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Abstract
Large Language Models’ (LLMs) weight matri-
ces can often be expressed in low-rank form with
potential to relax memory and compute resource
requirements. Unlike prior efforts that focus on
developing novel matrix decompositions, in this
work we study the non-uniform low-rank prop-
erties of weight matrices in LLMs through the
lens of stabilizing gradient subspace. First, we
provide a theoretical framework to understand the
stabilization of gradient subspaces through Hes-
sian analysis. Second, we empirically establish an
important relationship between gradient dynamics
and low-rank expressiveness of weight matrices.
Our findings reveal that different LLM compo-
nents exhibit varying levels of converged low-
rank structures, necessitating variable rank reduc-
tion across them to minimize drop in performance
due to compression. Drawing on this result, we
present Weight Low-Rank Projection (WeLore)
that unifies weight compression and memory-
efficient fine-tuning into one, in a data-agnostic
and one-shot manner. When used as a compres-
sion technique, WeLore categorizes weight ma-
trices into Low-rank Components (LRCs) and
Non-Low-rank Components (N-LRCs) and suit-
ably encodes them for minimum performance loss.
Our gradient dynamics perspective illustrates that
LRCs tend to have better finetuning capabilities
and their standalone finetuning can closely mimic
and sometimes outperform the training loss tra-
jectory and performance of full-finetuning with
notable memory and compute footprint reduc-
tion. Codes are available at https://github.
com/VITA-Group/WeLore.
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1. Introduction
Large language models (LLMs) are designed with a large
number of parameters to capture complex patterns and re-
lationships in data. However, despite their huge size with
billions of parameters, these models’ weights often exhibit
low-rank structures in practice, offering potential to relax
memory and compute resource requirements. While many
efforts have focused on developing novel matrix decomposi-
tions for efficient training (Hu et al., 2021b; Dettmers et al.,
2023; Meng et al., 2024; Biderman et al., 2024b; Lialin et al.,
2023a) and model compression (Hsu et al., 2022b; Kaushal
et al., 2023b; Li et al., 2023; Jaiswal et al., 2024; Wang et al.,
2023b), the underlying mechanisms of how these low-rank
structures emerge remain insufficiently understood.

A fundamental question arises: Why do the weights of LLMs
tend to become low-rank? Prior efforts have proposed vari-
ous explanations – one perspective focuses on the inherent
distribution of training data, which may reside on a low-
dimensional manifold (Timor et al., 2022; Ergen & Pilanci,
2021; Ongie & Willett, 2022). For instance, when data
lie on a d-dimensional manifold, the weight matrices of a
two-layer ReLU network converge to a rank of at most d
(Ongie & Willett, 2022). Another explanation examines the
optimization dynamics, where certain training procedures
(e.g., SGD with weight decay) naturally favor convergence
to low-rank regions (Ji & Telgarsky, 2020; Le & Jegelka,
2022; Galanti et al., 2024).

In this work, we approach the low-rank phenomenon
through the lens of gradient subspace stabilization. Gra-
dient dynamics during pretraining plays a crucial role in
shaping the weight subspace, acting like a stream that grad-
ually sculpts the weight landscape. Through theoretical
analysis of gradient subspace stabilization via Hessian anal-
ysis, we establish a fundamental connection between gra-
dient dynamics and the emergence of low-rank structures
in LLMs.A key insight from our analysis is the presence of
a distinct Hessian gap, indicating the emergence of a low-
rank subspace in the weight space. Through accompanying
experiments, we identify two significant findings:

1. Different components of LLMs exhibit varying degrees
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of low-rank convergence: 1 MLP Up/Down Projec-
tions and Self-Attention Value Projections demonstrate
an unclear Hessian gap and slow gradient subspace
convergence, resulting in high-rank weights. 2 Self-
Attention Query/Key and MLP Gate Projections dis-
play clear Hessian gaps, and gradient subspaces settle
rapidly, resulting in low-rank weights.

2. The low-rank convergence patterns vary across differ-
ent network depths: 1 Middle layers exhibit small
Hessian gaps and slow gradient subspace convergence,
resulting in high-rank weights. 2 Early and late lay-
ers have clear Hessian gaps and rapidly evolve into
low-rank subspaces, resulting in low-rank weights.

Based on these observations, we categorize weight matri-
ces into two groups: 1 Low-rank Components (LRCs):
Matrices exhibiting high-quality low-rank structure (charac-
terized by heavy-tail in sorted singular values) whose gradi-
ents carry rich error signals from data. 2 Non-Low-rank
Components (N-LRCs): Matrices with non-converged low-
rank structure (missing heavy-tail in distribution of singular
values) that cannot be effectively low-rank factorized.

These conclusions lead to our proposed Weight Low-Rank
Projection (WeLore) approach, which unifies weight com-
pression and parameter-efficient fine-tuning as one:

1. Compression perspective (WeLore-COMP) : LRCs
with stabilized low-rank structure can be factorized by
SVD to achieve significant compression ratios.

2. Parameter-Efficient Finetuining perspective
(WeLore-PEFT) : During fine-tuning, we selectively
update only LRCs in their low-rank decomposed
format while keeping N-LRCs frozen, leading to
effective gradient progress with reduced memory
footprint.

WeLore operates in a one-shot, data-agnostic manner, per-
forming layer-wise non-uniform rank reduction based on
the heavy-tail property of normalized singular values. This
approach allows LRCs to support higher rank reduction
while preserving N-LRCs at full rank or minimal reduc-
tion, ensuring minimal performance degradation. Notably,
WeLore achieves remarkable efficiency gains: compared to
full-finetuning of a 50% compressed LLaMA-2 7B model,
WeLore requires only 35% of trainable parameters, delivers
3× better throughput, and reduces GPU memory usage by
40%. Most importantly, our extensive experiments across
both continual finetuning (Figure 5) and downstream tasks
(Figure 6) demonstrate that this selective LRC-based fine-
tuning can match or even outperform full model finetuning,
establishing WeLore as a powerful unified solution for both
model compression and efficient adaptation.

2. Gradient-Hessian Eigenspace Alignment to
Low Rank Weights: Theory and
Observations

In this section, we present a theoretical framework for un-
derstanding the stabilization of gradient subspaces through
Hessian analysis. We provide insights into the convergence
properties of Hessian eigenspaces, showing that the gradient
subspace aligns with the dominant directions in the Hessian.
This analysis is crucial for understanding the emergence of
low-rank structures in LLMs.

2.1. Preliminaries

We denote the training loss as L(W ), where W ∈ Rm×n

is the set of model parameters. Its gradient is denoted by
∇L(W ) ∈ Rm×n, and the Hessian, as a linear operator, is
denoted by H(W ) = ∇2L(W ) ∈ Rmn×mn.

We adopt the standard SGD update

Wt+1 = Wt − η∇L(Wt),

with learning rate η > 0.

The following analysis relies on several assumptions, which
we summarize here and present in detail in Appendix A.1).
We assume the Hessian is Lipschitz continuous, which
is justified by the smoothness of common loss functions
like cross-entropy. The loss function satisfies the Kurdyka–
Łojasiewicz (KŁ) condition near optimum, generalizing con-
vexity to the nonconvex setting. We also require a uniform
spectral gap between dominant and non-dominant eigen-
values of the Hessian, which naturally emerges from the
dominance of task-relevant directions in neural networks.
Finally, we assume the model architecture is reversible (Tian
et al., 2021), ensuring bounded norms.

2.2. Hessian Eigenspace Stabilization

Our first important theoretical result shows that both the
eigenvalues and eigenspaces of the Hessian converge during
training.

Theorem 2.1. Let Ht = ∇2L(Wt) be the Hessian of the
loss L(W ) at time t. Under standard assumptions, the
eigenvalues and eigenspaces of Ht stabilize as t → ∞.
Specifically:

1 The eigenvalues converge with step-to-step changes de-
caying to zero;

2 The top-r eigenspace converges with vanishing step-to-
step changes.

Proof Sketch. The proof follows three key steps. First,
we bound the step-to-step changes in the Hessian using
Lipschitz continuity: ∥∆Ht∥ ≤ LH∥Wt+1 − Wt∥ =
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Figure 1. Hessian gap across layers and components of LLaMA2-7B. We observe that: 1) mlp.up proj, mlp.down proj, and self attn.v proj
exhibit less pronounced Hessian gaps compared to self attn.k proj, self attn.q proj, self attn.o proj, and mlp.gate proj; 2) early and late
layers generally display clearer gaps than middle layers; 3) components with a pronounced Hessian gap (self attn.k proj, self attn.q proj,
self attn.o proj, and mlp.gate proj) tend to be more low-rank, as shown in our experiments.

ηLH∥∇L(Wt)∥. Second, we leverage the KŁ condition
to show that the gradient norm decay follows a power
law: ∥∇L(Wt)∥ ≤ C/tθ/(1−θ). This gives us ∥∆Ht∥ ≤
ηLHC/tθ/(1−θ). Finally, we use Weyl’s inequality to bound
eigenvalue changes and the Davis-Kahan theorem to con-
trol eigenspace shifts, showing both converge as series∑

1/tθ/(1−θ) for θ > 1
2 . Full proof in Appendix A.2.

2.3. Gradient-Hessian Eigenspace Alignment

Building on the stability results, we show that gradients
naturally align with the principal eigenspaces of the Hes-
sian, explaining why gradients eventually operate in a low-
dimensional subspace.

Theorem 2.2. Under the conditions above, the gradient
vector Gt = ∇WL (Wt) asymptotically aligns with the
principal eigenspace of the Hessian. Specifically:

lim
t→∞

∥∥(I − UtU
⊤
t

)
Gt

∥∥
∥Gt∥

= 0

where Ut spans the dominant eigenspace of Ht.

Proof Sketch. The proof analyzes how gradients evolve in
the eigenspace basis of the Hessian. First, we decom-
pose the gradient update using Taylor expansion: Gt+1 =
Gt − ηHtGt + O(η2∥Gt∥2). Next, we project this onto
the non-dominant subspace (I − UtU

⊤
t ) and use the spec-

tral gap condition λj ≤ λr − γ for j > r to show the
non-dominant component contracts: ∥(I−UtU

⊤
t )Gt+1∥ ≤

(1 − ηγ/2)∥(I − UtU
⊤
t )Gt∥. This geometric contraction,

combined with bounded ∥Gt∥ from reversibility, proves
that the gradient asymptotically aligns with the dominant
eigenspace. Full details are presented in Appendix A.3.

2.4. Hessian Eigenspace Dynamics and Gradient
Subspace Stablization

The above analysis gives us a key insight connecting gradi-
ent subspace stabilization with Hessian properties. A clear
spectral gap, defined as the difference between the domi-
nant and non-dominant eigenvalues of Ht, facilitates rapid
gradient alignment with principal subspaces. Components
with a clear spectral gap in their Hessian eigenvalues
stabilize rapidly, while layers with a flatter spectrum
exhibit slower or no stabilization.

In Figure 1, we observe the second-order derivative of the
loss L(W ) with respect to model parameters W for each
layer’s component. Components such as query, key, and
gate projections benefit from this property, as their roles
inherently induce low-rank structure in the Hessian. In con-
trast, value and down projections lack this gap due to diffuse
gradient contributions, compression effects, and weaker sig-
nals, resulting in flatter spectra. Additionally, we find that
early and late layers tend to develop clear Hessian gaps,
whereas middle layers typically show a flatter spectrum.

The following discussion illustrates how a component’s role
and position in the Transformer architecture affect Hessian
stablization:

Self-Attention Q/K Projections These layers exhibit a
low-rank structure, as softmax reweighting in attention :
only a few tokens contribute significantly to the attention
scores. These strong Hessian spectral gaps allow gradients
to align with principal subspaces and stabilize rapidly.

Self-Attention V Projection By contrast, the value pro-
jection processes token content after attention scores are
determined, yielding a denser Hessian without a clear spec-
tral gap. This diffuse spectrum hinders gradient alignment
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Figure 2. (Row 1) Gradients subspace similarity obtained from various checkpoints during pretraining of LLaMA-130M on C4 dataset for
25,000 training steps using Adam Optimizer. (Row 2) Emergence of Low-rank Weight Subspace during pretraining of LLaMA-130M.
Each row of individual subplot represents the singular values of weights in a given training step.

and delays stabilization.

MLP Gate Projections Activations like GELU selec-
tively amplify dominant features, creating sparse gradients
that concentrate in a few principal directions. Consequently,
the Hessian is low-rank with a strong spectral gap, enabling
swift gradient convergence.

MLP Up and Down Projections The down projection
compresses high-dimensional features back to the model’s
base dimension, flattening the Hessian spectrum and diluting
the strong-gradient directions. This lack of a clear spectral
gap slows or prevents stabilization.

Layer-Wise Trends Early layers stabilize rapidly due to
simpler input representations and the low-rank structure
of embeddings and positional encodings. Late layers also
stabilize effectively, as gradients become dominated by task-
relevant features propagated from the loss function. In con-
trast, middle layers exhibit delayed stabilization, as they ag-
gregate and mix features from multiple layers, introducing
gradient diffusion. Additionally, middle layers are more af-
fected by attenuation from softmax and LayerNorm, which
further delays stabilization.

2.5. Weight Low-rank Dynamics in Pre-trained LLMs

Our aforementioned spectral gap analysis of Hessian eigen-
values illustrates the non-uniform stabilization of gradient
subspace. Provided the pretrained LLMs weights are essen-
tially accumulation of gradients over the course of pretrain-
ing, an important question to ask is: How do the low-rank
properties of LLM weights correlate with their correspond-
ing gradient dynamics stabilization? In this section, we
study how gradient subspace stablization observations trans-
late to the emergence of low-rank structures in the weight
matrices of the model. Figure 2 (row 2) presents the corre-

sponding emergence of weight low-rank structures through-
out pretraining within different layers of LLaMa-130M us-
ing C4 daatset. Our findings are summarized as:

• We find the emergence of low-rank structure across the
weight matrices very early during pretraining, which
becomes explicit and notable as pretraining progresses.

• Similar to our gradient subspace observations, we find
that not all layers can express themselves as low-rank
and this property significantly varies subject to position
(middle layers or terminal layers) and role (attention
layers or MLP layers).

• We empirically find a strong correlation between the
gradient subspace stabilization and the low-rank emer-
gence across the weight matrices (e.g., the absence of
a clear spectral gap that prevents stabilization within
model.layer.5.mlp.down proj reflects in the
weight matrix not converging to low-rank1)

Next, we investigate whether our low-rank findings are
valid for the weight matrices within a publicly available
LLM checkpoint. Figure 3 presents the 4096 normalized
singular values corresponding to different layers across
32 transformer blocks of LLaMa-2 7B. It can be clearly
observed that some layers (e.g., self attn.q proj,
self attn.k proj) elicit a heavy tail behaviour indi-
cating better low-rank expressivity compared to others (e.g.,
mlp.up proj, mlp.down proj). Another important
observation of note is that majority of the layers from the
front and tail blocks of the model tend to have better low-
rank property, which is consistent with our gradient behavior

1A sharp bright line across the subplots in Figure 2 (row 2)
to the left suggests heavy-tail distribution of singular values. A
heavy-tail singular value distribution is a favorable property that
indicates the matrix can be well compressed using a few singular
vectors without introducing large reconstruction errors.
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analysis. Heavy tail indicates that only a small fraction of
singular values carries maximum information and the corre-
sponding matrix can be well approximated using a fraction
of basis vectors from SVD with small reconstruction error.
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Figure 3. Normalized singular values of the weight matrices cor-
responding to different layers of LLaMa-2 7B pretrained check-
point from HuggingFace. Each subplot indicates 4096 sorted
and normalized singular values corresponding to a layer (e.g.,
self attn.q proj) from 32 transformer blocks.
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Figure 4. Finetuning statistics and performance comparison of Low
Rank Components (LRCs) and Non-Low-Rank Components (N-
LRCs) layers of a 50% compressed LLaMa-2 7B model with C4.
Note that all finetuning hyperparameters are kept same in both
settings for fair comparison.

3. Adaptive Low-rank Weight Projections:
Applications

3.1. WeLore: Low-rank Compression Technique

Among multiple techniques for LLM compression, low-rank
decomposition of pretrained weights as a product of two
smaller dense matrices receives special attention because it
can leverage highly optimized floating-point dense matrix

multiplication kernels. This is unlike sparsity and quanti-
zation, which require specialized kernels, often optimized
for each hardware platform for best performance. Recently,
several efforts (Hsu et al., 2022a; Kaushal et al., 2023a;
Yuan et al., 2023; Wang et al., 2023a; Saha et al., 2023;
Wang et al., 2024) have explored matrix factorization of
LLMs’ pretrained weights. These efforts primarily focus
on improving SVD using more informative signals like acti-
vation, Fisher information and applying it uniformly (same
rank reduction ratio) across all the weights. As discussed in
previous section, low-rank emergence varies significantly
across candidate weights in a pretrained checkpoint. To this
end, we pose a relatively under-explored question: How can
we carefully curate a layer-adaptive rank reduction ratios
for all layers in the pretrained checkpoint?

WeLore-COMP (WeLore for compression) is a data-
agnostic and implementation-friendly normalized singular
value thresholding technique2 with only one global hyper-
parameter (threshold k), as shown as the shaded red and
green region in Figure 3 for layer-adaptive rank reduction.
Specifically, we preserve normalized singular values greater
than the threshold k, shown as shaded green region. For
a given effective rank reduction ratio3 of ERR, the global
threshold k can be approximated using linear search4 over
np.linspace(0, 1, 0.005) with condition as fol-
lows: ∑

l sum(SWl
< k)∑

l len(SWl
)
≈ ERR (1)

Here, Wl represents the weight matrix of layer l and SWl

is the array of sorted normalized singular values estimated
with torch.svd(Wl). Note that k estimation is not com-
putationally expensive, since SWl

∀l can be calculated be-
fore searching for k. Given a weight matrix W 4096×4096

l

and SWl
= {s1, s2, ..., s4096}, the compressed rank r

can be computed as r = np.sum(SWl
≥ k). In com-

pressed format, W 4096×4096
l can be represented as a com-

position of two small matrices A4096×r
l and Br×4096

l where
r << 4096. As observed in Figure 3, for k = 0.175,
which indicates an aggregated 50% rank reduction, majority
of the self attn.q proj from 32 transformer blocks
of LLaMa-7B can undergo significant reduction≥ 90% (i.e.,
r < 400). On the other hand, layers such as mlp.up proj
& mlp.down proj, which are not low-rank friendly, re-
ceive high r.

Given rl for all layers l in the pretrained checkpoint, WeLore
categorizes all the layers into two broad categories - Low-
rank Components (LRCs) and Non-Low-rank Components

2Normalization helps us to compare singular value distribution
across all layers at the same scale.

3Effective Rank Reduction (ERR): 1−
∑

l rank(W
Compressed
l

)∑
l rank(W

Original
l

)
4Pseudo-code for k estimation is provided in Appendix D.
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LLaMa2-7B [PPL: 7.03] LLaMa2-13B [PPL: 6.53] Mistral-7B [PPL: 8.14]

Rank Uniform OWL WeLore-COMP Uniform OWL WeLore-COMP Uniform OWL WeLore-COMP
Reduction Reduction Reduction Reduction Reduction Reduction Reduction Reduction Reduction Reduction

10% 10.58 12.11 7.13 7.17 7.2 6.55 12.31 11.63 8.76
20% 16.43 14.49 8.28 8.61 8.53 6.96 78.69 NaN 11.90
30% 91.99 NaN 14.41 13.99 11.63 8.66 6746.48 NaN 30.69
40% NaN NaN 78.17 1178.03 56.06 24.92 162301.04 NaN 429.08
50% NaN NaN 1836.62 4167.79 7984.39 1142.53 248042.97 NaN 1351.32

Table 1. Perplexity (C4 dataset) comparison of LLaMa-2 7B, 13B and Mistral-7B pretrained checkpoints compressed with WeLore-COMP,
Uniform, and outlier-sensitive rank reduction ratios.

(N-LRCs). Layers with heavy-tail which can be effectively
represented with rl < 0.5× rank(Wl) fall in LRCs, while
the rest fall in N-LRCs. We replace weight matrices of all
LRCs in pretrained checkpoint by composition of two small
matrices A & B to achieve notable parameter reduction
(e.g., × 0.67 parameters with R = 0.5) saving memory and
compute during inference and fine-tuning (low-rank weight
representation allows gradients and optimizer states to be in
low-rank during finetuning).

3.2. WeLore: Parameter-Efficient Finetuning Technique

Parameter-Efficient finetuning techniques (PEFT) which en-
able LLMs to perform a new task with minimal updates has
received enormous attention to their ability to allow fine-
tuned by only updating a small number parameters. Unlike
LoRA and its varients which finetune a small added fraction
of parameters to original pretrained weight checkpoints not
relevant to original pretraining optimization, WeLore pro-
vides an alternative approach by capitalizing the gradient
perspective to select a small fraction of weights from the
pretrained model which can undergo fine-tuning. As dis-
cussed above, LRCs exhibits low-rank structure with rich
gradient dynamics while N-LRCs can’t be well-expressed
in low-rank format. To this end, WeLore-PEFT make the
following proposal:

Given a low-rank compressed checkpoint with LRCs and
N-LRCs, finetuning with backpropagation only through
LRCs (frozen N-LRCs) can closely mimic the performance
of full-finetuning (sometimes better) with considerable
memory and compute reduction. Note that LRCs are rep-
resented in low-rank format, both gradients and optimizer
state will by default in low-rank saving finetuning cost.

Empirical evidence that LRCs are better at learning
than N-LRCs: Here, we investigate the relative difference
in performance and quantify compute cost related to fine-
tuning LLMs. Figure 4 presents a comparison of continual
finetuning statistics of LLaMa-7B pretrained checkpoint
with 50% effective rank reduction ratio on C4 dataset for
10,000 training steps. Red color indicates finetuning by
back-propagating only through LRCs (freezing all the N-
LRCs) while magenta color indicates finetuning N-LRCs
(freezing LRCs). It can be clearly observed that despite

∼ 3× more trainable parameters, training loss as well as the
validation perplexity of finetuning N-LRCs are significantly
under-performing in comparison to finetuning LRCs. More-
over, it is important to note that the throughput achieved
by LRCs is ∼ 2× in comparison to N-LRCs, which can be
attributed to the parameter-efficient low-rank represented
weight matrices, gradients, and optimizer state.

4. Experiments and Analysis
In this section, we first estblish the superiority of WeLore’s
layer-adaptive rank reduction ratio for effective low-rank
compression of pre-trained checkpoints of LLMs. Next, we
demonstrate the effectiveness of WeLore for LRCs-focused
parameter efficient finetuning performance across several
downstream tasks. Unlike prior efforts that either focus
on low-rank compression or parameter-efficient finetuning,
WeLore uniquely differentiates itself by proposing an ef-
fective low-rank compression strategy and presents a novel
angle of memory and parameter-efficient fine-tuning us-
ing LRCs while yielding performance comparable to full-
finetuning.

4.1. WeLore for Compression of Pre-trained LLMs

We evaluate the overall performance of the WeLore-COMP
non-uniform rank reduction ratio from three aspects: 1
perplexity-based performance evaluation in comparison
with uniform rank reduction and outlier-sensitive rank re-
duction; 2 performance evaluation on real-world tasks (e.g.,
summarization, factoid-QA, and multi-turn conversation),
3 performance comparison of WeLore-COMP when com-

bined with activation-guided SVD unlike conventional SVD
of LLM weight matrices. Additional empirical GPU mem-
ory requirement statistics for varying compression ratios are
provided in Appendix E to highlight WeLore usefulness.

Firstly, low-rank decomposition of LLMs has been primar-
ily investigated with unilateral (same rank) reduction across
all the weights. In contrast, WeLore-COMP presents non-
uniform rank reduction ratio guided by emerged low-rank
structures in pretrained checkpoints. Table 1 presents the
comparison of perplexity of LLaMa-2 7B, 13B and Mistral-
7B model checkpoints on C4 validation dataset with EER
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Figure 5. Continual-Finetuning statistics and performance comparison of a 50% low-rank compressed LLaMa-2 7B pretrained checkpoint.
With exactly same hyperparamter configrations, WeLore-PEFT can outperform full-finetuning with merely ∼35% of trainable parameters,
while providing ∼3× better throughput.
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Figure 6. Downstream Finetuning statistics and performance comparison of WeLore vs. full-finetuning and LoRA of a 50% compressed
LLaMa-2 7B model with StrategyQA dataset with max len of 512. All finetuning hyperparameters are kept identical for fair comparison.

Method Factoid-based Multi-turn In-context
(25% Compression) QA Conversation Summarization

Full Model 79.02 7.61 8.15

Uniform Reduction 34.63 4.88 5.01
OWL Reduction 54.42 5.27 5.16

SVD-LLM 71.95 5.79 6.12

WeLore-COMP Reduction 71.89 6.09 6.46

Table 2. Performance comparison of LLaMa-7B compressed (25%
ERR) using WeLore-COMP non-uniform rank reduction ratio on
real-world benchmarking tasks.

Method 10% 20% 30% 40% 50%

SVD 10.58 16.43 91.99 NaN NaN
ASVD 7.24 7.75 8.85 11.33 17.03

SVD-LLM 7.45 7.58 7.98 10.04 16.61

WeLore-COMP + ASVD 7.05 7.21 7.87 9.75 14.76

Table 3. Perplexity (C4 dataset) comparison of LLaMa-7B with
SoTA compression techniques at different reduction ratios.

of 10% to 50%. It can be clearly observed that as EER in-
creases, the perplexity of the baseline compressed model sig-
nificantly explodes, but WeLore-COMP retains the perplex-
ity within a reasonable range. For example, WeLore-COMP
is ∼ 6.4 × better than 30% Uniform EER for LLaMa-2 7B
and ∼ 47 × better than 40% Uniform EER for LLaMa-2
13B. Note that OWL reduction tends to perform sometimes
better than Uniform reduction, but its degradation in perfor-
mance with increasing EER is more severe.

Secondly, to further understand the effectivenss of WeLore-
COMP in real-world task settings, we consider three popular
tasks (factoid-QA, in-context summarization, and multi-turn
conversation) following the settings described in Appendix
D. For open-ended conversation and in-context summariza-
tion tasks, WeLore-COMP significantly outperforms all

Model Method 10% 20% 30% 40% 50%

LLaMa-7B No Finetune 7.13 8.28 14.41 78.17 1836.62
WeLore-PEFT 7.15 7.40 8.18 9.47 11.87

LLaMa-13B No Finetune 6.55 6.96 8.66 24.92 1142.53
WeLore-PEFT 6.55 6.68 7.42 8.69 11.40

Mistral-7B No Finetune 8.76 11.90 30.69 429.08 1351.32
WeLore-PEFT 8.32 8.92 9.71 14.85 21.37

Table 4. Perplexity (C4 dataset) comparison of LLaMa-7B with
SoTA compression techniques at different reduction ratios.

LLaMa2-7B [1×] LLaMa2-13B [1×]

WeLore-COMP→ 30% 50% 60% 70% 30% 50% 60% 70%

Compressed Params 0.85× 0.67× 0.56× 0.45× 0.83× 0.64× 0.53× 0.43×
+ LoRA Finetuning 8.21 12.48 21.23 382.24 7.49 21.53 27.99 124.44
+ Galore Finetuning 9.02 18.57 396.05 670.29 8.02 60.07 2454.03 3396.19

+ WeLore-PEFT 8.18 11.87 17.87 47.92 7.42 11.40 19.20 73.59

Table 5. Performance (perplexity) comparison of compressed
LLaMa-2 7B & 13B with WeLore-COMP and continual finetuning
with LoRA and GaLore w.r.t. WeLore.

baselines. However, it slightly underperforms SVD-LLM
for factoid-based question answering task but it is imporatnt
to note that SVD-LLM relies on caliberation dataset. Our
further studies indicate that WeLore-COMP can be achieve
significantly higher performance when it is augmented with
advanced activation-guided SVD techniques.

Thirdly, Activation-guided SVD techniques (Yuan et al.,
2023; Wang et al., 2024) have been found more effective
than weight-oriented SVD methods by managing activation
outliers and adjusting the weight matrix based on the acti-
vation distribution. Despite our work focusing on simple
weight SVD to enable easy adaptation and minimize sen-
sitivity to calibration datasets, we conducted experiments
to illustrate that WeLore-COMP can also significantly ben-
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Method CommonsenseQA SVAMP BoolQ CoinFlip BigBench5 StrategyQA

Dense Full Finetune 77.052 40.672 88.189 75.000 83.742 69.581
Dense LoRA Finetune 76.414 50.090 70.962 69.333 80.995 68.690

Dense GaLore Finetune 75.339 41.667 68.362 65.667 77.980 67.325

+ Full Finetune 75.925 40.667 84.005 51.333 83.364 70.783
30% + LoRA 64.537 44.333 81.776 61.333 68.750 65.255

WeLore-COMP + GaLore 64.015 42.667 80.892 55.333 75.735 62.490
+ WeLore-PEFT 76.744 53.333 85.040 98.667 81.818 69.648

+ Full Finetuning 71.908 38.333 83.603 49.000 90.224 68.502
40% + LoRA 54.386 36.667 75.021 54.667 76.002 65.154

WeLore-COMP + GaLore 52.078 36.333 71.039 50.333 77.910 65.440
+ WeLore-PEFT 76.003 42.667 81.646 98.666 87.857 67.794

+ Full Finetuning 70.120 25.333 80.113 53.333 89.431 63.411
50% + LoRA 35.382 23.667 75.482 50.667 54.022 62.408

WeLore-COMP + GaLore 35.122 21.667 71.552 47.667 58.975 61.336
+ WeLore-PEFT 70.516 30.667 80.377 94.666 87.802 67.290

Table 6. Downstream performance of Dense and WeLore compressed LLaMa-2 7B checkpoint under full-finetuning along with memory-
efficient finetuning techniques (LoRA and GaLore). All downstream finetuning is performed starting from the same initial checkpoint
state for fair comparison.

efit from Activation-SVD. Table 3 presents the perplexity
comparison of SoTA low-rank compression techniques (in-
cluding SVD-LLM and ASVD which rely on calibration
datasets) wrt. WeLore-COMP non-uniform layer-wise ratios
when augmented with calibration dataset.

4.2. WeLore for Memory-efficient Finetuning of
Pre-trained LLMs

In this section, we investigate the effectiveness of WeLore-
PEFT, which focuses on selective finetuning of LRCs com-
ponents to answer three important questions:

1 How well can WeLore-PEFT recover the language mod-
eling capabilities of compressed LLMs? We investigate the
performance characteristics of LRC-focused WeLore-PEFT
in recovering compressed pretrained checkpoints perplexity
of LLaMa-2 7B, 13B and Mistral 7B. More specifically,
given a pretrained checkpoint, we first perform rank re-
duction using WeLore-COMP with varying ERR between
10-50%. Table 4 presents the C4 (evaluation set) perplexity
of SVD of weight matrices. Note that with increasing ERR,
model perplexity is notably high. Next, we perform limited
continual finetuning of a fraction of LRCs using C4 dataset
with sequence length of 1024 on 0.7M tokens. Interestingly,
it can be observed from Table 4, that WeLore-PEFT can
significantly recover the perplexity of compressed check-
points within a reasonable range, where benefits increase
with higher compression ratios.

2 How does WeLore-PEFT compare with conventional
LLM finetuning techniques like LoRA and GaLore? To inves-
tigate the effectiveness of WeLore-PEFT in comparison with
two popular resource-efficient finetuning methods (LoRA
and GaLore), we designed controlled experiments with fixed

training token budget (0.7 million) from C4 dataset and
keeping all other hyperparameters indetical for fair compar-
ison. Table 5 illustrates the superiority of LRCs-focused
WeLore-PEFT, which achieves ∼8× and ∼1.7× at 70%
compression ratio for LLaMa-7B and 13B models.

3 How well WeLore-PEFT performs for finetuning on
benchmarking downstream tasks? To understand the ef-
fectiveness of LRCs-only WeLore-PEFT finetuning, we
consider full-parameter finetuning, LoRA, and GaLore for
dense pretrained checkpoint, as well as WeLore compressed
checkpoint of LLaMa-7B. We conduct several experiments
across various compression ratios on math and common-
sense reasoning tasks and report our performance in Table 6.
Surprisingly, LRCs-based finetuning of compressed models
tends to closely match and sometime outperform even the
dense, as well as compressed full-parameter finetuning of
LLaMa-7B pretrained checkpoint. Additionally, the per-
formance achieved by WeLore-PEFT is significantly and
consistently higher than both LoRA and GaLore across all
the tasks with memory requirements close to LoRA. Figure
6 shows that unlike LoRA, WeLore-PEFT closely mimics
the loss trajectory of full-finetuning with significantly lower
GPU memory requirements and can achieve throughput
greater than LoRA based fine-tuning.

5. Conclusion
In this work, we focus on the emerging non-uniform low-
rank properties across weight matrices in LLMs through
the lens of stabilizing gradient subspace. We provide a
theoretical framework to understand the stabilization of gra-
dient subspaces through Hessian analysis. We empirically
demonstrate a consequential relationship between gradient
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dynamics and low-rank expressiveness of weight matrices.
We present WeLore-COMP, an adaptive layer-wise low-rank
compression strategy for low-rank decomposition, which
achieves high compression with minimal drop in perfor-
mance. The unique proposition of WeLore lies in catego-
rizing weight matrices of pretrained models into two broad
categories - LRCs and N-LRCs based on their low-rank
structure. We conduct extensive experiments to validate
that LRCs yield better trainability than N-LRCs. Given lim-
ited compute & memory budget, WeLore-PEFT proposes
finetuning of LRCs while keeping N-LRCs frozen with
back-propagation for maximal gain (sometimes better than
full-finetuning).

Impact Statement
This paper presents a theoretical framework to understand
the stabilization of gradient subspaces through Hessian anal-
ysis. It proposes WeLore, a joint compression and efficient-
finetuning strategy grounded on our findings of the exis-
tence of varying levels of converged low- rank structures
across different LLM components. Our work could lead
to improved methods for efficient LLMs development, and
contribute to the “GreenAI” goal.
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A. Proofs
A.1. Detailed Assumptions

Assumption A.1. Lipschitz Hessian: There exists LH > 0
such that ∥H(W ′)−H(W )∥ ≤ LH ∥W ′ −W∥.

This assumption is justified by the smoothness of common
loss functions (e.g., cross-entropy) and regularization terms.

Assumption A.2. Kurdyka–Łojasiewicz (KŁ) Condi-
tion: The loss satisfies a KŁ inequality near W ∗, implying
∥∇L(Wt)∥ decays at a power-law rate.

This assumption generalizes convexity to nonconvex.

Assumption A.3. Spectral Gap: For Ht = ∇2L(Wt) with
eigenvalues in descending order, there is a uniform γ > 0
such that min1≤i≤r, j>r |λi(Ht)− λj(Ht)| ≥ γ.

This assumption is reasonable due to the dominance of task-
relevant directions in the hessian spectrum, reinforced by
regularization.

Assumption A.4. Reversible Structure and Gradient
Representation: Assume the model architecture is re-
versible (Tian et al., 2021), ensuring no unbounded growth
in norms. In particular, the gradient can be expressed as
(introduced in (Zhao et al., 2024b)):

Gt = At −BtWtCt

where At, Bt, Ct are bounded linear mappings. Such re-
versibility implies uniform boundedness of ∥Wt∥ and ∥Gt∥
over t, and stable spectral properties of Ht.

A.2. Proof of Theorem 2.1

To show the stabilization of the eigenspace, we start by con-
sidering the dynamics of the Hessian updates. The weights
are updated using SGD as:

Wt+1 = Wt − η∇L(Wt), (2)

where η is the learning rate.

Using a Taylor expansion, the Hessian at Wt+1 can be ex-
pressed as:

Ht+1 = ∇2L(Wt) + ∆Ht, (3)

where:

∆Ht = ∇2L(Wt+1)−∇2L(Wt). (4)

From the Lipschitz continuity of∇2L(W ), we have:

∥∆Ht∥ ≤ LH∥Wt+1 −Wt∥. (5)

Substituting Wt+1 −Wt = −η∇L(Wt), it follows that:

∥∆Ht∥ ≤ ηLH∥∇L(Wt)∥. (6)

From the Kurdyka-Łojasiewicz (KŁ) condition, the gradient
norm satisfies:

∥∇L (Wt)∥ ≤ ϕ′ (L (Wt)− L (W ∗))
−1 (7)

Using ϕ(s) = s1−θ, we have ϕ′(s) = (1 − θ)s−θ. Substi-
tuting this:

∥∇L (Wt)∥ ≤
1

1− θ
(L (Wt)− L (W ∗))

θ (8)

Let D = (L (W0)− L (W ∗))
1−θ, representing the scale of

the initial loss gap. Then:

L (Wt)− L (W ∗) ≤ D

t1/(1−θ)
. (9)

Substituting this into the gradient bound:

∥∇L(Wt)∥ ≤
C

tθ/(1−θ)
. (10)

Thus, the bound on ∥∆Ht∥ becomes:

∥∆Ht∥ ≤
ηLHC

tθ/(1−θ)
. (11)

Applying Weyl’s inequality, the change in eigenvalues be-
tween Ht and Ht+1 is bounded by:

|λi(Ht+1)− λi(Ht)| ≤ ∥∆Ht∥. (12)

Summing over t bounds the cumulative eigenvalue changes:

|λi(HT )− λi(H0)| ≤
T−1∑
t=0

ηLHC

tθ/(1−θ)
. (13)

The series converges because t−θ/(1−θ) decays faster than
1/t, ensuring the cumulative shift remains bounded, thus
proving eigenvalue stabilization.

For eigenspace stabilization, the Davis-Kahan theorem pro-
vides a bound on the eigenspace shift:

∥Ut+1 − Ut∥ ≤
∥∆Ht∥

γ
. (14)

Substituting the bound for ∥∆Ht∥:

∥Ut+1 − Ut∥ ≤
ηLHC

γtθ/(1−θ)
. (15)
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Summing over t bounds the cumulative eigenspace shifts:

∥UT − U0∥ ≤
T−1∑
t=0

ηLHC

γtθ/(1−θ)
. (16)

The series converges for θ > 1
2 , ensuring actual convergence

of Ut. For θ ∈
(
0, 1

2

]
, this analysis does not guarantee

convergence, but it still provides a uniform bound on the
step-to-step change in each finite interval.

A.3. Proof of Theorem 2.2

Consider the gradient update Wt+1 = Wt − ηGt. By Tay-
lor’s theorem, the gradient at the next step is given by:

Gt+1 = ∇WL(Wt+1)

= ∇WL(Wt) +Ht(Wt+1 −Wt) +Rt, (17)

where the remainder term Rt is defined as:

Rt =

∫ 1

0

(1− τ)∇3
WL(Wt + τ∆Wt)[∆Wt,∆Wt] dτ,

∆Wt = −ηGt.
(18)

Substituting ∆Wt into the expression, we have:

Gt+1 = Gt − ηHtGt +Rt. (19)

Given that H(W ) is Lipschitz and ∥Gt∥ is bounded, it fol-
lows that ∥Rt∥ = O(η2∥Gt∥2). Thus, the update simplifies
to:

Gt+1 = Gt − ηHtGt +O(η2∥Gt∥2). (20)

For each time step t, let Ut = [u1, . . . , ur] be the orthonor-
mal eigenbasis of Ht corresponding to the eigenvalues
λ1, . . . , λr. The orthogonal complement is spanned by
Vt = [vr+1, vr+2, . . .]. The Hessian can be decomposed
as:

Ht = UtΛ
(r)
t U⊤

t + VtΛ
(−r)
t V ⊤

t , (21)

where Λ
(r)
t = diag(λ1, . . . , λr) and Λ

(−r)
t =

diag(λr+1, . . .).

Decomposing the gradient Gt gives:

Gt = UtU
⊤
t Gt + (I − UtU

⊤
t )Gt. (22)

Applying the Hessian to the gradient, we have:

HtGt = UtΛ
(r)
t U⊤

t Gt + VtΛ
(−r)
t V ⊤

t Gt. (23)

Projecting the recurrence onto the non-dominant subspace
results in:

(I − UtU
⊤
t )Gt+1 = (I − UtU

⊤
t )Gt

− η(I − UtU
⊤
t )HtGt + (I − UtU

⊤
t )Rt.

(24)

Since (I − UtU
⊤
t )HtGt = VtΛ

(−r)
t V ⊤

t Gt, it follows that:

(I − UtU
⊤
t )Gt+1 = (I − UtU

⊤
t )Gt

− η
∑
j>r

λjvjv
⊤
j Gt + (I − UtU

⊤
t )Rt.

(25)

The reversible structure ensures that ∥Wt∥, ∥Gt∥, and ∥Ht∥
remain uniformly bounded. This boundedness prevents
pathological behavior and ensures the spectral gap γ remains
stable.

As {Wt} is bounded and H(·) is Lipschitz, {Ht} forms
a bounded continuous family of matrices. Davis–Kahan
perturbation theory guarantees that the eigenspaces depend
continuously on t. The spectral gap γ > 0 ensures no mix-
ing between the dominant and non-dominant eigenspaces,
allowing Ut to vary smoothly with t.

For j > r, λj ≤ λr − γ. Setting λ̄ = λr − γ, we have:∑
j>r

λjvjv
⊤
j Gt ⪯ λ̄(I − UtU

⊤
t )Gt. (26)

Thus:

∥(I − UtU
⊤
t )Gt+1∥ ≤ ∥(I − UtU

⊤
t )Gt∥

− ηλ̄∥(I − UtU
⊤
t )Gt∥

+ ∥(I − UtU
⊤
t )Rt∥. (27)

Since ∥Rt∥ = O(η2∥Gt∥2) and ∥Gt∥ is bounded, there
exists K > 0 such that ∥Rt∥ ≤ Kη2. Therefore:

∥(I − UtU
⊤
t )Gt+1∥ ≤ (1− ηλ̄)∥(I − UtU

⊤
t )Gt∥+Kη2.

(28)

For sufficiently small η, say η < λ̄
2K , we have:

∥(I − UtU
⊤
t )Gt+1∥ ≤

(
1− ηλ̄

2

)
∥(I − UtU

⊤
t )Gt∥.

(29)

This shows a geometric contraction of the non-dominant
component. As t→∞, ∥(I−UtU

⊤
t )Gt∥ decays at least ge-

ometrically. Since ∥Gt∥ is bounded and does not grow, the
non-dominant part shrinks to zero relative to ∥Gt∥. Hence:

lim
t→∞

∥(I − UtU
⊤
t )Gt∥

∥Gt∥
= 0. (30)
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This proves that Gt asymptotically aligns with the dominant
eigenspace of Ht.

B. Additional Experiments
B.1. Visualization of Layer-wise Non-uniform Rank

Ratio of WeLore-COMP
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Figure 7. Layer-wise rank ratio of 50% compressed LLaMa-7B.

We investigated the layer-wise rank reduction ratio achieved
by WeLore-COMP and found it to be highly non-uniform
where some layers can be compressed significantly higher
than others. In addition, note that layers from the first
and last few transformer blocks are compression-friendly.
Figure 7 illustrates the rank reduction ratios after 50% ef-
fective rank reduction of LLaMa-2 7B pretrained check-
point using WeLore. Interestingly, it can be noted that
self attn.q proj& self attn.k proj layers can
be expressed as low-rank with > 90% compression. More-
over, the majority of layers from transformer blocks at the
front and tail end are better at compression aligning with
Section 2.5. The green region indicates LRCs while the red
region indicates the N-LRCs components.

B.2. Investigating further Compression Opportunity
with SoTA LLM Pruning.

Recently (Yin et al., 2023) investigated the activation outlier-
based non-uniform sparsity ratios for different transformer
blocks within LLMs. A careful observation of their layer-
wise sparsity ratio reveals that the majority of middle trans-
former blocks can be subjected to a higher pruning ratio
which is complementary to WeLore low-rank reduction
ratio that favours terminal blocks being low-rank friendly.
We therefore ask an unexplored question: How does LLM
performance changes when we further compress only the
dense N-LRCs using SoTA pruning methods?

Figure 8 presents the increase in the perplexity of LLaMa-2
7B on the C4 dataset when we compress a dense check-

point (blue) using SoTA LLM pruning methods. We com-
pared it with further compressing dense N-LRCs of WeLore
checkpoints with ERR of 10%, 30%, and 50%. Our key
observations are: (i) WeLore checkpoints can further enjoy
high compression with sparsification of dense N-LRCs with-
out signification performance drop to a noticeable sparsity
ratio (e.g., WeLore checkpoint with ERR of 50% can be
additionally sparsified using Wanda (Sun et al., 2023) with
< 2 points increase in perplexity); (ii) ad-hoc sparsifica-
tion of LRCs and N-LRCs (dense) suffers higher perfor-
mance degradation compared to N-LRCs which demands
actively exploring amalgamation of different compression
techniques for LLMs to ripe maximum benefits; (iii) devel-
opment of better sparsity algorithms (e.g., Wanda (Sun et al.,
2023), SparseGPT (Frantar & Alistarh, 2023)) clearly retain
their benefits even in mixed compression settings.

C. Background Work
Memory-Efficient Finetuning: Memory-efficient fine-
tuning of LLMs aims to address the significant costs as-
sociated with their fine-tuning. This field encompasses sev-
eral notable techniques. For instance, Prompt Learning
Methods optimize input tokens or embedding while keeping
the model’s remaining parameters static (Hambardzumyan
et al., 2021; Zhong et al., 2021). Layer-freezing techniques
enhance training efficiency by selectively freezing certain
layers (Liu et al., 2021; Brock et al., 2017; Li et al., 2024).
Additionally, Adapter Methods introduce a small, update-
focused auxiliary module into the model’s architecture, sig-
nificantly reducing the number of trainable parameters, as
introduced by (Houlsby et al., 2019; Diao et al., 2022).
Among them, one noteworthy technique is Low-Rank Adap-
tation (LoRA) (Hu et al., 2021a) and its successors (Ren-
duchintala et al., 2023; Sheng et al., 2023; Xia et al., 2024;
Zhang et al., 2023; Hayou et al., 2024; Hao et al., 2024; Liu
et al., 2024), which introduces a low-rank weight adapter
for each layer to reduce the memory footprint by only op-
timizing the adapter. These low-rank adapters can then be
seamlessly merged back into the original model.

Unlike LoRA which performs proxy optimization over ad-
ditional parameters while keeping the original parameters
frozen, WeLore backed by an understanding of gradient
dynamics suggests finetuning the original parameters of
LRCs in represented in low-rank to mimic full-finetuning.
Recently, (Biderman et al., 2024a) found that full finetuning
is more accurate and sample-efficient than LoRA across
several task categories and WeLore can be an effective al-
ternative to achieve the benefits of full-finetuning within a
limited compute and memory budget.

Low Rank Compression: Large Language Models (LLMs)
have succeeded remarkably across various natural language
processing tasks. However, the massive scale of these mod-
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Figure 8. Perplexity comparison (↑) of compression of N-LRCs using SoTA LLM pruning methods for LLaMa-2 7B on C4. Here we
calculated the increase in perplexity wrt. the initial perplexity of dense and low-rank compressed checkpoints with ERR of r%.

els poses significant challenges in terms of storage efficiency
and computational complexity. Among several techniques
of LLM compression (e.g.,pruning, quantization, etc.), low-
rank decomposition which retains only the top-k compo-
nents in the low-rank space have special privilege to lever-
age the existing highly efficient kernels over floating point
matrices. (Hsu et al., 2022a) developed a data-aware modi-
fication of SVD that incorporates approximate second-order
gradient information. Similarly, (Yuan et al., 2023) pro-
posed a data-aware decomposition method that minimizes
activation error. One primary drawback of these reductions
is that they uniformly reduce rank across all weight matrices.
In contrast, our work experimentally validates existence of
non-uniform low-rank expressiveness across different layers
and should be accounted for during low-rank compression.
Recently, (Zhao et al., 2023; Wang et al., 2023a) found
that dynamic rank selection during pretraining can achieve
comparable prediction performance as full-rank counterpart.

D. Implementation Details
D.1. Network Architectures:

For understanding gradient dynamics and its consequent on
the weight space during pretraining, we adopt the LLaMa-
130M architecture following (Lialin et al., 2023b; Zhao et al.,
2024a). For our continual and downstream finetuning exper-
iments, we adopted the pretrained checkpoint of LLaMa-2
7B and LLaMa-2 13B, and Mistral-7B from HuggingFace.

D.2. Low Rank Compression:

For low-rank compression using WeLore for LLaMa-2 7B
and 13B models, we used torch.svd(Wl) to decompose
a layer l’s weight matrix Wm×n

l = Am×rBr×n where r is
decided by the heavy tail distribution of the singular values
of W as described in Section 3. If W belongs to LRCs,
it will be replaced with a composition of two linear layers
with low-rank matrices A & B to improve the computational

efficiency. For baselines, we compared with commonly used
uniform rank reduction (Hsu et al., 2022a; Kaushal et al.,
2023a) and adopted recently proposed outlier-weighed non-
uniform ratio (OWL) (Yin et al., 2023). We additionally
augmented activation-guided SVD techniques (Yuan et al.,
2023) with WeLore’s adaptive layer-wise rank reduction
ratio to understand how it can benefit them.

D.3. Adaptive Threshold Selection

Algorithm 1 Adaptive Threshold Selection Algorithm
Input: LLM with weights θ, target reduction ratio sp, cur-
rent reduction ratio st, reduction tolerance sδ, threshold
increment Hi

Output: A compressed model θ satisfying the target
reduction ratio sp, singular threshold H
Initialization: Initialize a singular threshold H = 0
While not (sp + sδ > st > sp − sδ)

for each MLP layer tensor θl in θ do
svl ← calculate singular values(θl);
svln ← normalize singular values(svl);

pl ← 0; for each s in svln do
if s < H then

pl ← pl + 1;
Pr ←

∑
l p

l;
st ← Pr/Pt;
if sp + sδ ≥ st ≥ sp − sδ then

break;
else
H ← H +Hi;

D.4. Evaluation Tasks Settings

D.4.1. FACTOID-BASED QUESTION ANSWERING

Task Definition and Rationale. Factoid-based Question
Answering (Factoid-QA) (Iyyer et al., 2014), which asks pre-
cise facts about entities, is a long-standing problem in NLP.
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A typical Factoid-QA task aims to search for entities or en-
tity attributes from a knowledge graph, and it is widely used
as a tool in academia, commercial search engines, and con-
versational assistants. Modern LLMs are trained on gigantic
text corpora ingesting a large amount of world knowledge
about entities and their relationships during pre-training, and
have unique abilities to generate factually correct responses
to user queries. In this task setting, we aim to investigate
how our WeLore-COMP based compression impacts LLMs’
ability to answer natural language questions using facts,
i.e., entities or attributes knowledge ingested within them
during pre-training?

Dataset Details. We use FreebaseQA (Jiang et al., 2019)
which is a dataset for open-domain QA over the Freebase
knowledge graph. The QA pairs are collected from various
sources, including the TriviaQA dataset (Joshi et al., 2017)
and other trivia websites (QuizBalls, QuizZone, KnowQuiz),
and are matched against Freebase to generate relevant
subject-predicate-object triples that were further verified
by human annotators. TriviaQA dataset shows rich linguis-
tic variation and complexity, making it a good testbed for
evaluating knowledge ingested within LLMs.

D.4.2. IN-CONTEXT VARIABLE LENGTH TEXT
SUMMARIZATION

Task Formulation and Details. Modern LLMs have shown
astonishing success in summarizing long-context documents
in both abstractive and extractive settings. However, it is
yet not explored how FFN block skipping impacts LLMs’
capability for summarization. In this task setting, we aim
to investigate how well WeLore-COMP compressed models
hold onto consistency, coherence, fluency, and relevance
when prompted to summarize textual information of varying
length (small, medium, and large) in abstractive setting
(Jain et al., 2023). For evaluation, similar to (Zheng et al.,
2023), we propose to use GPT-4 as a judge, which compares
the compressed LLM generated summaries wrt. GPT-3.5
(text-davinci-003) generated summaries.

Dataset Details and Results We use a popular summa-
rization dataset CNN/DailyMail (Chen et al., 2016; Jaiswal
et al., 2023) for evaluation, which is an English-language
dataset containing just over 300k unique news articles writ-
ten by journalists at CNN and DailyMail. We created 3
subset categories {small (≤470 words), medium (≥470 and
≤ 790 words), and large (≥ 790 words)} of stories, each
with 100 articles reflecting word distribution of CNN/Daily-
Mail to minimize OpenAI API costs.

D.5. Multi-turn Conversation and Instruction Following

Task Formulation and Rationale. In this task setting, we
investigate how WeLore-COMP impacts the LLMs’ ability
to answer open-ended questions and evaluate their multi-

turn conversational and instruction-following ability – two
critical elements for human preference. Evaluating AI chat-
bots is a challenging task, as it requires examining lan-
guage understanding, reasoning, and context awareness. To
compare the performance of compressed LLMs’ responses,
we closely follow the prompt design setting in MT-Bench
(Zheng et al., 2023) using GPT-4 as a judge. We prompt
GPT-4 to rate the answers generated by compressed LLMs
wrt. GPT-3.5 (text-davinci-003) model based on varying
metrics (e.g., correctness, helpfulness, logic, accuracy, etc.)
on a scale of [0-10] with detailed explanations.

Dataset Details. We rely on the 80 high-quality multi-turn
questions identified in MT-Bench (Zheng et al., 2023). This
setting covers common-use human-centric interaction with
LLMs, and focuses on challenging questions to differentiate
models. We used 8 common categories of user prompts to
guide the prompt construction to interact with compressed
LLMs: writing, roleplay, extraction, reasoning, math, cod-
ing, etc. For each category, we adopted manually designed
10 multi-turn questions from MT-Bench to evaluate our
compressed models.

D.6. Continual and Downstream Finetuning:

For continual finetuning settings, we finetune the WeLore
compressed LLaMa-2 7B and 13B models at different com-
pression ratios using C4 dataset. The C4 dataset is a massive
collection of Common Crawl’s web crawl corpus, metic-
ulously filtered and cleaned to ensure high-quality lan-
guage modeling and training. For downstream task fine-
tuning of compressed models, we consider a good mixture
of tasks from commonsense reasoning and math reason-
ing, namely CommonsenseQA, BoolQ, CoinFlip,
SVAMP, BigBench, StrategyQA. For comparison,
we have used two baselines: (i) LoRA: LoRA (Hu et al.,
2021a) introduces low-rank adaptors for training the mod-
els, W = W0 + UV , where W0 is the pretrained weights,
which are frozen during training. In our setting, we associate
U and V with all the components of the LRC and N-LRC
of the compressed model and fine-tune them while keep-
ing W0 frozen. (ii) GaLore (Zhao et al., 2024a): GaLore
projects the gradient into low-rank format and updates the
optimizer states and projects it back for updating weights.
In this setting, we perform finetuning of both LRCs and
N-LRCs (full-finetuning) with projected low-rank gradients.
Note that all our finetuning experiments start from the same
checkpoint and hyperparameter settings for fair comparison.

E. Inference GPU Memory Statistics of
WeLore-COMP

In this section, we investigate the memory requirement for
inference with WeLore compressed models. Table 7 how
WeLore allows reducing the memory requirement to load
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Reduction Total Model
seqlen = 512 seqlen = 1024 seqlen = 2048 seqlen = 4096Params Memory

0% 6738.42M 13,579 MB 14,467 MB 15,145 MB 17,193 MB 24,519 MB
30% 5794.25M 11,993 MB 12,565 MB 12,923 MB 14,549 MB 20,853 MB
50% 4543.67M 9,501 MB 10,125 MB 10,433 MB 12,049 MB 18,377 MB
70% 3072.84M 6,657 MB 7,285 MB 7,625 MB 9,233 MB 15,549 MB

Table 7. Empirical estimate of Inference GPU Memory Requirement (measured with GPUtil library) of LLaMa-2 7B compressed with
WeLore with varying context sequence length.

the model parameters by substituting the full-rank weight
matrices in their low-rank format. Given a consumer-grade
GPU like GeForce RTX 4090, WeLore can facilitate infer-
ence with 4K context length where the original model will
flag an OOM error.
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