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ABSTRACT

Variational data assimilation estimates the dynamical system states by minimizing
a cost function that fits the numerical models with observational data. The widely
used method, four-dimensional variational assimilation (4D-Var), has two primary
challenges: (1) computationally demanding for complex nonlinear systems, and (2)
relying on state-observation mappings, which are often impractical. Deep learning
(DL) has been used as a more expressive class of efficient model approximators to
address these challenges. However, integrating such models into 4D-Var remains
challenging due to their inherent nonlinearities and the lack of theoretical guaran-
tees for consistency in assimilation results. In this paper, we propose Tensor-Var
to address these challenges using kernel Conditional Mean Embedding (CME).
Tensor-Var characterizes system dynamics and state-observation mappings as linear
operators in a feature space, where it enables a linear 4D-Var framework with a
convex cost function. Furthermore, our method provides a new perspective to incor-
porate CME with 4D-Var, offering theoretical guarantees of consistent assimilation
results between the original and feature spaces. To improve scalability, we pro-
pose a method to learn adaptive deep features (DFs) using neural networks within
the Tensor-Var framework. Experiments on chaotic systems and global weather
prediction with real-time observations demonstrate that Tensor-Var outperforms
conventional and DL hybrid 4D-Var baselines in terms of accuracy while achiev-
ing efficiency comparable to the static 3D-Var method (code available at https:
//anonymous.4open.science/r/Tensor-Var-F1E9/README.md).

1 INTRODUCTION

Forecasting of dynamical systems is an initial value problem of practical significance. Many real-
world systems, such as the ocean and atmosphere, are chaotic, which means minor errors of current
estimations in computational models can lead to rapid divergence and substantial forecasting errors.
In this regard, data assimilation (DA) (Law et al., 2015; Asch et al., 2016) uses observation data to
continuously calibrate models, improving forecast accuracy.

Various DA methods have been proposed to deal with different types of observation data and system
dynamics. Among these methods, 4D variational (4D-Var) data assimilation has been considered
cutting-edge and effectively used in real-world applications like numerical weather prediction (NWP)
systems (Browne et al., 2019; Milan et al., 2020). The 4D-Var minimizes a quadratic cost function
that finds the optimal match between system states and observations (Asch et al., 2016). While
effective in NWP, there are two critical limitations for their applications: (1) Numerical models
for complex, nonlinear systems are often inefficient for real-time assimilation and forecasting. (2)
Observations are often noisy, incomplete representations of the states, even without a known state-
observation mapping, posing challenges in utilizing the observation. Efforts have integrated DL
models to learn an observation (or inverse) model (Frerix et al., 2021; Wang et al., 2022; Liang
et al., 2023), addressing the imperfect knowledge of observation models in 4D-Var. While these
approaches improve observation utilization, they remain constrained by the complexities of numerical
models and learned observation mappings, whereas our approach simplifies this by finding their
linear representations. To improve computation efficiency, the state-of-the-art DL models (Vaswani
et al., 2017; Chen et al., 2018; Li et al., 2020; Kovachki et al., 2023; Bocquet et al., 2024) are capable
of constructing highly nonlinear mappings to surrogate dynamical systems and achieve notable
successes in NWP (Bi et al., 2022; Lam et al., 2022; Kurth et al., 2023; Chen et al., 2023; Conti,
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2024; Vaughan et al., 2024). However, integrating such models into optimization-based tasks, like
4D-Var, remains challenging due to their inherent nonlinearities (Janner et al., 2021; Bocquet, 2023).
Using auto-differentiation (AD) of DL models in 4D-Var can reduce computational costs and has
shown success in simple examples (Geer, 2021; Dong et al., 2022; Cheng et al., 2024); however,
the accuracy of AD-derived derivatives remains a concern, and its complexity grows with system
dimensions (Baydin et al., 2018). Recently, Xiao et al. (2024) applied the AD of a pre-trained weather
forecasting model into 4D-Var, forming a self-contained DA framework for Global NWP. However,
this approach relies on the well-designed pre-trained model for the forward models and may not
generalize easily to other domains. Latent data assimilation (Peyron et al., 2021; Fablet et al., 2021;
Melinc & Zaplotnik, 2023; Cheng et al., 2023; Fablet et al., 2023) addresses these challenges by
performing DA in a learned low-dimensional latent space. While efficient, these approaches lack
theoretical guarantees for the consistency of 4D-Var solutions between the latent and original spaces.

In this paper, we introduce Tensor-Var, a framework for learning linear representation of the DA
systems by using kernel conditional mean embedding (CME). Unlike existing DL-based methods
face challenges with nonlinearity and non-convexity, we propose a new perspective from CME to
linearize nonlinear dynamics, resulting in a convex cost function in the feature space. To best of our
knowledge, our work is first attempt to integrate CME into 4D-Var for linear representation with
convex cost function, greatly improving optimization efficiency and convergence. To address the
challenges from incomplete observations, we derive an inverse observation operator that incorporates
histories to infer the system state, thereby improving accuracy and robustness. Moreover, we provide
a theoretical analysis that demonstrates the existence of a linear representation of the system under
kernel features and the consistency of 4D-Var solution across original and latent spaces. A key
challenge in extending CME to practical variational DA is scalability. To overcome this, our approach
learns adaptive deep features (DFs) that map data into a fixed-dimensional feature space, reducing
the computational complexities. Our experiments on two chaotic systems and two global NWP
applications demonstrate that Tensor-Var outperforms conventional and ML-hybrid variational DA
baselines, including operational and DL-hybrid methods, in accuracy and computational efficiency,
showing the advantages of linearizing the DA systems through Tensor-Var.

2 BACKGROUND AND PROBLEM FORMULATION

Notation. Let S and O be random variables representing the state and observation, with their
realizations in corresponding compact sets with s ∈ Rns and o ∈ Rno . A sequence of states over
time steps from 1 to t is denoted by s1:t = (s1, . . . , st) and same for observations o1:t. The ∥ · ∥
denotes the 2-norm.

2.1 4D VARIATIONAL DATA ASSIMILATION

Consider a dynamical system in discrete-time comprising dynamical model and observation model:

st = F (st−1) + ϵst , and ot = G(st) + ϵot , (1)

in which F is the dynamical model that advances the state st to st+1, and G is the observation model
that maps the st to the observation ot. The noise components ϵst , ϵ

o
t are assumed to follow the zero

mean Gaussian distributions with covariance matrices Q and R. The objective of (weakly constraint)
4D-variational DA is to minimize a cost function:

J(s0:T ) = ∥s0 − sb0∥2B−1 +

T∑
t=0

∥ot −G(st)∥2R−1 +

T∑
t=1

∥st − F (st−1)∥2Q−1 , (2)

in which sb0 is a prior guess for the initial state s0, with B as the background covariance matrix
representing the uncertainty, i.e., s0 ∼ N (sb0, B). The second and third terms account for errors in
the observation and dynamical models in equation 1.

In systems with nonlinear dynamics and observations, the cost function is typically non-convex with
costly model evaluations, raising challenges in minimization of equation 2. Thus, we seek a space
with a linear structure, in which the 4D-Var optimization can be efficiently solved. Kernel methods
provide a framework for linearization by projecting data into an infinite-dimensional feature space
(Jacot et al., 2018; Bevanda et al., 2024).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

4D-Var 
Cost

(Non-convex)

(Linear)

(Non-linear)

!!"# = #(!!)

&(!!"#) = '$!|$&(!!)

(Linear)

(Non-linear) !

ℍ!

!

#

4D-Var 
Cost

(Convex)

ℍ!

ℍ"

O
ri

gi
na

l S
pa

ce
Fe

at
ur

e 
Sp

ac
e

'&|'

Figure 1: Demonstration of Tensor-Var: A DA system with nonlinear dynamical and observation
models with non-convex cost function (bottom) can be represented linearly in feature space using
kernel conditional mean embeddings that results in a convex cost function (Jacot et al., 2018) (top).

2.2 KERNEL CONDITIONAL MEAN EMBEDDING

A Reproducing Kernel Hilbert Space (RKHS) HS with kernel kS is a Hilbert space, satisfying the
reproducing property (Schölkopf & Smola, 2002). Let kS and kO be positive-definite (pd) kernels
on RKHSs HS and HO. We denote the kernel features as ϕO(o) = kO(o, ·) and ϕS(s) = kS(s, ·),
referring the HS and HO as feature spaces. In this paper, we use the word kernel feature and the
word feature interchangeably.

The kernel mean embedding of a distribution of S is defined as the expectation of feature, E[ϕS(S)] ∈
HS (Fukumizu et al., 2011). For characteristic kernels, these embeddings are injective, uniquely
determining the probability distribution (Muandet et al., 2017). In addition to mean embedding, we
will need the (uncentered) covariance operator (Baker, 1973) defined as CSO = E[ϕS(S)⊗ ϕO(O)],
where ⊗ denotes the tensor product. This operator is also the embedding of the joint distribution
as an element in the tensor product Hilbert space HS ⊗ HO. The covariance operators extend the
concepts of covariance matrices from finite dimensional spaces to infinite feature spaces.

Conditional mean embedding. To represent the dynamical and observation models in equa-
tion 1, the conditional mean embedding (CME) plays an important role. The CME of a condi-
tional distribution of S given O = o is defined as the conditional expectation of kernel features
E[ϕS(S)|O = o]. Under standard assumptions1, there exists a linear operator CS|O : HO → HS

such that E[ϕS(S)|O = o] = CS|OϕO(o). Given independent and identically distributed samples
{(si, oi)}Ni=1, an empirical estimate of the operator can be obtained as follows:

ĈS|O = ĈSO(ĈOO + λI)−1, (3)

where λ is the regularization parameter, the ĈSO and ĈOO are empirical covariance operators, e.g.
ĈSO = 1

N

∑N
i=1 ϕS(si) ⊗ ϕO(oi), and I denotes the identity matrix. Alternatively, the empirical

estimate ĈS|O is equivalently to the minimizer of the following regression problem,

L̂(C) = 1

N

N∑
i=1

∥ϕS(si)− CϕO(oi)∥2 + λ∥C∥2, (4)

which offers a way to linearize the DA systems over the feature spaces.

3 METHODS

In this section, we introduce our Tensor-Var approach, which embeds 4D-Var into the kernel feature
space and provides a theoretical analysis demonstrating the existence of linear dynamics with

1(1) CSS is injective, and (2) E[f(S)|O = o] ∈ HS for any f ∈ HS and o ∈ Rno .
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consistent convergence between the original and feature space solutions. To effectively address
incomplete observations, we propose an inverse observation operator that leverages consecutive
historical observations. Finally, we also propose a method to learn adaptive deep features (DFs) using
neural networks within the Tensor-Var framework, improving real-world applicability.

3.1 CME OF 4D-VAR IN RKHS

Having introduced the necessary tools for manipulating kernel embeddings, we now focus on learning
the linearized models of the system in equation 1.

CME of dynamical model. Let S+ be the one-step forward of S. Given the dynamical model
F in equation 1 and kernel feature ϕS , the CME operator CS+|S can be recognized as the best
linear approximation in the feature space HS that minimize the regression residual E

[
∥ϕS(S

+)−
CϕS(S)∥2

]
. Given finite data {(s+i , si)}Ni=1 sliced from the system trajectory s1:N+1, we can obtain

the empirical estimate ĈS+|S as equation 3 with theoretical supports of convergence (Fukumizu et al.,
2013; Klus et al., 2020). The CME operator ĈS+|S effectively characterizes the system dynamics as a
linear model and simplifies the 4D-Var as a convex optimization in the feature space HS .

CME of inverse observation model. Analogous to the dynamical model, the observation model G
in equation 1 can be linearized by the CME operator CO|S , which has been used as observation models
for filtering algorithms (Song et al., 2009; Fukumizu et al., 2013; Kanagawa et al., 2016; Gebhardt
et al., 2019). Most approaches assume a complete observation setting, where the observations can
fully determine the state. In practice, observations are often incomplete representation of state,
with ns > no, leading to underdetermined systems (Liu et al., 2022). In such systems, the lack
of a bijective mapping between the state and observation spaces means that observations cannot
uniquely determine the system’s state. As a result, the optimization problem in 4D-Var may produce
sub-optimal solutions (Asch et al., 2016). It is information-theoretically impossible to distinguish
any two mixtures of states based on a single-step observation if ns > no. By introducing the past m
consecutive observations as history ht = ot−m−1:t−1 ∈ Rm×no , the joint information from history
and current observation is enough to estimate the system state. The choice of history length is critical:
too short lacks sufficient information, while too long is inefficient. Empirically, we performed an
ablation study to assess the effects of history length, as detailed in the subsection 4.4.

To effectively incorporate history, we introduce another kernel feature ϕH with an induced RKHS
HH . The space HOH = HO ⊗ HH is called a tensor product RKHS on O × H with associated
kernel feature ϕOH(o, h) = ϕO(o) ⊗ ϕH(h). As shown in (Song et al., 2013; Muandet et al.,
2017), the CME operator can be extended to high-order features, allowing us to embed the joint
distributions over st, ot, and ht into the feature space (Song et al., 2009; 2013). The tensor product
feature ϕOH captures the high-order dependencies between observations and history. The CME
operator CS|OH is the linear inverse observation model that minimizes the state estimation error
given observations and history. Given dataset {(si, oi, hi)}Ni=1, the empirical counterpart ĈS|OH =

ĈSOH(Ĉ(OH)(OH) + λI)−1 follows the same way as equation 3. The ĈSOH is the empirical high
order tensor, e.g., ĈSOH =

∑N
i=1 ϕS(si)⊗ ϕO(oi)⊗ ϕH(hi).

Our approach is closely related to delay embeddings, a well-established method in dynamical system
theory for reconstructing attractors and state spaces from sequential data (Sauer et al., 1991; Krämer
et al., 2021). As shown by Takens’ embedding theorem (Takens, 2006), the dynamics of a system
can be reconstructed in a higher-dimensional space using historical observations. Parallel to Takens’
embedding theorem, recent theoretical advancements (Uehara et al., 2022) have focused on partial
observability from a learning theory perspective. Liu et al. (2022) showed that the required history
length for effective state reconstruction is determined by the complexity of the dynamical system.

Feature space 4D-Var. Using the kernel features, we linearize the original nonlinear dynamics
and observations in the feature space HS . This transformation enables us to reformulate the 4D-Var
optimization objective equation 2 into the feature space and optimize over a sequence of elements
z0:T in feature space HS :

min
z0:T

∥z0 − ϕS(s
b
0)∥2B−1 +

T∑
t=0

∥zt − CS|OHϕOH(ot, ht)∥2R−1 +

T−1∑
t=0

∥zt+1 − CS+|Szt∥2Q−1 , (5)
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where the B, R, and Q are the covariance operators for the background error, observation error, and
model error in the feature space. In this work, we estimated the three operators as the empirical
error covariance matrices from the training dataset (the explicit estimation can be found in Appendix
B.1). As a result, our approach linearizes the original nonlinear dynamical and observation models,
reducing the problem to solving a linear 4D-Var problem, with a quadratic cost function with linear
dynamics zt+1 = CS+|Szt. We present the pseudo-algorithms for CME of 4D-Var and performing
Tensor-Var, detailed in Algorithms 2 and 3 in Appendix B.2.

3.2 LEARNING THE DEEP FEATURES WITHIN TENSOR-VAR

Using the pre-determined kernel features has theoretical guarantees. However, it maps data into an
infinite-dimensional feature space, e.g., radial basis function kernel, making empirical estimation
challenging due to polynomial scaling with sample size. On the other hand, these feature maps
struggle with irregular or high-dimensional data, often resulting in poor performances. Learned
deep features (DFs) have emerged as alternatives to generic kernel features (Xu et al., 2022; Kostic
et al., 2023; Shimizu et al., 2024), project the data into a fixed-dimensional feature space, similar
to methods like low-rank approximation (Williams & Seeger, 2000). To improve the scalability, we
integrate DFs with the Tensor-Var framework and validate their effectiveness through experiments.

Learning the state feature. Recall that the CME operator CS+|S is the best linear approx-
imation of the system dynamics in the feature space. We propose to jointly learn the fea-
ture ϕθS : Rns → Rds with ĈS+|S by minimizing the loss L(θS) = minC∈Rds×ds L(C, θS) =

E
[
∥ϕθS (s

+)− ĈS+|SϕθS (s)∥2
]
. Predictions using ĈS+|S are in the feature space; however, for DA

problems, reconstruction to the original state space is required, which is known as the preimage
problem (Honeine & Richard, 2011). Here, we learn an inverse feature ϕ†

θ′
S

to solve the preimage
problem during training, avoiding repeated optimization whenever computing preimages. The final
training loss is the combination of the two terms as

L(θS , θ
′
S) = E

[
∥ϕθS (s

+)− ĈS+|SϕθS (s)∥2
]
+ wE

[
∥s− ϕ†

θ′
S

(
ϕθS (s)

)
∥2
]
, (6)

where w ∈ [0, 1] is a weighting coefficient, and ĈS+|S is computed as the CME over training
batches. Note that using the DFs corresponds to a linear kernel in the learned feature space, where
k(si, sj) = ϕθS (si)

TϕθS (sj).

Learning the observation and history features. Similar to learning the state feature, CS|OH is
the minimizer of regression problem mapping the tensor product of observation and history features
to the state feature. In this phase, we learn the DFs for observation ϕθO : Rno → Rdo , history
ϕθH : Rnh → Rdh , and CS|OH jointly with the loss function:

L(θO, θH) = E
[
∥ϕθS (s)− ĈS|OH [ϕθO (o)⊗ ϕθH (h)]∥2

]
,

where ĈS|OH is computed similarly over training batches in parallel, with the ⊗ denotes Kronecker
product in practice. The learning procedure of DFs is summarized in Algorithm 1.

3.3 THEORETICAL ANALYSIS.

In Section 3.1, we discuss how the dynamical system F in equation 1 can be embedded as a linear
system in the feature space. However, two important questions remain: 1) Does such linear dynamical
system exist? 2) Are the solutions of original and feature space 4D-Var consistent? In this section,
we provide affirmative answers to both questions using the theory of Kazantzis-Kravaris/Luenberger
(KKL) observers (Andrieu & Praly, 2006). We give a road-map of the theoretical analysis with main
result and refer readers to Appendix A for the details.

Under the mild assumptions that (1) the dynamical model F is first-order differentiable and (2)
the kernel features are all first-order differentiable, the kernel feature ϕS satisfies the necessary
conditions as the state transformation in the KKL observer framework. This transformation enables
us to represent the nonlinear dynamical system as a linear system in a higher-dimensional feature
space, as established by KKL observer theory (Tran & Bernard, 2023). This result confirms the
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Table 1: Comparison of DA performances. All baseline methods use the strong-constraint 4D-Var
objective, while our approach uses the weak-constraint 4D-Var objective. Evaluation times are
reported as each assimilation window’s mean and standard deviation. Our method consistently
outperforms the baselines across all benchmark domains.

Domain Algorithm NRMSE (%) Evaluation time (10−2s)
3D-Var 14.17± 0.93 12.59±0.39

Lorenz 96 4D-Var 12.27± 1.41 210.52± 3.87
ns = 40, no = 8 Frerix et al. (2021) 9.89± 1.63 167.43± 1.33

Ours 8.32± 0.87 12.51± 1.97
3D-Var 15.19± 1.09 19.38± 0.37

Lorenz 96 4D-Var 12.38± 1.11 322.21± 5.73
ns = 80, no = 16 Frerix et al. (2021) 10.79± 0.57 286.11± 2.43

Ours 9.04± 1.32 21.09± 0.79
3D-Var 17.64± 1.27 16.48± 1.17

Kuramoto-Sivashinsky 4D-Var 15.46± 1.07 94.83± 3.89
ns = 128, no = 32 Frerix et al. (2021) 10.25± 1.34 63.28± 1.91

Ours 9.69± 1.56 19.58± 1.23
3D-Var 16.66± 0.69 15.81± 0.92

Kuramoto-Sivashinsky 4D-Var 10.67± 0.62 95.68± 1.35
ns = 256, no = 64 Frerix et al. (2021) 8.87± 0.55 68.39± 1.23

Ours 4.31± 0.19 17.37± 1.36

existence of such a linear system, thus answering question 1). The KKL observer theory provides a
theoretical foundation for our approach, bridging nonlinear dynamics and linear 4D-Var methods
(Andrieu & Praly, 2006). A detailed derivation proving that ϕS satisfies the conditions as the state
transformation of the KKL observer can be found in Appendix A.

We consider the nonlinear system in equation 1 within a compact state space and assume that the
cost function in 2 has a unique solution. Given that ϕS is a state transformation in the KKL observer,
the system in the original state space can be represented linearly in the feature space. The solution
in the feature space have consistent convergence to the unique solution of original 4D-Var problem,
minimizing with respect to the cost function 5, answering the question 2). A formal theorem with
detailed proofs can be found in Theorem A.4 in Appendix A.2.

4 NUMERICAL EXPERIMENTS

To evaluate our proposed method, the comparison is conducted on a series of benchmark domains,
representing optimization problem equation 2 of increasing complexity, including (1) the Lorenz
96 system (Lorenz, 1996) with 40 and 80 state dimensions. (2) The Kuramoto-Sivashinsky (KS)
equation: a fourth order nonlinear PDE system (Papageorgiou & Smyrlis, 1991) with 128 and 256
dimensions, representing different spatial resolution. For both systems, we use a nonlinear observation
model o = G(s) = 5arctan(sπ/10) + ϵ, where ϵ is white noise with a standard deviation of 0.01
times the standard deviation of state variable distribution and only 20% states can be observed. To
assess the practical applicability of Tensor-Var, we evaluate its performance in global medium-range
weather forecasting (i.e., 3-5 days) by using a subset of the ECMWF Reanalysis v5 (ERA5) dataset
for training and testing, with further details in subsection 4.2 and (Rasp et al., 2024). Furthermore,
we incorporate observations from real-time weather satellites into the NWP experiment with higher
spatial-resolution, showcasing the practical utility of Tensor-Var in subsection 4.3.

Baselines. We compare our method against several baseline approaches: (1) 3D-Var with a known
observation model, (2) a model-based 4D-Var algorithm that assumes known dynamical and observa-
tion models, (3) a learned inverse observation model with the known dynamical model, as proposed
by Frerix et al. (2021), and (4) In the two NWP problems, we include two more baselines: Latent
3D-Var and Latent 4D-Var (Cheng et al., 2024), which perform variational DA in a compressed latent
space learned via autoencoder, with Latent 4D-Var additionally learning the dynamics in the latent
space. These competitive baselines cover both operational Var-DA and ML-hybrid Var-DA methods.

6
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4.1 EVALUATION AND RESULTS.

In each experiment, we measure the quality of assimilation using the Normalized Root Mean Square

Error (NRMSE)
√

1
T

∑T
t=0 ∥ŝt − st∥2/(smax − smin) over the assimilation window, where smax, smin

are the maximum and minimum state value in training dataset. These results and the average
evaluation time on the AMD 7980X CPU for each algorithm are reported in Table 1. All metrics
are evaluated 20 times with different initial conditions, reporting the mean and standard deviation.
For Tensor-Var, the history length m is selected using a cross-validation approach as an ablation
study in subsection 4.4, and the objective function in feature space is minimized using quadratic
programming methods, implemented via CVXPY (Diamond & Boyd, 2016). Baselines use the
L-BFGS method (Nocedal & Wright, 2006) with 10 history vectors for the Hessian approximation.
For 4D-Var baselines, the adjoint method is not used, and the strongly constrained 4D-Var is applied.
The background state sb is set to the average state of the training set.

As shown in Table 1, our method consistently outperforms the other baseline methods in all metrics. In
all four tasks, Tensor-Var achieves the lowest mean and standard deviation of NRMSE for assimilation
accuracy, demonstrating strong generalization from the Lorenz-96 systems to the more complex KS
systems. The better performances are attributed to the linearization of the dynamics and the history-
augmented inverse observation operator, which makes the 4D-Var optimization convex with more
reliable convergence to the global optimum in the feature space. The larger NRMSE errors observed
in the model-based 3D-Var and 4D-Var methods are due to that incomplete observations lead to the
uncontrolled errors in the unobserved state dimensions. Although the ML-hybrid 4D-Var method
(Frerix et al., 2021) employs a learned inverse observation model, it struggles with generalization
due to the incomplete observations, leading to poor performance on test data. By incorporating
historical information, our approach more effectively controls estimation errors in the unobserved
state dimensions. This improvement is clearly demonstrated in Figures 8 and 9 in Appendix C.1.2 and
C.1.2, which qualitatively compares assimilation performance in the Lorenz-96 and KS systems. In
terms of computational efficiency, the linearity of Tensor-Var makes it faster than all 4D-Var baselines
while also outperforming or being comparable to the static 3D-Var method, attributing to the reduced
complexity of solving convex optimization problems in the feature space.

4.2 GLOBAL NWP

Next, we consider a global NWP problem. The European Centre for Medium-Range Weather
Forecasts (ECMWF) Atmospheric Reanalysis (ERA5) dataset (Hersbach et al., 2020) provides the
best estimate of the dynamics of the atmosphere covering the period from 1940 - present. For a proof
of concept, the 500hPa geopotential, 850 hPa temperature, 700 hPa humidity, and 850 hPa wind speed
(meridonal and zonal directions) at 64×32 resolution is considered here. The data is sourced from
the WeatherBench2 repository (Rasp et al., 2024). Observations are sampled randomly from the grid
with a 15% spatial coverage and with additive noise (0.01 times the standard deviation of the state
variable) (see Figure 2). Latent dimensions of the two baseline methods are set to match the feature
dimension ds in our approach. The evaluation metric is the area-weighting RMSE over grid points
(see more details in Appendix C.3). We trained all the models on ERA5 data from 1979-01-01 to
2016-01-01 and tested on data post-2018, with a qualitative evaluation shown for 2018-01-01 00:00
in Figure 2.

Figure 3 (left 1-5) shows the distributions of NRMSE (%) across different atmospheric variables (z500,
t850, q700, u850, v850) for Latent 3D-Var, Latent 4D-Var, and Tensor-Var, evaluated on a test dataset
consisting two years of data from 2018-01-01 00:00 to 2020-01-01 00:00. Our approach consistently
achieves the lowest mean and standard deviation of NRMSE for all variables, demonstrating improved
performance in both assimilation accuracy and robustness. The latent space of 3D-Var and 4D-Var is
learned by autoencoder purely based on the reconstruction loss without considering system dynamics.
This weakens the forecasting abilities of the dynamical systems, introducing extra errors in the
4D-Var optimization compared to the 3D-Var. In contrast, our approach jointly learns the feature
space representation and linear system dynamics, resulting in more accurate forecasting and improved
4D-Var performances.

The rightmost bar plot in Figure 3 shows evaluation times on an Nvidia RTX-4090 GPU. Tensor-Var
outperforms Latent 3D-Var and Latent 4D-Var, demonstrating its better computational efficiency over
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Figure 2: Visualization of assimilation results for five variables from ERA5 data at time 2018-01-01
00:00. Each column (from left to right) displays the background state, observations, true state, and
errors for Latent-3DVar, Latent-4DVar, and Tensor-Var. The reported error was a weighted absolute
error in each pixel; see Appendix C.3 for more details.

Figure 3: Comparison of distribution of NRMSE (%) across different atmospheric variables (z500,
t850, q700, u850, v850) for Latent 3D-Var, Latent 4D-Var, and Tensor-Var. The rightmost bar plot
shows evaluation times and error bars indicate the standard deviation for evaluation time.

the data-driven Var-DA approaches. This is because our deep features are used only for mapping data
into the feature space rather than being directly involved in the gradient-based optimization via AD.
In addition to the assimilation results, we evaluate the forecasting quality of Tensor-Var based on the
assimilated state, quantatitive results can be found in Appendix C.3 Figure 10.

4.3 ASSIMILATION FROM SATELLITE OBSERVATIONS

In the final experiment, in contrast to the randomly selected observation locations in section 4.2,
we now consider a more realistic DA problem in global NWP by incorporating the location of
satellite tracks. Weather satellites are a critical source of observational data for DA in global NWP;
whilst introducing this observation is nontrivial as it incorporates further data fusion of the dynamic
observation locations of the satellites and the spatial-temporal sparsity of satellite tracks. The spatial
resolution of the underlying grid is even increased to 240× 121 in this case.

An example of satellite tracks and observation distribution is shown in Figure 4. We extract satellite
track data (latitude and longitude coordinates) from CelesTrak2 for the same periods as Section
4.2, matching it with ERA5 data to generate practical observations. These observations include
satellite locations within two hours before the assimilation time, sampled at half-hour intervals, with
an average coverage of approximately 6%, see Figure 6. Other experimental settings, such as data
volume, training/testing periods, variables, and the 4D-Var window, align with Section 4.2.

2CelesTrak provides publicly accessible orbital data for a wide range of satellites, including those with mete-
orological sensors at www.celestrak.com. The data include positional details, and temporal information,
allowing for accurate real-time satellite tracking.
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Figure 4: Example of selected satel-
lite tracks over a one-hour horizon,
with observations (black triangles)
sampled at half-hour intervals.

In this experiment, we evaluate our proposed method in an
online operational scenario, where the DA is continuously ap-
plied. To assess the uncertainties, all methods are evaluated 10
times by randomly sampling sequences from the test dataset.
We present the mean and standard deviation of NRMSEs in
Figure 5 over a time-horizon of 7-days. Tensor-Var consistently
achieves the lowest mean and standard deviation, demonstrating
its robustness in a large-scale system with practical observa-
tions. Figure 6 presents the qualitative assimilation results for
the variable z500 with observations; results for other variables
are provided in Appendix C.4. Dynamic satellite observations
impact assimilation accuracy, with clustered observations near
the equator from geosynchronous satellites substantially reduc-
ing errors in the corresponding regions. The results demonstrate
that Tensor-Var excels in accuracy and robustness, when handling large-scale systems with practical
observations, showing its potential for applications in operational DA and forecasting.

Figure 5: Comparison of assimilation NRMSE (%) over a 7-day horizon for five atmospheric variables
from Latent 3D-Var, Latent 4D-Var, and Tensor-Var. Each time-step represents a 6-hour interval.

4.4 ABLATION STUDY

To support our empirical results, we conducted ablation studies on the 40- and 80-dimensional
Lorenz-96 system to investigate (1) the effect of history length in learning the operator ĈS|OH , and to
explore (2) the effect of DFs ϕS with different feature dimensions.

Effect of history length. We explored the effect of history length m on learning the inverse
observation operator and its impact on state estimation accuracy. According to the theory in (Liu
et al., 2022), the history length can be chosen as m ∝ log(ns)

3. The ablation study was conducted
by scaling m proportionally to m ≈ C log ns where the constant C was adjusted. The feature
dimensions ds, do, dh are fixed to be the same as the experiments in subsection 4.1.

Table 3 shows that incorporating history (C > 0) significantly improves state estimation accuracy,
with NRMSE decreasing as C increases. However, the improvements become marginal when
increasing C beyond a certain point (around C = 4), suggesting diminishing improvements for
larger history lengths. This indicates a trade-off, where increasing the history length beyond a certain
threshold yields little additional benefit in state estimation.

Table 2: Comparison of different history lengths, with NRMSE as the metric for state estimation
accuracy. C = 0 indicates that no history is incorporated.

C = 0 C = 1 C = 2 C = 4 C = 8
ns = 40 11.7± 3.4 9.3± 2.8 7.7± 1.4 7.7± 0.9 7.5± 0.5
ns = 80 10.8± 2.6 8.2± 1.7 7.4± 0.9 7.1± 0.9 7.0± 0.8

Effect of DFs. In this experiment, we compared the DFs with different dimensions ds =
20, 40, 60, 80 and Gaussian kernel feature. To scale up the Gaussian kernel, we applied Nyström
approximation and kernel PCA (See Appendix C.5 for details). All three features are Gaussian kernels.
The pre-image of the system state was learned using kernel ridge regression on the low-dimensional
representations. As shown in Table 3, Gaussian kernel performance was close to the best DFs in

3Please note that the result omits the class of systems with exponential dependency on the history length.
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Figure 6: Visualization of continuous assimilation results, absolute errors, and observation locations
for z500 (geopotential), starting from 2018-01-01 00:00. The observation coverage, defined as the
ratio of the number of observations to the number of grid points, is 6.37%.

ns = 40 but degraded in ns = 80. In lower-dimensional problems, pre-determined kernel features
were more robust than DFs, but their performance can degrade with increasing system dimensionality
and complexity. DFs with ds = 60, 120 consistently performed well, while ds = 20, 40 performed
poorly, reflecting the trade-offs among data size, parameter count, and system dimension.

Table 3: Comparison of different features. The metric is NRMSE (%) over the assimilation window
ds = 20 ds = 40 ds = 60 ds = 120 Gaussian kernel

ns = 40 16.7± 2.1 14.1± 1.3 8.3± 0.9 9.7± 0.7 8.5± 0.5
ns = 80 17.3± 2.6 16.8± 2.2 11.4± 0.9 9.0± 0.9 14.3± 1.4

5 CONCLUSION

In this paper, we introduced the Tensor-Var method, using kernel conditional mean embedding to
transform nonlinear dynamical and observation models in 4D-Var into a linear framework, making
the optimization both tractable and computationally efficient. By learning adaptive deep features,
Tensor-Var addresses the scalability typically associated with traditional kernel methods. Our
inverse observation operator, which incorporates historical observations, improving the accuracy and
robustness with incomplete observations. Experiments on two chaotic systems and global weather
forecasting show that Tensor-Var outperforms state-of-the-art hybrid ML-DA models in both accuracy
and efficiency.

Limitations. Our method requires access to exact or re-analyzed system states to learn the dynami-
cal and observation models, which may not be feasible in practical applications. A future direction
would be to learn these models directly from observations and calibrate the learned dynamics in the
feature space using Tensor-Var. In addition, our simplified error covariance matrices in 4D-Var may
not fully capture system correlations and uncertainties. Future work could focus on improving the
design of error covariance matrices within the Tensor-Var framework to enhance assimilation and
performance.
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A THEORETICAL ANALYSIS

In this section, we provide a theoretical convergence analysis of Tensor-Var, drawing on concepts from
control theory and contraction analysis. We begin by introducing comparison functions, including
class K and KL functions, as well as Lyapunov functions. Using these tools, we examine the
convergence of Tensor-Var through a differential equation, demonstrating monotonic contraction
based on Lyapunov direct method. Furthermore, by using comparison functions, we show that
contraction in the feature space implies contraction in the original space.

Assumption 1. To conduct a formal convergence analysis of Tensor-Var, we make a mild assumption
regarding the first-order differentiability of the dynamical system F in equation 1 with time derivative
ṡ = f(s), a standard assumption in convergence studies (Sastry, 2013).

Assumption 2. We require that the kernel possess a well-defined first-order derivative, as the
convergence analysis is performed in the feature function space. This assumption is common in
kernel methods and is satisfied by many widely-used kernels, such as the Gaussian, Fourier, Matérn,
and Laplace kernels (Berg et al., 1984; Schölkopf & Smola, 2002).

A.1 NOTATIONS AND TECHNICAL LEMMAS

Definition A.1 (Class K function (Gajic & Qureshi, 2008).)
A continuous function α : [0, a] → [0,∞) is said to belong to class K if it is strictly increasing and
α(0) = 0. It is of class K∞ if α(∞) = ∞ and α(r) → ∞ as r → ∞.

Definition A.2 (Class KL function (Gajic & Qureshi, 2008).)
A continuous function β : [0, a]× [0,∞) → [0,∞) is said to belong to class KL if each fixed t, the
mapping β(r, t) belonging to the class K with respect to r and, for each fixed a the mapping β(a, t)
is decreasing with respect to t and, β(a, t) → 0 as t → ∞.

The K and KL are two classes of comparison functions, we can use the comparison function to
analyze the monotone contraction in both spatial and temporal horizons.

Definition A.3 (Lyapunov Stability (Gajic & Qureshi, 2008))
If the Lyapunov function V is globally positive definite, radially unbounded, the equilibrium isolated
and the time derivative of the Lyapunov function is globally negative definite:

dV

dt
(x) < 0, ∀Rn \ {0}, (7)

then the equilibrium is proven to be globally asymptotically stable. The Lyapunov function is a class
K function, which satisfying the condition as follow

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), ,∀x ∈ [0,∞). (8)

Lemma A.1 (Hurwitz stability criterion (Parks, 1962))
A square matrix A ∈ Rn×n is said to be Hurwitz stable if all the eigenvalues of A have strictly
negative real parts, i.e., for every eigenvalue λ of A,

Re(λ) < 0. (9)

In other words, the real part of each eigenvalue of the matrix must lie in the left half of the complex
plane.

Lemma A.2 (Hurwitz stability criterion via Lyapunov function (Sastry, 2013))
Give a candidate Lyapunov function for linear dynamics as

V (x) = xTPx,
dx

dt
= Ax (10)
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where P is symmetric, positive definite matrix; A governs the evolution of dynamics. For the system
to be stable, the time derivative dV

dt must be negative definite, i.e., dV
dt < 0 for all x ̸= 0. This means

that:
dV

dt
(x) =

d

dt
(xTPx) = xT (ATP + PA)x < 0 (11)

with
ATP + PA < 0, (12)

where (ATP + PA) is negative definite.

Based on the convergence analysis and Lyapunov theory, a more generalized concept – contraction
metric is needed to support our paper.
Definition A.4 (Contraction Manchester & Slotine (2017))
Given the system dx

dt = f(x, t), if there exists a uniformly bounded metric M(x, t) (positive definite)
such that

dM

dt
+

∂f

∂x
(x, t)TM +M

∂f

∂x
(x, t) < −cM, c > 0, (13)

then we call the system contracting, and M(x, t) is a contraction metric.

A.2 PROOF OF KEY THEOREMS

To adopt the convergence analysis of DA problem, we give a mild assumption on the smoothness of
dynamics, the first-order derivative exists in the system 1.
Theorem A.3 (Embedding and Consistent convergence)
Here, we consider system st+∆t = F∆t(st) = st +

∫ t+∆t

t
f(sτ )dτ in equation 1 is first order

differentiable with derivative dst
dt = f(st) for s ∈ Rns with a unique equilibrium point as s∗. If

there exists a embedding as ϕS(s) := [ϕ1
S(st), . . . , ϕ

ds

S (st)]
T with that ds ∈ N ∪∞ satisfying the

following properties:

• a. (embedding) For a finite ds, the ∂ϕ
∂s (st) is full-column rank; when ds is infinite, it

is assumed to be rank-ds countably infinite, i.e. {∇ϕS(st)} is full-column rank with
∇ϕS(st) = [

∂ϕ1
S

∂s (st), . . . ,
∂ϕn

S

∂s (st), . . . ]
T .

• b. (convergence) There exists Hurwitz matrix A verifying
dϕS

dt
(st) = AϕS(st). (14)

Then, the equilibrium s∗ and ϕS(s∗) are global asymptotic convergence.

Proof.

(Embedding.) The embedding property follows from RKHS theory. Since we restrict our analysis
to a separable Hilbert space, it has a countable basis either finite or infinite. Thus, the dimension of
the RKHS can be infinite, but the rank of the embedding is determined by a countable set of basis
functions (Schölkopf & Smola, 2002).

(convergence.) According to the differential equation in Hilbert space, we have
dϕS

dt
(st)

=
∂ϕS

∂st
(st) ·

dst
dt

=∇ϕS(st)f(st)

=AϕS(st).

(15)

The second line of equation 15 follows from chain rule, the final line represents the time derivative
in Hilbert space, where A is a linear operator that governs the dynamics. Following the work from
Romanoff (1947); Bobrowski (2016), we define A as:

A := lim
t→0+

CS+|S − Id

t
, (16)
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where CS+|S is the conditional covariance operator between future and current states in the RKHS.
Given the smoothness of the kernel function and the differentiability of the system dynamics, the
linear operator A exists and well-defined in this context.

Since s∗ is the equilibrium point, we can derive a natural result that f(s∗) = 0. Invoking equation 15
(third line) we have dϕS

dt (s∗) = 0. Thus ϕS(s∗) is also a local equilibrium point in RKHS. From the
embedding property of RKHS, we have a local injective map ϕ : Rns → Rds , which ensures that the
convergence properties of the system in the original space are preserved in the feature space. For the
neighbourhood around the equilibrium point s∗, there exist class K functions α1 and α2 as

α1(∥st − s∗∥) ≤ ∥ϕ(st)− ϕ(s∗)∥2 ≤ α2(∥st − s∗∥), ∀st ∈ B(s∗, ϵ). (17)

B(s∗, ϵ) is denoted as ϵ−ball centred at s∗. The smoothness of the kernel function and regularity
of the dynamics ensure that the system remains well-behaved in feature space, and the convergence
properties of the original system carry over to the feature space.

Thus, when the system is locally stable in the original space, the corresponding system in Hilbert
space is also locally stable. According to the Hurwitz stability criterion in A.1, the linear operator A
has only negative real part in its eigenvalues, guaranteeing exponential convergence. If s∗ is global
equilibrium, then ϕS(s∗) is also a global equilibrium in feature space.
Remark A.1
The Theorem A.3 (a) implies the existence of a global coordinate. In many situations, when the
embedding space is chosen properly, we can have a stronger result that the existence of left inverse
such that ϕ†(ϕ(s)) = s. This result can be naturally connected to the Kazantzis Kravaris/Luenberger
(KKL) observers Tran & Bernard (2023). The embedding corresponds the injectivity of the state.
The Theorem A.3 (b) corresponds the convergence in KKL observer. When the embedding space is
uniformly injective, the dynamics in feature space becomes rectifiable dynamics, yielding a stable
trajectory if the original system is stable.

Before entering the last main theorem, we need to introduce the KKL observer. Based on theory of
KKL observer, we will link the convergence problem in feature space with KKL observer. Please
note, we assume that the state space S is a bounded set and system equation 1 is forward complete
within this bounded set S.

Consider the nonlinear dynamical system in equation 1 with time derivative as

dst
dt

= f(st); ot = G(st). (18)

The design of KKL observer is as follows:

• Find an embedding map T : S → Rds that transforms equation 18 to new coordinates T (s)
as

∂T
∂s

(s)f(s) = AT (s) +BG(s), (19)

where A ∈ Rds×ds is Hurwitz matrix and B ∈ Rds×no , such that the system (A, B) is
controllable4.

• Since T is injective, the left inverse T † exists, i.e., T †(T (s)) = s. The KKL observer is
then given by

ŝ = T †(T (ŝ)). (20)

There are certain conditions Andrieu & Praly (2006) that equation 18 needs to satisfy in order to
ensure the existence of a KKL observer equation 19 in the sense that limt→∞ ∥ŝt − st∥ = 0. On the
other hand, the map T : S → Rds need to be uniformly injective if there exists a class K function α
in A.1 such that, for every s1, s2 ∈ S, satisfying ∥s1 − s2∥ ≤ α(T (s1)− T (s2)). Our embedding
properties and convergence conditions (as shown in A.3) are satisfied the two conditions, thus we can
assert the existence of KKL observer.

In this paper, we state the existence of a global linear dynamical system in feature space. We provide
a theoretical guarantee that the embedding property of ϕS can derive the equivalent convergence

4R = [A,AB,A2B, ...,Ads−1B] has full row rank (i.e. rank(R) = ds)

18
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in the feature space. However, there is two parts that have not been proven: 1). Does the global
linear dynamical system exist? 2) Is the embedding space in A.3 properly defined? We consider the
nonlinear system in equation 1 within a compact space S and the cost function in 2 has a unique
solution. According to the condition of KKL observer, we guarantee (1) the existence of such linear
system and (2) the solutions in the original space and feature space has consistent convergence
properties, with respect to the cost functions equation 2 and 5, and convergent exponentially to the
unique solution.
Theorem A.4
Let S be a bounded set in Rns . If there exists a C1 function T : S → Rds which satisfies the
following two conditions:

• T is solution of the partial differential equation

∂T
∂s

(s)f(s) = AT (s) +BG(s), ∀s ∈ S, (21)

where A is Hurwitz matrix, and (A, B) is controllable;

• There exists a Lipschitz constant such that for all (s1, s2) in S × S , the following inequality
holds:

|s1 − s2| ≤ L|T (s1)− T (s2)|; (22)

then there exists a continuous function T † : Rns → S such for all (s, T (s)) ∈ S × Rns

∥T †(T (ŝt))− st∥ ≤ cL∥T (ŝ0)− T (s0)∥ exp(σmax(A)t),∀t ∈ [0,∞), (23)

and where (st, T (st)) is the solution of system in equation 1 and equation 18 at time t; σmax(A) is
the largest eigenvalue of matrix A.

Proof.

It is possible to defined the left inverse function T † : Rds → S and this one satisfies,

∥s1 − s2∥ ≤ L∥T (s1)− T (s2)∥, ∀(s1, s2) ∈ S × S. (24)

It yields that the function T −1 : Rds → S is global Lipschitz. Hence, the function T † : Rds → S to
our problem is Lispchitz extension on the set S of this function. For more convenience, we denoted
z := T (s). Following the approach - the Mc-Shane formula in McShane (1934), we select the T † as
the function defined by

T †(w) ∈ inf
z

{
(T −1(z) + L∥z − w∥

}
. (25)

The function is such that for all s ∈ S,

T †(T (s)) = s, (26)

and for all (w, s) ∈ Rds × S ,

∥T †(w)− s∥ ≤
√
dsL∥w − T (s)∥. (27)

This implies that along the trajectory (st, zt) of the system satisfying the following result

∥T †(zt)− st∥ ≤
√
dsL∥zt − T (st)∥, ∀t ∈ [0,∞). (28)

On the another hand, the function T is solution of the partial differential equation in equation 19,
consequently, this implies that along the trajectory of system (zt, st) ∈ Rds × S , we have

zt − T (st) = exp(At)(z0 − T (s0)) ∀t ∈ [0,∞). (29)

Note, since A is Hurwitz matrix, with σmax(A) < 0, it can derive that equation equation 23 holds
and concludes the proof of the theorem.
Remark A.2
The KKL observer asserts that the linear representation of the nonlinear system. After establishing
the KKL observer, theorem A.4 asserts the convergence of the estimate trajectory to equilibrium
trajectory. Since the embedding property, we can derive that the existence of left inverse based on the
Mc-Shane formula in equation 25. Meanwhile, the convergence holds when pulling back the state to
original space S . Thus we can assert the feature ϕS in our framework aligns the KKL observer, and
the coordinate transformation T is just our feature ϕS .
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B ESTIMATION OF ERROR MATRICES AND PSEUDO ALGORITHM

B.1 ESTIMATION OF ERROR MATRICES.

To estimate these error covariance operators in the feature space, we empirically estimate these
error matrices in the feature spaces from training dataset (Gejadze et al., 2008). For R and Q,
we estimated the covariances as R = 1

N

∑N
i=1 ri ⊗ ri and Q = 1

N

∑N
i=1 qi ⊗ qi, where ri =

ϕS(si)−ĈS|OHϕOH(oi, hi) and qi = ϕS(s
+
i )−ĈS+|SϕS(si) are the regression residuals, quantifying

the errors of the empirical operators ĈS|OH and ĈS+|S . Similarly, we compute the background
covariance as the empirical variance over an average of {ϕS(si)}Ni=1

5 This error should decay
monotonically over time and stabilize after a sufficiently long time horizon. This is strongly related
to the covariance estimation in Kalman filtering (see Chapter 6.7 (Asch et al., 2016)). We leave the
investigation of such design for future efforts.

B.2 PSEUDO ALGORITHM.

In this section, we provide the pseudo-algorithm for training Tensor-Var with traditional kernel
features in algorithm 2 and training with deep features in algorithm 1. The kernel feature map
ϕ : S → HS such that k(si, sj) = ⟨ϕ(si), ϕ(sj)⟩HS

may not necessarily have an explicit form (e.g.,
RBF and Matérn kernels), as long as the ⟨·, ·⟩HS

is an valid inner product. For clarity, we use the
polynomial kernel with degree two and constant c as an example:

• Explicit form, ϕ(s) = k(s, ·) = (s21, ..., s
2
ns
,
√
2s1s2, ...,

√
2sns−1sns

, c)

• Inner product, k(si, sj) = ⟨ϕ(si), ϕ(sj)⟩ = (sTi sj + c)2

Algorithm 3 outlines procedure of performing data assimilation with trained models.

Algorithm 1 Tensor-Var training with deep feature

Require: Data D = {si, oi, hi, s
+
i }Ni=1; Initialized deep features ϕθS , ϕθO , ϕθH ; the inverse feature

ϕ†
θ′
S

training epoch K, learning rate α, batch size NB

for k = 1, ...,K do
Random sample batch data Dbatch ⊂ D
ĈS+|S , ĈS|OH = Algorithm 2 by using batch data Dbatch and deep features
Compute loss l(θS) = ∥ĈS+|SϕθS (s)− ϕθS (s

+)∥2

Compute loss l(θO, θH) = ∥ĈS|OH [ϕθO (o)⊗ ϕθH (h)]− ϕθS (s)∥2

Compute loss l(θS , θ′S) = ∥ϕ†
θ′
S
(ϕθS (s))− s∥2

Update the deep features.
θS = θS + α∇θS l(θS);
θO, θH = θO + α∇θO l(θO, θH), θH + α∇θH l(θO, θH);
θS , θ

′
S = θS + α∇θS l(θS , θ

′
S), θ

′
S + α∇θ′

S
l(θS , θ

′
S)

end for
Compute ĈS+|S , ĈS|OH = Algorithm 2 by using the whole dataset D and trained deep features
ϕθS , ϕθO , ϕθH .
Compute the error covariance matrices B, R, Q from subsection B.1
return ϕθS , ϕθO , ϕθH , ĈS+|S , ĈS|OH , B, R, and Q

5For a cyclic application of Tensor-Var, a better design for B should be time-dependent, reflecting the error
between the estimated system state and the true state, e.g. (Paulin et al., 2022).
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Algorithm 2 Tensor-Var training with kernel feature

Require: Dataset D = {si, oi, hi, s
+
i }Ni=1; kernel features ϕS(s) = kS(s, ·), ϕO(o) =

kO(o, ·), ϕH(h) = kH(h, ·)
Compute the Gram matrix KS where [KS ]ij = kS(si, sj)
Compute the Gram matrix KOH where [KOH ]ij = kOH(oi⊗hi, oj⊗hj) = kO(oi, oj)kH(hi, hj)

If N is too large, say N ≥ 10000, using the Nystrom approximation to select a subset Ds =
{si, oi, hi, s

+
i }ni=1

Compute the feature matrix ΦS = [ϕS(s1), ..., ϕS(sn)]
Compute the feature matrix ΦS+ = [ϕS(s

+
1 ), ..., ϕS(s

+
n )]

Compute the feature matrix ΦOH = [ϕO,H(o1, h1), ..., ϕO,H(on, hn)]

CME for the system dynamics. ĈS+|S = ΦS+(KS + λI)−1ΦS

CME for the inverse observation model. ĈS|OH = ΦS(KOH + λI)−1ΦT
OH

Compute the error covariance matrices B, R, Q from subsection B.1.
Fit the projection matrix for pre-image. Ĉproj = S(KS + λI)−1ΦT

S where S = (s1, ..., sn)

return ĈS+|S , ĈS|OH , Ĉproj, B, R, and Q

Algorithm 3 Tensor-Var assimilation-forecasting
Require: assimilation window {ot, ht}Tt=0; background state sb; leading time τ ; kernel features
ϕS , ϕO, ϕH (or trained deep features ϕθS , ϕθO , ϕθH ); CME operators ĈS+|S and ĈS|OH ; Error
covariance matrices B, R, Q.
Perform Quadratic Programming with objective

min
{zt}T

t=0

∥z0 − ϕS(s
b
0)∥2B−1 +

T∑
t=0

∥zt − ĈS|OHϕOH(ot, ht)∥2R−1

+

T−1∑
t=0

∥zt+1 − ĈS+|Szt∥2Q−1 ,

Project back to original space with ŝt = Ĉprojzt (or using learned inverse feature ŝt = ϕ†
θ′
S
(zt))

for t = 1, ..., τ do
Predict zt+T = ĈS+|SzT+t−1

Project back to original space with ŝt = Ĉprojzt (or inverse feature ŝT+t = ϕ†
θ′
S
(zT+t))

end for
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C EXPERIMENT SETTINGS

Training details. Given the generated data, we constructed two datasets: Ddyn =

{{(sit, sit+1)}T−1
t=0 }Ni=1 and Dobs = {{(sit, oit, hi

t)}Tt=0}Ni=1. The DFs were trained in two steps using
these datasets. First, the state DFs ϕθS , ϕ

†
θ′
S

were trained on Ddyn using equation 6 and we stored the

estimated operator ĈS+|S . Next, with the state features fixed, the observation DF ϕθO and history
DF ϕθH were trained on Dobs according to equation 3.2, storing the estimated operator ĈS|OH . The
baseline method (Frerix et al., 2021) was trained on Dobs, excluding history. All models were trained
with the Adam optimizer (Kingma, 2014) for 200 epochs, using batch sizes from 256 to 1024 for
stable operator estimation. Additional details on the DFs, baselines, and training procedures can be
found in Appendix C.

Implementation details. For all baseline methods, we employed the L-BFGS algorithm for Varia-
tional Data Assimilation (Var-DA) optimization, implemented in JAX (Bradbury et al., 2018). The
4D-Var baselines used numerical dynamical models based on the 8th-order Runge-Kutta method
and the 4th-order Exponential Time Differencing Runge-Kutta (ETDRK) method (Cox & Matthews,
2002) for the Lorenz-96 and KS systems. For Tensor-Var, we applied interior-point quadratic pro-
gramming to solve the linearized 4D-Var optimization, utilizing CVXPY (Diamond & Boyd, 2016).
All training was conducted on a workstation with a 48-core AMD 7980X CPU and an Nvidia GeForce
4090 GPU. Runtime evaluations were performed on a MacBook with an 8-core Apple M1 Pro CPU,
without GPU acceleration.

C.1 LORENZ 96

First, we consider the single-level Lorenz-96 system, which was introduced in (Lorenz, 1996) as a
low-order model of atmospheric circulation along a latitude circle. The system state is [S1, ..., SK ]
representing atmospheric velocity at K evenly spaced locations and is evolved according to the
governing equation:

dSk

dt
= −Sk−1(Sk−2 − Sk+1)− Sk + F,

with periodic boundary conditions xk+K = xk. The first term models advection, and the second
term represents a linear damping with magnitude F . In general, the dynamics becomes more
turbulent/chaotic as F increases. We choose the number of variables K = 40, 80 and the external
forcing F = 10, where the system is chaotic with a Lyapunov time of approximately 0.6 time units.
As an observation model for the following experiments, we randomly observe 25% states (e.g. 10
in K = 40). Our models were trained on a dataset D of N = 100 trajectories, each trajectory
consist of = 5000 time steps long, generated by integrating the system from randomly sampled initial
conditions.

C.1.1 DATA GENERATION.

To generate the dataset, we use the 8th-order Runge-Kutta (Butcher, 1996) method to numerically
integrate the Lorenz-96 systems with sample step 0.1 and the integration step ∆t size is set to 0.01.
The system is integrated from randomly sampled initial conditions, and data is collected once the
system reaches a stationary distribution. For an observation operator, we use subsampling which
every 5th and 10th variable for 40 and 80-dimensional system are observed via the nonlinear mapping
5 arctan(·π/10) + ϵ with noise ϵ ∼ N (0, 0.1) (see Figure 7 in Appendix C.1 for an example). The
arctan : R 7→ [−π

2 ,
π
2 ] squeezes the state variable Sk into [−π

2 ,
π
2 ], which is difficult for inverse

estimation. We integrate the Lorenz96 system with observation interval ∆t = 0.1. The history length
is set as 10 such that ht = (ot−10, ..., ot−1).

C.1.2 ADDITIONAL EXPERIMENT RESULTS.

We provide qualitative results in Figure 8 for the Lorenz 96 system at two different dimensions:
40 (left) and 80 (right). Each subplot illustrates the normalized absolute error for various methods,
including 3D-VAR, 4D-VAR, Frerix et al. (2021), and Tensor-Var, compared to the ground truth. The
assimilation window length is set to 5 (indicated by the red dashed line), with forecasts extended
for an additional 100 steps based on the assimilated results. Tensor-Var generally outperforms the
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Figure 7: Nonlinear observation model in the Lorenz 96 system: the state values are represented by
the solid blue curve, with the observed grid points indicated by red dots.

other methods in both dimensions and maintains stable long-term forecasts, comparable to other
model-based approaches. For 3D- and 4D-VAR with partially observed models, the observed states
show minimized errors (indicated by the dark lines), while the errors of unobserved states remain
uncontrollable, as clearly shown in Figure 8.

Ground Truth

3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(a) 40 dimensional Lorenz 96 system

Ground Truth

3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(b) 80 dimensional Lorenz 96 system

Figure 8: Qualitative error comparison for the Lorenz 96 system at (a) 40 dimensions and (b) 80
dimensions. The plots show the normalized absolute errors for various methods, including 3D-VAR,
4D-VAR, Frerix et al. (2021), and Tensor-Var, compared to the ground truth. The assimilation
window length is set to 5 (indicated by the red dashed line), with forecasts extended for an additional
100 steps based on the assimilated results.
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C.2 KURAMOTO-SIVASHINSKY

Next, we consider the Kuramoto-Sivashinsky (KS) equation, a nonlinear PDE system known for
its chaotic behaviour and widely used to study instability in fluid dynamics and plasma physics
(Papageorgiou & Smyrlis, 1991). The dynamics in spatial domain u(x, t) is given by,

∂u

∂t
+ u

∂u

∂x
+

∂2u

∂x2
+

∂4u

∂x4
= 0,

where x ∈ [0, L] with periodic boundary conditions. We set the domain length L = 32π, large enough
to induce complex patterns and temporal chaos due to high-order term interactions (Cvitanović et al.,
2010). The system state u(x, t) was discretized into ns = 128 and ns = 256. The observation
model is the same as in Lorenz-96, where 25% states can be observed. In this case, our models were
trained on a dataset D consisting of N = 100 trajectories, each with L = 5000 time steps and a
discretization of ∆t = 0.01, sampled from the stationary distribution with different initial conditions.

C.2.1 DATA GENERATION.

To generate the dataset, we use the exponential time differencing Runge–Kutta method (ETDRK),
which has proven effective in computing nonlinear partial differential equation (Cox & Matthews,
2002) with an integration step ∆t = 0.001 and sample step 0.01. The system is integrated from
randomly sampled initial conditions, and data is collected once it reaches a stationary distribution.
For observations, we use subsampling, observing every 8th state in both 128- and 256-dimensional
systems, we use subsampling which every 8th for both 128 and 256-dimensional system are observed
with noise ϵ ∼ N (0, 1), and 5 arctan(·π/10) as nonlinear mapping (see Figure 7 in Appendix C.1
for an example). The history length is set to 10 as well.

C.2.2 ADDITIONAL EXPERIMENT RESULTS.

Ground Truth

3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(a) 128 dimensional KS system

Ground Truth

3D-VAR Error

4D-VAR Error

Frerix et al. (2021) Error

Tensor-Var Error 

(b) 256 dimensional KS system

Figure 9: Qualitative error comparison for the KS system at (a) 128 dimensions and (b) 256 di-
mensions. The plots show the normalized absolute errors for various methods, including 3D-VAR,
4D-VAR, Frerix et al. (2021), and Tensor-Var, compared to the ground truth. The assimilation
window length is set to 5 (indicated by the red dashed line), with forecasts extended for an additional
100 steps based on the assimilated results.

We provide qualitative results in Figure 9 for the KS systems at two different dimensions: 128
(left) and 256 (right). Each subplot illustrates the normalized absolute error for various methods,
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including 3D-VAR, 4D-VAR, Frerix et al. (2021), and Tensor-Var, compared to the ground truth. The
assimilation window length is set to 5 (indicated by the red dashed line), with forecasts extended for
an additional 100 steps based on the assimilated results.

Compared to the Lorenz-96 system, the KS system is more complex, being governed by partial
differential equations (PDEs) that account for spatial evolution. In both dimensions, Tensor-Var
consistently outperforms other methods, particularly in capturing chaotic dynamics during the initial
forecast phase. It also maintains long-term stability in a more complex PDE system, comparable
to other model-based approaches. In contrast, 3D-VAR struggles with assimilation, especially in
the 256-dimensional case, due to its inability to capture temporal evolution, leading to rapid error
divergence. This underscores the critical importance of temporal modeling in chaotic systems. A
similar pattern of error between observed and unobserved states is evident in Figure 9.
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C.3 GLOBAL NWP

We consider a global numerical weather prediction (NWP) problem using the European Centre for
Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis (ERA5) dataset (Hersbach
et al., 2020). This dataset provides high-resolution atmospheric reanalysis data from 1940 to the
present, offering the most comprehensive estimate of atmospheric dynamics. For our proof of concept,
we focus on five upper level physical variables: 500 hPa geopotential height, 850 hPa temperature,
700 hPa humidity, and 850 hPa wind speed (meridional and zonal components) at a spatial resolution
of 64×32.

The data is sourced from the WeatherBench2 repository (Rasp et al., 2024). From this dataset, we
randomly sample grid points with 15% spatial coverage. The sampled observations include additive
noise equivalent to 0.01 times the standard deviation of the state variable, ensuring robustness against
observational uncertainty (see Figure 2). For model training, we use ERA5 data from 1979-01-01 to
2016-01-01, separating data from post-2018 for testing. There were 51,100 consecutive system states
with generated observations for training and 2,920 data for testing.

In addition to the results presented in the main experiments, we evaluate the forecasting quality of
Tensor-Var based on the assimilated state. Figure 10 shows the mean latitude-weighted RMSE (Rasp
et al., 2024) for five variables predicted by Tensor-Var at various lead times τ , where τ = 0 represents
the assimilation error at the final state of the assimilation window.

Figure 10: The (non-cyclic) forecasting quality of Tensor-Var in NWP experiments with leading time
zero as the final state in the assimilation window, is evaluated across different experiments. The five
sub-figures display the NWP forecast for 5 variables (15-day in total).

Area-weighting Root mean squared error (RMSE). The error is defined for each variable and
level as √√√√ 1

TIJ

T∑
t=1

I∑
i=1

J∑
j=1

(w(i)ŝt,i,j − st,i,j)2,

which is area-weighting over grid points. This is because on an equiangular latitude-longitude grid,
grid cells at the poles have a much smaller area compared to grid cells at the equator. Weighing all
cells equally would result in an inordinate bias towards the polar regions. The latitude weights w(i)
are computed as:

w(i) =
sin (θui )− sin (θli)

1
I

∑I
i=1(sin (θ

u
i )− sin (θli))

,

θiu and θil indicate upper and lower latitude bounds, respectively, for grid cell with latitude index i.
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C.4 ASSIMILATION FROM SATELLITE OBSERVATIONS

C.4.1 DATA GENERATION.

We collected the weather satellite track data from https://celestrak.org/NORAD/
elements/ for the period 1979-01-01 00:00:00 to 2020-01-01 00:00:00. Observations were
matched to the high-resolution ERA5 dataset (240 × 121 grid) by identifying the nearest neigh-
borhood grid points along the satellite track to generate observations. Additionally, we used an
observation frequency of up to every half-hour within the 2 hours before each assimilation time and
added white noise with a standard deviation of 1% of the standard deviation of the corresponding
state variables.

C.4.2 ADDITIONAL QUALITATIVE RESULTS
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Figure 11: Visualization of continuous assimilation results, absolute errors, and observation locations
for t850 (temperature), starting from 2018-01-01 00:00.

Figure 12: Visualization of continuous assimilation results, absolute errors, and observation locations
for q700 (humidity), starting from 2018-01-01 00:00.
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Figure 13: Visualization of continuous assimilation results, absolute errors, and observation locations
for u850 (meridional wind speed), starting from 2018-01-01 00:00.
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Figure 14: Visualization of continuous assimilation results, absolute errors, and observation locations
for v850 (zonal wind speed), starting from 2018-01-01 00:00.
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C.5 ABLATION STUDY

In this section, we provide the details of the ablation studies of (1) the history length m, (2) the
dimensions of feature dimension and comparison with standard kernel functions, and (3) the effects
of the estimated error matrices. All the ablation studies are conducted on the Lorenz-96 systems with
ns = 40 and ns = 80. We fixed the remaining hyperparameters consistent with the main experiments
and varied only the parameters under investigation.

(1) Effect of the history length m. We examined the impact of the history length m on learning
the inverse observation operator and its effect on state estimation accuracy. The feature dimensions
ds, do, and dh were held constant, while the history length was varied by adjusting the size of the
final linear layer (see Table 4). The state feature dimensions ds were set to 60 and 120 for the two
system dimensions.

(2) Effect of DFs. We implemented Tensor-Var with a Gaussian kernel using kernel PCA projected
to first 60 and 120 eigen-coordinates in scikit-learn (Pedregosa et al., 2011) by aligning with the
dimension of the used DFs. For the Gaussian kernel, we approach the pre-image problem by
fitting a projection operator (Kwok & Tsang, 2004). The space S ⊂ Rns together with the linear
kernel k(si, sj) = sTi sj forms an RKHS as well. Therefore, we can simply define the projection
operator as a CME operator that maps from the feature space HS to the original space S as Ĉproj =

S(KS+λI)−1ΦT
S , where S = [s1, ..., sn]. By applying Ĉproj now to the state, we can obtain the mean

estimation of the kernel mean embedding in the S such that ŝ = ĈprojµPS
= ES [ĈprojϕS(S)] = ES [S].

We normalized the dataset to a standard Gaussian distribution and select the length scale γ = 1.0 by
performing a cross-validation on the γ = [0.5, 0.75, 1.0, 1.25, 1.5, 2].
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C.6 MODEL ARCHITECTURE

Table 4: Deep feature architecture for 1D chaotic systems with dimensions ns, no, nh = m× no and
feature dimension ds, do, dh

Components Layer Weight size Bias size Activation
Fully Connected ns × 4ns 4ns Tanh

ϕθS Fully Connected 4ns × 2ns 2ns Tanh
Fully Connected 2ns × ds ds
Fully Connected ds × 2ns 2ns Tanh

ϕ†
θ′
S

Fully Connected 2ns × 4ns 4ns Tanh
Fully Connected 4ns × ns ns

Fully Connected no × 4no 4no Tanh
ϕθO Fully Connected 4no × 2no 2no Tanh

Fully Connected 2no × do do
Convolution 1D m× 2m× 5 2m Tanh

Max Pooling (size=2)
ϕθH Convolution 1D 2m× 4m× 3 4m Tanh

Max Pooling (size=2)
Flatten

Fully Connected mno × dh dh

Table 5: Model architecture for Global NWP with input dimension (H,W,C) with C physical
variables and spatial resolution H × W . The implementation of vision Transformer (ViT) block
follows Zamir et al. (2022) with applications in DA followed by Nguyen & Fablet (2024).

Components Layer Layer number C, (H,W ) Activation
Convolution2d 1 C → 4C, (H,W )

Transformer Block 2 4C → 4C, (H2 ,
W
2 ) ReLU

ϕθS Transformer Block 3 4C → 8C, (H4 ,
W
4 ) ReLU

Transformer Block 3 8C → 8C, (H8 ,
W
8 ) ReLU

Flatten (8C, H
8 ,

W
8 ) → CHW

8

Fully Connected 1 CHW
8 → ds

Fully Connected 1 ds → CHW
8

Transpose CHW
8 → (8C, H

8 ,
W
8 )

ϕ†
θ′
S

Transformer Block 3 8C → 8C, (H8 ,
W
8 ) ReLU

Transformer Block 3 8C → 4C, (H4 ,
W
4 ) ReLU

Transformer Block 2 4C → 4C, (H2 ,
W
2 ) ReLU

Convolution2d 1 4C → C, (H,W )

Convolution2d 1 C → 2C, (H,W )

Transformer Block 2 2C → 2C, (H2 ,
W
2 ) ReLU

ϕθO Transformer Block 3 2C → 4C, (H8 ,
W
8 ) ReLU

Flatten (4C, H
8 ,

W
8 ) → CHW

16

Fully Connected 1 CHW
16 → do

Convolution2d 1 mC → 2C, (H,W )

Transformer Block 2 2C → 2C, (H2 ,
W
2 ) ReLU

ϕθO Transformer Block 3 2C → 4C, (H8 ,
W
8 ) ReLU

Flatten (4C, H
8 ,

W
8 ) → CHW

16

Fully Connected 1 CHW
16 → dh
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