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Abstract

With the increasing integration of Artificial Intelli-
gence (Al) in various applications, concerns about
fairness and bias have become paramount. While
numerous strategies have been proposed to miti-
gate bias, there is a significant gap in the litera-
ture regarding the use of Large Language Mod-
els (LLMs) in these techniques. This paper aims
to bridge this gap by presenting an innovative ap-
proache that incorporates LLMs for bias mitigation
and fairness in Al systems. Our proposed method,
built on previous research, is designed to be model
and system-agnostic, while keeping humans in the
loop. We envision these approaches to foster trust
between Al developers and end-users/stakeholders,
contributing to the discourse on responsible Al.

1 Introduction

Artificial Intelligence (AI) has become an integral part of our
daily lives, powering various applications from virtual assis-
tants to recommendation systems. However, as Al systems
increasingly interact with and make decisions about people,
concerns about fairness and bias have come to the forefront.
These systems, often trained on large datasets with not always
clear guidelines for ensuring data quality during data collec-
tion, can inadvertently learn and perpetuate the biases present
in these datasets, leading to unfair outcomes. One well-
known example is the COMPAS system used in the United
States criminal justice system, which predicts the likelihood
of a defendant reoffending. A study by ProPublica found that
the system was biased against African-American defendants,
as they were more likely to be labeled as high-risk even if
they had no prior convictions.

In response to these challenges, a part of the Al research
community has been exploring various strategies to miti-
gate bias and ensure fairness. A plethora of methods have
emerged, some involving reprocessing the data used for train-
ing such systems, others involving selecting the best models
according to predefined fairness metrics, or others involving
providing more transparency into the decision-making pro-
cess. While LLMs, one of the most prominent breakthroughs
in Al, have demonstrated effectiveness in a wide range of

tasks, there exists a notable gap in the literature concern-
ing studies advocating for their inclusion in existing tech-
niques for bias mitigation. Furthermore, existing research
has largely focused on specific dataset modalities (visual or
textual), particular type of fairness, or the adaptation of op-
timization problems for specific AI models, with limited ef-
forts towards establishing standards or frameworks that can
be generalized to diverse problems, models, and modalities.

In this paper, we present and discuss an innovative
approach that incorporate LLMs for mitigating bias and
ensuring fairness in Al systems while keeping humans in
the loop, and metrics to quantify its effectiveness. Our
proposed approach, building on previous iterations in the
literature, aims to be model, modality, and system-agnostic.
The proposed metrics offer a unified measure to assess both
the quality of the training data and the bias in AI models
during decision-making. In its current form, our method has
been evaluated using a task on a human-centric situations
dataset, yielding promising outcomes and highlighting its
model-agnostic capabilities. We foresee the application
of our technique to further foster trust between Al system
developers and end-users or stakeholders.

Paper structure. In Section 2, we present and discuss an
overview of prior research, highlighting the gap for studies
leveraging LLMs for mitigating bias. In Section 3, we in-
troduce key concepts necessary for understanding the types
of bias and fairness we refer to, and how the two concepts
overlap and where they differ. In Section 4, we present and
discuss strategies for mitigating bias using LLMs while high-
lighting their relation to types of bias they aim to solve, and
the communication strategy that needs to be implemented for
our approach to work, in Section 5. In Section 6, we present
the specifics and results of an experimental application of our
proposed methodology on a sample dataset. Finally, in Sec-
tion 7, we engage in a discussion involving the challenges in
leveraging LLMs for mitigating bias, and the limitations of
our study.

2 Related work
2.1 FAIR principles

The FAIR principles, which emphasize the importance
of making data Findable, Accessible, Interoperable, and



Reusable, have become a cornerstone for data management
and stewardship in scientific research. These principles were
first introduced by Wilkinson et al. in 2016 and have since
been widely adopted across various disciplines to enhance
data sharing and reuse [Wilkinson et al., 2016]. The adoption
of FAIR principles has been particularly significant in the life
sciences, where large volumes of complex data are generated.
The European Open Science Cloud (EOSC) is an example of
a major project aimed at implementing FAIR data practices
across Europe, promoting open science and facilitating ac-
cess to research data [Collins et al., 2018]. However, their
implementation can be challenging and requires a collabora-
tive effort from all stakeholders, as highlighted by [Collins et
al.,2018].

2.2 Critiques of data collection methods in
Machine Learning

Early efforts in Machine Learning (ML) primarily focused on
amassing vast amounts of data and optimizing the computing
resources. However, recent years have witnessed a growing
scrutiny of prevailing data collection practices within the re-
search domain. Notable studies such as [Paullada et al., 2021]
and [Polyzotis er al., 2019] have shed light on deficiencies
inherent in current methodologies. Moreover, [Raji, 2020],
advocating from the perspective of a black woman, offered
a critical review, underscoring the imperative for heightened
fairness within the current data collection practices. This sen-
timent aligns with the findings of [Paullada er al., 2021], re-
iterated a year later, emphasizing the pressing need for equi-
table representation in research endeavors.

2.3 Bias and fairness mitigation studies

The increasing focus on equity and fairness in artificial intel-
ligence (Al has led to the development of numerous applica-
tions and methodologies aimed at addressing bias in machine
learning (ML) models. [Dwork et al., 2012] were among the
pioneers in this field, providing a mathematical framework to
define and measure fairness and bias in ML models. Their
work laid the foundation for subsequent research by offer-
ing a structured approach to understand and mitigate bias.
Building on this foundation, [Zemel et al., 2013] introduced
a method for learning data representations that ensure fair-
ness with respect to sensitive attributes such as race and gen-
der. Their approach involved transforming original data into a
new representation space where the predictability of sensitive
attributes is minimized while maintaining task-relevant infor-
mation. Few years later, [Feldman et al., 2015] introduced
Disparate Impact, a metric aimed to quantify group fairness
in Al decisions, and proposed an iterative method using con-
vex optimization to find the optimal transformation that min-
imizes the disparate impact, while maintaining the accuracy
of the trained model.

In the years that followed, researchers have explored var-
ious strategies to integrate fairness constraints and develop
bias reduction techniques. For example, [Zafar et al., 2017]
proposed methods to incorporate fairness constraints directly
into the optimization process of ML models. These efforts
have been complemented by practical applications in soci-
ety, such as the work by [Jang et al., 2019], who developed

a method to quantify biases in visual datasets with a focus
on gender representation in commercials. This was further
advanced by [Wang er al., 2022] with the introduction of RE-
VISE, a versatile tool designed to measure and mitigate bias
in visual datasets, highlighting the ongoing commitment to
creating fairer Al systems.

However, the aforementioned bias mitigation techniques
have primarily concentrated on specific dataset modalities
(e.g., visual or textual), a particular type of fairness, mod-
ifying the input data representation space, or adjusting the
optimization constraints of Al models to achieve fairer rep-
resentations. The incorporation of LLMs, one of the most
groundbreaking innovations in Al, remains relatively under-
explored in bias mitigation studies, as we can observe in re-
cent surveys covering the strategies for mitigating bias in Al
systems [Ferrara, 2024]. By addressing this limitation and
exploring new avenues for fairness in Al, the field can con-
tinue to evolve and develop more robust, fair, and ethical Al
systems.

2.4 Large Language Models

At present, LLMs stand as one of the most prominent break-
throughs in Al There are many variations of LLMs in the
market such as the GPT versions (GPT 1[Radford et al.,
2018], GPT2 [Radford et al., 2019], GPT3 [Raji, 2020]), XL-
NET [Yang et al., 2019], Llama from Meta [Touvron et al.,
2023], or the Gemma from Google [Team et al., 20241, with
Transformers [Vaswani et al., 2017] and BERT [Devlin et al.,
2019] and being pioneers of these advancements.

Beyond their prowess in natural language processing tasks,
LLMs have showcased their versatility across domains such
as education, dataset generation, healthcare [Sallam, 2023],
and scientific research [Jungherr, 2023]. However, de-
spite their widespread adoption and multifaceted applica-
tions, there exist a notable lack of studies that leverage this
innovation for reducing bias and ensuring fairness in Al sys-
tems. It is within this gap that our study positions itself, ad-
vocating for the integration of LLMs into practices aimed at
mitigating bias and promoting fairness in Al systems.

3 Bias and fairness in the literature

In this section, we delineate key concepts: bias (Section 3.1),
fairness (Section 3.2), and elucidate the difference between
both concepts (Section 3.3). It serves as an entry point for
presenting our solution, as subsequent sections draw exten-
sively upon the provided definitions.

3.1 Bias in the literature

As defined by [Ferrara, 2024], bias in the literature are de-
fined as the systematic errors that occur in decision-making
processes, leading to unfair outcomes. Distinct forms of
bias include algorithm bias, arising from algorithm design
and implementation favoring specific attributes, confirmation
bias, occurring as systems reinforce pre-existing biases, sam-
pling bias, occurring when training data inadequately rep-
resent served populations, and measurement bias, emerging
from data collection or measurement systematically over or
under-representing certain groups. Recently, with the advent



of Generative Al [Feuerriegel et al., 2024], generative bias
has emerged [Ferrara, 2024], wherein generative model out-
puts disproportionately reflect specific attributes or patterns
within training data, like an image generation model consis-
tently producing male images when generating CEO images.

3.2 Fairness in the literature

Often confused with biases, fairness is a concept that focuses
on the ethical and equitable treatment of individuals or groups
within automated decision-making systems [Ferrara, 2024].
It involves ensuring that the outcomes and processes of Al
systems do not discriminate against or disadvantage any par-
ticular demographic group based on characteristics such as
race, gender, age, or socioeconomic status.

The main types of fairness studied in the literature are
group fairness, that ensures that groups are treated equally
or proportionally in Al systems, individual fairness, ensuring
that similar individuals are treated similarly, procedural fair-
ness, that ensures the process used to make decisions is fair
and transparent, and, more recently, counterfactual fairness,
aiming to ensure that the system would make the same deci-
sion for an individual, regardless of its demographic group.

3.3 Difference between bias and fairness

While interconnected, since bias introduces unfairness into
Al systems, bias and fairness are two completely distinct con-
cepts. While bias represents the presence of unfairness within
Al systems, fairness encompasses the principles and prac-
tices aimed at mitigating bias and ensuring ethical and equi-
table outcomes for all stakeholders. Fairness emphasizes the
need for transparency, accountability, and non-discrimination
in decision-making processes. Recognizing and addressing
biases are essential steps towards achieving fairness in auto-
mated decision-making processes.

4 Mitigating bias using LLMs

LLMs offer unique capabilities that enable the generation of
coherent data and enhance transparency and explainability,
crucial factors in addressing bias and ensuring fairness. In
this section, we delve into our approach harnessing the power
of LLMs to mitigate bias in Al systems, consisting of two
independent modules: the data reprocessing module, detailed
in Section 4.1, and the explanation module, delineated in
Section 4.2. The complete architecture of our framework is
illustrated in Figure 1.

4.1 LLMs for data (re)processing

Various techniques exist to mitigate sampling bias and mea-
surement bias in the literature, often involving data pre or
post-processing. These techniques may include resampling
classes by generating synthetic yet coherent examples, or
augmenting existing data with modified versions of coher-
ent examples. They contribute in parallel to ensure group,
individual, and counterfactual fairness by preventing over
and under-representation, and providing alternative scenarios
for training. Traditionally, addressing these biases demands
extensive data observation and exploration of potential out-
comes across different groups, such as demographic groups.

Resampling with alternative versions and controlling the data
quality of each row can be laborious and time-consuming.
However, LLMs are recognized for their ability to generate
coherent data, whether in the form of counterfactual versions
[Chen et al., 2023] or modified versions based on examples,
sometimes surpassing traditional data augmentation methods
[Yoo et al., 2021]. We propose an iterative approach that in-
volves human oversight while leveraging the power of LLMs.

In our approach, before the training phase, a dataset report
is submitted to an LLM, and an expert determines the subse-
quent action: either issuing a prompt (command) to an LLM
for generating new training data or initiating the training pro-
cess. If a prompt is sent to an LLM to generate an alternative
version of the training data, there is iterative feedback be-
tween the expert and the LLM until predefined conditions are
met and a decision to proceed with model training is reached.
Regardless of the chosen model, training and experiments are
conducted, and detailed insights regarding the outcomes of
the protected groups are provided either to an LLM for sum-
marization (especially in cases involving multiple groups and
subgroups) or directly to the expert. This is an automated pro-
cess that can be achieved programatically without the input of
a LLM. Finally, armed with comprehensive reports on input
data and outcomes concerning protected groups, the expert
can then opt to generate an alternative dataset version using
an LLM to mitigate potential biases.

The expert can assess the quality of the data in terms of rep-
resentation by computing Demographic Parity, that measures
whether the generated data has equal representation of dif-
ferent demographic groups, in terms of uniqueness by com-
puting the duplication rate, that measures the percentage of
duplicates within generated data, precision, that proportion
of data points that are relevant or important for a specific
task or analysis, and in terms of consistency and timeliness
by providing a rating on random batches of data. The poten-
tial summarization of the outcomes can be evaluated by the
expert through a rating of accuracy of explanations. The fair-
ness of the predictions of the model can be assessed using
fairness metrics such as demographic parity, which measures
the probability of a positive outcome being the same for all
groups, regardless of their sensitive attributes (e.g., race, gen-
der), equal opportunity, which measures the true positive rate
(TPR) (proportion of actual positive instances that are cor-
rectly identified as positive by the model) being the same for
all groups, and equalized odds, which requires both the true
positive rate and the false positive rate (FPR) (proportion of
actual negative instances that are incorrectly identified as pos-
itive by the model) to be the same for all groups.

In our proposed methodology, the calculation of the
dataset’s quality, denoted as D@, is performed as follows:

DQ = (3 DQmixai) + (3 DQri+B) (1)
i=1 J=1

Irrespective of the selected data quality metrics and ratings,
we determine the sum of the data quality metrics (Dgm) mul-
tiplied by their corresponding normalization factor (a)) which
scales the values between O and 1, considering that different
metrics may have varying scales. Subsequently, we add this



outcome with the sum of the data quality ratings multiplied
by their respective normalization factor (/3) for the same ra-
tionale.

The total bias B in the proposed approach is assessed as:

1 N

i=1

B

Regardless of the chosen bias metrics, we establish the sum
of the bias metrics (bfm) multiplied by their corresponding
normalization factor (). The overall effectiveness, F, of the
proposed approach can be determined through the delta (dif-
ference) between the data quality of the generated dataset,
DQ@ger, and the data quality metric of the original dataset,
DQorig, subtracted by the delta between the bias metric 5 of
the generated dataset, By.,, and the original dataset, B 4.
This can be formally expressed as:

E = (DQgen - DQorig) - (Bgen - Bo'rig) (3)

Considering that the delta in the bias metric should be neg-
ative for a less biased dataset, the subtraction in this context
is logical for enhancing the overall value of FE, for indicating
a superior effectiveness of the process. Our proposed metric
can then assess both the quality of the generated data and the
bias from the model in one unified metric.

4.2 LLMs for transparency, accountability,
explainability

Transparency refers to the openness and clarity of Al systems
regarding their operation, decision-making processes, and un-
derlying algorithms. Explainability, on the other hand, specif-
ically pertains to the ability of an Al system to provide un-
derstandable explanations for its decisions and actions. Both
transparency and explainability are intricately contribute to
ensuring procedural fairness (Section 3.2).

In many cases, ensuring transparency in Al systems in-
volves incorporating explainability mechanisms that enable
users to understand why and how certain decisions were made
by the system. Various explainability techniques are avail-
able in the literature, including GRAD-CAM [Selvaraju et al.,
2017] mostly used for image data, SHAP [Lundberg and Lee,
2017] for tree-based models and neural networks, Integrated
Gradients [Sundararajan et al., 2017] and LIME [Ribeiro et
al., 2016] for image and text data, and GNN-Explainer for
knowledge graphs [Ying er al., 2019]. These methods pro-
duce diverse raw values, such as feature importance matri-
ces or coefficients (SHAP, LIME), sub-graph and node im-
portance scores (GNN Explainer), heatmaps (GRAD-CAM),
and feature attribution vectors (Integrated Gradients). While
an image juxtaposed to its heatmap, such as in the implemen-
tation of GRAD-CAM, can be fairly understood by a non-
expert with a generic description that does not necessarily
need the input of an LLM, explanations based on feature im-
portance or attribution matrices can be challenging for non-
image data to understand without expert interpretation. How-
ever, Al systems are not only destined to the experts, in most
cases, but to the end-users and stakeholders.

For text-based tasks like Neural Machine Translation or Se-
quence Classification, leveraging LLMs can elucidate to the

user that specific parts (one or many words) of the text con-
tributed to a certain percentage of the translation or attributed
class to the sentence. The LLM can take as input the feature
attribution matrices, the context, and the task, generating a
natural language explanation. Similarly, this approach can be
applied to graph-based tasks, where LLMs can generate sub-
graphs indicating the nodes that contributed the most to the
prediction of the model, along with a natural language expla-
nation for their importance.

The model explanations undergo iterative refinement using
a two-step feedback approach, involving randomly sampled
batches of validation data. Initially, the explanations are fine-
tuned on batches with an expert to ensure coherence between
the raw values and the provided explanation. Subsequently,
the refined explanation is presented to a non-expert, initiating
a back-and-forth exchange between the expert and the non-
expert to achieve a coherent and interpretable feedback from
both parties. Finally, the LLM is fine-tuned with the new ex-
planation generated based on the agreement between the ex-
pert and non-expert feedback. This process aims to produce
explanations that are understandable by both novices and ex-
perts, thereby facilitating communication between stakehold-
ers/users and scientists.

For evaluation, we propose a metric named IFP (Iterative
Feedback Improvement), which would compare the distance
between the ratings of clarity, understandability, trust, and
usefulness provided by the non-expert for the initial expla-
nations and for the explanations after the rounds of feedback.
This can be formally expressed as:

i=1

Where «; is the normalization coefficient for the rating,
R gen(s) the ratings for the generated dataset, and Ri,4(;) the
ratings for the generated dataset. A higher, positive distance
would indicate significant improvement, a nil distance would
signify no improvement, and a negative distance would sug-
gest a decrease in the quality of explanation. However, if the
initial ratings were already high enough, the absence of im-
provement might be considered normal. We can also antici-
pate such systems not improving significantly after a standard
for explanations has been reached.

It is noteworthy to highlight that leveraging these quan-
tifiable metrics, the potential bias introduced by the expert or
the LLM are included but not segregated, when evaluating the
effectiveness of the process in terms of E or IFP. We further
discuss this aspect of our approach in Section 7.3.

5 Ensuring an optimized communication

Effective communication is pivotal in both methodologies,
whether between experts and non-experts or between experts
and LLMs. In the latter methodology, where experts en-
gage with non-experts, communication revolves around non-
formal concepts that are subject to interpretation. Conse-
quently, these dialogues can potentially extend beyond neces-
sary durations, diminishing process efficiency. To streamline
communication, it is imperative to simplify guidelines and
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Figure 1: Integrating LLMs into bias mitigation practices.

evaluation metrics for non-experts while ensuring experts ad-
here to structured interrogation formats. Moreover, expertise
in prompt engineering (practice of crafting specific instruc-
tions or queries given to language models, particularly LLMs,
to elicit desired responses) is essential for experts to mini-
mize unnecessary iterations with LLMs. This ensures that
the communication process remains efficient and conducive
to achieving desired outcomes.

Leveraging the aforementioned metrics, we can prompt the
expert in both methodologies to offer a final explanation or
dataset once a sufficient threshold has been met, either in
terms of Effectiveness (as defined in Section 4.1), or IFP
(Section 4.2). A key challenge lies in determining a specific
threshold, as it would be highly domain-sensitive. Certain
applications, such as hiring, education, or criminal justice,
would derive greater benefits from fairness metrics than oth-
ers, potentially necessitating a higher threshold in their con-
text, while others may suffice with a lower one. Establishing
a threshold or a set of thresholds based on domain-specific
insights would be the responsibility of the expert and the po-
tential Al governance team, with potential refinement based
on user feedback. Failure to address this carefully could ren-
der even the most advanced LLMs in the literature of lim-
ited real-world benefit, only providing a higher computational
cost rather than a safer, more trustworthy system.

6 Experiment on a sample dataset

6.1 Dataset description, task definition, and model
selection

Our proposed approach was evaluated on the ObjectifyGaze
dataset [Tores et al., 2024]. The objective of the task is to pre-
dict whether a scene contains objectification towards a char-
acter or not, where objectification is defined as portraying a

character as a mere object through dialogues, narratives, or
camera angles that focus on specific body parts or physical
attributes. The dataset comprises annotated scene graphs that
include scenes, places, contexts, characters along with their
attributes, and the objectification labels. Due to the human-
centric nature of the task, fairness is of paramount impor-
tance.

We trained a Graph Convolutional Network (GCN) [Kipf
and Welling, 2017], a Vanilla Message Passing Neural
Network (Vanilla MPNN) [Gilmer et al, 2017] using
Tensorflow-GNN [Ferludin et al., 2022], and a Random
Forests classifier [Breiman, 2001] on the aforementioned
dataset for detecting objectification within scenes. To evalu-
ate the performance of our model, we computed classic met-
rics for binary classification, including accuracy, F1-score,
and ROC AUC score. Our model achieved decent efficiency
in terms of these metrics, although out of the scope of this

paper.

6.2 Protected attributes and fairness metrics

Protected attributes such as gender, race, and social character-
istics are commonly considered in fairness evaluations. Al-
though our model performed well in terms of standard bi-
nary classification metrics, we observed that it leaned to-
wards not objectifying” for scenes with non-caucasian char-
acters, which account for only 0.08% of the dataset. To ad-
dress this issue and avoid creating biases towards specific
groups, we applied our methodology for evaluating and mit-
igating bias in our system. Specifically, we focused on the
data (re)processing part due to insufficient resources for fine-
tuning a large language model (LLM) for explanations.

We used Demographic parity difference (DP), Equalized
odds difference (EOD), and Equal Opportunity Difference
(EOP) as the bias and fairness metrics in our approach, with a



normalization value (alpha) of 1 for all the metrics since they
possess the same scale (between 0 and 1). Their calculation
methods are available in Appendix A.

We evaluated the quality of data using Uniqueness, that
measures the degree to which data values are distinct and not
duplicated, and Completeness, that measures the degree to
which data values are uniform and free from contradictions.
Other metrics such as Timeliness could have been used in a
collaboration with domain experts, which we could not ac-
complish at the time of the experiments. Mistral [Jiang et
al., 2023] with 7 billion parameters was used as the LLM in
our experiment, and the fairness metrics were computed us-
ing Fairlearn [Weerts et al., 2023].

6.3 Instructions provided to the LLM

We provided Mistral with three essential pieces of informa-
tion for generating counterfactual data:

* The ethnicity classes present in our current dataset

e The number of instances to generate per minority class
(in our case, the non-caucasian examples): it is essential
for maintaining a certain balance within the classes

» The precise data format to generate, along with a sample
for reference

The generated data were subsequently combined with the
original data, and the same set of prior experiments were con-
ducted.

6.4 Results

We explored three approaches: oversampling by duplicating
examples from the minority classes (1), generating counter-
factual examples using a LLM (2) to alter the ethnicity at-
tribute of characters and some scene details such as the identi-
ties of the characters, and combining the LLM-generated data
with the duplicated data (3). The results in Table 1 show that
involving LLMs for counterfactual data generation improved
the fairness metrics, for the model that had the best results on
the dataset (GCN).

Simply duplicating examples from the minorities did not
improve the fairness metrics, although a slight increase in raw
accuracy was observed. Our method showed a higher effi-
ciency (E) than the other methods, as well as better results in
terms of F1-score, although out of the scope of this paper. The
decrease in data quality when duplicating examples is due to
a decrease in the Uniqueness of data within the dataset. The
Vanilla MPNN model and Decision Tree classifier exhibited
similar trends, with all metrics showing significant improve-
ment when using our proposed approach.

To evaluate the adaptability of our approach with different
metrics, we incorporated Disparate Impact in our bias evalu-
ation metrics, which measures the difference in selection rate
between two groups defined by a sensitive attribute, such as
race or gender [Feldman et al., 2015], and used different com-
binations of metrics. All our metrics were still computable,
and the results showed a similar trend, with B and E improv-
ing with our approach..

These findings demonstrate the versatility of our calcula-
tion method in adapting to different scales and fairness met-

rics, and its independence from the underlying model, open-
ing up new possibilities for quantifying bias in model out-
comes. It is noteworthy that our approach enables the as-
sessment of both data quality and outcome bias with a single
metric E, or separately with B or DQ.

However, our approach is more readily applicable to tab-
ular data, textual data, and attributed graphs datasets, while
visual datasets require more computing resources for gener-
ating sets of images. Nevertheless, with the emergence of
smaller visual LLMs, there is potential for applying this tech-
nique to visual data, particularly for generating counterfac-
tual images. Our aim is to apply our methodology on a larger
scale once sufficient resources become available.

Data B DQ E

Baseline 0.10 0.80 -
O + Duplicated examples 0.14 0.76 -0.08

O + LLM + Duplicated examples  0.06 0.84 0
O +LLM 0.03 090 0.17

Table 1: Results on the ObjectifyGaze dataset for the GCN model.
(Baseline=O=Original dataset, B=total bias, E=Effectiveness, as de-
fined in Section 4)

7 Discussion

In this section, we discuss about the use of traditional meth-
ods compared to LLMs, the challenges in leveraging LLMs
for mitigating bias, and the shortcomings of our study.

7.1 Can traditional methods be more effective?

While LLMs offer a promising avenue for bias mitigation,
they may not always surpass traditional methods in terms of
data quality or efficiency. In scenarios requiring explana-
tion generation, the manual crafting of explanations can be
laborious, particularly considering the diverse nature of in-
put data. In such cases, LLMs may hold an advantage due
to their ability to automate the generation process. However,
studies such as [Sobieszek and Price, 2022] and more recent
work by [Kandpal et al., 2023] have highlighted instances
where LLMs struggle to capture context effectively, exhibit-
ing limitations in originality and emotional nuance compared
to human authors. Consequently, for tasks demanding high-
level interpretative contexts and emotional intelligence, hu-
man input may yield higher quality synthetic and counterfac-
tual data. Nonetheless, LLMs excel in generating large vol-
umes of data at a rapid pace, surpassing human capabilities
in terms of sheer output. In such scenarios, human involve-
ment becomes essential for verifying the quality of the gen-
erated data. Thus, our proposed framework maintains human
involvement alongside LLM utilization, recognizing the com-
plementary strengths of both approaches and emphasizing the
necessity of regular auditing for successful integration.

7.2 Challenges in leveraging LL.Ms for fairness

While LLMs can be foreseen as a promising direction to-
wards fairer Al systems, certain characteristics hinder their
widespread adoption. Firstly, defining appropriate metrics



for assessing the potential bias generated by the LLMs used
in our approaches, especially the potential introduced algo-
rithmic bias, poses a significant challenge. Traditional fair-
ness metrics may not be directly applicable to language gen-
eration tasks, necessitating the development of novel eval-
vation methods tailored to LLMs. Moreover, the comput-
ing resources required for training and running inferences on
LLMs are intensive. Small organizations and researchers with
limited access to compute resources may face challenges in
leveraging LLMs effectively for bias mitigation.

However, advancements in LLM quantization techniques,
as demonstrated by Yao et al. [Yao et al., 2024], offer a
glimpse of a future where more researchers can access LLM
inference and training capabilities. This democratization of
LLM technologies has the potential to catalyze innovation
and accelerate progress towards fairer Al systems in research.

7.3 Limitations of our study

While we attempted to cover the most prominent types of
bias and fairness in the literature, we did not exhaustively
cover every conceivable form of bias. For instance, some sur-
veys on bias and fairness have highlighted interaction bias,
wherein Al systems interact with humans in a biased man-
ner based on a protected attribute (e.g race, gender), or causal
fairness, which entails ensuring that the system does not per-
petuate historical biases and inequalities. However, as eluci-
dated in studies such as [Ferrara, 2024], individual fairness
and causal fairness are significantly interconnected. More-
over, for interaction and algorithmic bias, we could not think
of solutions for mitigating involving LLMs. From our per-
spective, traditional model selection techniques hold an ad-
vantage over LLMs in addressing algorithm bias, and con-
cealing protected attributes from the system before querying
appears to provide a superior approach for mitigating interac-
tion bias.

Furthermore, to the best of our knowledge, there exists
only few studies addressing the efficiency of LLMs in coun-
terfactual or alternative data generation for specific topics and
tasks. Our current evaluation metrics for our methodology do
not take into account the inherent capabilities of the chosen
LLM.

8 Conclusion

In this paper, we have delved into the critical intersection of
artificial intelligence (AI), bias mitigation, and fairness. Our
discourse has underscored the nuanced relationship between
different types of bias and the corresponding strategies for
mitigation. Through a thorough examination of existing lit-
erature and methodologies, we have identified a significant
void pertaining to the integration of LLMs in bias mitigation
strategies.

To bridge this gap, we have proposed innovative model and
system-agnostic approaches that harness the power of LLMs
to tackle biases across diverse Al applications. While our
methodologies offer promising avenues for bias mitigation, it
is essential to acknowledge its limitations, such as the exclu-
sion of certain types of bias like interaction bias.

Looking ahead, an intriguing area for future research lies
in the development of evaluation strategies for our framework

that would include the efficacy of LLMs in data generation
and explainability within the domain of application. As Al
continues to evolve, it becomes increasingly imperative to
prioritize fairness and inclusivity, ensuring that Al systems
uphold ethical standards and contribute to the collective wel-
fare. Through collaborative endeavors and interdisciplinary
collaboration, we can collectively advance towards a more
equitable and just Al-powered future.

Ethical Statement

As our methodology progresses, we anticipate its broad ap-
plication across various Al and Machine Learning domains.
Yet, the inclusion of human oversight in refining explanations
or data generation processes introduces the potential for un-
intended influence from individuals or groups whose beliefs
and intentions are unknown to us. As we could observe with
Tay, the Microsoft chatbot unveiled on Twitter that started
exhibiting racist, violent, and disrespectful behavior due to
deliberate manipulation by users, giving so much power to a
human or a single research group can be detrimental.

We assert that regular, independent, and external audits of
these systems by specialized organizations in Al ethics are
indispensable for their responsible evolution. Without dili-
gent monitoring of the system outputs, the unchecked deploy-
ment of these technologies could exacerbate existing biases,
depending on their intended applications. Therefore, we ad-
vocate for stringent oversight measures to safeguard against
the potential misuse and ensure the ethical integrity of Al sys-
tems, especially on a method that relies heavily on prompt
engineering.
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A Fairness metrics calculation
A.1 Demographic parity difference (DP)
DP=P(Y =1|/A=a)— P(Y =1|A=1b) 5)

Where Y is the predicted outcome, A is the sensitive at-
tribute, and a and b are two different values of the attribute.

A.2 Equalized odds difference (EOD)
EOD = |(TPR, — FPR,) — (TPR, — FPR,)|  (6)

Where TPR, and FFPR, are the true positive rate and
false positive rate for the privileged group, respectively, and
TPRy and F'PRpare the true positive rate and false positive
rate for the unprivileged group, respectively.

A.3 Equal opportunity difference (EOP)
EOP = |TPR, — TPRy| )

Where T' PR, and T PR, are the true positive rates for the
privileged and unprivileged groups, respectively.
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