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In-context Pre-trained Time-Series Foundation Models adapt to Unseen Tasks
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Abstract

Time-series foundation models (TSFMs) have
demonstrated strong generalization capabilities
across diverse datasets and tasks. However, exist-
ing foundation models are typically pre-trained
to enhance performance on specific tasks and of-
ten struggle to generalize to unseen tasks without
fine-tuning. To address this limitation, we pro-
pose augmenting TSFMs with In-Context Learn-
ing (ICL) capabilities. Unlike conventional mod-
els that learn a fixed input-output mapping, an
ICL-equipped model can perform test-time infer-
ence by dynamically adapting to input-output rela-
tionships provided within the context. Our frame-
work, In-Context Time-series Pre-training (ICTP),
restructures the original pre-training data to im-
bue the model with ICL capabilities, enabling
adaptation to unseen tasks during pre-training.
Experiments demonstrate that ICT improves the
performance of state-of-the-art TSFMs by approx-
imately 11.4% on unseen tasks without requiring
fine-tuning.

1. Introduction
Time-series analysis serves as a critical tool in a wide range
of real-world applications, including weather forecasting
(Pisias & Moore Jr, 1981; Wu et al., 2021), pandemic anal-
ysis (Rodrı́guez et al., 2021), and imputation of missing
variables or historical records (Stefanakos & Athanassoulis,
2001; Ma et al., 2019; Wu et al., 2022). Given this diver-
sity, developping robust and accurate time-series models
is essential, which is a challenge recently addressed by
the emergence of time-series foundation models (TSFMs)
(Das et al., 2023; Woo et al., 2024; Goswami et al., 2024;
Kamarthi & Prakash, 2024). These models are pretrained
on vast datasets, enabling them to perform effectively on
a certain range of tasks, including forecasting (Das et al.,
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2023; Woo et al., 2024; Gruver et al., 2024), imputation
(Goswami et al., 2024), and classification (Goswami et al.,
2024; Gruver et al., 2024).

However, a key limitation of existing TSFMs is their lack
of multi-task adaptation capability without fine-tuning. Cur-
rent models either specialize in a single task, such as fore-
casting (Das et al., 2023; Woo et al., 2024), or require
task-specific fine-tuning before deployment(Goswami et al.,
2024; Kamarthi & Prakash, 2024; Gao et al., 2024). This
limitation increases computational overhead and data re-
quirements, hindering their real-world applicability.

To address this gap, we propose enhancing foundation time-
series models with in-context learning (ICL) (Brown et al.,
2020), enabling multi-task adaptation without fine-tuning.
ICL operates through a test-time inference procedure: by
appending input-output pairs (the context) to the original
input, the model infers the task’s requirements and produces
the desired output.

However, integrating ICL into TSFMs presents unique chal-
lenges. In language models, ICL emerges naturally from pre-
training on diverse tasks embedded in textual data (Brown
et al., 2020; Gu et al., 2023). In contrast, time-series data
lacks inherent task diversity, as datasets are uniformly struc-
tured in chronological order. Therefore, training on a single
objective (e.g., forecasting) inherently restricts exposure to
other tasks, making ICL acquisition impossible without ex-
plicit multi-task pretraining. To the best of our knowledge,
this challenge is not tackled by the pre-training pipelines of
existing TSFMs.

To overcome this, we introduce In-Context Time-series Pre-
training (ICTP), a novel pipeline that transforms existing
datasets into a multi-task format for ICL-enabled pretrain-
ing. ICTP first identifies task candidates and generates
input-output examples for each task in a unified format,
covering major sequence-to-sequence applications. Next, it
constructs context sequences by combining examples from
different tasks. Finally, it trains the model on these aug-
mented sequences, explicitly teaching in-context reasoning.
This approach generalizes to most time-series tasks, offering
broad applicability.

To validate our approach, we train foundation models on
datasets processed with ICTP and evaluate their perfor-
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mance on both seen and unseen tasks. Experimental results
demonstrate that models pretrained with ICTP on a sub-
set of tasks achieve significant improvements on unseen
tasks. Moreover, when pretrained with ICTP on all tasks,
the models exhibit further performance gains. We also con-
duct extensive ablation studies to analyze the mechanisms
through which ICTP enhances model capabilities, provid-
ing deeper insights into its effectiveness.

2. Methodology
2.1. Problem Definition

Consider a time-series dataset D = {x0, . . . xn}, xi ∈
RT×m. We consider a multi-task adaptation scenario: for
each task k from a task set k ∈ K, there’s a relationship
fk(x) = y, x ∈ D, y ∈ RT×h between input x and the
desired output y, where T and h are the input and output
horizons respectively, and m is the number of channels in
each vector. Our goal is to achieve non-fine-tune adapta-
tion on unseen tasks. That is, Given a task candidate set
K = {k1, . . . , kN} and a input sequence x, a time-series
model fθ parameterized by θ with non-fine-tune adaptation
capability should output fk(x) without fine-tuning θ.

2.2. Enabling Multi-task Non-fine-tune Adaptation for
TSFMs

The primary challenge in achieving non-fine-tune multi-task
adaptation for foundation models lies in obtaining the input-
output relationship fk for various tasks without fine-tuning
the model parameters. Inspired by recent progress of test-
time inference in natural language processing (Brown et al.,
2020; Gu et al., 2023) and computer vision (Zhou et al.,
2024), we address this challenge by equipping foundation
models with in-context learning (ICL) capabilities.

ICL is an emergent capability first observed in large lan-
guage models (LLMs) after pre-training on extensive tex-
tual corpora (Brown et al., 2020). Unlike traditional mod-
els that specialize in a single task during training, an ICL
model learns to adapt dynamically by leveraging contex-
tual information during inference. Specifically, when an
input x is concatenated with a context sequence ck that
contains information of a task k, the ICL model fICL im-
itates ck to produce task-adapted output fk(x). Formally,
this can be expressed as: f(x; ck) = fk(x), where ck is
mostly constructed from input-output pairs of task k, i.e.,
ck =

⊕
{x1, fk(x1), x2, fk(x2), . . . }, where

⊕
means a

concatenation template.

However, extending ICL to time-series foundation mod-
els presents unique challenges not addressed by existing
pipelines. Current time-series models are typically pre-
trained using a single-task objective (e.g., forecasting) on
large-scale datasets (Das et al., 2023; Woo et al., 2024;

Algorithm 1 In-Context Time-series Pre-training (ICTP)
Input: Time-series dataset D = {x}, Task candidates K,
Demonstration size m, Foundation time-series model f
Output: Reorganized dataset DICL, model with ICL
capability fICL

for x ∈ D do
Sample k ∼ K
yk = fk(x)
Cx = ϕ
for i to m do

Sample xi ∼ D, xi ∩ x = ϕ
yki = fk(xi)
Cx = Cx ⊕ xi ⊕ yki

end for
DICL ← (Cx ⊕ x, yk)

end for
fICL ← Finetune f by DICL

Goswami et al., 2024; Kamarthi & Prakash, 2024). While
LLMs serendipitously developed ICL through similar uni-
task pre-training (Brown et al., 2020), subsequent research
(Min et al., 2022; Chen et al., 2022; Gu et al., 2023) re-
vealed that multitask pre-training—enabled by the inherent
diversity of linguistic data—is crucial for acquiring robust
ICL capabilities. For instance, next-token prediction on
the sentence ”The temperature dropped below zero today
for the first time, so everyone is nervous” implicitly re-
quires the model to perform sentiment analysis. In contrast,
time-series data follows a strict chronological order, mean-
ing a model trained for next-step prediction will inherently
specialize in short-term forecasting but fail at tasks like
imputation or anomaly detection.

To overcome this limitation, we argue that time-series foun-
dation models must be explicitly pre-trained on multiple
tasks to acquire ICL capabilities. We achieve this through In-
Context Time-series Pre-training (ICTP), a novel pipeline
designed to foster multitask adaptability.

2.3. In-Context Time-series Pre-training (ICTP)

We propose In-Context Time-series Pre-training (ICTP), a
novel pipeline that transforms a raw time-series dataset into
a multi-task context-following dataset. Given a dataset D
and task candidates K = {k1, k2, . . . }, ICTP constructs
input-output pairs (xi, y

k
i ) for each data point xi ∈ D and

each task k ∈ K, where yi = fk(xi). Next, ICTP as-
sembles context pieces by concatenating pairs from the
same task: Ek

i = {xi1 , y
k
i1
, xi2 , y

k
i2
, . . . }seq . These context

pieces are then augmented with the original inputs to form
modified inputs x′

i = Ei ⊕ xi, while the corresponding out-
puts yi = fk(xi) remain unchanged. A complete pipeline
is described in Fig 1. We argue that pre-training TSFMs on
datasets structured by ICTP inherently equips them with
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ICL capabilities, enabling dynamic task adaptation without
parameter fine-tuning.

3. Experiments
3.1. Settings

To demonstrate the effect of ICTP on TSFMs’ performance
of unseen tasks, we collect several time-series task candi-
dates, applying ICTP to pre-train backbone TSFMs while
iteratively excluding one of the task candidates, and eval-
uate the pre-trained TSFMs on the excluded task without
fine-tuning to see if their performance on such an unseen
task has been improved.

3.1.1. BACKBONE MODELS

We choose three representative foundational time-series
models—MOMENT (Goswami et al., 2024), TimesFM
(Das et al., 2023), LPTM (Kamarthi & Prakash, 2024)— as
the backbones. Details of these backbones can be accessed
in Appendix. Such a selection covers three pre-training
objectives commonly adapted in time-series models: mask
construction, autoregressive generation, and adaptive seg-
mentation. While incorporating ICTP, we keep the original
pre-training objective for each model, only reforming the
pre-training dataset using ICTP. For all models, we use
wrappers from Samay 1 to manage our experiments and
datasets.

3.1.2. TASKS CANDIDATES

we collect three time-series tasks as candidates for pre-
training and evaluation: 1) Forecasting, where the model
predict the consecutive future values of a given sequence;
2) Imputation, where the model rebuilds certain part of the
input which was masked 3) Backtracing, where the model
predict the consecutive history values of a given sequence.
While evaluating ICTP on each task, we pretrain back-
bone models on the other tasks, keeping the evaluation task
unseen. For example, while evaluating the models on back-
tracing, the task candidates in ICTP will be forecasting and
imputation.

Specifically, as TimesFM and LPTM have accessed fore-
casting data during their original pre-training procedure and
MOMENT has accessed imputation data, we exclude these
tasks in corresponding evaluation. Implementation details
can be found in Appendix.

3.1.3. BASELINES

As the scope of ICTP is to adapt single-task foundation
models to multiple tasks without fine-tuning, we set baseline
methods as task-aware naive input reprogramming that does

1https://github.com/AdityaLab/Samay

not require fine-tuning.

For TimesFM and LPTM, we 1) truncates imputation inputs
before (after) the imputation target, depending on whether
the reconstruction area surpasses the middle of the original
sequence, while maintaining chronological order 2) flip the
backtracing inputs and outputs.

For MOMENT, we 1) concatenate forecasting inputs and
outputs as input, with mask on original outputs 3) flipped
the backtracing inputs and outputs, then apply the same
strategy as forecasting.

3.1.4. DATASET

We choose four datasets (ETTh1, ETTm1, Exchange Rate,
Weather) from the Informer datasets (Zhou et al., 2021), and
two datasets (PEMS-Bays, and METR-LA) from DCRNN
datasets (Li et al., 2017) to pre-train and evaluate ICTP.
Details of each dataset can be found in Appendix.

For all the datasets, we adopt Channel Independence as-
sumption (Nie et al., 2022), conducting tasks on each chan-
nel only considering inputs from the corresponding chan-
nel. We split the train / valid / test data chronologically
by 60:20:20 (that is, train data is always earlier than valid
/ test). We referred to implementations of TimesNet (Wu
et al., 2022) to normalize the input data.

For all tasks, we consider two output lengths, 96 and 192, for
all datasets. For forecasting and backtracing, the lookback
window is set as 192 and 384, respectively. For Imputation,
we set the input length as 192 and 384 correspondingly and
randomly mask 96 (192) of the inputs as reconstruction
targets so that the input/output length all aligns between
different tasks. We use 4 context examples in all tasks.
While building context sequences, we make sure there’s no
overlap between examples and target output.

3.2. Results

The results are presented in Table 1 and 2 for output lengths
of 96 and 192, respectively. After adapting ICTP, the back-
bone TSFMs exhibited significant performance improve-
ments on unseen tasks across most datasets, with average
improvement ratios of 11.3% and 11.6%, respectively. This
demonstrates that ICTP effectively enhances the capabil-
ity of TSFMs to handle unseen tasks. Notably, this im-
provement is achieved without any prior knowledge of the
downstream task, highlighting ICTP’s potential for broader
applications.

It’s worthy noticing that the degree of improvement varies
across models and datasets. Specifically, ICTP struggles to
enhance imputation performance for decoder-only models
(TimesFM, LPTM) but shows greater success in improving
forecasting and backcasting performance for encoder-only

3
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Backbone Evaluated on ICTP ETTh1 ETTm1 Exchange Weather PEMS-Bay METR-LA
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MOMENT
Forecasting No 0.813 0.629 0.724 0.588 0.228 0.285 0.215 0.345 2.623 0.899 1.291 0.765

Yes 0.433 0.458 0.496 0.541 0.236 0.279 0.163 0.206 1.625 0.595 1.169 0.728

BackTracing No 0.834 0.643 0.75 0.595 0.229 0.289 0.222 0.354 2.594 0.915 1.284 0.767
Yes 0.439 0.454 0.502 0.527 0.241 0.305 0.165 0.254 1.773 0.613 1.315 0.780

TimesFM
BackTracing No 0.518 0.464 0.402 0.427 0.118 0.238 0.182 0.207 2.993 0.879 1.477 0.742

Yes 0.438 0.429 0.382 0.447 0.097 0.218 0.175 0.198 2.167 0.719 1.283 0.682

Imputation No 0.920 0.604 0.967 0.649 0.118 0.244 0.235 0.281 2.888 0.835 1.198 0.613
Yes 0.785 0.592 0.934 0.692 0.134 0.265 0.231 0.279 2.818 0.761 1.412 0.723

LPTM
BackTracing No 0.830 0.663 0.739 0.640 2.259 1.229 0.471 0.497 2.832 0.950 1.528 0.848

Yes 0.672 0.597 0.628 0.564 2.173 1.134 0.381 0.435 2.033 0.688 1.375 0.733

Imputation No 1.164 0.784 1.128 0.776 1.923 1.119 0.383 0.451 2.226 0.806 1.175 0.729
Yes 1.141 0.779 1.096 0.764 1.873 1.035 0.331 0.411 2.122 0.804 1.097 0.699

Table 1. Results of backbone TSFMs with and without ICTP of output length 96 on all tasks, all datasets. Results outlined by bold shows
that ICTP improved the performance of backbone TSFMs on unseen tasks.

Backbone Evaluated on ICTP ETTh1 ETTm1 Exchange Weather PEMS-Bay METR-LA
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MOMENT
Forecasting No 0.938 0.691 0.849 0.644 0.337 0.365 0.506 0.547 2.247 0.821 1.336 0.780

Yes 0.514 0.527 0.618 0.544 0.332 0.345 0.357 0.427 2.198 0.698 1.310 0.760

BackTracing No 0.944 0.704 0.886 0.654 0.337 0.358 0.556 0.581 2.296 0.861 1.319 0.797
Yes 0.526 0.512 0.603 0.531 0.330 0.347 0.402 0.495 2.593 0.847 1.211 0.728

TimesFM
BackTracing No 0.584 0.509 0.496 0.467 0.278 0.361 0.238 0.277 3.315 0.966 1.755 0.836

Yes 0.512 0.492 0.415 0.453 0.181 0.305 0.231 0.269 2.249 0.705 1.379 0.659

Imputation No 1.053 0.642 0.919 0.610 0.226 0.334 0.385 0.382 3.485 0.986 1.623 0.752
Yes 0.913 0.679 0.852 0.572 0.242 0.338 0.374 0.379 2.570 0.822 1.516 0.767

LPTM
BackTracing No 0.811 0.859 0.765 0.658 2.456 1.314 0.435 0.468 2.841 0.965 1.481 0.822

Yes 0.796 0.661 0.627 0.568 2.645 1.359 0.431 0.473 1.859 0.605 1.375 0.807

Imputation No 1.244 0.818 1.403 0.861 2.016 1.156 0.515 0.497 2.618 0.909 1.330 0.774
Yes 1.164 0.785 1.168 0.784 2.199 1.146 0.343 0.413 2.508 0.889 1.294 0.787

Table 2. Results of backbone TSFMs with and without ICTP of output length 192 on all tasks, all datasets. Results outlined by bold
shows that ICTP improved the performance of backbone TSFMs on unseen tasks.

models (MOMENT). Additionally, the improvement on the
Exchange dataset is the smallest among all datasets. We at-
tribute this to the dataset’s simplicity: unlike the others, Ex-
change consists of weekly foreign currency exchange rates,
which exhibit relatively smooth patterns. Consequently,
TSFMs can more easily adapt to the input-output variance
gap across tasks in this case.

Furthermore, we note that the Weather dataset was already
included in TimesFM’s original pre-training process. De-
spite this, ICTP still substantially improved TimesFM’s
performance on unseen tasks. This supports our hypothesis
that existing pre-training pipelines for TSFMs, while effec-
tive for specific tasks, do not inherently equip models with
multi-task capability without fine-tuning, which is a gap that
ICTP successfully addresses.

4. Conclusion and Discussion
In this paper, we present In-Context Time-series Fine-tuning
(ICTP), a novel method for enhancing the non-fine-tuning
adaptability of time-series foundation models (TSFMs) on
unseen tasks. By restructuring pre-training datasets to incor-
porate multi-task coverage and explicit context paradigms,
ICTP equips TSFMs with in-context learning capabilities
akin to those of large language models (LLMs). Our ex-
periments demonstrate that ICTP significantly improves
performance on unseen tasks while maintaining robust per-
formance on previously encountered tasks. Future work
could explore extending ICTP to a broader range of tasks
or more diverse real-world datasets.
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A. Related Work
A.1. Time Series Foundation Models

Early approaches to time-series foundation models relied on repurposing (Gruver et al., 2024) or reprogramming (Jin
et al., 2023; Zhou et al., 2023) existing large-language-models. Subsequent work shifted toward task-specific pre-training
on large-scale time-series data, employing objectives such as patch-level autoregressive forecasting (Das et al., 2023),
mask-then-reconstruction (Woo et al., 2024), or maximizing likelihood of tokens (Ansari et al., 2024). However, these
models are designed for a single task and exhibit limited generalization to other tasks. Meanwhile, A few recent efforts
have explored multi-task TSFMs. For instance, MOMENT (Goswami et al., 2024), pre-trains an encoder via masked
reconstruction, while LPTM (Kamarthi & Prakash, 2024) employs adaptive segmentation. Nevertheless, both models require
task-specific fine-tuning of projection heads for adaptation. To our knowledge, no existing time-series foundation model
achieves task-agnostic adaptation without fine-tuning.

A.2. In-Context Learning

In-context learning (ICL), first observed in LLMs (Brown et al., 2020), enables task adaptation through dynamic prompting
rather than parameter updates. While early models acquired ICL capabilities unintentionally (Brown et al., 2020; Chowdhery
et al., 2023; Achiam et al., 2023), recent studies proposed to actively enhance ICL through improved pre-training strategies
(Zhao et al.; Gu et al., 2023) or optimized example selection (Wang et al., 2024; Xu & Zhang, 2024; Bhope et al., 2025).
Though these advances significantly boost ICL performance in language models, their applicability to time-series domains
remains unexplored.

B. Implementation Details
B.1. Introduction of Backbone Models

We introduce the backbone TSFMs introduced in our experiments.

• MOMENT2 (Woo et al., 2024) is a family of large, pre-trained time-series foundation models based on a transformer
architecture designed for diverse time-series tasks, including forecasting, classification, anomaly detection, and
imputation. The model employs a masked time-series modeling approach during pre-training, where patches of
time series are masked and reconstructed to learn robust representations. MOMENT is equipped with a lightweight
reconstruction head, reversible normalization, and relative positional embeddings, making it highly adaptable to
multivariate and univariate time-series data with varying temporal characteristics. We use their released checkpoint
AutonLab/MOMENT-1-large.

• TimesFM3 (Das et al., 2023) is a decoder-only time-series foundation model designed for zero-shot forecasting,
leveraging a patching strategy to divide time-series into non-overlapping segments for efficient training. The model
employs stacked transformer layers with causal self-attention to handle varying context lengths and prediction horizons,
optimizing predictions through residual blocks and positional encodings. Additionally, it supports longer output
patches compared to input patches, enabling efficient forecasting of long horizons with fewer autoregressive steps while
maintaining robustness across diverse granularities and domains. We use their release checkpoint google/TimesFM-
1.0-200m-pytorch.

• The LPTM4 (Kamarthi & Prakash, 2024) is a foundational model designed for multi-domain time-series analysis,
leveraging a transformer-based architecture with an adaptive segmentation module. This segmentation module
dynamically determines optimal segment lengths during pre-training, ensuring that time-series data from diverse
domains are tokenized effectively based on self-supervised learning losses. By incorporating masking-based self-
supervised tasks, LPTM learns robust representations, enabling efficient transfer to various downstream tasks such as
forecasting and classification.

2https://github.com/MOMENT-timeseries-foundation-model/MOMENT
3https://github.com/google-research/TimesFM
4https://github.com/AdityaLab/Samay
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B.2. Dataset

We explain the details of our dataset here:

• The Electricity Transformer Temperature (ETT) dataset monitors the oil temperature of electricity transformers, a
critical indicator in power grid management. It includes two years of data collected from two stations in China, with
sampling frequencies of 15 minutes (ETTm1) and 1 hour (ETTh1). Each data point comprises the target variable (oil
temperature) and six covariates representing power load features.

• The Exchange Rate dataset contains daily foreign exchange rates of eight currencies over a period spanning from 1990
to 2016.

• The Weather dataset contains local climatological data collected hourly from nearly 1,600 locations across the United
States.

• PEMS-Bay The PEMS-Bay dataset contains hourly sampled traffic volume records gathered across 300+ sensors across
the Bay Area. We choose the first two sensors in our experiment.

• METR-LA The METR-LA dataset contains hourly sampled traffic volume records gathered from Los Angeles. We
choose the first twenty sensors in our experiment.
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