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ABSTRACT

Existing Source-free Video Domain Adaptation (SFVDA) aims to learn a target
video model for an unlabeled target domain by transferring knowledge from a
labeled source domain using a single pre-trained source video model. In this
paper, we explore a new SFVDA setting where multiple source domains ex-
ist, each offering a library of source models with different architectures. This
setting offers both opportunities and challenges: while the presence of multi-
ple source models enriches the pool of transferable knowledge, it also increases
the risk of negative transfer due to inappropriate source knowledge. To tackle
these challenges, we introduce the Multiple-Source-Video-Model Aggregation
Framework (MSVMA), comprising two key modules. The first module, termed
Multi-level Instance Transferability Calibration (MITC), enhances existing
uncertainty-based transferability estimation metrics by incorporating scale infor-
mation from both group and dataset levels. This integration facilitates accurate
transferability estimation at the instance level across diverse models. The sec-
ond module, termed Instance-level Multi Video Model Aggregation (IMVMA),
leverages the calculated instance-level transferability to guide a path generation
network. This network produces instance-specific weights for unsupervised ag-
gregation of source models. Empirical results from three video domain adapta-
tion datasets demonstrate the state-of-the-art performance of our MSVMA frame-
work.

1 INTRODUCTION

Video action recognition is a crucial task in video understanding, which has continually garnered
attention and research due to its general applicability. Recently, significant advancements in video
action recognition have been achieved with deep learning(1; 2; 3), largely due to the emergence and
availability of large-scale labeled datasets(4; 5). However, the construction of large-scale labeled

Figure 1: Illustration of the UVDA , SFVDA and MSFVDA task settings.
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datasets for real-world scenarios incurs substantial manpower and financial costs, which poses a
significant challenge when adapting models to various sceneries.

Unsupervised Video Domain Adaptation (UVDA) has been proposed recently (6), which aims to
transfer knowledge from a labeled video dataset (source domain) to an unlabeled target domain.
Existing approaches address this task by minimizing the domain discrepancy between the source
and target domain based on adversarial training (7; 8; 9; 10) and self-supervised learning methods
(11; 12; 13).

While traditional UVDA methods effectively mitigate domain shift between different video sources,
they necessitate access to source data during the adaptation step, which poses significant risks of pri-
vacy breaches and incurs substantial data transmission costs. To address these challenges, Source-
Free Video Domain Adaptation (SFVDA) has emerged as a promising alternative (14). SFVDA
relies solely on a single pre-trained model from a labeled source domain to learn an action recogni-
tion model for the unlabeled target domain, without accessing the original source videos. Recently,
a state-of-the-art SFVDA method based on temporal and spatial consistency has been proposed (15).
This method adapts the source model to learn the capabilities of motion dynamics and action coher-
ence in videos by applying temporal and spatial augmentations to simulate domain transitions.

A primary limitation of current Source-Free Video Domain Adaptation (SFVDA) methods is their
reliance on a single source domain model. However, numerous source models from different sources
with diverse architectures are generally available in real-world scenarios, which offer a wide vari-
ety of knowledge. This has motivated us to explore more comprehensive adaptation strategies by
integrating information from multiple source domain models, a method we termed Multi-model
Source-Free Video Unsupervised Domain Adaptation (MSFVDA). By providing a zoo of well-
trained source models with various architectures from the source domain, target users can access
and leverage multiple models for domain adaptation, thereby enhancing the knowledge base of the
source domain. However, a critical challenge in developing MSFVDA lies in the effective aggrega-
tion of the multiple source domain models.

To best of our knowledge, this problem has not yet been explored in the video domain. Beyond the
video task, a closely related work is SUTE (16), which address multi-model adaptation in image
task. The key of this method is to estimate the transferability of each model and select models
for aggregation based on the estimated transferability. This method operates at the dataset-level,
i.e., estimating the transferability of a model on the entire dataset. However, due to the inherent
spatial and temporal complexities in videos, significant variability exists among video instances.
Consequently, estimating model transferability solely at the dataset-level fails to account for the
variability of models toward individual instances. Recently, there is a study that focuses on the
multi-model aggregation at instance-level (17). However, this method relies on labeled data for path
weight learning, which is unsuitable in MSFVDA.

In this paper, we introduce a Multiple-Source-Video-Model Aggregation (MSVMA) framework to
address the MSFVDA. To resolve the challenge of instance-level transferability estimation, we pro-
pose a novel Multi-level Instance Transferability Calibration (MITC) algorithm. MITC seeks to
measure the instance-level transferability based on the uncertainty methods (18). Therefore, we
introduce a novel calibrate function, which further calibrates the uncertainty-based instance-level
transferability by incorporating scale information from both group-level and dataset-level. For more
effective instance-level aggregation, we introduce an Instance-level Video Multi-Model Aggregation
(IMVMA), which accounts for the significant differences among video instances. IMVMA learns
to assign instance-level weights for each video instance in the path generation network based on the
instance-level transferability estimated by MITC, and then selectively activate source domain mod-
els to achieve instance-level model aggregation. We demonstrated the effectiveness of our method
on three public datasets and achieved state-of-the-art results.

Our contributions can be summarized as follows:

1. We propose a novel multi-level instance transferability calibration algorithm (MITC),
which leverages transferability information across multiple scales to calibrate instance-
level transferability. This approach enables more accurate instance-level source-free video
transferability measurement;

2. We develop a new Instance-level Multi Video Model Aggregation (IMVMA) framework as-
sisted by our proposed MITC. By integrating multiple source models from source domains
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with varied architectures, IMVMA gathers more comprehensive knowledge and achieves
better accuracy and stability for domain adaptation;

3. We test our model on the Daily-DA, Sports-DA, and UCF-HMDBfull datasets for video
action recognition. All the results support that our MSFVDA model brings a large perfor-
mance boosting compared to other state-of-the-art models.

2 RELATED WORK

Source Free Unsupervised Video Domain Adaptation. Image-based Source-Free Unsupervised
Domain Adaptation (SFDA) has garnered significant attention recently (19; 20; 21). The primary
goal of SFDA is to adapt models trained on a source domain directly to an unlabeled target domain
without requiring access to source domain data. In contrast, Source-Free Video Domain Adaptation
(SFVDA) has only recently begun to be explored. The unique temporal properties inherent to video
data present a significant challenge for SFVDA. Xu et al. (22) proposed a SFVDA method that
leverages the temporal properties of video data based on temporal consistency. Similarly, Li et al.
(15) also took advantage of temporal consistency, by exploring the model’s self-adaptive capabilities
in both temporal and spatial information. However, previous studies have primarily focused on
the adaptation issues of single models, heavily restricting the overall performance. Recently, Pei
et al. (16) introduce a transferability measure to assist in model selection, assigning dataset-level
weights during aggregation, and achieving excellent performance in various image recognition tasks.
Building on this, our work proposes a new instance-level video multi-model aggregation framework
that can simultaneously learn accurate path weights in an unsupervised manner and assist in model
selection. This approach further enhances the effectiveness of multi-model aggregation.

Transferability Measurements. In scenarios where multiple pre-trained source domain models are
available, it is particularly crucial to evaluate the transferability of each source domain model to the
target domain. A traditional way predicts the performance of the source model after fine-tuning in
a supervised manner on the target domain (23; 24; 25; 26). However, the requirement for target
labels in these methods above hinders their application in broader contexts. Recently, some meth-
ods are proposed for estimating the transferability for source-free unsupervised tasks (27; 28). These
method can be roughly divided into two classes: distribution-induced methods and uncertainty-based
methods. Distribution-induced methods (16; 29) measure transferability by developing and evaluat-
ing some distribution-related assumption. For example, SUTE (16) proposed hypotheses on dataset
distribution, including Individual Certainty, Semantic Consistency, and Global Dispersion. MDE
(29) proposes to levegate the energy hypothesis and converts the information of all samples into a
statistical probability distribution. However, estimating transferability solely from the perspective
of dataset distribution overlooks the model’s variability in individual instances. Uncertainty-based
methods leverage uncertainty methods for transferability estimation, including entropy, temporal
and spatial disturbances, based on the assumption that high transferable model exhibits low uncer-
tainty (30; 18). However, uncertainty-based methods fail to accurately estimate transferability across
different models (19). To address this, we propose the MITC method to perform instance-level and
cross-model transferability estimation.

3 METHOD

3.1 PROBLEM DEFINITION AND NOTIONS

Assume the source domain DS contains |DS | labeled videos {(Vi, yi)}|DS |
i=1 and provides M adaptive

video classification models hi. The target domain DT contains |DT | unlabeled videos denoted as
{Vi}|DT |

i=1 . The final goal of MSFVDA is to learn a target model H = {hi|, 1 ≤ i ≤ M} from the
M source models and apply it to the target domain video. In this paper, we represent the feature
extraction for each target video by f(Vi), and the output of each target video as h(Vi).

3.2 SOURCE MODEL GENERATION

Unlike the existing SFVDA methods, we conduct the training of the source model directly based
on the mmaction2 (31) framework. We separate the model h into two components: h = F ◦ C,
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Figure 2: Illustration of our Multiple-Source-Video-Model Aggregation (MSVMA) framework: (a)
Current uncertainty-based methods focus on model transferability but lack generalization across
models. (b) Distribution-induced methods estimate dataset-level transferability across models but
neglect instance-level transferability within models. (c) To overcome these limitations, we pro-
pose a Multi-level Instance Transferability Calibration (MITC) approach that accurately calibrates
instance-level transferability using multi-dimensional information. (d) Our Instance-Level Multi-
Video Model Aggregation (IMVMA) framework employs a path generation network to assign cus-
tomized instance-level weights, with MITC (Γ) adjusting these weights unsupervised to ensure ac-
curate distribution. The aggregated model is then used as the target model.

where F serves as the feature extractor encapsulating the temporal data within the feature, and C
functions as the classifier. For each video input Vi, it passes the feature extractor to get a vector
representation for Vi, which will be sent to C for calculating the cross-entropy loss with yi. h is
updated accordingly with the standard gradient back-propagation.

3.3 ANALYSIS OF EXISTING TRANSFERABILITY MEASUREMENTS

While MSFVDA provides a more extensive knowledge base from the source domains, incorporating
multiple distinct source models may increase the risk of including those that underperform in the
target domain, thereby causing a substantial decline in overall performance. The experimental re-
sults demonstrate that careful model selection, rather than indiscriminately using all available source
models, significantly improves adaptation performance in the target domain. These findings high-
light the critical need for effective transferability estimation metrics within the MSFVDA framework
to accurately assess and select the most suitable source domain models.

Existing transferability estimation methods can be roughly categorized into two groups: distribution-
induced methods (16; 29) that develop and evaluate some distribution-related assumption and
uncertainty-based methods which are based on the assumption that high transferable model exhibits
low uncertainty (30; 18).

While these methods demonstrate effectiveness in image model transferability measurement tasks,
we observed the experiment result in table 1 that both methods are not suitable in our MSFVDA,
which are discussed in the following.

Limitation of distribution-induced methods: These methods utilize dataset-level information for
cross-model transferability estimation but overlook the fact that source domain models may exhibit
different preferences for individual instances. Unlike images, videos consist of a series of consecu-
tive frames that contain both spatial and temporal information. The temporal dimension introduces
additional complexity and variability. Moreover, videos typically have greater content complexity
compared to images, resulting in more significant differences between video instances than between
image instances. Ignoring instance-level transferability estimation can hinder further improvements
in adaptation performance.

Limitation of Uncertainty-based methods: These methods can estimate instance-level transferability
within a single model. However, when the repository includes models with diverse architectures,
differences between these models introduce bias at the dataset-level. Without addressing these cross-
model differences, directly estimating instance-level transferability across different source domain
models may not provide accurate results.
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3.4 INSTANCE-LEVEL TRANSFERABILITY CALIBRATION

The above discussion highlights two key findings:

• Existing distribution-induced methods accurately estimate transferability at the
dataset-level (coarse-grained) across different models, but they do not extend to fine-
grained, instance-level transferability assessments.

• Current uncertainty-based methods provide reliable metrics for instance-level (fine-
grained) transferability estimation within the same model. However, they lose effi-
ciency when estimating transferability across different models.

Based on these findings, we propose a novel calibration function that integrates the strengths of both
distribution-induced and uncertainty-based methods, thus enabling accurate instance-level transfer-
ability estimation across different models. Specifically, the calibration function is formulated by:

Φ(a, b) =
a

anorm
(1 + ln (1 + b)) (1)

where a represents fine-grained transferability, while b represents large-scale information. This
calibration function is governed by the following two principles:

• During calibration, it is crucial to consider both fine-grained transferability and larger-scale
information to properly align the transferability estimates across source domain models
with different architectures.To preserve the relative relationships between instances within
a model, we focus on fine-grained transferability as the primary measure. By normalizing
this measure, we eliminate the scale discrepancies caused by different model architectures,
allowing for comparable instance-level transferability across models. This approach helps
identify the model preferences for the current instance.

• Scale information is provided by coarse-grained transferability. Coarse-grained transfer-
ability is effective for cross-architecture model evaluation. However, because it does not
account for differences between instances at the instance-level, it should only serve as a
scale reference for comparisons between models.

Instance Transferability Calibration. In this paper, we employ the previously developed Source-
Free Transferability Estimation (SUTE) (16) as our coarse-grained transferability measurements
(terms TD ) due to its efficiency. The calculation method for SUTE is as follows:

SUTE = EVi∼DH(h(Vi))−H(Pỹ|ŷ) +H(EVi∼DT
(h(Vi))) (2)

where ŷ denotes predictive semantics, ỹ denotes the pseudo label for each target data,and E denotes
the expected value. We additionally add a piecewise function (parameterized by τ ) of SUTE to
formulated our TD, formulated by:

TD = γ(SUTE; τ) =
{

SUTE, SUTE ≥ τ.

−∞, SUTE < τ.
(3)

This is because we observed that models with very small SUTE values exhibit poor transferability.
Aggregating such models with others significantly affects the adaptation results.

Then, we adopt the entropy as our fine-grained transferability measurement. Given an input instance
Vi, it is formulated by TI = H(h(Vi)). Finally, by utilizing the proposed calibration function
(Equation 1), the calibrated instance-level transferability is formulated by Φ(TI , TD).
Multi-Level Instance Transferability Calibration. The core idea of Instance Transferability Esti-
mation Calibration is to calibrate fine-grained (i.e., instance-level) transferability based on the scales
provided by coarse-grained (i.e., dataset-level) transferability, since the latter is easier. Building on
this idea, we further introduce an intermediate grouping, referred to as the ”group-level,” to en-
hance the transferability calibration. A ”group” is defined as a set of the k Nearest Neighborhoods
of a sample within the feature space. Hence, this level serves as a finer granularity compared to
the dataset-level, while remaining coarser than the instance-level. In this paper, we formulate the
group-level transferability as the maximum distance between samples within group. This implicitly
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reflects the characteristic that, for a transferable model, samples belonging to the same class should
be closer in the feature space. Specifically, the group-level transferability is formulated by:

TG = max

{
d(f(Vi), f(Vj∗))

∣∣∣∣ j∗ ∈ arg sortk
(
d(f(Vi), f(Vj∗))

)}
(4)

The arg sortk function returns the indices that would sort the distances in ascending order and selects
the top k indices.

Thus, our Multi-Level Instance Transferability Calibration (MITC) framework first calibrates group-
level transferability (denoted as TG) using dataset-level transferability, represented as Φ(TG , TD).
Next, we calibrate instance-level transferability based on the calibrated group-level transferability.
The complete MITC formulation is as follows:

MITC = Φ(TI ,Φ(TG , TD)) (5)

3.5 INSTANCE-LEVEL SOURCE MODEL AGGREGATION

Aggregation of multiple source domain models can be facilitated by the MSFDA methods
(32; 15; 33; 34), which derive domain-level integration weights and apply these uniformly across
all target instances. Although the learned weights offer an intuitive interpretation based on domain
transferability, they inevitably introduce misalignment and bias at the instance level. Moreover,
videos, in contrast to images, exhibit more pronounced misalignment and bias at the instance level,
as illustrated in Fig. 2. Directly assigning a fixed weight to the model undeniably affects perfor-
mance. This prompts us to explore dynamically assigning aggregation model weights to different
instances during model aggregation. Inspired by the prior concept of pathways in deep networks,
different input videos have distinct preferences for different source domain models, activating var-
ious source domain models and assigning them different weights. To this end, we implement a
pathway generation network G, which outputs data-dependent pathway weights G(Vi), where each
dimension represents the weight of a specific model in the hub. To utilize the most suitable pre-
trained models for the target data, we retain only the top k pathway weights and set the remaining
pathway weights to zero:

G(Vi) = ftopk(G(Vi), k) (6)

where ftopk(G(Vi), k)j is defined as G(Vi)j , if G(Vi)j is among the top k values of G(Vi); other-
wise, it is defined as 0.

Based on the generated path weights G(Vi), we only pass the input data to the pre-trained models
where the path weights are greater than zero. At the same time, considering that the path generation
network operates under an unsupervised context for learning and generating path weights, there is an
inherent risk in directly using the weights produced by the path generation network. To address this
issue, we enhance the learning resistance to smooth the path weights. Furthermore, in order to let
the pathway generation network generate an accurate route in an unsupervised setting, we utilize the
multi-level instance transferability calibration (MITC) to assist the pathway generation network in
learning more reasonable instance-level weights. This is achieved by calculating the L2 loss between
the instance-level weights provided by G(Vi) and MITC where MITC = (MITC1, . . . ,MITC|Si|).

Lcor =
1

n

n∑
i=1

(Γi −G(Vi)) (7)

Γi reperesents the MITC of the i-th source model, to constrain the path weights G(Vi). Then the
final output of the video instance-level Source Model aggregation framework is:

output = A
(
[G(Vi) · hi(Vi)]

k
i=1

)
(8)

where A composes the outputs from different source selected models and function [·] concatenates
all the path selected model outputs vectors.

3.6 OVERALL LEARNING OBJECTIVE

In the adaptation process, we employ the SHTC method and simultaneously constrain the weights
generated by the path generation network during training using the Lcor and LSHTC (15) adopts
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from the SHTC method. Our final learning objective is:

L = LSHTC + θ1Lcor (9)

where θ1 are tradeoff hyperparameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conducted experiments on three common benchmark datasets. Benchmark including:
1) UCF-HMDBfull comprises videos from 12 overlapping classes from the UCF101 (U) dataset (35)
and the HMDB51 (H) dataset (36). 2) UCF-Sports-1M is derived from the SportsDA benchmark,
which included two datasets: UCF101 (U) (35) and Sports-1M (S)(37). 3) Daily-DA is another
large-scale cross-domain action recognition benchmark. We excluded Kinetics from our experi-
ments AS the pre-trained models we used from the mmaction2(31) framework were pre-trained on
Kinetics-400. Resulting in three datasets: ARID (A) (38), HMDB51 (H) (36), and Moments-in-
Time (M) (5). The detailed information are listed in the supplementary materials. Among them, the
Daily-DA and UCF-Sports1M datasets, when used for adaptation, utilize the data according to the
domain-specific test sets partitioned as described in the TAMAN(39).

Implementation details. Details of the specific implementation can be found in the supplementary
materials.

Baseline methods. Our primary comparisons are with SHOT (32), STHC (15), DECISION (33),
CAiDA (34), and KD3A (33). Among these, SHOT is a classical method in source-free domain
adaptation, STHC is the state-of-the-art method in source-free video domain adaptation. DECI-
SION, CAiDA, and KD3A are designed as state-of-the-art methods for multi-source free domain
adaptation(MSFDA). For instance-level transferability estimation, we primarily compared our ap-
proach with several methods adapted from Distribution-induced methods. These include Negative
Mutual Information(NMI) (40; 32), pseudo-label-based methods LEEP (26)/LogME (23) (referred
to as LEEP∗/LogME∗ at the instance-level), the energy-based method Meta-Distribution Energy
(MDE) (29), and the source-free unsupervised transferability estimation metric (SUTE) (16). Ad-
ditionally, we compared our method with directly using uncertainty-based approaches, including
entropy, temporal consistency, and spatial consistency(30; 18).

4.2 PERFORMANCE COMPARISON AND ANALYSIS

Comparative Studies. Table 1 shows the correlation between instance-level transferability esti-
mation methods and instance prediction accuracy. We extend existing dataset-level transferability
metrics (distribution-based methods) to the instance level, but found that their performance are sub-
optimal. For instance, methods like MDE failed in certain tasks, with the highest average correlation
of other methods being only 0.184. Additionally, current instance-level methods (uncertainty-based
methods) also performed poorly due to structural differences among models; for example, consis-
tency methods failed, and the entropy method achieved an average correlation of only 0.204.

Our proposed method, MITC, addresses these issues by leveraging multi-scale information to refine
instance-level transferability within models, enabling more accurate cross-model comparisons. This
approach resulted in significant improvements across three public datasets: 0.268 improvement on
Daily-DA, 0.022 on Sport-DA, and 0.033 on UCF-HMDBfull. The only exception was the S→U
task in the Sports-DA dataset, where the minimal domain shift led to similar transferability across
source domain models, allowing uncalibrated instance-level transferability to accurately reflect the
true transferability of instances.

Table 2 presents test results on the more challenging Daily-DA dataset. Using multiple source do-
main models provides richer information, leading to better adaptation than a single model. However,
not all source domain models are highly transferable. Directly aggregating all models can degrade
performance. For example, for SHOT, when using SUTE for model selection before aggregation, it
outperforms direct aggregation of all source models by an average of 2.81%. We found that selecting
models with high transferability based on dataset-level estimation improves the aggregated model’s
performance compared to using all source domain models.
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Table 1: Spearman rank correlation coefficient on Daily-DA, Sports-DA and UCF-HMDBfull. Spear-
man rank correlation coefficient between the cross entropy loss of video instance on the target do-
main and the measured instance transferability under the MSFVDA setting. IL denotes whether the
method estimate transferability on instance level. “-” denotes that the results do not have statistics
significance(re., p-value > 0.05). Best results are in bold font.

Method IL Daily-DA Sports-DA UCF-HMDBfull

M→ A H→ A A→ M H→ M A→ H M→ H Avg. U→ S S→U Avg. H→ U U→H Avg.

NMI × 0.322 0.230 -0.077 0.087 0.238 0.303 0.184 0.200 0.553 0.377 0.531 0.256 0.394
LogME∗ × 0.200 0.050 0.249 -0.057 0.212 - N/A 0.157 0.323 0.240 0.154 0.111 0.133
LEEP∗ × 0.341 0.211 -0.327 - 0.305 0.185 N/A 0.179 0.100 0.140 0.122 - N/A
MDE × 0.183 0.188 -0.211 0.068 -0.232 - N/A -0.214 0.249 0.018 -0.082 0.247 0.083
SUTE × 0.354 0.228 0.310 0.127 0.382 0.290 0.282 0.198 0.268 0.233 0.259 0.175 0.217

Entropy
√

0.388 0.302 -0.202 0.215 -0.040 0.558 0.204 0.687 0.982 0.835 0.932 0.740 0.836
Temporal consistency

√
0.139 -0.090 0.066 -0.044 0.081 - N/A 0.121 -0.034 0.044 0.332 0.225 0.274

Spatial consistency
√

0.345 0.096 0.088 -0.047 0.197 - N/A - 0.162 N/A 0.049 0.056 0.053

MITC (Ours)
√

0.762 0.447 0.308 0.273 0.417 0.622 0.472 0.739 0.975 0.857 0.954 0.783 0.869

Next, we compared our method with SFDA, MSFDA, and SFVDA, which employ model selec-
tion techniques. We evaluated all dataset-level transferability estimation methods from Table 1
across different datasets and ultimately compared our instance-level video aggregation framework,
IMVMA, with the two best-performing transferability estimation methods. Both of these methods
selected the top three most transferable models for aggregation. In our framework, the path gener-
ation network only activated the two models with the highest weights. The final adaptation results
on three datasets demonstrate that IVSUTE outperformed the current SFDA, MSFDA, and SFVDA
methods. Additional experimental results are provided in the supplementary materials.

IMVMA focuses on significant differences between video instances, leading to a substantial perfor-
mance improvement compared to methods that assign fixed weights to all models. It achieved an
average accuracy improvement of 4.29% over the second-best method and a 21.84% improve-
ment over the average performance of individual source domain models. Although multi-level
instance transferability calibration enhances the accuracy of weight adjustment, inaccurate instance-
level transferability estimation can negatively impact the path generation network’s learning, thereby
reducing aggregation performance. For example, in the H→M task, the method without instance-
level weighting outperformed our instance-based video framework. This indicates that while MITC
significantly improves instance-level transferability estimation accuracy, room for further improve-
ment in internal model transferability to enhance MITC’s effectiveness still remains.

Tables 1 and 2 in the supplementary materials present the test results on relatively simpler
datasets, where direct adaptation of source domain models to the target domain already yielded
strong performance. Aggregating all models directly resulted in significant performance gains. Nev-
ertheless, our Multiple-Source-Video-Model Aggregation (MSVMA) framework still achieved a
0.55% improvement over the best aggregation model on the UCF-Sports1M, and an 11.31%
improvement over the average performance of individual source domain models. On the UCF-
HMDBfull, the improvements were 3.69% and 17.07%, respectively, compared to the average
results of individual source domain models. Additional results are provided in the supplementary
materials. Although the improvement in the S→U task using the MSVMA were not substantial,
this was due to the similar performance of the source domain models in the model library, result-
ing in minimal differences between direct aggregation and transferability-based selection, and thus
limiting the effect of instance-level weighting.

4.3 ABLATION STUDIES

Effect of Each Level Calibration. Table 3 presents the experimental results of calibrating trans-
ferability across different hierarchical levels. When only dataset-level large-scale information is
applied to calibrate intermediate-level groups, the overall performance improves by 0.09. However,
performance decreases by 0.163, 0.047, and 0.116 in the H→A, H→M, and M→H tasks, respec-
tively. These results suggest that fine-grained transferability estimation is crucial. Although using
either group-level or dataset-level information in isolation preserves the fine-grained relationships
between models and supports cross-model transferability estimation, incorporating intermediate-
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Table 2: Results on Daily-DA. Source represents the average performance of the models from the
source domain model zoo on the target domain. The best results are in bold.

Method M→ A H→ A A→ M H→ M A→ H M→ H Avg.

Source 42.49 35.07 27.50 39.08 36.34 57.92 39.73

SHOT 58.95 44.56 43.25 48.50 62.50 68.33 54.35
+NMI 60.26 44.56 33.75 46.50 62.50 74.58 53.69

+SUTE 63.10 47.92 47.25 49.25 62.50 72.92 57.16

STHC 59.91 47.85 43.00 48.00 62.08 67.92 54.79
+NMI 60.29 51.31 44.00 45.75 60.42 72.08 55.64

+SUTE 62.87 51.16 47.75 49.00 60.00 72.92 57.28

Decision 58.35 46.30 42.75 49.00 57.92 67.92 53.71
+NMI 60.51 44.02 43.25 50.25 60.42 73.75 55.37

+SUTE 63.07 45.31 43.25 48.25 57.08 73.33 55.05

Kd3A 60.15 47.51 43.00 48.00 62.08 67.92 54.78
+NMI 60.44 51.25 43.59 46.00 60.42 71.67 55.55

+SUTE 63.50 51.25 46.00 49.00 60.42 72.92 57.18

CAiDA 58.57 46.06 42.75 49.00 61.25 68.33 54.33
+NMI 60.24 48.10 45.00 45.50 62.00 72.50 55.56

+SUTE 60.93 51.67 46.00 48.25 61.25 70.42 56.42

Ours 70.36 52.74 50.75 47.25 68.75 79.58 61.57

Table 3: Ablation on multi-level calibration.

I G D M→ A H→ A A→ M H→ M A→ H M→ H Avg.

✓ 0.388 0.302 -0.202 0.215 -0.040 0.558 0.204
✓ ✓ 0.421 0.139 0.295 0.168 0.301 0.442 0.294

✓ ✓ 0.761 0.447 0.306 0.273 0.417 0.621 0.471
✓ ✓ 0.757 0.440 0.323 0.263 0.420 0.620 0.471
✓ ✓ ✓ 0.762 0.447 0.308 0.273 0.417 0.622 0.472

level transferability information further enhances the accuracy of these estimates. This underscores
the advantage of a multi-level calibration approach.

Robustness of MITC and Effectiveness of the Calibration Function. Figure 3a
demonstrates the improvement in cross-model transferability estimation for two uncertainty-
based methods, temporal consistency and spatial consistency, following the application of
the MITC approach. This illustrates the robustness of MITC, indicating that its ef-
fectiveness extends beyond a single uncertainty-based transferability estimation method.

Table 4: Ablation study on instance-level multi-video
models aggregation framework. Best results are in bold
font.

Method M→A A→H

Source only best(oracle) 61.84 62.50
Pathway w/o topK 70.18 67.08

Pathway w/o calibrate 70.19 65.83
Ours 70.36 68.75

Figure 3b showcases the effectiveness of
the proposed calibration function. Com-
pared to directly using dataset-level and
group-level information, our calibration
function proves more effective due to two
key properties: it preserves the relative
relationships among instances within a
model, and it uses dataset-level and group-
level information solely as scale refer-
ences. These features significantly im-
prove the accuracy of instance-level trans-
ferability estimation.

Weight analysis. Figure 4a demonstrates the significance of instance-level weights, highlighting
that directly assigning fixed weights to the models to be aggregated is far less effective than assign-
ing specific weights for each input instance. As shown in Table 4, we report the results of direct
adaptation of the best-performing models in the source domain model zoo (Oracle), the results us-
ing the IMVMA framework without path selection, and the results using the IMVMA framework
without instance-level weight calibrate for path weights.

We observed that directly learning path weights in an unsupervised setting is suboptimal. How-
ever, when all selected source domain models are activated without path selection and with cor-
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(a) (b)

Figure 3: (a) Robustness of MITC. (b) Effectiveness of the calibration function.

(a) (b)

Figure 4: (a) Quality of instance-level weights. (b) Aggregation model number selection.

rected weights, performance surpasses that of the Oracle model. This indicates that utilizing mul-
tiple highly transferable source domain models can effectively enhance adaptation performance.
Moreover, selectively activating a subset of models during aggregation and constraining unsuper-
vised adaptation with instance-level transferability metrics can further improve performance, with
a 8.52% improvement on the M→A task and a 6.25% improvement on the A→H task com-
pared to the Oracle model. This suggests that in an unsupervised context, the path generation
network requires the support of instance-level transferability to accurately activate the appropri-
ate models, thereby enhancing overall dataset-level performance. The variation among video in-
stances allows instance-level model aggregation, guided by instance-level transferability, to outper-
form fixed-weight model aggregation, leading to improved adaptability in the target domain.

Number of Models for Aggregation. When using IMVMA for model aggregation, we select the
top three models with the highest transferability scores. Figure 3(b) shows that aggregating too
many models can introduce poorly transferable ones, harming overall performance. Selecting only
one model limits the benefits of diverse knowledge. Thus, careful selection of the number of models
is essential to balance the benefits and risks of aggregation.

5 CONCLUSION

This paper introduces a new SFVDA setting called MSFVDA, where enables each source domain to
provide a zoo of trained source models , and allows the target user to utilize any model from these
model zoos without limitations on quantity. We propose a Multiple-Source Video Model Aggrega-
tion (MSVMA) framework for this setting. MSVMA employs Multi-level Instance Transferability
Calibration (MITC) to integrate group-level and dataset-level scale information, improving existing
uncertainty-based transferability estimation metrics. This allows for accurate instance-level transfer-
ability estimation across different models. For target domain adaptation, we introduce Instance-level
Multi-Video Model Aggregation (IMVMA), which uses the calculated instance-level transferability
to guide a path generation network. This network assigns instance-specific weights for unsupervised
source model aggregation, achieving state-of-the-art performance on MSFVDA tasks.
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A APPENDIX

Regarding the selection of source domain models, we curated a model zoo comprising 15 models
for the three datasets. This includes C3d (41), SlowFast (42), various configurations of I3d (43) and
SlowOnly (42), as well as different backbone of VideoSwin (44) and MViTv2 (45). The parameters
for model pre-training and video clip segmentation were configured based on the settings within
the mmaction2 framework. All experiments were conducted on an NVIDIA A100. The pathway
generation network was implemented using C3d. The hyperparameter θ1 in equation 8 was set
to 0.01. Instance-level transferability was evaluated by calculating Spearman’s rank correlation
coefficient (46) between the cross-entropy of each source model on target domain instances and
the estimated transferability for each instance. We report the Mean-1 accuracy on the target domain,
which represents the average class accuracy, averaged over five runs for each method under the same
setup.

THe various configurations of I3d includes: The I3D model includes different backbone networks:
ResNet50 (NonLocalDotProduct), ResNet50 (NonLocalEmbedGauss), and ResNet50 (NonLocal-
Gauss); along with two different sampling strategies: 32x2x1 and dense-32x2x1. The Slowonly
model includes different backbone networks: ResNet50 and ResNet101. The VideoSwin model
includes different backbone networks: Swin-T, Swin-S, Swin-B, and Swin-L. The MViTV2 model
includes different backbone networks: MViTv2-S* and MViTv2-B*.
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Table 5: Results on UCF-Sports1M. Average Source Only represents the average performance of
the models from the source domain model zoo on the target domain. The best results are in bold.

Method U→ S S→U Avg

Source 63.09 89.22 76.16

SHOT 71.35 96.18 83.77
+LEEP∗ 72.30 97.60 84.95
+SUTE 72.99 97.57 85.28

STHC 71.81 96.18 84.00
+LEEP∗ 71.80 97.60 84.70
+SUTE 76.16 97.57 86.87

Decision 71.36 96.44 83.90
+LEEP∗ 69.55 97.76 83.66
+SUTE 73.60 97.96 85.78

Kd3A 71.81 96.18 84.00
+LEEP∗ 67.9 96.40 82.15
+SUTE 76.27 97.57 86.92

CAiDA 71.81 96.31 84.06
+LEEP∗ 70.62 97.82 84.22
+SUTE 76.52 97.24 86.88

Ours 76.94 97.99 87.47

Table 6: Results on UCF-HMDBfull. Average Source Only represents the average performance of
the models from the source domain model zoo on the target domain. The best results are in bold.

Method H→ U U→H Avg.

Source 81.97 74.75 78.36

SHOT 93.45 83.14 88.30
+LogME∗ 96.78 81.83 89.31

+SUTE 96.80 86.67 91.74

STHC 93.98 82.87 88.43
+LogME∗ 96.27 81.20 88.74

+SUTE 95.56 86.08 90.82

Decision 93.30 83.14 88.23
+LogME∗ 97.83 76.23 87.03

+SUTE 96.16 87.40 91.78

Kd3A 93.24 82.83 88.04
+LogME∗ 96.20 81.16 88.68

+SUTE 95.54 85.98 90.76

CAiDA 92.90 82.38 87.64
+LogME∗ 96.31 78.68 87.50

+SUTE 95.52 84.91 90.22

Ours 99.57 91.29 95.43
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Table 7: Results on Daily-DA. Source represents the average performance of the models from the
source domain model zoo on the target domain. The best results are in bold.

Method M→ A H→ A A→ M H→ M A→ H M→ H Avg.

Source 42.49 35.07 27.50 39.08 36.34 57.92 39.73

SHOT 58.95 44.56 43.25 48.50 62.50 68.33 54.35
+LEEP∗ 63.98 46.10 47.50 35.75 59.58 65.83 53.12

+LogME∗ 41.91 32.36 27.00 47.75 34.17 61.67 40.81
+MDE 60.44 42.87 26.75 46.00 34.17 74.58 47.47

STHC 59.91 47.85 43.00 48.00 62.08 67.92 54.79
+LEEP∗ 65.33 51.08 47.50 37.75 65.00 67.08 55.62

+LogME∗ 46.39 36.60 17.50 47.25 35.83 62.50 41.01
+MDE 60.29 51.16 13.50 45.75 58.75 71.67 50.19

Decision 58.35 46.30 42.75 49.00 57.92 67.92 53.71
+LEEP∗ 63.88 45.66 47.50 29.00 57.92 65.42 51.56

+LogME∗ 38.94 32.53 27.25 48.50 35.42 62.50 40.86
+MDE 62.52 43.59 24.50 50.25 28.75 73.33 47.16

Kd3A 60.15 47.51 43.00 48.00 62.08 67.92 54.78
+LEEP∗ 64.9 51.60 45.25 37.50 59.17 67.08 54.25

+LogME∗ 46.53 37.01 26.75 47.25 35.00 62.08 42.44
+MDE 60.17 51.25 26.75 45.75 35.42 71.67 48.50

CAiDA 58.57 46.06 42.75 49.00 61.25 68.33 54.33
+LEEP∗ 66.14 49.91 46.50 28.00 58.75 67.08 52.73

+LogME∗ 40.37 41.23 26.00 48.75 32.08 63.33 41.96
+MDE 60.67 42.40 27.00 40.75 27.92 71.67 45.07

Ours 70.36 52.74 50.75 47.25 68.75 79.58 61.57
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Table 8: Results on UCF-Sports1M. Average Source Only represents the average performance of
the models from the source domain model zoo on the target domain. The best results are in bold.

Method U→ S S→U Avg

Source 63.09 89.22 76.16

SHOT 71.35 96.18 83.77
+LogME∗ 51.6 93.12 72.36

+MDE 70.54 88.08 79.31
+NMI 67.86 96.4 82.13

STHC 71.81 96.18 84.00
+LogME∗ 53.27 93.02 73.17

+MDE 69.71 87.85 78.78
+NMI 67.73 96.4 82.07

Decision 71.36 96.44 83.90
+LogME∗ 45.63 93.87 69.75

+MDE 69.65 88.32 78.99
+NMI 69.19 96.27 82.73

Kd3A 71.81 96.18 84.00
+LogME∗ 53.25 93.02 73.14

+MDE 69.84 87.85 78.85
+NMI 67.9 96.4 82.15

CAiDA 71.81 96.31 84.06
+LogME∗ 61.54 90.57 76.06

+MDE 69.21 87.66 78.44
+NMI 68.17 96.62 82.40

Ours 76.94 97.99 87.47

Table 9: Results on UCF-HMDBfull. Average Source Only represents the average performance of
the models from the source domain model zoo on the target domain. The best results are in bold.

Method H→ U U→H Avg.

Source 81.97 74.75 78.36

SHOT 93.45 83.14 88.30
+LEEP∗ 86.69 83.56 85.13
+NMI 95.34 83.66 89.50
+MDE 85.77 86.16 85.97

STHC 93.98 82.87 88.43
+LEEP∗ 82.63 85.68 84.16
+NMI 92.95 81.45 87.20
+MDE 83.76 84.01 83.89

Decision 93.30 83.14 88.23
+LEEP∗ 85.40 84.32 84.87
+NMI 95.60 84.11 89.86
+MDE 85.38 86.29 85.84

Kd3A 93.24 82.83 88.04
+LEEP∗ 82.39 85.43 83.91
+NMI 92.89 81.29 87.09
+MDE 83.69 83.85 83.77

CAiDA 92.90 82.38 87.64
+LEEP∗ 94.11 86.02 90.07
+NMI 93.17 81.27 87.22
+MDE 89.01 84.19 86.60

Ours 99.57 91.29 95.43
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