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Abstract
Granger-causality derived from observational time series data is used in many real-world appli-
cations where timely interventions are infeasible. However, discovering Granger-causal links in
large temporal networks with a large number of nodes and time-lags can lead to millions of time-
lagged model parameters, which requires us to make sparsity and overlap assumptions. In this
paper, we propose to learn time-lagged model parameters with the objective of improving recall of
links, while learning to defer predictions when the overlap assumption is violated over observed
time series. By learning such conditional time-lagged models, we demonstrate a 25% increase in
the area under the precision-recall curve for discovering Granger-causal links combined with a 18-
25% improvement in forecasting accuracy across three popular and diverse datasets from different
disciplines (DREAM3 gene expression, MoCAP human motion recognition and New York Times
news-based stock price prediction) with correspondingly large temporal networks, over several
baseline models including Multivariate Autoregression, Neural Granger Causality, Graph Neural
Networks and Graph Attention models. The observed improvement in Granger-causal link discov-
ery is significant and can potentially further improve prediction accuracy and modeling efficiency
in downstream real-world applications leveraging these popular datasets.

1. Introduction

Granger causality Granger (1969) in time series data is important in many real world applications
in economics Arnold et al. (2007a), climate science Lozano et al. (2009b), earth sciences Runge
et al. (2019), and biology Lozano et al. (2009a). The knowledge of the Granger-causal structure
allows us to build prediction models to make fine-grained time series forecasts conditioned on spe-
cific covariate values. For instance, the knowledge that a specific set of genes interfere with the
expression of another gene allows us to build accurate gene regulatory networks, which assist in
generating hypotheses for drug discovery. In practice, interventions are often infeasible because
of the large dimensionality of data and making inference from real-time observations becomes in-
evitable as placing controls are either impractical, or even unethical. As a result, the inferences and
forecasts must be done using only observational data. In this work, we assume that the underlying
Granger-causal structure is specified to the extent that we know which covariates affect the outcome
variable of interest. However, we lack information on how long the effect lasts and if it holds under
all covariate distributions. For example, in the DREAM3 gene expression network task Prill et al.
(2010), where multiple genes can express and influence other genes, experiments are carried out
where as part of a treatment, certain catalyzing agents are introduced over a time period and the
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corresponding gene expression time series are observed. Here, although we know that there are a
specific set of 100 genes that potentially Granger-cause each other, we do not know how the effect
of “one gene regulating another” varies temporally. The number of time-lagged parameters in such
a time series model can quickly grow with the maximum allowed time-lag (Table 1). In other words,
because each of the gene expression varies over time, we need to know how the expression of one
gene at one point in time regulates another gene’s expression at a future time in a parameter efficient
manner. This issue is unique to Granger-Causality over time series data in scenarios with limited
data, relative to the high dimensionality of permissible time-lagged covariate distributions.

A common way to address this issue has been to be conservative and train prediction models
over large time windows to capture any long-term effects of covariates Yang et al. (2018). This ap-
proach often runs into data sparsity issues and poor granger-causal link discovery accuracy Spirtes
(2001). To deal with this issue, prior graphical granger methods Arnold et al. (2007b) have arti-
ficially imposed sparsity constraints on the model parameters forcing co-efficients to collapse to
zero, thereby reducing time-lagged parameters to estimate (from 600 − 700 to ≤ 100). However,
Granger-Causality was not designed for large temporal networks with millions of time-lagged pa-
rameters; in fact, economists have often warned against blindly applying it over a large number
of variables Peters et al. (2013). One of the issues in applying Granger-causality directly to large
temporal networks, is that large window sizes also result in the increase in chances of a violation of
the positivity assumption Rosenbaum and Rubin (1983); Vapnik (1999) - a condition necessary for
consistency of the Graphical Granger methods, i.e certain time-lagged covariate distributions have
been rarely or never observed previously and hence extrapolating the granger-causal links to such
covariate distributions may be erroneous. In such scenarios, it might be best to defer prediction
rather than predicting by extrapolating incorrectly.

To deal with the above challenges, in this paper, we propose a methodology to improve the
recall of Granger-causal links by conditionally allowing for prediction deferrals. Specifically, given
an outcome variable, a treatment variable, and a collection of covariates which are known to have
passed the bivariate Granger-causal test (all of which are time series), our method parametrizes
each of the Granger-causal links with two parameters: (a) the maximum window size, δ, and (b) the
variance threshold, ρ. The maximum window size specifies a bound on how long the treatment effect
lasts and the variance threshold specifies when predictions are deferred. In particular, if the variance
of our estimator for a given covariate value is above ρ, then we defer the prediction, suggesting that
we do not have sufficient confidence in whether the treatment takes effect under the given covariate
value based on the observations. Our method chooses the values of δ and ρ to optimize a Granger-
causal link recall metric, which is computed using only those covariate distributions whose variance
is below the threshold ρ. A small value of δ will result in fewer deferrals during training and
thus a more reliable estimate of the recall metric, but might miss several links with longer time
lags yielding lower recall, and the model becomes too sensitive to perturbations over smaller time
windows. Very large values of δ also result in lower recall because they result in a large number of
deferrals during training and consequently less evidence from data to support link discovery. Thus
our formulation trades-off the model’s temporal sensitivity and overlap-based robustness, to learn
predictive models that have high accuracy and are consistent with the known Granger-causal links.

Prior work does not consider link recovery but instead focuses on optimizing prediction accu-
racy using general purpose sparsity inducing techniques. In particular, multivariate Auto-Regression
linear models (VAR) are trained to optimize prediction accuracy while inducing sparsity in the time
lag parameters through Group Lasso penalty Lozano et al. (2009a) regularization; links are included
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Dataset n δ # Parameters # Targets

MoCAP 54 2,024 113,344 12
DREAM3 46 10,500 504,000 5
Stocks 100 29,200 2,978,400 10

Table 1: Problem of Over-parameterization in Time-Series Granger-Causal Models

by comparing the prediction accuracy of the model with and without the treatment variable Conover
and Iman (1981) to test for significance. The non-linear version of the above VAR Granger Causal-
ity models have also been proposed Tank et al. (2018) which could model additive effects of the past
of each series in a decoupled manner. Sequence prediction models You et al. (2018) and graph atten-
tion models Veličković et al. (2018) which model the neighborhood of nodes to learn Granger-causal
links have also been studied. In the structured prediction task, identifying how much covariate over-
lap exists between variables has been studied Jesson et al. (2020). We build off of these constraints
and demonstrate that augmenting the condition of overlap violation ensures that prediction models
which learn to defer when specific covariate distributions have not been previously observed are
better at discovering Granger-causal links.

Learning such robust time-lagged Granger-causal models can be of immense importance in
various real world scenarios of causal discovery. For example, in our running example of gene
expression networks, using time series data from multiple such experiments carried out in labo-
ratory settings along with our Granger-causal parametrization framework, we can extract optimal
lag parameters between different genes to understand when (time-lag) and how (covariate over-
lap) they influence each other’s expression. Similarly, in the human motion capture MoCAP task
CMU (2009), we are able to improve the area under the precision-recall curve (AUC-PR) of detect-
ing Granger-causal links in the human activity recognition dataset than baseline Granger-causality
Granger (2001); Tank et al. (2018) methods. Finally, given time series of Granger-causal news
events, we improve monthly forecasting accuracy of stock prices. Each of these three tasks have a
large set of time-lagged parameters (113K - 2.9M as per Table 1), but aim to predict a very small
number of target variables. The conditional temporal prediction models we have developed has

• Reduced the number of parameters to learn by 2-3 orders, and achieved 25% better AUC-PR
in discovering Granger-causal links than comparative baselines

• Improved prediction accuracy over held-out time series by 18-25% across three datasets in
MoCap activity recognition, DREAM3 gene regulatory networks detection and the New York
Times news-based stock price prediction tasks.

• Formalized the trade-off between time-lag sensitivity and overlap-based robustness and showed
that artificially increasing the maximum time-lag leads to an over-specified model with sub-
optimal link recovery and prediction accuracy.

2. Granger Causal Link Recovery

Problem Setup: We consider a time-series forecasting problem where the goal is to predict the
value y(t + 1) at time t + 1 of an outcome times series using the past observations X(t, δ) =
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{x1(t, δ),x2(t, δ), ..xn(t, δ)}, the treatment time series v(t, δ), the historical outcomes y(t, δ),
each of them a vector of values evaluated up to δ discrete time steps back in time from timestamp
t. We assume we are given a predictive model m, which outputs the future values of the outcome
time series from the past observations:

ŷ(t+ 1) = m (X(t, δ),v(t, δ),y(t, δ)) .

Each of the above variables {x1,x2, . . . ,xn,v,y}(t, δ) are time-lagged multivariate variables with
δ time-lagged values going back from time instant t. This means the predictive model has a total of
(n+ 2) · δ variables as input to predict the value of the outcome at time t+ 1. We also assume we
are given non-parametric links of interest of the form v → y. We now train this predictive model
on historical observational data and use it to make fine-grained predictions for each covariate value
(x,v). Implementing this approach requires us to answer two questions:

1. How long does the treatment effect last?

2. Under what covariate values does the treatment take effect?

Answering the first question allows to set the correct value of δ. The second question is impor-
tant when dealing with observational data because the positivity assumption in covariate overlap
P (v(t, δ) = v|X(t, δ) = x) > 0 is often not met and blindly assuming it holds can lead to incor-
rect extrapolation.

Prior work has focused on answering the first question using sparsity inducing methods Arnold
et al. (2007b), while we argue that the second question is of equal importance to learn a robust time-
lagged Granger-causal model and has implications on answering the first question. We formulate
this as a joint learning problem with the goal to learn a compact Granger-causality aware time series
predictive model which also learns to deferfrom making over-confident predictions for time periods
with very few conditional treatment and covariate observations in the data Jesson et al. (2020).

Time-Lagged Granger-Causal Model Assumptions: Learning the time-lag parameters based
on temporal predictions have been studied in the domain of Granger causality Granger (2001),
where the links are established based on the lag parameter in a time series of the causal variable that
provide the highest reduction in regression error of predicting the effect variable in a multivariate
setting. These models make assumptions of sparsity, i.e for a given (v,y) only a small number of
time-lagged variables of X,y,v are predictive of future values of y(t+1). Many sparsity enforcing
methods have been proposed like the Lasso regularization Arnold et al. (2007b) which minimize
the number of non-zero weights in a linear model Tank et al. (2018); Balashankar et al. (2019), a
minimal generative model graph to learn directed information graphs Quinn et al. (2015), or propose
an auxiliary task based regularization of jointly predicting the causal graph and optimal predictors
Kyono et al. (2020) or propose a recall-based regularization method to model autocorrelated time
series with latent confounders Gamella and Heinze-Deml (2020). One overlooked assumption in the
above approaches in overcoming the overparameterization issue is that of the positivity assumption
in covariate overlap (P (v(t, δ) = v|X(t, δ) = x) > 0) Imbens (2004), between treatment and
outcome, given observational data. We overcome the limitation of prior methods by addressing
violations of the positivity assumption explicitly through covariate conditional variance estimation.
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3. Methodology

Under the ignorability (no unobserved confounders) assumption, we can either estimate the impor-
tance of the treatment on the outcome variable from observed data by either slicing data based on
treatment Shalit et al. (2017) or incorporating the treatment variable as another covariate Gelman
and Hill (2006); Lawes et al. (2012); Jesson et al. (2020). In Algorithm 1, we adopt the latter ap-
proach and learn a time-lagged prediction model that optimizes the recall of Granger-causal links
with the target variable y, using the covariates X and the treatment variable v. Now we explain
the Granger-causal link significance test used, and how we use a conditioned version of it to incor-
porate the covariate overlap assumption. Finally, we tie all of these components into a Bayesian
optimization algorithm that maximizes the recall of the Granger-causal links.

To overcome the intractability of ensuring the overlap assumption for large number of covari-
ates, we use the approach used by Jesson et al. (2020). We estimate the lack of overlap using the
conditional variance - V̂ (x, δ) of the predictive models m̂, m̃, which predict ŷ(t + 1) (Eqn 5). We
use a non-parametric Conover Squared Ranks (SR) test-statistic used for testing for equality of vari-
ance in prediction errors Conover and Iman (1981), to approximate the new information that helps
in improving the prediction accuracy of models. Once the prediction models are trained on certain
splits of the data for a given outcome, we then estimate the variance by the bootstrapping method
and evaluating the covariate variance on numerous held-out development splits. For a given thresh-
old ρ, we adopt a trimming policy Hernán and Robins (2010) with the rejection policy, conditioning
on covariates x, where the covariate variance V ar[V̂ (x, δ)] is above a threshold ρ Jesson et al.
(2020), and then compute the Time-Lagged Conditional Treatment Importance - TCTI(δ, ρ).

TCTI(δ, ρ) = Ex:V ar[V̂ (x,δ)]≤ρV̂ (x, δ) (1)

This formulation outlines that when the predictive causality test statistic has high variance, we
should not rely on those slices as they violate the overlap assumption. If the estimated value of TCTI
passes the SR test with α significance (α = 0.05) under a F(1, (n + 2)δ + 1) distribution, we then
consider the treatment variable v to have an α-significant Granger-causal link with y. Our choice
to place a fixed threshold on the variance is to understand the effect of this variance on the recall
of the Granger causal links, which cannot be done without imposing a strict discretization (either to
choose a link or not), by using the variance directly in the predictive modeling. This process is then
repeated for all treatment variables to give the recall w(δ, ρ), which we will maximize:

w(δ, ρ) =
# links α-significant with (δ, ρ) as per Eqn 1

# Granger-causal links
(2)

Computing TCTI: Since the values of importance weights can vary depending on the choice
of models, for example in the case of linear regression - they are coefficients, whereas in non-
linear network models, there are attention weights, activation vector alignment - similar to Granger
methods Granger et al. (2000), we use a non-parametric Conover Squared Ranks (SR) test for
equality of variance Conover and Iman (1981), to test if the treatment variable provides any new
information that helps with the prediction accuracy of models: m̂ with and m̃ without the treatment
variable as input. The test is run on the prediction errors ϵ(ŷ(x,δ)(t+ 1)), ϵ(ỹ(x,δ)(t+ 1)) produced
by prediction models m̂, m̃ respectively on held-out temporally disjoint test data.
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ŷ(x,δ)(t+ 1) = m̂(X(t, δ) = x,v(t, δ),y(t, δ)) (3)

ỹ(x,δ)(t+ 1) = m̃(X(t, δ) = x,y(t, δ)) (4)

V̂ (x, δ) = SR(ϵ(ŷ(x,δ)(t+ 1)), ϵ(ỹ(x,δ)(t+ 1))) (5)

The SR test we use, is the non-parametric alternative of the Levene’s test Brown and Forsythe
(1974), which itself is the robust alternative for non-normal distributions to the 1-way between-
groups analysis of variance (ANOVA) Fisher (1992) test to detect equality of population means.
We use this test over the parametric ones as we do not make any assumption of the distribution
of variance (normal), as our test of overlap violation cannot work if we already assume that there
is an underlying normal distribution. The input for the prediction model are δ lagged time series
of covariates, treatments and outcomes, and we will control the length of this time series as part
of our methodology. We vary the δ and train jointly - warm starting hidden model parameters as
the time lag δ increases, instead of training a separate model from random initialization per value
of δ. Thus, we are able to compute the temporal lag that maximizes the prediction accuracy of
the target variable that is Granger-causally linked to covariates. We characterize that a Granger-
causal link to be supported by the observed data (or to be recalled), if adding a Granger-causal
variable’s temporal lag causes an increase in the prediction accuracy of the outcome conditioned on
the covariate X(t, δ) = x, as show by a test statistic with a p-value below the statistical significance
threshold (α = 0.05) under a F(1, n+1) distribution, as compared to not incorporating the Granger-
causal variable at all. Otherwise, we characterize that Granger-causal link as not yet observed in
the data. To convert the time-sensitivity into a variance based estimate, we compare the prediction
errors ϵ and characterize it by the inequality of variance V̂ (x, δ) given by the test statistic of the
Squared Ranks (SR) test. Models m̂, m̃ are trained and tested (Eqn 5) on temporally disjoint time
series data.

Overlap-based Conditioning: We now have to overcome the intractability of conditioning on
the large number of covariates. Here too, we use the previously trained models: m̂, m̃ to predict
the target variable, but use the variance of the treatment importance estimate Jesson et al. (2020).
Once the prediction models m̂, m̃ are trained on certain splits of the data for a given outcome, we
then estimate the variance by a bootstrapping method and evaluating V̂ (x, δ) on numerous held-out
development splits.

V ar[V̂ (x, δ)] = V ar[SR(ϵ(ŷ(x,δ)(t+ 1)), ϵ(ỹ(x,δ)(t+ 1)))] (6)

For a given threshold ρ, we adopt a trimming policy Hernán and Robins (2010) with the rejection
policy, conditioning on covariates where the variance of V ar[V̂ (x, δ)] is above a threshold ρ Jesson
et al. (2020), and then compute the Time-Lagged Conditional Treatment Importance - TCTI(δ, ρ).
While the models trained are dependent on δ, the computation of TCTI(δ, ρ) is done after the
training is completed, rather than at training time.

Fine-tuning hyperparameters: Our formulation outlines that when the predictive causality test
statistic has high variance, we should not rely on those slices as they violate the overlap assumption.
For a given time-sensitivity lag parameter, this trade-off with overlap assumption can be understood
by varying the hyper-parameters together. We see that for thresholds: ρ, such that the overlap
condition x : V ar[V̂ (x, δ)] ≤ ρ is satisfied for all covariates x, then there would be no deferral, and
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such a TCTI(δ, ρ) would directly evaluate the Granger-causality of the links, and hence w(δ, ρ)
would be equal to 1. We now outline 3 approaches we used to fine-tune the hyper-parameters δ, ρ.

Grid Search: By using a grid search for values of δ ∈ {1, 2, . . . T}, ρ ∈ {η, 2η, . . . kη}, for
each Granger-causal link in the dataset, we search for the value δ∗, ρ∗ that maximizes the w(δ, ρ).
This way, we search among all Granger-causal links, the sensitivity and robustness parameters that
is best supported by the observed data. This can be time-consuming to be done for each model and
we can upper-bound the time lag parameter T to train the model.

Random Search: Instead of an exhaustive grid search, in this approach, we sample values
of δ, ρ from a uniform distribution and choose the parameters that maximizes the w(δ, ρ). Here,
we were able to heuristically choose a bound larger than T, kη respectively and can search among
values not explored by the grid search. Although we can control the number of hyper-parameters to
train and evaluate the models against, the computational cost in training the models remain.

Bayesian Optimization: To learn which hyper-parameters δ, ρ result in high recall of Granger-
causal links as per the significance level α = 0.05, we used Bayesian optimization with the proba-
bility prior f parameterized by θ to be drawn from Gaussian processes. Specifically, we maximize
the fraction of links w validated with a significance level for a given value of (δ, ρ). The covariance
kernel chosen is the ARD Matern 5/2 Kernel Snoek et al. (2012), which has been demonstrated
to capture realistic hyper-parameter distributions in neural networks, while resulting in sampling
functions that are twice differentiable. We choose hyper-parameters in parallel using the Bayesian
roll out method, where the acquisition function is optimized the utility of expected improvement per
trial.

Algorithm 1 BayesOpt for Exploring the Time-Overlap Trade-offs

1: (δ, ρ) ∼ U: uniform random distribution, δ̂ ← 0
2: M = {}, ŵ ← 0, ψ ←stopping criterion
3: while ŵ < 1− ψ do
4: Update BayesOpt acquisition function
5: Acquire D = {k values of δ} from BayesOpt
6: Update maxδ ← maxδ∈D(δ,maxδ)
7: Train m̂maxδ

, m̃maxδ
and update δ̂ ← maxδ if maxδ < δ̂

8: Acquire R = {k values of ρ} from BayesOpt
9: Update f, δ∗, ρ∗ over R to maximize w(δ, ρ): Eqn (2)

10: end while
11: Return δ∗, ρ∗

Inference: Once we obtain the optimal δ∗, ρ∗, for each outcome variable, we use the trained
models to make time-series predictions over unseen data. If the variance for a given covariate as
pre-computed by the test statistic in Eqn 5 is above the threshold ρ∗ at training time, we continue to
defer to make predictions on those covariates at inference time. The resulting time-lagged prediction
model then is used directly to infer the Granger-causal links based on the non-zero model parameters
in the models (Sec 4).
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4. Evaluation

Datasets: DREAM3: The DREAM3 gene expression network inference challenge Prill et al.
(2010) consists of 5 datasets, 2 for E.Coli and 3 for Yeast, with each dataset containing 100 time
series. Each of the time series has 46 variables, each of them gene expression replicates observed
at 21 time instants. For each of these 46 variables, we consider in a round-robin version that one
of those variables is the outcome, one is the treatment, and the rest as covariates. This allows us to
estimate TCTI(δ, ρ) for a total of 2070 combinations of treatment and outcomes, given the covari-
ates. The ground truth contains directed Granger-causal links between 46 replicates, and through
our prediction models, we parametrize each of the Granger-causal links by sweeping over values
of δ, ρ with the maximum significant value of TCTI(δ, ρ). In parallel, we also report the AUROC
(Area under the Receiver-Operator Curve) and AUC-PR (Area under the precision recall curve) for
the classification task of detecting the binary gene expression.

MoCAP: The CMU MoCAP dataset CMU (2009) consists of motion sensor data, for 54 joints,
collected from two subjects for a total of 2024 time points. Here, we are given the Granger-causal
links of the human skeleton and we learn the time lag and overlap parameters for the classification
of each of the activities - jumping jacks, side twists, arm circles, etc. Here, we report the AUC-PR
(Area under the Precision-Recall curve) for detecting the human activity based on the movements
in the human joints, along with the recall of the Granger-causal links in the human skeleton.

Stock Price Prediction: In the stock prediction task, the outcomes are each of the 10 stock
prices from 2010-13 (with 2013 as the test split), and for the treatment variable, we are given the
top 10 financial news based Granger-causal factors and a further 100 covariates extracted from NY
Times by Balashankar et al. (2019). Here too, we measure the Root Mean-Squared Errors (RMSE)
of the predicted values and the fraction of time instants where we had to defer the prediction.

Baselines: We present a few comparable baseline prediction models built to incorporate Granger-
causality for time series and discuss how compact time-lagged versions of these models have been
learnt. These models are the baselines we evaluate in Section 5.

Multivariate linear auto-regressive models: Multivariate Auto-Regression linear models (VAR)
take the time series of the treatment, covariates and the lagged values of the target variable as input
to predict the target variable for future time instants. Here, we compare the prediction accuracy
of the model with and without the treatment variable using the non-parametric Squared Rank test
Conover and Iman (1981) to test the significance of a non-zero coefficient in matrix C. Additionally,
we also add the Group Lasso penalty Lozano et al. (2009a) that has been shown to overcome the
need of precisely estimating the time lag by applying the Lasso regularization.

y(t+ 1) = A · y(t, δ) +B · X(t, δ) + C · v(t, δ) +D (7)

Neural Granger causality: The non-linear version of the above VAR Granger Causality models
have also been proposed Tank et al. (2018) which could model additive effects of the past of each
series in a decoupled manner. Here, by modeling the task of Granger causality using componentwise
multilayer perceptrons and recurrent neural networks, all time series are captured in an input layer
of the neural network having a total of δ · n2 ·W parameters, where W is the number of hidden
units in the input layer. In order to model long time lags in Granger causality, they use component-
wise recurrent neural networks (RNN) for each time series. Similar to the linear model, to enforce
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sparsity, Lasso penalty and the hierarchical group Lasso penalty have been proposed, which chooses
a suitable lag for each of the time series - but ignores the covariate overlap violation.

Generative Graph Neural Networks: Another approach proposed in You et al. (2018), is to
model this as a sequence prediction by reducing the graph to Breadth-First-Search (BFS) based de-
terministic sequence. They use a hierarchical graph RNN structure to first model the node prediction
problem. In our case, although we know all the nodes of the network ahead of time, we can use the
edge prediction model and predict edges in a BFS sequence. While this is comparable to the Neural
Granger Causality model, the number of parameters to be learnt is lesser: δ · n ·W .

Graph Attention Model: Also recently, with the success of attention models in natural lan-
guage tasks like machine translation, attending over the neighborhood of nodes, instead of recurrent
architectures has been shown to be specifically relevant for graphical causal modeling Veličković
et al. (2018). This approach requires only the neighborhood of nodes and scales better than spectral
representations of the graph, which need to be aware of the entire graph structure.

Other Related Work: We aim to understand the assumptions required to identify the optimal
time sensitivity parameters of Granger-causal links in time series data, once the direction and pres-
ence of the Granger-causal links have already been defined. Prior work in this space has focused
on methodologies to increase recall of the causal links in auto-correlated time series Gerhardus and
Runge (2020) or regularize over unseen parts of the causal graph Kyono et al. (2020). However,
such methods fail to quantify when it might be even possible to recover the optimal time lag param-
eters in an observed data distribution. The covariate relationship in time series have been explored
in Granger causality with group boosting methods Lozano et al. (2009a) or Markov random field
regression Liu et al. (2010) which capture the non-linear group information between variables in a
time series. Prior methods Riva and Bellazzi (1996) that maintain a set of probabilistic causal mod-
els and perform model selection can also benefit from the quantification of the trade-off between
overlap and temporal parameters in longitudinal data.

Experiment setup: Each time the prediction models m̂, m̃ are updated in Step 7 of Algorithm
1, the model parameters are updated inline with the optimization objective of the baseline model
with the modified maxδ. In the case of the VAR model, the training is using the same Group
Lasso penalty as that of the baseline model. In the Neural Granger Model, the weight terms for the
hierarchical and component-wise Lasso penalty are the same as that used for the baseline model
without TCTI. For the Generative Graph model, the model parameters are updated as per the node
and edge prediction loss, but other hyperparameters remain the same as that of the baseline model
- such as learning rate, architecture of the GraphRNN (4 layers of GRU cells, 128 hidden state
dimensions for node prediction; and 4 layers of GRU cells and 16 hidden state dimensions for
edge prediction). For the Graph Attention Network baseline, we update the model parameters of
the model like attention weights; but architectural hyperparameters remain the same in our TCTI
version - we use the transductive learning set up with 8 attention heads each computing 8 features,
followed by a single attention head for the prediction task.

5. Results

We now demonstrate the efficiency of our approach in Granger-Causal link discovery, while show-
ing that our prediction deferrals do not reduce prediction accuracy. Also, we show choosing the
right set of temporal and covariate hyperparameters are critical for this improvement, as compared
to generic sparsity inducing baselines where the choice is adhoc.
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Figure 1: Recall of Granger-Causal Links vs Prediction Accuracy (a) DREAM3: Across each
of the 5 outcomes in the DREAM3 dataset, we see that as the recall of the Granger-causal links
in the gene expression network increases, the AUROC of the time series of the gene expression
level also increases. (b) MoCAP: As the recall of the Granger-causal links of the human skeleton
network increases, the AUC-PR in the human activity recognition task increases. (c) Stock: As the
recall of the Granger-causal links of the financial news factors increases, the prediction accuracy of
10 stock prices increases.

0 20 40 60 80 100

# of model re-training

0.0

0.2

0.4

0.6

0.8

R
ec

al
l

of
ca

u
sa

l
lin

ks

random

grid

BayesOpt

VAR

Neural Granger

Graph Generative

Graph Attention

Figure 2: Sampling efficiency among hyperparameter search methods The number of re-
trainings required to fine-tune the time sensitivity and robustness overlap parameters to improve
the recall of Granger-causal links in the DREAM gene expression dataset
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Figure 3: Prediction Deferrals effect on Accuracy Choosing δ based on an overlap based con-
straint, the prediction accuracy increases on the remaining test samples on (a) DREAM3 (b) Mo-
CAP (c) Stock datasets for 4 Granger causal models. As the prediction models choose to defer on
larger fractions of the covariate data splits, the increase in accuracy is higher.
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Figure 4: Variation between time lag and overlap parameters for the Graph Attention Model on
3 datasets shows the need to learn them jointly
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Figure 5: Trade-off for a fixed prediction accuracy Time sensitivity and robustness overlap among
the fine-tuned Neural Granger Causal prediction models across Granger-causal links that provide the
highest TCTI(δ, ρ) for (a) DREAM3, (b) MoCAP and (c) Stock Price prediction datasets

Granger-Causal Link Discovery: We demonstrate that our proposed method by optimizing
TCTI(δ, ρ) and hence the Granger-causal link recall, we improve both the recall of Granger-causal
links and the prediction accuracy across 3 datasets and 4 baseline Granger causal models (see base-
lines Sec 4 in detailed methods). In Figure 1, we see that the prediction accuracy (y-axis) improves
by 18-21% and the recall of Granger-causal links (x-axis) improves by 25% across 3 datasets for
each of the four prediction models’ TCTI-{VAR, Neural Granger, Graph Generative, Graph Atten-
tion}, when the time lag and overlap parameters are optimized with 25 random restarts. The baseline
models base-{VAR, Neural Granger, Graph Generative, Graph Attention} indicated as dots in the
plot, have the sparsity constraint enforced through Lasso regularization loss, and end up with a
lower recall of Granger-causal links i.e more Granger-causal links are not used for prediction, with
low prediction accuracy. Further, to be comparable with baseline models which do not defer, we
do not defer predictions at inference time, but only while learning the optimal time-lag and overlap
parameters δ, ρ in Algorithm 1.

Importance of Prediction Deferrals: To understand how deferring predictions on covariates
with high variance as per TCTI (δ, ρ) has helped learning better prediction models on the remaining
covariates, we see that for each of the 3 tasks and 4 models in Figure 3, that there is an increase
in prediction accuracy for the covariates we choose to predict as compared to the overall baseline
model. Further, the increase is greater when the number of covariate slices deferred is greater. Thus
by deferring predictions over covariates where overlap assumptions are violated, we improve the
prediction accuracy and rely on robust Granger-causal links for prediction.
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Variation in Time-Lag and Overlap Parameters: To understand how setting time-lag and
overlap parameters is critical for the high performance of our approach, we plot the range of pa-
rameters required to achieve a fixed prediction accuracy across the 4 prediction models with our
approach. In each of the dataset, we see that the distribution of parameters for time-lag, overlap-
constraint for the links for a given Granger-causal model (the Graph Attention Model) has high
variability as shown in Figure 4. Also, for a fixed prediction accuracy of outcomes, we see that the
links for the 4 modeling choices are clustered into 3 groups - (low δ, high ρ), (low δ, low ρ), (high δ,
low ρ). The lack of links with relatively high δ and high ρ further empirically affirms the trade-off
between time-lag and overlap-constraints as shown in Figure 5.

Hyperparameter Optimization Method: We also see that across the 3 datasets, and the 4
modeling techniques - the choice of the hyperparameter fine-tuning methodology can impact the
number of Granger-causal links we can recover with significant TCTI(δ, ρ) as shown in Figure 2.
While grid search and random sampling provide good initial estimates of the maximum recall that
can be achieved, we see that BayesOpt quickly outperforms these brute force search mechanisms
for the same number of model re-trainings. This drastically reduces the time and cost required to
identify the temporal and overlap characteristics of the Granger-causal links.

6. Conclusion

We have demonstrated the need to parameterize causal links with their associated temporal sensi-
tivity with awareness of overlap assumption violations on 3 diverse datasets. In time series data, we
show that there exists a trade-off between how temporally sensitive any prediction model incorpo-
rating the causal links can be while not compromising on the covariate overlap assumption. This
allows us to further build better prediction models while not relying on data that lacks overlap while
attempting to capture long term effects. Further, since the size of such temporal networks are quite
large with millions of parameters of estimate, we have shown that a principled way of addressing
covariate uncertainty through prediction deferrals can further improve the trust in practitioners.
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