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ABSTRACT

This paper studies the problem of controllable 3D molecule generation, which
aims to design 3D molecules that satisfy given conditions. Previous methods
usually incorporate the condition tokens into language models, and reconstruct
molecules from the generated tokens. Despite their progress, performance re-
mains unsatisfactory due to the neglect of conditional information during the gen-
eration process. To address this limitation, we propose a novel approach named
Property-aware Reinforcement Learning with Retrieval Enhancement (POETIC)
for controllable 3D molecule generation. To be specific, POETIC first tokenizes
3D molecular structures and leverages a language model (LM) for molecular
generation. More importantly, it retrieves relevant samples with similar prop-
erties from an external database, which are used as prefixes to enhance genera-
tion quality. Furthermore, we pre-train a prediction model to identify the molec-
ular properties, which in turn provides property-aware rewards for evaluation.
These rewards guide reinforcement learning to optimize the LM. Extensive exper-
iments on benchmark datasets validate the effectiveness of the proposed POETIC
in comparison with state-of-the-art approaches. The source code is available at
https://anonymous.4open.science/r/POETIC-BEA3.

1 INTRODUCTION

Molecule generation with desired properties is crucial for accelerating progress in drug discov-
ery and materials science. Due to the vast size of chemical space, efficient generative models have
emerged as a powerful framework for exploring and designing novel compounds (Vogt, 2023; Lavec-
chia, 2024). While early studies in 2D molecular graph generation demonstrated progress in validity
and diversity (Jin et al., 2018; You et al., 2019; Kong et al., 2022), recent efforts increasingly focus
on 3D molecule generation as three-dimensional structures govern molecular properties and are in-
dispensable for structure-based drug design (Mansimov et al., 2019; Gebauer et al., 2020; Shi et al.,
2021; Ganea et al., 2021; Satorras et al., 2022).

Building upon previous efforts in 3D molecule generation, recent advancements in 3D diffusion
models have substantially improved the fidelity of 3D molecule generation by modeling atomic co-
ordinates with strong equivariance (Hoogeboom et al., 2022; Xu et al., 2023; Morehead & Cheng,
2024). However, their reliance on long iterative denoising makes them computationally expen-
sive and less attractive for scalable controllable design. In contrast, language model (LM) exploit
geometry-aware tokenization and autoregressive decoding to enable more efficient generation and
large-scale pretraining transfer (Li et al., 2024; Gao et al., 2024a). Despite these advantages, LMs are
typically trained under maximum likelihood estimation (MLE), which prioritizes likelihood match-
ing over goal-directed property optimization. This results in limited alignment with continuous
molecular properties, and generalization further deteriorates when encountering out-of-vocabulary
property values. Taken together, existing paradigms remain inadequate in achieving both precise
controllability and robust generalizability, leaving a critical gap for subsequent exploration.

Prior works in language models (Devlin et al., 2019; Brown et al., 2020; Vaswani et al., 2023;
Gu & Dao, 2024) suggest two complementary directions to address the issues we highlighted
above (Gao et al., 2024b; Gupta et al., 2024; Wang et al., 2025d; Cao et al., 2024). On the
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one hand, reinforcement learning (RL) has been widely used to align models with task-specific
objectives, moving beyond distributional likelihood to enforce controllability (Schulman et al.,
2017; Ouyang et al., 2022; Shao et al., 2024). On the other hand, retrieval-augmented generation
(RAG) enhances generalization by grounding generation on external exemplars, as demonstrated in
knowledge-intensive NLP tasks (Lewis et al., 2021; Borgeaud et al., 2022; Wang et al., 2025ase).
Inspired by these insights, we conducted toy
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ing the out-of-vocabulary limitation.

Building on the above insights, we propose POETIC (Property-aware Reinforcement Learning with
Retrieval Enhancement), a unified framework for controllable 3D molecule generation. POETIC
employs a Mamba language model (Gu & Dao, 2024) as the generative backbone and integrates
two complementary components: (i) retrieval-augmented conditioning, which retrieves property-
and structure-similar exemplars from an external database and encodes them as compact prefixes
to guide generation; and (ii) property-aware reinforcement learning, which leverages a frozen
property predictor to provide explicit reward signals, ensuring alignment with continuous molec-
ular targets. Extensive experiments on benchmark datasets demonstrate the effectiveness of our
approach, which consistently outperforms state-of-the-art baselines by achieving controllability on
in-distribution targets while maintaining robust generalization to unseen values.

In conclusion, the main contributions of our proposed POETIC can be highlighted as follows:

* Novel Perspective. To the best of our knowledge, this is the first framework that unifies retrieval
and reinforcement learning for 3D controllable molecule generation using language models, di-
rectly addressing both controllability and generalizability.

 Innovative Methodology. POETIC integrates retrieval-augmented conditioning with property-
aware reinforcement learning to enhance controllable generation, thereby improving general-
izability to out-of-vocabulary properties and addressing the limitations of maximum likelihood
training.

* Empirical evaluation. Comprehensive experiments demonstrate the effectiveness and general-
ization of POETIC for controllable 3D molecule generation, showing consistent improvements in
target property control and extrapolation to unseen regions.

2 RELATED WORK

3D Molecule Generation. Diffusion models have become the dominant paradigm in 3D molecule
generation, jointly modeling atom types and coordinate with E(3)-equivariant denoisers (Hooge-
boom et al., 2022). To improve efficiency, latent-variable formulations have been introduced (Xu
et al., 2023; You et al., 2024; Chen, 2024; Zhang et al., 2025), while geometry-complete and
Clifford-equivariant architectures have pushed fidelity further (Morehead & Cheng, 2024; Liu et al.,
2025a). Alternatively, flow matching methods offer a computationally more efficient approach by
directly learning vector fields to map a prior to the data distribution, thus avoiding iterative denois-
ing (Dunn & Koes, 2024; Cao et al., 2025; Geffner et al., 2025). Despite their success, diffusion-
based frameworks remain computationally expensive due to iterative denoising. To overcome these
limitations, language models have emerged as a faster and more scalable alternative (Flam-Shepherd
etal.,2023; Flam-Shepherd & Aspuru-Guzik, 2023). Geo2Seq (Li et al., 2024) introduces geometry-
informed tokenization for autoregressive generation, with extensions exploring 3D coordinate tok-
enization (Gao et al., 2024a) and large-scale molecular pretraining (Flam-Shepherd et al., 2022;
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Figure 2: Overview of POETIC pipeline. POETIC consists of two key components for control-
lable molecule generation: property-guided molecule retrieval and property-aware reinforcement
learning. In addition, the retrieval module integrates property-based pre-selection with hybrid prop-
erty—structure filtering to further improve generation quality.

Pei et al., 2025; Wang et al., 2025b; Liu et al., 2025b). However, LM-based approaches still face
challenges in continuous property modeling and task alignment.

Retrieval-Augmented Generation. RAG has recently been applied to molecular design as a way
to inject external chemical knowledge during generation (Lewis et al., 2021; Zhong et al., 2025). In
fragment-based RAG, retrieval of molecular fragment information from databases guides molecular
generation and optimizes structural alignment (Lee et al., 2024; Phillips et al., 2025; Peng & Han',
2025). In diffusion models, retrieval of structural templates or reference molecules from databases
is integrated into the denoising process to enhance structural fidelity (Huang et al., 2024; Xu et al.,
2025; Wang et al., 2025c). While these methods show the potential of retrieval-enhanced molec-
ular generation, they remain limited to static augmentation, and integrating RAG with LM-based
molecular generation is still underexplored (Sharma, 2025; Brown et al., 2025; Cheng et al., 2025).

Reinforcement Learning. RL offers another avenue for aligning molecular generation with task-
specific objectives (Dodds et al., 2024; He et al., 2024; Li et al., 2025). REINVENT (Olivecrona
etal., 2017) first applies policy gradient to optimize SMILES-based generation for drug-likeness and
binding affinity. Subsequent works extended this line to multi-objective optimization and synthetic
feasibility (Wang & Zhu, 2024; Park et al., 2024; Zhang et al., 2024; Yuan et al., 2025). Graph-
based RL further enables structure-level rewards (Telepov et al., 2024; Yang et al., 2024; Zhang,
2024), and docking-guided RL has been proposed for structure-based design (Jeon & Kim, 2020;
Yang et al., 2021; Xiong et al., 2023; Danel et al., 2023). In contrast, RL has rarely been applied to
LM-based molecular generation (Cao et al., 2025; Ahmed & Mohammed, 2025). The integration of
property-aware reward modeling is especially underexplored, which motivates our approach.

3 THE PrROPOSED POETIC

Problem Definition. In this work, we study the problem of controllable molecule generation in
3D space. A molecule with n atoms is represented as a 3D point cloud G = {(r4, z;) }?_;, where
r; € R denotes the 3D coordinate of the i-th atom and z; € Z denotes its corresponding atom type.
We consider a molecule dataset D = {(G;, s;)}1Z,, where each molecule G; is annotated with its
property value s;. Our objective is to learn a conditional generative model pg(G | s*), which can
generate molecules consistent with a target property s*.

3.1 FRAMEWORK OVERVIEW

As illustrated in Figure 2, the POETIC workflow is a multi-step process designed to improve con-
trollability in 3D molecule generation. First, we tokenize the 3D molecules with atomic coordinates
into discrete token sequences. To enrich the condition representation, we retrieve molecules with
similar properties from an external database and encode their numeric property values along with
structural statistics as structured prefixes. Subsequently, the LM generates candidate molecules con-
ditioned on the exemplar prefixes. Finally, a pre-trained property prediction model evaluates the
generated molecules and produces property-aware rewards, which are leveraged in a reinforcement
learning procedure to fine-tune the LM and enforce alignment with the target properties.
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3.2 TwO-STEP PROPERTY-GUIDED RETRIEVAL FOR PREFIX GENERATION

To address the challenge of retrieving molecules with similar properties and structural characteris-
tics, a straightforward single-step approach often fails to balance breadth and accuracy. Inspired by
prior retrieval-based molecule generation methods (Wang et al., 2023), we adopt a two-step strategy
that decouples the problem into two complementary sub-tasks. In the first step, we perform efficient
property-based filtering to generate a candidate set of molecules with similar properties. In the sec-
ond step, we refine this candidate set by computing a weighted score that integrates both property
and structural similarity, ensuring high-precision retrieval.

Step 1: Property-based Pre-selection. The first step aims to efficiently narrow the search space to
molecules with properties similar to the query. We begin by filtering the molecule database based
on their property values. Let the database consist of pairs {(G;, sj)}j]\il, where G; represents the
molecular structure and s; denotes its property value. We first rank the molecules by their absolute
deviation d; = |s; — s*| from the target property s*, and then retain the top- K, candidates:

73 = {j | rankj(dj) S Kpool}- (1)

This step ensures that the pool P consists of molecules whose properties closely align with the
target, providing a high-precision subset of candidates.

Step 2: Hybrid Property-Structure Filtering. While the pool P from Step 1 contains molecules
with similar properties, it may still exhibit structural heterogeneity. To further refine the selec-
tion, we incorporate structural information by computing structural embeddings for each molecule.
Specifically, we define a structural embedding f; for each molecule G; as a concatenation of element
frequencies and atomic distance histograms:

f; = [hiStelem(gj)’ hiStd(gj)] ’ ?

where histien, represents the frequency of different elements in the molecule and histgy is a smoothed
histogram of interatomic distances. To capture the common structural characteristics of the candi-
date set, we compute a prototype vector f by averaging the embeddings of the molecules in P:

L1
f:Wij. 3)

JEP
Next, we re-score each candidate by combining its property and structural similarities:
score(j) =~y ( —|sj — 5*|) + (1 =) cos(f;, £). 4

Here, v is a weight hyperparameter that balances the importance of property-based and structure-
based similarities, and cos(:, ) represents the cosine similarity between a molecule and the proto-
type vector. Finally, molecules are ranked by their scores, and the top-K samples are chosen to
constitute the exemplar set A. This procedure is efficient and yields an exemplar set that is both
property-consistent and structurally coherent, providing reliable guidance for the subsequent gener-
ation process.

Prefix Construction. From the final exemplar set N, we extract key statistics, namely the normal-
ized element frequencies and the most prominent distance peaks. These statistics are then serialized
into a compact, structured prefix format with special delimiters, ensuring that the generated prefix
conveys both property-targeted and structurally relevant context for the language model (LM). The
prefix format is as follows:

[COND_START] s* [ELEM_FREQ] 7(e) [D-PEAK] {[{;, h]}» [RAG.END], )

where s* represents the target property value, 7(e) denotes the normalized element frequencies,
and {[(y, h,]}, lists the most significant atomic distance peaks. For brevity, the explicit end delim-
iters (e.g., [COND_END], [ELEM_-FREQ_END], [D_PEAK_END]) are omitted here, though they are
present in the actual serialized data to guarantee strict boundary definitions. The structured nature
of this format allows for clear separation and easy interpretation of each element, enhancing the
efficiency and accuracy of the language model in generating molecules with the desired properties
and structural characteristics. For illustration purposes, several complete examples of constructed
prefixes are provided in Appendix F.
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3.3 PROPERTY-AWARE REINFORCEMENT LEARNING WITH BACKWARD GUIDANCE

We cast controllable molecule generation as sequence-level reinforcement learning. At time step
t, the model observes a state given by the retrieval-augmented prefix and the previously generated
tokens, and emits an action corresponding to the next token. A trajectory thus forms a complete
molecule G after termination. Our goal is to learn a policy 7y that maximizes expected property-
aligned reward under the target specification s*:

meax Eg,\,ﬂ.e(.‘s*)[R(g,S*)]. (6)

We build upon the GRPO framework (Shao et al., 2024) and extend it with a frozen property evalu-
ator and a backward guidance mechanism for token-level credit assignment in molecular sequences.

GRPO Objective. For each conditioning query ¢ (target s* with its RAG prefix), the policy 7y gen-
erates G candidate trajectories {o; }$; (full molecules). The training objective combines a clipped
likelihood-ratio term with KL regularization against a frozen reference policy myf:

Lcrro = —E [min <pi,t121i,ta clip(pi¢, 1 —e,1+ 6)1211',:&)}
+ BE [exp(Alog ) — Alog m — 1]

WH(Oi,t‘Q»Oi,<t)
0014 (01,¢19,0i,<t)

Alogm = logTret(0i,t | 4,0i,<t) — logmg(0ie | q,0i<t) ®)
provides an unbiased estimator of Dxy,(mg||7mrer) via E[exp(Alogn) — Alogm — 1]. A key com-

ponent is the advantage fli,t, which is constructed from group-relative rewards to avoid learning a
separate value function.

(7

where p; + = is the token-level importance ratio, ¢ is the clipping threshold, and

Reward Model. The reward signal is provided by an external pretrained and frozen Equivariant
Graph Neural Network (EGNN) (Satorras et al., 2021), which maps a generated molecule G; to a
property prediction §(G;). Keeping the evaluator fixed prevents reward drift during policy updates
and yields a stable optimization target. Given the target s*, we define a smooth, scale-aware reward
with validity penalty:

Ty = exp( — M) — 1{invalid(G;)} - Ainv, )

g

where o controls tolerance to deviations and \;,, > 0 penalizes structurally unreasonable configura-
tions. This design encourages closeness to the target while maintaining structural validity.

Group-relative Normalization. GRPO forms advantages by contrasting candidates generated un-
der the same condition. For each query ¢, we standardize rewards within its group of size G:

7= m’ (10)

Ogrp
yielding group-relative signals that are robust to absolute reward scale and property units, where

Ligrp = & Zle rj and Ogrp = \/ & Zle(rj — fgrp)?. These standardized scores serve as the
scalar advantages for credit assignment:
Ay & 7 (11

Backward Guidance. Properties are only available after a complete molecule is generated, so
intermediate rewards are sparse. Therefore, we propagate the trajectory-level signal back to the
token level while masking out the conditioning tokens. Let t,.cx be the index of the first generative
token. We assign

A _ {7:7,7 ift > tpreﬁx>

Ai o 1 d = 1{t > tprefix }; 12
! 0, otherwise, an M {t = torefix } (12)

so that gradients only flow through the learnable part of the sequence. To reduce length bias, we
apply a normalization factor over effective tokens, defined as follows:

A;
. : (13)
max(1, T; — tprefix)
where T; is the length of candidate ¢ (padding positions are masked by m;). In practice, we im-

plement this using a token mask and broadcast the group-normalized advantage across all valid
generative positions.

Aeff
Aly =
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Algorithm 1 Training Algorithm of POETIC

First Stage: RAG-based Language Model Pretraining
Input: Geometric data {(G;, s;)}}L,
Step 1: Property Pre-selection
Compute the absolute deviation of the molecule property: d; = [s; — s*|;
Select top- K001 candidates by Eq. 1 to construct the set P;
Step 2: Property—Structure Filtering
Calculate embeddings f; via Eq. 2 for j € P;
Compute prototype embedding f using Eq. 3;
Select top-K exemplars by Eq. 4 to form A/, and serialize prefix P* by Eq. 5;
Pre-train the language model using Maximum Likelihood Estimation on the RAG-derived pre-
fixes, enabling property-conditioned structure learning.
Second Stage: Property-aware RL Fine-tuning
Input: policy 7y, reference myet < 7o, frozen EGNN §(+)
7: for each training step do
8: Sample G molecules from 7y conditioned on (s*, P*);
9: Compute rewards r; with EGNN using Eq. 9;
10: Obtain the normalized 7; within the group by Eq. 10;
11: Assign token-level advantages via backward guidance by combining Eq. 12 and Eq. 13;
12: Compute the importance ratios p; ¢+, and calculate A log 7 by Eq. 8;
13: Derive the GRPO loss by Eq. 7;
14: Update 6 and periodically refresh mof < mp;
15: end for
16: return Trained policy g

N =

AN AN S

3.4 OVERALL WORKFLOW

Our framework unifies retrieval-augmented generation (RAG) and reinforcement learning (RL) for
controllable 3D molecule generation, effectively bridging context-aware retrieval with reward-driven
optimization. Given a target property s*, RAG retrieves exemplar molecules via property—structure
filtering and encodes their statistics into a prefix, which provides chemically meaningful context
for the language model (LM). This setup naturally guides the LM toward realistic outputs. The RL
stage further enforces property alignment: a frozen pre-trained EGNN predicts molecular properties,
rewards are normalized within candidate groups, and backward guidance propagates these signals
to token-level actions. The detailed training pipeline of POETIC is presented in Algorithm 1.

Model Training. We train the model in two main stages: pretraining and fine-tuning, progres-
sively building from contextual learning to reward optimization. (i) Pretraining stage: The language
model is conditioned on RAG-derived prefixes, and supervised learning is applied under a negative
log-likelihood (NLL) objective. This enables the model to learn the distribution of molecular struc-
tures conditioned on the property-specific context provided by the prefixes, establishing a strong
foundation for subsequent refinements. (ii) Fine-tuning stage: We initialize 7y via supervised fine-
tuning and set 7t <— Tg. At each iteration, candidate molecules are generated by decoding a batch
of targets with RAG-derived prefixes. A frozen EGNN then predicts the properties of the generated
molecules, providing rewards with validity penalties. These rewards are standardized and used to
compute token-level importance ratios p;;, which are then propagated using backward guidance
with length normalization. The model is updated using the clipped objective, incorporating a KL
term to stabilize the training. The reference policy is periodically refreshed to maintain a meaning-
ful KL anchor. Over successive iterations, this process guides the model towards generating valid
molecules that align closely with the target properties, balancing structural validity with property
alignment.

Molecule Sampling. To sample from a trained model, we begin by retrieving exemplar molecules
for the target property and serializing them into a prefix. The language model then performs a stan-
dard autoregressive decoding under this prefix, generating atom tokens sequentially until reaching
the stop token or maximum length. Unlike during training, the reward model is not queried and
the policy is not updated. This ensures that inference is as efficient as standard LM decoding while
producing molecules that remain valid and consistent with the specified property.
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Table 1: Controllable generation performance on QM9Y, reported in terms of property MAE (lower
is better). The best and second-best results are highlighted in bold and underline, respectively.

Property (Units) o (Bohr®)  Ae (meV)  enomo (meV)  eLumo (meV) (D) C, (LK)
Data 0.10 64 39 36 0.043 0.040
Random 9.01 1470 645 1457 1.616 6.857
Nuoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GEOLDM 237 587 340 522 1.108 1.025
NEXT-Mol 1.16 297 205 235 0.507 0.512
Geo2Seq with Mamba 0.46 98 57 71 0.164 0.275
POETIC 0.21 62 39 27 0.080 0.077

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. We adopt QM9 (Ramakrishnan et al., 2014) for controllable molecule generation. The
QM9 dataset is one of the most widely used benchmarks in quantum chemistry and machine learning
research. It contains over 134K stable molecules composed of C, H, O, N, and F atoms, with up to
nine heavy atoms. Following (Anderson et al., 2019), we partition the dataset into 100K training,
18K validation, and 13K test samples. For the controllable generation experiments, we adopt the
EDM protocol (Hoogeboom et al., 2022) and further split the training set into two equal halves of
50K samples each. An EGNN-based predictor (Satorras et al., 2021) is trained on the first half to
learn property prediction, while the conditional generative model is trained on the second half.

Evaluation metrics. We evaluate our model performance on QM9 from complementary perspec-
tives: (i) Controllability: Following (Hoogeboom et al., 2022), we report mean absolute error (MAE)
on six quantum properties: polarizability (o), HOMO-LUMO gap (Ae), dipole moment (y), heat
capacity (C,), orbital energy (emomo), and er,umo, With property values predicted by the same
pre-trained EGNN used during RL fine-tuning. (ii) Generalizability: We additionally evaluate on
unseen properties (out-of-vocabulary target values not observed during training), focusing on two
representative quantum properties, polarizability (««) and HOMO-LUMO gap (Ace), and and report
MAE to assess the model’s ability to generalize beyond the training distribution (see Appendix D
for the full unseen-target evaluation protocol).

Baselines. We compare POETIC with recent state-of-the-art methods in controllable generation,
including diffusion-based models (EDM (Hoogeboom et al., 2022), GeoLDM (Xu et al., 2023)), a
language modeling approach (Geo2Seq with Mamba (Li et al., 2024)), and the hybrid framework
NExT-Mol (Liu et al., 2025b). We also include three dataset-driven references: (i) Data, (ii) Ran-
dom, and (iii) Nyoms. Further details of these baselines are provided in Appendix D.

Implementation Details. We train a 16-layer Mamba model (hidden size 768, context length 200)
on QM9 using AdamW with batch size 32 for 200 epochs. For retrieval-augmented generation, we
adopt a two-step strategy: property-based pre-selection to retain the top-Kpo = 40 candidates,
followed by hybrid similarity ranking to choose K = 5 exemplars. The supervised model is further
fine-tuned with property-aware reinforcement learning (temperature 0.7, top-k = 80) to encourage
valid and property-consistent generations. Experiments are conducted on two RTX 4090D GPUs,
with pretraining taking ~4 hours and fine-tuning ~3 hours.

4.2 RESULTS

After describing the experimental setup, we now present the results, covering two complementary
aspects: (i) performance of controllable generation and (ii) performance of generalizability.

Performance of Controllable Generation. Table | summarizes controllable generation perfor-
mance on QM9. POETIC consistently outperforms all prior approaches across the six quantum
properties, achieving the lowest error in every case. We observe a below-evaluator phenomenon:
MAE on HOMO, LUMO, and Ac¢ falls below the dataset-level average of the frozen EGNN evalua-
tor. Additional ablations show that this effect contributes only marginally to the overall gains, indi-
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cating that most improvements stem from our method rather than evaluator alignment (Appendix C).
These results highlight the complementary benefits of our design: retrieval-augmented prefix gen-
eration enhances the integration of conditional signals during molecule generation, while property-
aware RL fine-tuning enables precise alignment with target values. Together, these components lead
to more accurate and controllable 3D molecule generation, demonstrating the clear advantage of
POETIC over state-of-the-art baselines.

Performance of Generalizability. To further
assess the generalizability of our framework,
we evaluate its ability to generalize to out-of-

Table 2: Generalization performance on out-of-
vocabulary properties, reported in MAE (lower
is better, best in bold).

vocabulary property values, focusing on two rep-

resentative quantum properties: polarizability (o) _ Property (Units) a (Bohr®)  Ae (meV)
and HOMO-LUMO gap (Ae). As shown in Ta-  Geo2Seq with mamba 14.67 2139
ble 2, our method outperforms the strongest base-  POETIC 9.24 1685

line on both properties. These results indicate that
the proposed framework not only achieves strong controllability across six in-distribution properties,
but also transfers effectively to unseen targets. The gains primarily stem from two complementary
components: the retrieval-augmented prefix, which enriches the generative context with structural
priors, and the property-aware reinforcement learning strategy, which provides explicit signals for
navigating beyond the training distribution.

4.3 ABLATION STUDIES

To study the effects of retrieval-augmented generation (RAG) and reinforcement learning (RL) in
POETIC, we design four variants: (i) maximum-likelihood language model (MLE), (ii) reinforce-
ment learning fine-tuning (MLE + RL), (iii) retrieval-augmented conditioning (RAG + MLE), and
(iv) the full model (POETIC) that combines RAG and RL. These variants allow us to isolate the
role of each component and their combined impact on controllability and generalization. All vari-
ants are trained under the same setup as the main experiments in Section 4.1, and evaluated with
the same metrics (in-distribution and unseen-property MAE). Additional ablations are provided in
Appendix C, highlighting the role of structural priors in RAG and the contribution of RL.

Ablation Results. As shown in Table 3, the four
variants highlight the complementary effects of
RL and RAG. (i) For RL, introducing property-

Table 3: Ablation study of RAG and RL in PO-
ETIC on QM9. Metrics: In-dist. (controllabil-
ity) and Unseen (generalizability).

alignment rewards that directly supervise contin-

uous property values leads to a substantial reduc- _ Model Variant In-dist. Unseen
tion in in-distribution MAE, demonstrating im-  MLE 1.06 14.44
proved controllability. However, because RL pri-  MLE + RL 0.34 14.89
marily reinforces alignment on seen tokens, it RAG + MLE 0.96 981
weakens generalization and yields higher errors  POETIC 0.21 924

on unseen properties. (ii) By contrast, RAG con-
ditions generation on retrieved neighbors that serve as structural priors, enriching the context and
transferring useful patterns even for out-of-vocabulary tokens. This notably reduces unseen-property
MAE and strengthens generalization, though its implicit and context-driven supervision is less ef-
fective for precise alignment within the training distribution. (iii) Integrating both components
in the full POETIC model achieves the best balance: RL provides fine-grained controllability in-
distribution, while RAG extends coverage to unseen tokens, keeping the unseen-property MAE
competitive. Overall, this combination confirms that continuous reward optimization and retrieval-
based structural priors address complementary weaknesses of maximum-likelihood training, to-
gether achieving both strong controllability and robust generalization.

4.4 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we systematically evaluate the sensitivity of POETIC to key hyperparameters to as-
sess its robustness. Experiments are conducted on the QM9 dataset, using a subset of 2,000 target
property values for computational efficiency. As shown in Figure 3, POETIC remains stable across
a broad range of settings. (i) Retrieval parameters K and Ko: Increasing K (with Ko fixed)
initially improves controllability (optimal around 3-7), but larger values introduce noisy exemplars
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Figure 3: Hyperparameter Sensitivity Results. (a) shows the effect of exemplar number K, while
(b) examines the candidate pool size Kpqo1. () describes the weighting factor « balancing property
and structural similarity, and (d) presents results under different KL-regularization weights (.

and degrade performance. In contrast, varying Kp.o with K fixed yields nearly unchanged results,
indicating insensitivity to pool size. (ii) Weighting factor ~: Adjusting v to emphasize property
over structural similarity leads to only minor changes. Importantly, structural similarity remains
essential: property similarity drives the initial candidate selection, while structural cues in the sec-
ond stage ensure chemically meaningful and diverse exemplars. (iii) Regularization strength /:
Varying the KL-regularization weight 5 leads to moderate performance differences but no drastic
fluctuations, indicating that the model remains robust across the tested range. In summary, PO-
ETIC exhibits stable performance under diverse configurations, underscoring its robustness while
highlighting the complementary roles of property and structural similarity in the two-stage retrieval
framework, providing strong evidence of its practical reliability and consistency.

4.5 VISUALIZATION RESULTS

In this section, we visualize molecules generated by our POETIC conditioned on polarizability («).
Polarizability characterizes how easily a molecule develops an electric dipole moment under an
external field, and is closely linked to molecular size and structural flexibility.

63.44 65.67 75.14 79.56 80.61 84.83 86.47 9176

Figure 4: Examples of molecules generated by POETIC under varying polarizability o, with the
corresponding o shown below each image.

As shown in Figure 4, the generated molecules vary systematically with a: higher values correspond
to more extended, less symmetric conformations, consistent with the intuition that highly polarizable
molecules deviate from compact geometries. These results demonstrate that our model captures
meaningful structure—property relationships aligned with patterns observed in the QM9 dataset.

5 CONCLUSION

In this work, we introduce a novel reinforcement learning framework POETIC, which augmented
with property-aware retrieval to tackle the challenge of controllable 3D molecule generation. To en-
hance generation quality, POETIC retrieves property-similar and structurally consistent molecules
from an external database and further incorporates them as structured prefixes to the LM, thereby
improving its generalization to unseen properties. To ensure property alignment, POETIC employs a
frozen prediction model to evaluate candidate molecules and then generate property-aware rewards,
which are subsequently leveraged to optimize the language model through reinforcement learning.
This process encourages reliable 3D molecule generation conditioned on specific properties. Exten-
sive experiments on benchmark datasets demonstrate that POETIC achieves superior performance
and strong generalizability compared with state-of-the-art baselines. These above results highlight
POETIC as a promising approach for 3D molecule generation with broad applicability across diverse
scientific domains.
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A LLM USAGE STATEMENT

A large language model was used solely to aid and polish the writing of this manuscript. Its as-
sistance was limited to grammar correction, sentence-level rephrasing and minor improvements in
clarity and readability. All scientific content, including the research ideas, experimental design, data
analysis, and conclusions, was fully developed and verified by the authors. No text was automati-
cally generated beyond these language refinements, and every suggested edit was manually reviewed
before inclusion.

B ALGORITHMIC DETAILS

In the main text (Algorithm 1), we present the POETIC training pipeline as a unified procedure. For
completeness, here we decompose it into two core modules: (i) the retrieval stage, which constructs
property-guided prefixes, and (ii) the reinforcement learning stage, which fine-tunes the policy with
property-aware rewards. This separation highlights how each component contributes individually to
the overall framework.

Algorithm 2 Two-step Property-Guided Retrieval for Prefix Generation

Require: Target s*, database {(G;, s;)}}Z,, hyperparameters Kpool, K,y
Ensure: Prefix P*

: Compute property deviation d; = |s; — s*| for all j

Form candidate pool P with top - K001 €ntries by ascending d;

For j € P, compute f; = [hlbtdem(gj) histq(G,)]

Compute prototype f = |7,| djerf

Re-score each j € P with score(j) v (= ls; =) + (1 =) - cos(f;, f)
Select top-K candidates by score(+) to form exemplar set A/

Aggregate element frequencies and distance peaks from A

Serialize statistics into prefix P* and prepend to LM input

PR B

Retrieval Stage: Two-step Property-guided Retrieval. The retrieval component is summarized
in Algorithm 2, which ensures that the language model is conditioned on exemplars that are both
property-consistent and structurally coherent. This two-step process This process first performs
a coarse property-based pre-selection, and then applies a hybrid filtering step that integrates both
property and structural similarities. The resulting exemplar set is summarized into a compact prefix
‘P*, providing informative context for downstream generation.

Algorithm 3 Property-aware GRPO with Backward Guidance

Require: Policy 7y, reference 7,ef < 7, frozen EGNN §(+), group size G, clip ¢, KL weight 3
1: for each training step do
2: Sample G candidates {G;} from 7y

3: Compute rewards r; = exp(—|3(G;) — s*|/o) — 1{invalid(G;) } \inv
4: Normalize within group: 7; = (7; — figrp)/(Terp)
5: Set token-level advantages A; ; via backward guidance
6: Compute ratio r; ; = mg/mg,, and loss
L= —E[min(r; ;A; ¢, clip(rig, 1 —e,1+¢€)A; )] + BDkr (70| mret)
7: Update 6; periodically refresh m.o¢ < 79
8: end for

Reinforcement Learning Stage: Property-aware GRPO. Algorithm 3 outlines the reinforcement
learning procedure, where a frozen EGNN serves as a reward model to guide the policy towards the
target property. Rewards are normalized within groups to reduce variance, and a backward guid-
ance mechanism propagates sequence-level signals to token-level advantages. These components
together stabilize optimization and enforce property alignment during training.
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C ADDITIONAL ABLATION ANALYSIS OF HOMO, LUMO, AND THE
HOMO-LUMO GAP

Among all target properties in QM9, the frontier orbital energies (HOMO and LUMO) are funda-
mental descriptors of molecular reactivity and stability. Their difference defines the HOMO-LUMO
gap, Ae = eLumo — €gomo- Because the gap is a deterministic function of the two orbital energies,
aligning generated molecules with respect to HOMO and LUMO naturally improves the alignment
of Ae as well (as measured by the EGNN evaluator). To investigate why these properties are particu-
larly sensitive, we compare the full model against four targeted ablations: (i) No-RL, which removes
reinforcement learning while keeping retrieval, testing whether retrieval alone suffices for control-
lability; (ii) No-RAG, which removes the retrieval module while retaining RL, isolating the role of
property-aware retrieval; (iii) Structure-ablated, which further discards structural descriptors from
the retrieved prefixes to assess the necessity of explicit structural cues; and (iv) Prefix-randomized,
which preserves the retrieval size but shuffles prefix statistics to disrupt meaningful signals. The full
(POETIC) model serves as the unablated reference. Taken together, these controlled experiments
reveal that reinforcement learning provides the primary source of error reduction, while structural
priors supplied through retrieval further refine property alignment, and both are necessary for precise
regulation of frontier orbital properties.

Table 4: Ablation results on HOMO, LUMO, and the HOMO-LUMO gap (in-distribution MAE,
meV).

Model Variant Ae (meV) cnomo (meV) eLumo (meV)
Full (POETIC) 62 39 27
No-RL 151 78 94
No-RAG 76 45 32
Structure-ablated 78 47 35
Prefix-randomized 1033 998 883

The ablation results clarify why the errors of HOMO, LUMO, and their gap fall below the dataset-
level average of the EGNN evaluator. Reinforcement learning provides the dominant optimization
signal, while retrieval supplies structural priors that bias generation toward regions of chemical space
where the evaluator is more stable. Together, these factors reduce the conditional error below the
dataset-level baseline. Within this trend, the HOMO-LUMO gap shows the greatest improvement,
consistent with prior studies highlighting its strong sensitivity to medium-range motifs such as con-
jugation length, aromatic topology, and heteroatom placement (Ramakrishnan et al., 2014). HOMO
and LUMO also shift systematically with these motifs, though to a lesser extent, which matches the
ablation results showing that all three properties depend critically on structural priors.

Reinforcement learning thus serves as the essential fine-tuning mechanism, translating deviations
in the evaluated properties into consistent feedback and propagating this signal throughout the se-
quence. Retrieval complements this process by anchoring optimization in chemically plausible re-
gions of molecular space, allowing RL to sharpen property alignment more effectively. Without
RL, retrieval alone cannot reduce errors below the dataset average; without retrieval, RL loses the
structural signals needed to fully exploit evaluator stability. Their combination is therefore crucial
for achieving the observed improvements.

Finally, the fact that both the reward model used for RL and the evaluator share the same EGNN
architecture may introduce a small compatibility gain. However, the ablation results show that
this effect is limited: if architectural overlap were the dominant factor, the No-RAG variant (with
RL but without retrieval) would already match the performance of the full model, yet its errors
remain substantially higher. This indicates that while scorer—policy consistency may provide a minor
boost, the major improvements stem from RL, with structural priors from retrieval enabling further
reductions. Thus, the drop of HOMO, LUMO, and gap errors below the dataset-level EGNN error
is best explained by the combined action of RL and retrieval, rather than by architectural overlap
between the reward model and the evaluator.
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D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETERS AND EXPERIMENTAL DETAILS

Supervised Pre-Training. We train a 16-layer Mamba model with a hidden size of 768 on the QM9
dataset. The batch size is set to 32 and the base learning rate to 6 x 10~%. Training runs for 200
epochs using the AdamW optimizer with a linear warmup followed by cosine decay: the learning
rate increases linearly from zero to 6 x 10~% during the first 10% of training tokens, and then decays
to 6 x 10~* according to a cosine schedule. Real numbers are tokenized to two decimal places,
and the context length is fixed to 200 based on dataset statistics. All supervised experiments are
conducted on two NVIDIA RTX 4090D GPUs.

For retrieval-augmented generation (RAG), we adopt a two-step retrieval strategy over QM9 molec-
ular sequences. First, property-based pre-selection ranks molecules by their absolute deviation from
the target property, and the top-K,o = 40 candidates are retained. Second, the candidate set is
refined with a hybrid similarity score that combines property alignment (weight 0.9) with sequence-
level structural coherence (weight 0.1), from which the top-5 exemplars are selected. From these
exemplars, we extract element frequency distributions and distance histogram peaks, and serialize
them into structured prefixes with property values formatted to two-decimal precision.

Reinforcement Learning Fine-tuning. To further enforce alignment with target molecular prop-
erties, we fine-tune the supervised model using property-aware reinforcement learning. The setup
employs a 16-layer Mamba with hidden size 768, context length 200, temperature 0.7, and top-k
sampling (k = 80). Each training step samples 16 conditions, with 12 generations per condition.
Invalid or unparsable molecules receive a reward of —1.0, while valid generations are scored ac-
cording to property objectives, with all rewards scaled by 1.0. Optimization uses AdamW with a
learning rate of 1.2 x 10~°, no weight decay, and gradient clipping of 1.0. Reinforcement learning
runs for 800 iterations with distributed training on two NVIDIA RTX 4090D GPUs.

D.2 BASELINES

We evaluate POETIC against a set of recent controllable molecular generation methods as well as
several dataset-driven references. All baselines are trained and tested under the same benchmark
setup as in our main experiments. Below we briefly describe each method.

Model-based baselines.

* EDM (Hoogeboom et al., 2022): EDM is an equivariant diffusion model that jointly generates
discrete atom types and continuous 3D coordinates. It employs an E(3)-equivariant graph neural
network (Satorras et al., 2021) to model the denoising process, and supports conditional generation
by concatenating target molecular properties into node features.

* GeoLDM (Xu et al., 2023): GeoLDM first encodes molecules into a structured latent space that
contains both equivariant tensor channels and invariant scalars. A latent diffusion model is then
applied in this compact space, and a decoder reconstructs the 3D coordinates and atom types.
Conditional generation is enabled by injecting property guidance in the latent diffusion stage.

* Geo2Seq with Mamba (Li et al., 2024): Geo2Seq discretizes molecular geometry into a canon-
ical sequence using SE(3)-invariant spherical coordinates and a canonical labeling scheme. The
sequence is modeled autoregressively with a Mamba-based language model. The generated se-
quence can be deterministically mapped back to a valid 3D structure, which allows efficient and
geometry-aware controllable generation.

* NExT-Mol (Liu et al., 2025b): NExT-Mol combines diffusion modeling with sequence/latent-
space representations to improve controllability and sampling efficiency. It represents a hybrid
design that unifies different generative paradigms and serves as a strong recent baseline.

Data-driven references.

* Data: Uses the ground-truth QM9 labels as conditions. This captures the inherent error of the
downstream property predictor and therefore serves as a reference lower bound.

* Random: Randomly shuffles molecular labels before conditioning. This breaks the true struc-
ture—property relation and serves as a reference upper bound for uncontrolled generation.
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* Nuoms: Conditions only on the atom count of each molecule. This checks how much coarse-
grained information (such as molecular size) alone can explain the predictive performance.

D.3 UNSEEN-TARGET EVALUATION PROTOCOL
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Figure 5: Distribution of molecular properties with the training region (middle 80%) and unseen
regions (lower/upper 10%) highlighted.

To evaluate generalization beyond the training distribution, we further partition the training set by
property values. For each property (e.g., polarizability « or HOMO-LUMO gap), we sort the values
and determine the 10th and 90th percentiles. The central 80% interval is retained for model training,
while the lower 10% and upper 10% tails are withheld and designated as unseen targets, as illustrated
in Figure 5.

During evaluation, the model is conditioned on these unseen target values to generate molecular
structures. Property values of the generated molecules are then predicted by the frozen property
predictor described in the main text, and the mean absolute error (MAE) between generated and
desired targets is reported. This protocol directly measures the model’s ability to generalize control-
lable generation to property ranges that were never observed during training.

D.4 DETAILS OF TOY EXPERIMENTS

To support the motivation in Section 1, we provide the configuration of the toy experiments shown in
Figure 1. All experiments use the same model architecture and training setup as in the main results,
but for efficiency we ran RL fine-tuning for 200 steps and evaluated on 200 randomly sampled
target property values. We compared the following variants: MLE, trained by maximum likelihood
without retrieval or reinforcement learning; MLE+RL, which augments MLE with property-aware
reinforcement learning; and MLE+RAG+RL, which further incorporates retrieval-based structural
prefixes. For the in-distribution case, targets were sampled from in-vocabulary property tokens,
while for the unseen property case, targets were sampled from out-of-vocabulary property tokens.

D.5 HYPERPARAMETER SENSITIVITY ANALYSIS SETTINGS

We provide the detailed settings for the hyperparameter sensitivity experiments reported in Sec-
tion 4.4. All studies are conducted on the QM9 dataset using a randomly sampled subset of 2,000
target property values for computational efficiency. We vary three key factors: (i) the number of
retrieved exemplars K and the candidate pool size Kool in the two-step retrieval module; (ii) the
weighting factor ~y that balances property and structural similarity during hybrid filtering; and (iii)
the KL-regularization weight 5 in the GRPO objective for reinforcement learning.
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Unless otherwise stated, the default configuration follows the main experiments: K = 5, Kyoo =
40, v = 0.9, and 8 = 0.03. For each setting, we generate molecules conditioned on the same set of
2,000 target properties, evaluate property MAE with the frozen EGNN predictor, and keep all other
model, training, and inference hyperparameters the same as in the main experiments.

E EXTENDED STUDIES
E.1 NOVELTY AND VALIDITY EVALUATION

Table 5: Validity and novelty of molecules generated by POETIC across six quantum properties.

Property Validity (%) Novelty (%)
«a 92.7 80.5
Ae 90.3 70.1
€HOMO 87.7 76.7
€ELUMO 91.4 81.8
L 92.2 81.8
Cly 94.4 76.6

We extend our evaluation on the QM9 dataset by introducing two additional metrics: validity and
novelty. Following the methods from JODO (Huang et al., 2023) and Geo2Seq (Li et al., 2024),
we use RDKit to convert 3D molecular structures into 2D graphs and evaluate the metrics on these
2D representations. The same model and experimental settings as in the main paper of POETIC are
used. Table 5 summarizes the results across the six quantum properties. We observe that POETIC
consistently achieves high validity, indicating that the model generates chemically valid and mean-
ingful molecules. This confirms that the generated molecules are not only structurally feasible but
also conform to expected chemical principles. Additionally, the model demonstrates a strong per-
formance in novelty, as it produces a significant percentage of new molecules that are distinct from
those seen during training. This highlights the model’s ability to generate genuinely new molecu-
lar structures, rather than merely memorizing training data, further proving its creative potential in
molecular design.

E.2 ERROR CASE ANALYSIS

One common challenge in LM-based molecular generation is the emergence of hallucinations and
repetitions. Prior work such as Geo2Seq (Li et al., 2024) has shown that autoregressive decoding
without structural constraints can lead to repetitive token loops or to hallucinated geometries. In
our supervised-only setting, we observed similar issues: the model occasionally repeated tokens
excessively or generated invalid structures that broke chemical rules.

* Repetition: H 0.000 0.000° 0.000° O 0.972 1.571° 0.000° C 1.863 2.342° 0.000° C 3.145 3.145
3.145 3.145 3.145 3.145 3.145 3.145 3.145 3.145 3.145 N 4.237 2.389° -0.000° C 4.351 2.686°
0.000° H 5.387 2.751° 0.000° O 3.627 3.627 3.627 3.627 3.627 3.627 3.627 O 2.144 2.693° 3.141°

 Hallucination: H 0.000 0.000° 0.000° C 1.117 1.571° -0.000° O 2.022 2.106° -0.000° C 2.211
0.895°-0.000° H 3.096 1.148° 0.000° C 2.789 0.641° 2.157 H 3.166 1.014° -0.965° C 4.055 4.574
2.223° H 4.954 0.604° 2.157° H 4.250 0.476° 2.694° C 3.448 0.149° 0.964° H 4.461 0.270° 2.596
C2.647 0.571° 0.788° H 2.548 0.560° 1.479° C 2.766 2.766 0.769° H 2.596 4.006 4.302 H 3.722
0.904° 0.936°

In contrast, our approach alleviates both hallucinations and repetitions by incorporating an explicit
penalty on invalid molecules during reinforcement learning (RL) (see Eq. 9). Since repetitive token
loops and structurally infeasible generations typically result in invalid molecules, penalizing inva-
lidity naturally suppresses these undesired behaviors. This invalidity-aware reinforcement signal
constrains the decoding process and substantially reduces the frequency of both hallucinated and
repetitive structures, thereby aligning molecular generation more closely with validity requirements.
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F RETRIEVAL-AUGMENTED PREFIXES: CONSTRUCTION AND SEQUENTIAL
IMPLICATIONS

To illustrate how retrieval-augmented prefixes are constructed and to make our approach transparent,
we provide several complete examples in this section. Each prefix encodes both the target property
value and concise structural statistics—element frequencies and interatomic distance peaks. In this
way, a single numeric target is expanded into a structured snapshot of the relevant chemical con-
text. Presenting full prefixes also highlights how their composition varies across properties, making
the conditioning process interpretable and showing how POETIC integrates retrieval into language
model generation.

Beyond making the conditioning mechanism interpretable, this construction also broadens the
model’s capacity to generalize. The structural cues carried in the prefix act as transferable priors:
even if the target property token is unseen during training, the retrieved statistics bias the model to-
ward chemically plausible regions of the space. Thus, the prefix transforms a brittle scalar condition
into a richer, context-aware signal that remains useful across distributions.

This notion of a prefix as a structured and persistent signal becomes even more powerful when
paired with sequence-based architectures such as Mamba. Because Mamba generates molecules
token by token, the delimiter-bounded prefix tokens do not vanish after initialization; they remain
accessible throughout decoding. As a result, the property and structural context encoded in the
prefix continually shapes the generative trajectory. What begins as a static condition is effectively
turned into a dynamic dialogue between target values and retrieved exemplars, enabling Mamba to
maintain both validity and controllability as the sequence unfolds.

Full serialized examples. We now present several complete prefixes to illustrate their structure and
variability across different target properties.

o = 86.69

[COND_START] cond value 86.69 [COND_END]
[ELEM_FREQ_START] elems H:0.60,C:0.34,N:0.04,0:0.01 [ELEM_FREQ_END]
[D_PEAK_START] d [2.81,2.97];[2.50,2.66] [D_PEAK END] [RAG_END]

o = 65.67

[COND_START] cond value 65.67 [COND_END]
[ELEM_FREQ_START] elems H:0.43,C:0.30,N:0.13,0:0.13 [ELEM_FREQ_END]
[D_PEAK_START] d [4.38,4.53];[3.12,3.28] [D_PEAK END] [RAG_END]

Ae =0.15

[COND_START] cond value 0.15 [COND_END]
[ELEM_FREQ_START] elems H:0.53,C:0.34,0:0.07,N:0.05 [ELEM_FREQ END]
[D_PEAK_START] d [4.53,4.69];[0.00,0.16] [D_PEAK END] [RAG_END]

€EHOMO — —0.32

[COND_START] cond value -0.32 [COND_END]
[ELEM_FREQ_START] elems H:0.53,C:0.30,N:0.11,0:0.06 [ELEM_FREQ_END]
[D_PEAK_START] d [3.91,4.06];[2.66,2.81] [D_PEAK_END] [RAG_END]

Taken together, these examples show that retrieval-augmented prefixes act as a principled bridge
between continuous property values and discrete autoregressive generation. In POETIC, this bridge
is not a static lookup but a dynamic, sequence-level scaffold: by combining transferable structural
priors with explicit token boundaries, it allows Mamba to carry property and structural guidance
throughout decoding. This persistent signal helps the model preserve chemical validity while align-
ing with the target specification, ultimately improving both controllability and generalization within
a single, interpretable framework.
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G VISUALIZATION OF LATENT SPACE ALIGNMENT

To investigate the mechanism behind POETIC’s improved controllability, we visualized the latent
space embeddings of generated molecules using PCA. As shown in Figure 6, the supervised baseline
(MLE) exhibits a disordered embedding space with scattered samples, indicating a lack of correla-
tion between the latent representation and target properties. In contrast, POETIC (after RL) reveals
a highly structured manifold with a clear property gradient. This demonstrates that the property-
aware RL fine-tuning successfully aligns the model’s semantic space with the continuous physical
property distribution.

Embedding Space Alignment with Target Properties (n=100)
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Figure 6: Visualization of latent space embeddings using PCA. The points represent generated
molecules colored by their target property values. (Left) The MLE baseline shows a disordered
distribution. (Right) POETIC reveals a structured manifold with a clear property gradient, indicat-
ing that the model has learned to map continuous physical properties to its internal representation
space.

H GEOMETRIC DISTRIBUTION ANALYSIS
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Figure 7: Comparison of geometric distributions between POETIC and QM9. The histograms
for (a) bond lengths and (b) bond angles show a high degree of alignment between the generated
molecules (blue) and the ground truth (gray), demonstrating the structural realism and geometric
fidelity of our approach.

To verify the geometric plausibility of the generated structures, we analyzed the distributions of
interatomic bond lengths and bond angles. As shown in Figure 7, the distributions produced by
POETIC (blue) exhibit a significant overlap with the ground truth QM9 dataset (gray). The model
accurately reproduces the characteristic peaks for both bond lengths and angles, confirming that
POETIC successfully captures the underlying physical constraints of stable molecular geometry
beyond simple property optimization.
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