. DIFFERENT OPTIONS OF OFFLINE DATASET

In this part, we investigate the effect of using different static
datasets for model optimization. Consider K candidate tar-
gets obtained using diverse beam search or top-p sampling,
etc. We sort them by metrics such as ROUGE and collect
all sentences with the lowest metric among the K candidates
as DATA- and the highest metric as DATA+. For our experi-
ment, we follow BRIO (Liu et al., 2022), using diverse beam
search to get the dataset, and more details can be referred to
in Appendix B.
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Table 5. Performance of using different static datasets.

MODELS
CNN/DM SAMSUM SQUAD XSUM

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L MTR R-1 R-2 R-L

OURS (DATA+) 47.18 23.51 43.78 53.49 28.60 49.79 27.80 54.86 28.14 48.29 25.28 40.27
OURS (DATA-) 48.54 24.40 45.35 54.27 29.19 50.57 27.79 54.95 28.32 49.02 25.37 40.52

As shown in Tab. 5, using DATA- as the dataset gives better
results than DATA+. From an optimization perspective, we
believe that DATA- is easier to sample useful signals, because
the probability that it learns about how to further improve
the sentence is higher.

Table 6. Win rate of sampled text compared with greedy.

MODELS CNN/DM SAMSUM SQUAD XSUM

OURS (DATA+) 27 % 15% 13% 11%
OURS (DATA-) 32 % 19% 18% 16%

To provide a numerical analysis, we calculate the propor-
tion of sampled sentences that are better than the greedy
decoding result (i.e. better than the current policy) in Tab. 6.
We found that DATA- is more likely to sample better sen-
tences for improving the current strategy. Even though we
fix the data as input, the optimization is not only for these
sentences. The mask information given by our environment
each time is random and does not allow the model to see
a complete and fixed sentence, which may represent more
abstract semantics and prevent overfitting, as per Lemma 2.
Additionally, even though we only perform exploration on
this data, the generalization ability of the neural model also
facilitates the results on the test set.

For the optimization of text similarity towards ground
truth, we use the aforementioned pre-decoded results as the
static dataset following BRIO. In contrast, we can directly
use ground truth as the dataset to in turn remove the pre-
decoding cost in more general tasks. We test the results of
optimizing factuality for summarization and click-through
rate for textual advertisement. The results are provided in
Appendix G.

4.5. Sensitivity Analysis

Tab. 7 shows how different numbers of samples impact
model performance. We observe that when the same num-
ber of samples is used, we usually have better results com-
pared with BRIO. This is probably due to the fact that we
can more efficiently estimate the reward of each token, ac-
cording to Proposition 3. Furthermore, in contrast to BRIO,
which requires more memory and FP cost to increase the
number of samples, our sampling does not introduce addi-
tional memory and FP cost. So our method allows for a

larger number of samples, e.g. 64, which results in further
improved performance. No significant benefit can be seen
by continuing to increase the number of samples, e.g., 128.

Table 7. Sensitivity of # sample on CNN/DM.

MODELS
CNN/DM

# SAMPLE FP R-1 R-2 R-L

BRIO
2 2X 46.02 22.21 42.71
4 4X 46.10 22.31 42.85

16 16X 47.83 23.75 44.65

OURS

2 1X 46.09 22.59 43.03
4 1X 47.05 23.33 43.87

16 1X 48.31 23.91 45.15
64 1X 48.54 24.40 45.35

We give results of sensitivity for the choice of mask rate and
the weight λ in Appendix F. For mask rate, we use a default
mask rate 0.4 for the main experiment. As it performs
well across various tasks. However, tuning the mask rate
for the specific task can bring better results (Tab. 12). For
example, by setting the mask rate to 0.8, we can get a better
performance on SAMSum. For the weight λ, one should
tune this parameter as long as the weight is not too large or
too small, the method can work well (Tab. 13).

5. Conclusion
We propose semi-offline reinforcement learning, a novel
paradigm that bridges the gap between online and offline
RL, and provides a theoretical foundation for comparing dif-
ferent RL settings. Our semi-offline RL approach achieves
a balance between effective exploration and minimum opti-
mization cost. Extensive experiments show that our semi-
offline RL approach is effective in various text generation
tasks and datasets, and yields comparable or usually better
performance compared to the state-of-the-art methods.
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A. Proofs
A.1. Proof of Proposition 1

Proposition 1 (Time cost when fully observable)

Considering the fully observable scenario in which all in-
formation in the states is observed by the language model
to get sampled tokens. Let us denote the minimum number
of FPs required to sample st as Ct and its expectation as
E(Ct). We have

Ct =

t−1∑
t′=0

Mt′ , E(Ct) = tpm (13)

where Mt′ ∈ {0, 1} denotes whether the next token yst′ will
be determined according to the agent’s generation (Mt′ = 1)
or the static dataset (Mt′ = 0).

Proof. Our proof consists of three steps.

Step 1. We first prove Ct ≥
∑t−1

t′=0 Mt′ by using mathemat-
ical induction.

Let us consider the scenario when t = 0, and verify that
C0 = 0. As s0 only contains the source x, no FPs are
needed, thus C0 = 0 holds. We can then easily see that for
t = 1, C1 = M0 ≥

∑0
t′=0 Mt′ .

Next, let us consider the scenario when t > 1. Assume that
Ct−1 ≥

∑t−2
t′=0 Mt′ . There are two cases:

• If Mt−1 = 1, deriving at−1 ∼ p(at−1|st−1; θ) needs 1
FP . In this case, Ct = Ct−1 + 1 = Ct−1 + Mt−1 ≥∑t−1

t′=0 Mt′ ,
• If Mt−1 = 0, Ct can not be less than Ct−1, Ct ≥ Ct−1 =
Ct−1 +Mt−1 ≥

∑t−1
t′=0 Mt′ .

In either case, Ct ≥
∑t−1

t′=0 Mt′ holds.

Step 2. In the second step, we prove Ct ≤
∑t−1

t′=0 Mt′ .

We can get all Mt with 0 FP , the tokens {yst′ : yst′ =
yt,Mt′ = 0} are from the dataset and can also be de-
rived with 0 FPs. What left is {yst′ : yst′ = ŷt′ ,Mt′ = 1},
whose size is

∑t−1
t′=0 Mt′ , so we can also get it with at most∑t−1

t′=0 Mt′ FPs. Thus, Ct ≤
∑t−1

t′=0 Mt′ .

Step 3. Combing 1 and 2, we have Ct =
∑t−1

t′=0 Mt′ . Ac-
cordingly, E(Ct) = E(

∑t−1
t′=0 Mt′) =

∑t−1
t′=0 E(Mt′) =∑t−1

t′=0 pm = tpm.

A.2. Proof of Proposition 2

Proposition 2 (Information loss with minimum time cost)

If sT can always be sampled within 1FP for ∀pm ∈ [0, 1],
then ot must not contain any exact information about sam-
pled tokens ŷt′ , for ∀t′ ∈ [0, t− 1] and ∀t ∈ [1, T ).

Proof. We prove that if ot contains information about a
sampled token, then we need at least 2FP to compute sT .

• For t ∈ [1, T ), suppose that ot contains the exact infor-
mation of some ŷt′ . Then, we need at least 1FP to derive
ot (in order to get ŷt′ ).

• At time t, with probability pm > 0, one needs to compute
at = ŷt given ot. This requires an additional FP.

• Thus, with probability pm > 0, we need at least
2FP=1FP (computing ŷt′ )+1FP (computing at) to derive
st+1. Considering that st+1 is a subsequence of sT , we
also need at least 2FP to derive sT .

A.3. Proof of Theorem 1

Theorem 1 (optimality of masked observation). oMt in
Def. 5 is o∗t in Def. 4.

Proof. To prove Theorem 1, we prove oMt in Def. 5 satisfies
DP1-DP3 in Def. 4 as follows.

DP1. Here we prove that we can compute at=ŷt within 1FP.

To get at=ŷt, we need to compute p(ŷt|oMt ; θ) and sample
at from it: at=ŷt ∼ p(ŷt|oMt ; θ). Please note that oMt does
not contain any information about sampled tokens (does not
violate Proposition. 2) and can be derived with 0FP. Thus,
p(ŷt|oMt ; θ) can be computed by using 1FP. No matter how
many actions at we wish to sample from p(ŷt|oMt ; θ), it
can all be done without further FPs as long as p(ŷt|oMt ; θ)
is determined. Thus, we only need 1FP to get at = ŷt.

DP2. To prove that we achieve the minimum asymmetric
bias, we need to prove p(s|omax

t ) = p(s|oMt ) according
to Lemma 1. Since the state s is a trajectory of tokens, we
have the following two equations:

p(s|oMt ) =
∏
t′

p(yst′ |oMt ) (14)

p(s|omax
t ) =

∏
t′

p(yst′ |omax
t ) (15)

Then, we consider if the t′-th token is a generated token
or a token from the static data, in order to compute
p(yst′ |oMt ) and p(yst′ |omax

t ). When yMt′ = [M] or Mt = 1,
yst′ is derived by sampling from p(yst′ |x, y<t′\m). When
yMt′ ̸= [M] or Mt = 0, yst′ is the same as the input yMt′ , i.e.,
the same as the static token yt′ from dataset. Thus, we have:

p(yst′ |oMt ) = p(yst′ |oMt′−1) = p(yst′ |x, y<t′\m) if yMt′ = [M]
p(yst′ = yMt′ ) = 1 if yMt′ ̸= [M]

0 otherwise

12
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p(yst′ |omax
t ) =

 p(yst′ |omax
t′−1) = p(yst′ |x, y<t′\m) Mt = 1

p(yst′ = yMt′ ) = 1 Mt = 0
0 otherwise,

(16)

According to Eq. (A.3) and Eq. (16), we have
p(yst′ |oMt ) = p(yst′ |omax

t ). Together With Eq. (14)
and Eq. (15), we have p(s|omax

t ) = p(s|oMt ).

DP3. According to Lemma 2, we can prove that we achieve
the minimum overfitting error bound by proving that the
observation space of oMt (i.e., |OM

t |) is minimum for all
observations that satisfy DP1 and DP2. We prove this by
illustrating that removing features in oMt will result in the
violation of DP2.

First, the size of the observation space is |OM
t | =

(|V| + 1)t+1. Take t = 0 for an instance. We have
oMt = (x,M0, y

M
0 ), and |OM

t | = |V| + 1, i.e., the
observation space includes tokens from the vocabulary
and a token [M]. Then we remove information from
oMt = (x,M0, y

M
0 ) and prove that DP2 will be violated.

1. If yM0 is removed from the observation, then the new
observation becomes ϕ′(omax

t ) = (x,M0). In this case,

p(yst′ |ϕ′(omax
t )) =

{
p(yst′ |x,M0) yMt′ = [M]

1
|V| yMt′ ̸= [M]

(17)

We have p(yst′ |ϕ′(omax
t )) ̸= p(yst′ |omax

t ) according to
Eqs. (16) and (17), thus DP2 is violated.

2. If M0 is removed from the observation, then the new
observation becomes ϕ

′′
(omax

t ) = (x, yM0 ). In this case,

p(yst′ |ϕ
′′
(omax

t )) ={
pmp(yst′ |x, ỹ<t) + (1− pm) if yMt′ = yst′

pmp(yst′ |x, ỹ<t) if yMt′ ̸= yst′

We have p(yst′ |ϕ′′(omax
t )) ̸= p(yst′ |omax

t ) according to
Eqs. (16) and (A.3), thus DP2 is violated.

In summary, |OM
t | is the minimum one among all that

satisfy DP1 and DP2, since removing any information in
oMt will result in the violation of DP2.

A.4. Proof of Proposition 3

Proposition 3 (Token-level reward assignment) LRL in
Eq. 9 can be decomposed into token-wise loss Li

t of the

i-th token in the vocabulary at time step t:

LRL =
∑

t

∑|V|
i=1 Li

t

Li
t = −Ci

t

K log p(Vi|oMt )(

∑K

k=1,Vi=ak
t
R(Y k)

Ci
t

− b)

b =
∑K

k=1 R(Y k)

K

Proof. We first write down Eq. (9):

LRL = 1
K

∑K
k=1 −(R(Y k)− b)

∑
t log p(akt |oMt )

= 1
K

∑K
k=1

∑
t −(R(Y k)− b) log p(akt |oMt )

= 1
K

∑
t

∑K
k=1 −(R(Y k)− b) log p(akt |oMt )

=
∑

t
1
K

∑K
k=1 −(R(Y k)− b) log p(akt |oMt )

=
∑

t Lt

(18)
where Lt is the loss for some specific time step t:

Lt =
1
K

∑K
k=1 −(R(Y k)− b) log p(akt |oMt )

Then we add the enumeration of the actions. Vi denotes the
i-th action in the action space (vocabulary space). When
sampling multiple Y , for time step t, one specific Vi may
appear in multiple Y .

Lt =
1
K

∑K
k=1

∑|V|
i=1,Vi=ak

t
−(R(Y k)− b) log p(akt |oMt )

= 1
K

∑|V|
i=1

∑K
k=1,Vi=ak

t
−(R(Y k)− b) log p(akt |oMt )

=
∑|V|

i=1
1
K

∑K
k=1,Vi=ak

t
−(R(Y k)− b) log p(akt |oMt )

=
∑|V|

i=1 Li
t

where Li
t satisfies

Li
t =

1
K

∑K
k=1,Vi=ak

t
−(R(Y k)− b) log p(akt |oMt )

= 1
K

∑K
k=1,Vi=ak

t
−(R(Y k)− b) log p(Vi|oMt )

As one Vi may appear in multiple Y . We can assume in
these samples, what we do is fix Vi at time step t, and do
sampling at other positions. We regard the sample results
of other positions as different contexts for Vi at time step t.
Then we can compute the expected reward of Vi using these
samples.

Li
t = − log p(Vi|oMt ) 1

K

∑K
k=1,Vi=ak

t
(R(Y k)− b)

From Eq. 9, we have

b =

∑K
k=1 R(Y k)

K

Let Ci
t =

∑K
k=1 I(Vi = akt ), then we get the formulation

of Eq. (10):

Li
t = −Ci

t

K log p(Vi|oMt )(

∑K

k=1,Vi=ak
t
R(Y k)

Ci
t

− b)

13
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We compute
∑K

k=1,Vi=ak
t
R(Y k)

Ci
t

−
∑K

k=1 R(Y k)

K to estimate
EY∼p(Y |o=oMt ,a=Vi)R(Y )− EY∼p(Y |o=oMt )R(Y ):

If Ci
t → ∞ and K → ∞, we have

lim
K→∞

∑K
k=1 R(Y k)

K
= EY∼p(Y |o=oMt )R(Y )

lim
K→∞,Ci

t→∞

∑K
k=1,Vi=ak

t
R(Y k)

Ci
t

= EY∼p(Y |o=oMt ,a=Vi)R(Y )

The term EY∼p(Y |o=oMt ,a=Vi)R(Y )−EY∼p(Y |o=oMt )R(Y )
is the expected advantage of generating Vi under observation
oMt .

B. Implementation Details

Table 8. Implementation details. For CNN/DM, SAMSum, and
XSum the ROUGE score is the average of ROUGE-1, ROUGE-2
and ROUGE-L. For Squad. the Reward is the average of BLEU-4
and ROUGE-L.

- CNN/DM SAMSUM SQUAD XSUM

BATCH SIZE 16 16 16 16
LEARNING RATE 1E-6 1E-6 3E-6 2E-6
λ(WEIGHT OF LRL) 20 5 4 2
# SAMPLE 64 64 16 64
pm(MASK RATE) 0.4 0.4 0.4 0.4
REWARD ROUGE ROUGE BLEU-4 + ROUGE ROUGE

Here, we introduce how we get the trajectories for compared
methods and our method.

Offline We evaluate two offline methods: GOLD, BRIO.
For GOLD, we follow their original setting (Pang & He,
2020) and use the ground truth labels as the samples. For
BRIO, we follow its settings (Liu et al., 2022) to obtain
the samples. In particular, given a base model trained with
only supervised learning (more details in Sec. 4.1.2, “Base
models”), we obtain samples from the base model by using
Diverse Beam Search (Vijayakumar et al., 2016). This
produces K (=16) diverse output sentences for each input.

Semi-offline ground-truth labels or pre-generated results
can both be used as our dataset. In our experiment, we use
the same pre-generated results with BRIO. BRIO uses all
outputs as the samples for offline learning, while we only
select one as the initial exploration point for semi-offline
training. Based on the experiment results in Sec. 4.4.3, we
decide to use the sample with the lowest reward (i.e., DATA-
) as our static data, since it leads to a higher probability of
learning about improvement directions. Then we mask the
static data as the input of our model. Our model predicts the
action distribution of each mask position, and samples these
distributions simultaneously to generate the final trajectories.
For example, given an offline data point consisting of four
tokens: A, B, C, and D, we randomly mask it and obtain
for example A [M1] B [M2]. The model then calculates the

action distribution for [M1] and [M2]. We sample tokens
from the two distributions independently multiple times,
resulting in multiple trajectories.

Online In the online approach, the trajectory is generated
via real-time sequential decoding and sampling. We em-
ploy the same decoding parameters as those utilized during
evaluation. We follow previous work to set these hyper-
parameters (Gliwa et al., 2019; Liu et al., 2022; Ushio et al.,
2022). For example, we set a beam size of 4, minimum
length of 56, maximum length of 142, and other relevant
parameters for the CNN/DM using BART.

C. Datasets Statistics
Table 9. Statistical information on the datasets.

- CNN/DM SAMSUM SQUAD XSUM

# TRAIN 287, 113 14, 732 75, 722 204, 045
# DEV 13, 368 818 10, 570 11, 332
# TEST 11, 490 819 11, 877 11, 334
|Source| 781 124 148 431
|Target| 56 23 11 23

D. Deriving AVG from BRIO
We introduce how to get the RL loss of AVG from the
contrastive loss of BRIO (Liu et al., 2022). We first give the
original loss function in BRIO.

Lctr =
∑

i

∑
j>i max(0, f(Sj)− f(Si) + λij)

f(S) =
∑l

t=1 log pgθ
(st|D,S<t;θ)

|s|α

There are N samples, Si is the i-th sample, f(S) is the
normalized sum of the loglikelihood of tokens in S, |S|
denote the length of S, α and λ are two hyperparameters.
the sentences are sorted by some quality metric M , and
Mi > Mj .

Let’s consider the loss Lij for each pair of samples (i, j).
The function max(0, .), together with the sorted results,
gives a desired ordering condition: when f(Sj)− f(Si) +
λij > 0, Mj > Mi should hold. It means when the order
of the sum of loglikelihood < f(Sj), f(Si) > disobeys the
order of quality < Mi,Mj >, we should rerank Si and Sj .
Then we have:

Lij = I(Mi > Mj & fi < fj + λij)(
logPj

|sj |α − logPi

|si|α )
(19)

where Lctr =
∑

i

∑
j>i Lij . fi represents f(Si) and logP

represents log pgθ (st|D,S < t; θ) for simplification.

We can change this desired ordering condition so that we
can derive the formulation of RL loss of AVG:

1. To remove fi < fj + λij in Lij , we consider that no mat-
ter whether the ordering of f is correct, if the model has a
stochastic policy, we should keep increasing the probability
of the best action to get a better return.
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2. I(Mi > Mj) gives a discrete signal, which we can
replace with a continuous signal Mi −Mj .

Then,

I(Mi > Mj & fi < fj + λij) ≈ Mi −Mj

We replace I(Mi > Mj & fi < fj+λij) with the new term
Mi −Mj in Eq.(19):

L =
∑

i,j Lij

=
∑

i,j(Mi −Mj)(
logPj

|sj |α − logPi

|si|α )

=
∑

i,j(
logPj

|sj |α )(Mi −Mj) +
∑

i,j −( logPi

|si|α )(Mi −Mj)

=
∑

i,j −(
logPj

|sj |α )(Mj −Mi) +
∑

i,j −( logPi

|si|α )(Mi −Mj)

= 2
∑

i,j −
logPj

|sj |α (Mj −Mi)

= 2
∑

i

∑
j −

logPj

|sj |α (Mj −Mi)

= 2
∑

j −
logPj

|sj |α (
∑

i Mj −
∑

i Mi)

= 2
∑

j −
logPj

|sj |α (NMj −
∑

i Mi)

= 2N
∑

j −
logPj

|sj |α (Mj −
∑

i Mi

N )

For the j-th sample, Lj = − 2N
|sj |α logPj(Mj −

∑
i Mi

N ).

∑
i Mi

N can be regarded as the baseline averaging the reward
of N samples. It is in a formulation of REINFORCE with
baseline and is the same as the loss we use in Eq. 9 if we
ignore the coefficient.

For our compared method AVG in Sec. 4, we use this train-
ing loss for optimization.

E. Discussion of Limitations
Parallel prediction of future tokens: One potential limita-
tion of our method is that the parallel prediction of future
tokens may result in a lack of fluency in the sentences. We
give a case of the parallel prediction in Tab. 10. The repe-
tition “will will” and “Friday Friday” happen when many
[M] tokens are connected together. Long masked sequence
is difficult for a parallel decoder, since it needs to gener-
ate all masked tokens together in one forward propagation.
However, we believe that using a multi-layer transformer
model as the base model can alleviate this issue. The gen-
erative model can be regarded as a stack of two pre-trained
K-layer transformer models, resulting in a 2K-layer model.
The first K-layers of the model make their own predictions
for generation, while the last K-layers take into account
predictions from the previous time step, leading to more
informed predictions. By only estimating the action distri-
bution information from the previous time step, the model
effectively models the unknown state through estimation in
the intermediate layers of the transformer, similar to a belief
function in the POMDP theory.

 Semi-offline

 Partially Observable

for GPT, T5, ... for UniLM, ...

Language Model Language Model

Figure 2. Our method can be applied to different architectures built
on Transformer.

In terms of FP, assume the unit changes from the whole
model to one layer for a K-layer transformer model. There-
fore, 1 model-level FP is equivalent to K layer-level FPs.
While according to Theorem 1, the model cannot access
the sequential self-generated information under the 1-FP
setting, at the layer level, the higher layer can access some
of the sequential information from the lower layer during
the K FPs.

For the majority of conditional generation tasks, our method
can be applied and optimize the reward. We also acknowl-
edge the limitation of our method in employing sampling-
based techniques for generating coherent long-form text.
While our methods may be highly effective in optimizing
local aspects of a particular metric, we concede that the
optimization of long dependencies remains a challenging
task due to the potential for incoherent trajectories.

Table 10. Case 1. A very long masked sequence may result in
repetition.

Original data Martha will be in Cracow on Thursday morning
and will stay there until Friday afternoon.

Masked data Martha will be in Cracow on [M] [M] [M] [M]
[M] [M] [M] [M] [M]

Prediction Martha will be in Cracow on Thursday morning
and will will be stay Friday Friday

Table 11. Case 2. Tokens generated at time may be inconsistent
with static data given after , due to the unidirectional attention in
the decoder.

Original data Hee wants to move in with a man she knows for 2
months to another state. Jane strongly disagrees.

Masked data [M] wants to move in with a [M] she [M] [M] 2
[M] [M] another state. Jane [M] disagrees [M]

Prediction Hee wants to move in with a guy she knows for 2
months. another state. Jane is disagrees.

Relevance of tokens from dataset and model prediction:
Another possible disadvantage of our approach is that if data
replacement is performed after a period of model generation,
the current data may not be relevant to the previous model
generation. We show a case for this irrelevance in Tab. 11.
the end of the predicted sentence “. another state. Jane
is disagrees.” is not fluent. Such a broken sentence is
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generated because the model fail to foresee “another” and
“disagrees” when generating the token before them. Please
note that this fluency issue only happens during training,
and the model will learn to avoid such broken generation
based on the low reward. During testing, we use sequential
decoding to avoid this issue. In light of this mismatch,
our approach can be seen as optimizing each fragment of
the target. However, as each fragment is predicted by the
token from the same data, the correlation between each
fragment is partially preserved. We have experimented
with the general case, where pm randomly determines the
sequence of masks, and have achieved good results with the
current experimental settings.

We suggest further experimentation with mask replacement,
such as masking only the end of sentences or specific parts
for better results, considering that inter-sentence associa-
tions are weaker than intra-sentence associations. For prac-
tical applications, such as advertisements generation, the ad-
jective or numerical parts of the sentences could be masked
and optimized to generate more attractive or factual de-
scriptions. Meanwhile, the generative models considered in
our experiments are not bidirectional, and the optimization
method does not affect the model structure. In this sense,
the use of bidirectional models can be considered, but would
require changes to the model structure and inference method.
Or one can use another auxiliary bidirectional model as the
behaviour policy to get multiple samples, but it increases
the FPs to NK for computing the logits of these multiple
samples like BRIO. In our method, the generative models
we consider are not bidirectional, and the method doesn’t
affect the model structure or require more FPs.

Limited exploring space Semi-offline methods indeed re-
sult in a smaller exploration space, which we mentioned
at the end of Sec. 3.1 with a quantitative comparison: “the
space to be explored for semi-offline methods (|V|Tpm) is
exponentially smaller than that of online methods (|V|T )”.
Our method may lead to potential suboptimal solutions due
to the incapability to thoroughly investigate the entire space.

We wish to highlight here that this limitation may be largely
alleviated by the generalization ability of deep models, and
that the semi-offline setting with a small exploration space
may yield more benefits than issues. This is discussed in
Sec. 3.1: “(the smaller exploration space makes) it easier for
the language model to understand the reward gain brought
by different choices. Even though the exploration space is
limited, it is possible that the knowledge explored in the
vicinity of specific output text can be generalized to other
output text considering the generalization ability of neural
networks. This is verified by our experiments, which show
that semi-offline usually performs equally well or better
with much less time cost compared with existing online or
offline methods (Sec. 4).”

The good performance of BRIO also demonstrates that the
generalization ability of neural networks may be leveraged
to avoid exploring every point.

Negative societal impact While our text generation method
has exhibited promising results in text generation, it is impor-
tant to consider its potential negative impact on society. The
generated text could be utilized for spreading misinforma-
tion, reinforcing negative biases, or serving other malicious
purposes. Given the risk of misinformation, it is crucial to
establish safeguards such as fact-checking mechanisms. In
addition, we recommend incorporating fairness principles
into the reward function to mitigate potential biases in the
generated content. Furthermore, addressing nefarious use
cases requires the implementation of monitoring systems to
prevent misuse and protect public discourse.

Hard to optimize length Furthermore, we have identi-
fied that our approach may not be suitable for length op-
timization. The generation is performed by providing a
pre-defined generation length based on the offline data. It
is not clear whether our method could effectively make a
target sequence longer or shorter, which we are interested
in investigating in the future.

F. Sensitivity Analysis

Table 12. Sensitivity of mask rate.

MASK RATE R-1 R-2 R-L

OURS (pm=0.1) 53.75 28.92 49.54
OURS (pm=0.2) 53.96 28.82 49.89
OURS (pm=0.3) 53.93 29.10 50.10
OURS (pm=0.4) 54.27 29.19 50.57
OURS (pm=0.5) 54.21 29.10 50.45
OURS (pm=0.6) 54.46 29.11 50.43
OURS (pm=0.7) 54.64 29.69 50.89
OURS (pm=0.8) 54.70 29.25 51.00
OURS (pm=0.9) 54.19 29.40 50.61
OURS (pm=1) = NAT 53.55 28.87 49.54

Tab. 12 shows tuning the mask rate can bring better results
on SAMSum than the default mask rate (0.4). Note that
when pm = 1, it becomes an online RL method with Non-
autoregressive Transformer (NAT) that never uses static data
during training, where pm is the probability that we use the
generated token (to perform exploration) instead of leverag-
ing the static data point (to find a good initial point). The
results also show the importance of using semi-offline train-
ing (0 < pm < 1) instead of the online one (pm = 1). We
can see that the semi-offline setting outperforms the online
one (NAT) with a wide variety of pm. Moreover, the perfor-
mance first increases with increasing pm and then decreases
when pm becomes too large, which further demonstrates
the necessity to balance exploration and the effective lever-
age of offline static dataset with a semi-offline setting. For
the weight λ, we show how our method and the most com-
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Table 13. Sensitivity of the interpolation weight on SAMSum and
SQuAD. Here we report the R-L scores. Results on other criteria
are similar.

WEIGHT
SAMSUM SQUAD

OURS AVG OURS AVG

0 (BASE) 48.98 48.98 54.30 54.30
0.1 48.76 49.04 54.50 54.26
1 49.72 49.18 54.75 54.68
2 50.35 49.58 54.87 54.79
3 50.33 49.65 54.84 54.73
4 50.45 49.25 54.95 54.65
5 50.57 49.03 54.92 54.71
10 50.31 49.06 54.54 54.36

petitive baseline AVG perform with varying interpolation
weight (Tab. 13). As shown in the table, our method is bet-
ter than AVG for most of the weight values. Moreover, our
method yields comparable results as reported in the paper
for a wide range of weight values (1-5). For both AVG and
our method, the performance first increases with increasing
interpolation weight, and then drops after the weight be-
comes too large. This trend verifies the necessity to balance
the MLE and RL loss and shows a clear pattern that helps
better understand the relationship between performance and
weight.

G. Experiments on Other Rewards and Tasks
To show our method can be applied to optimize other re-
wards in addition to text similarity towards ground truth
(e.g., ROUGE and BLEU), we experiment with two other
rewards.

Table 14. Optimizing Factuality on CNN/DM. ∗ indicates the met-
rics directly optimized during training.

R-1 R-2 R-l Fact*

BASE 45.10 21.76 41.86 15.57
BRIO 44.23 21.18 40.92 17.54
AVG 44.23 21.24 40.93 17.68
OURS 44.60 21.66 41.91 18.30

Table 15. Optimizing CTR for advertisement generation. ∗ indi-
cates the metrics directly optimized during training.

R-1 R-2 R-L Distinct CTR*

Base 34.22 11.44 28.21 0.578 0.1998
OURS 34.51 11.45 28.21 0.590 0.2086

1. Optimizing factuality. We evaluate how our method
performs when optimizing factuality rather than ROUGE
or BLEU. This is achieved by using a model that measures
factuality (Laban et al., 2021) as the reward function. In
this setting, we directly use ground truth as the static dataset.

Tab. 14 shows that our method achieves the best factuality
score. For the ROUGE scores that are not directly optimized,
we still achieve the best or second-best performance.

2. Optimizing click-through rate (CTR). We add an ad-
vertisement generation task (Wang et al., 2021), in which
the goal is to generate a textual advertisement based on the
textual description on the product website. The reward is
the click-through rate given by a click prediction model. We
also use ground-truth as the static dataset. Tab. 15 shows
that our method can achieve good results in a diverse set of
metrics, including ROUGE, Distinct, and CTR. Here, Dis-
tinct measures the ratio of distinct uni-grams in an output.

H. Additional Criteria including Human
Evaluation Scores.

For SAMSum, we add other criteria of quality that have
not been directly optimized, including human evaluation
score and BertScore (Zhang et al., 2019a) that measures
the similarity to ground-truth in the latent space. In human
evaluation, we give the guidelines by following (Gliwa et al.,
2019). In particular, we ask workers to score the overall
quality from -1, 0, and 1 (e.g., 1 stands for “it is under-
standable and gives a brief overview of the text,” while -1
means that “a summarization is poor, extracts irrelevant in-
formation or does not make sense at all”). We sample 50
instances in the test set, ask 3 workers to score the outputs
of different models for each instance, and report the average
score here. As shown in Tab. 16, in addition to the ROUGE
scores which we directly optimize, we also perform the best
in human evaluation and BertScore when compared with
the most competitive baseline (AVG) and the base model.

Table 16. More metrics and human evaluation on SAMSum. ∗
indicates the metrics directly Optimized during training.

Human BertScore R-1* R-2* R-L*

Base 0.52 0.5637 53.09 28.17 49.02
AVG 0.57 0.5745 54.10 29.21 49.58
OURS 0.63 0.5762 54.27 29.19 50.57

Table 17. More metrics and human evaluation on SQuAD. ∗ indi-
cates the metrics directly Optimized during training.

Grammar Understanding Correctness B-4* R-L* MTR

Base 2.91 2.95 2.71 27.43 54.30 27.82
AVG 2.89 2.94 2.69 27.50 54.79 27.77
OURS 2.91 2.97 2.71 27.79 54.95 28.32

For SQuAD, we follow (Ushio et al., 2022) to include a
humane evaluation based on grammaticality, understand-
ability and correctness with a 3-point scale. In Tab. 17, the
human evaluation in SQuAD show a slight improvement.
The reason may be that the base model can do this task well,
as its score is already close to the perfect score of 3.
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