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Abstract
We study the problem of best-arm identification
with fixed budget in stochastic multi-armed ban-
dits with Bernoulli rewards. For the problem with
two arms, also known as the A/B testing prob-
lem, we prove that there is no algorithm that (i)
performs as well as the algorithm sampling each
arm equally (referred to as the uniform sampling
algorithm) in all instances, and that (ii) strictly
outperforms uniform sampling on at least one in-
stance. In short, there is no algorithm better than
the uniform sampling algorithm. To establish this
result, we first introduce the natural class of con-
sistent and stable algorithms, and show that any
algorithm that performs as well as the uniform
sampling algorithm in all instances belongs to
this class. The proof then proceeds by deriving
a lower bound on the error rate satisfied by any
consistent and stable algorithm, and by showing
that the uniform sampling algorithm matches this
lower bound. Our results provide a solution to the
two open problems presented in (Qin, 2022). For
the general problem with more than two arms, we
provide a first set of results. We characterize the
asymptotic error rate of the celebrated Successive
Rejects (SR) algorithm (Audibert et al., 2010) and
show that, surprisingly, the uniform sampling al-
gorithm outperforms the SR algorithm in some
instances.

1. Introduction
We study the problem of Fixed-Budget Best-Arm Identi-
fication (FB-BAI) in stochastic multi-armed bandits with
Bernoulli rewards. In this problem, the learner sequentially
pulls an arm and observes a random reward generated ac-
cording to the corresponding distribution. The expected
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rewards of the arms are initially unknown. The learner
has a fixed budget of T ∈ N pulls or samples, and after
gathering these samples, she has to return what she be-
lieves to be the arm with the highest mean reward. For
any k ∈ [K] := {1, . . . ,K}, we denote by µk ∈ (0, 1)
the unknown mean reward of arm k. We assume that the
best arm is unique and define the parameter set of the mean
rewards as Λ = {µ ∈ (0, 1)K : ∃k : µk > µj ,∀j ̸= k}.
A strategy for fixed-budget best-arm identification consists
of a sampling rule and a decision rule. The sampling rule
determines the arm At ∈ [K] to be explored in round t,
based on past observations. The corresponding observed
reward is Xt ∈ {0, 1}. The arm At selected in round t is
Ft measurable where Ft demotes the σ-algebra generated
by the set of random variables {A1, X1, . . . , At−1, Xt−1}.
After T rounds, the decision rule returns an answer ı̂ ∈ [K],
which is FT measurable. The goal is to identifiy a strategy
that minimizes the error probability defined as

pµ,T := Pµ [̂ı ̸= 1(µ)] ,

where 1(µ) := argmaxk µk denotes the unique best arm
under the instance µ.

A naive strategy consists in allocating a fixed fraction of the
budget to sample each arm. Once the budget is exhausted,
the strategy then returns the arm with the highest empirical
mean. We refer to such a strategy as a static algorithm (in
contrast to adaptive algorithms that may select the arm to
pull next based on the rewards observed so far). An exam-
ple of a static strategy is the uniform sampling strategy that
allocates the budget fairly among arms. Static algorithms
are well-understood and in particular, their asymptotic error
rates are known (Glynn & Juneja, 2004). Many adaptive
sampling algorithms have been designed, see, e.g., (Audib-
ert et al., 2010; Gabillon et al., 2012; Karnin et al., 2013;
Russo, 2020; Komiyama et al., 2022; Wang et al., 2023),
with the hope of an improved performance compared to
static algorithms. It is still unclear whether this hope can
actually be fulfilled.

Despite recent research efforts, the FB-BAI problem re-
mains largely open (Qin, 2022). This contrasts with the two
other classical learning tasks in stochastic bandits, namely
regret minimization (Lai & Robbins, 1985) and best arm
identification with fixed confidence (Garivier & Kaufmann,
2016). Indeed, for these tasks, asymptotic instance-specific
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performance limits and matching algorithms have been de-
rived. In this paper, we aim at improving our understanding
of the FB-BAI problem and more specifically at answer-
ing the following two natural questions, mentioned as open
problems in (Qin, 2022).

Open problem 1. Is there an algorithm whose performance
is as good as that of the uniform sampling algorithm on all
instances and that strictly outperforms the latter on some
instances?

Open problem 2. Can we derive an asymptotic and instance-
specific error rate lower bound that (i) is satisfied by all
algorithms within a wide class A of algorithms and that (ii)
is achieved by a single algorithm in A on all instances?

We address both open problems in the case of the FB-BAI
problem with two arms (also referred to as the A/B testing
problem) with Bernoulli rewards. We also provide a first
set of results towards addressing these problems in the gen-
eral setting with more than two arms. More precisely our
contributions are as follows.

Contributions.

(a) For the A/B testing problem, we prove that there is no
algorithm strictly outperforming the uniform sampling al-
gorithm (Theorem 2.2). To this aim, we first introduce the
natural class of consistent and stable algorithms (stability
here just means that the algorithm exhibits a symmetric and
continuous behavior with respect to the instances). We then
show that this class includes any algorithm performing as
well as the uniform sampling algorithm on all instances
(Theorem 3.3). We finally derive an instance-specific lower
bound on the error rate satisfied by any consistent and stable
(Theorem 4.1). As it turns out, this lower bound corresponds
to the performance of the uniform sampling algorithm. The
answer to the question of the open problem 1 is hence nega-
tive.

(b) Our analysis further provides a positive answer to the
question of the open problem 2. Indeed, it yields an instance-
specific error rate lower bound for the class of consistent
and stable algorithms, and the performance of the uniform
sampling algorithm matches this fundamental limit.

(c) For the FB-BAI problem with more than two arms, we
manage to exactly characterize the asymptotic error rate of
the celebrated Successive Rejects (SR) algorithm (Audibert
et al., 2010) (Theorem 5.1). This contrasts with existing
analyses of adaptive algorithms where only upper bounds
of the error rate can be derived. Using this characterization,
we show that, surprisingly, the uniform sampling algorithm
outperforms the SR algorithm in certain instances (Theo-
rem 5.2).

2. Preliminaries and Main Result
In this section, we first present existing results on the per-
formance of static algorithms in the A/B testing problem.
We then state our main result: there is no strictly better
algorithm than the uniform sampling algorithm.

2.1. Performance of Static Algorithms

In two-arm bandits, a static algorithm is parameterized by
a single variable x ∈ (0, 1) specifying the fraction of the
budget used to sample the second arm (a static algorithm
parameterized by x pulls the first arm (1−x)T+o(T ) times
and pulls the second arm xT + o(T ) times). Defining

g(x,µ) := min
λ∈[0,1]

(1− x)d(λ, µ1) + xd(λ, µ2), (1)

where d(a, b) is the KL-divergence between two Bernoulli
distributions with respective means a and b, (Glynn
& Juneja, 2004) shows that under a static algorithm
parametrized by x,

lim
T→∞

T

log(1/pµ,T )
=

1

g(x,µ)
.

The optimization problem in (1) can be solved by explicitly
writing the KKT conditions (Glynn & Juneja, 2004). Its
unique solution and value are given by

λ(x,µ) =
( µ1

1−µ1
)1−x( µ2

1−µ2
)x

1 + ( µ1

1−µ1
)1−x( µ2

1−µ2
)x
∈ (0, 1), (2)

g(x,µ) = − log((1− µ1)
1−x(1− µ2)

x + µ1−x
1 µx

2). (3)

From (3), we can readily verify that g(x,µ) is strictly con-
cave in x, i.e., ∂2g(x,µ)

∂2x < 0 as long as µ1 ̸= µ2 or equiva-
lently µ ∈ Λ.1 Therefore, g(x,µ) has a unique maximizer
denoted by x∗(µ) := argmaxx g(x,µ). Given the expected
rewards µ of the arms, x∗(µ) corresponds to the static algo-
rithm with the best possible performance. However, under
this static algorithm, the fraction of the budget used for each
arm depends on the initially unknown µ.

Over the last few years, researchers have tried to deter-
mine whether there exists an adaptive algorithm that could
achieve the performance of the best static algorithm for any
µ. The answer to this question is actually negative, as re-
cently proved in (Degenne, 2023): for any algorithm, there
exists an instance µ such that the considered algorithm per-
forms strictly worse than the best static algorithm on this
instance. Refer to Section 6 for additional details. This
negative result illustrates the difficulty of devising adaptive
and efficient algorithms. We establish even more striking ev-
idence of this challenge. We show that there is no algorithm
universally outperforming the uniform sampling algorithm.
We formalize this result below.

1For completeness, we include proof of (2), (3), and the strict
concavity of g(x,µ) in Appendix A.
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2.2. Main Result

The performance of the uniform sampling algorithm is char-
acterized by g(1/2,µ). More precisely, under this algo-
rithm,

∀µ ∈ Λ, lim
T→∞

T

log(1/pµ,T )
=

1

g(1/2,µ)
.

Our main result concerns the class of better than uniform
algorithms already introduced and discussed in (Qin, 2022).
These algorithms are at least as good as the uniform sam-
pling algorithm in all instances.
Definition 2.1. An algorithm is better than uniform if

∀µ ∈ Λ, lim
T→∞

T

log(1/pµ,T )
≤ 1

g(1/2,µ)
.

Theorem 2.2. For any better than uniform algorithm,

∀µ ∈ Λ, lim
T→∞

T

log(1/pµ,T )
=

1

g(1/2,µ)
.

As a consequence, surprisingly, one cannot devise an adap-
tive algorithm that performs as well as the uniform sampling
algorithm on all instances and that strictly outperforms it
on some instances. This also implies that if an algorithm
strictly outperforms the uniform sampling algorithm in at
least one instance, then there is an instance where the uni-
form sampling algorithm strictly outperforms this algorithm.
This provides a solution to the open problem 1 (Qin, 2022)
presented in the introduction (refer to Section 6.1 for more
details).

Theorem 2.2 is proved by combining the results presented in
Sections 3 and 4. There, we introduce the class of consistent
and stable algorithms, and show that better than uniform
algorithms are consistent and stable. We also establish the
error rate achieved by the uniform sampling algorithm con-
stitutes an error rate lower bound satisfied by consistent and
stable algorithms. Note that these intermediate results to-
wards Theorem 2.2 provide a solution to the open problem 2
(Qin, 2022) presented in the introduction.

2.3. Notation

For each t ∈ {1, 2, . . . , T} and k ∈ {1, 2}, define Nk(t) :=∑t
s=1 1{As = k} as the number of times arm k is pulled

up to round t, and ωk(t) := Nk(t)/t as the proportion of
times arm k is pulled.

3. Stable and Consistent Algorithms
In this section, we demonstrate that any better than uniform
algorithm is both consistent and stable, as defined below.
Definition 3.1. An algorithm is consistent if for all µ ∈ Λ,
limT→∞ pµ,T = 0.

Definition 3.2. An algorithm is stable if for any a ∈ (0, 1),
the following properties hold:
(A) There exists {λ(n)}∞n=1 ⊂ {λ ∈ Λ : λ1 > λ2} such
that λ(n) n→∞−−−−→ (a, a) and

lim
n→∞

lim
T→∞

Eλ(n) [ω2(T )] = lim
n→∞

lim
T→∞

Eλ(n) [ω2(T )] =
1

2
.

(B) There exists {π(n)}∞n=1 ⊂ {π ∈ Λ : π1 < π2} such
that π(n) n→∞−−−−→ (a, a) and

lim
n→∞

lim
T→∞

Eπ(n) [ω2(T )] = lim
n→∞

lim
T→∞

Eπ(n) [ω2(T )] =
1

2
.

Intuitively, an algorithm is stable if it exhibits a symmetric
and continuous behavior with respect to the bandit instances.
The notion of stability is natural and just refers to the prop-
erty of evenly allocating the budget when the arms have very
similar mean rewards. It is satisfied by the uniform sam-
pling algorithm (and of course all the adaptive algorithms
that evenly select arms in the case of two-armed bandits) and
by most reasonably adaptive algorithms. We give several
families of stable algorithms in Appendix E. For example,
stability is guaranteed as soon as the algorithm is designed
such that the number of times arm 1 is sampled up to time
t closely matches tf(µ̂1(t), µ̂2(t)), where µ̂1(t) and µ̂2(t)
are the current estimates of the mean rewards and f > 0
is a continuous function such that f(a, a) = 1/2 for any
a ∈ (0, 1).

In addition, as established in the following theorem, better
than uniform algorithms are stable.
Theorem 3.3. A better than uniform algorithm is consistent
and stable.

3.1. Proof of Theorem 3.3

Consistency. In view of Definition 2.1, a better than uniform
algorithm is consistent. Indeed, for any µ ∈ Λ, there exists
Tµ ∈ N such that if T > Tµ, then T

log(1/pµ,T ) ≤
2

g(1/2,µ) .

As a result, we have pµ,T ≤ e−
1
2 g(1/2,µ)T . We conclude

the proof by observing that g(1/2,µ) > 0.

Stability. We show by contradiction that a better than uni-
form algorithm is stable. Suppose there exists a ∈ (0, 1)
such that (B) in Definition 3.2 does not hold (if (A) in Def-
inition 3.2 does not hold, one can obtain a contradiction
in a symmetric way). The following lemma is proven in
Appendix C.
Lemma 3.4. Let a ∈ (0, 1). Assume that the statement (B)
of Definition 3.2 does not hold. Then for any {π(n)}∞n=1 ⊂
{π ∈ Λ : π1 < π2} such that π(n) n→∞−−−−→ (a, a), there ex-
ists a value x ∈ [0, 1] and increasing sequences of integers
{nm}∞m=1, {Tm,ℓ}∞ℓ=1 ⊂ N such that

lim
m→∞

lim
ℓ→∞

Eπ(nm) [ω2(Tm,ℓ)] = x ̸= 1

2
.
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Let x, {nm}∞m=1, and {Tm,ℓ}∞ℓ=1 be a real number and
sequences satisfying the statement of Lemma 3.4. Using a
standard change-of-measure argument (e.g., inequality (6)
in (Garivier et al., 2019)), for any µ ∈ Λ with µ1 > µ2, for
each m, ℓ ∈ N,

Eπ(nm) [N1(Tm,ℓ)]d(π
(nm)
1 , µ1)

+ Eπ(nm) [N2(Tm,ℓ)]d(π
(nm)
2 , µ2)

≥ d(Pπ(nm) [̂ı = 2],Pµ [̂ı = 2])

≥ Pπ(nm) [̂ı = 2] log
(
1/pµ,Tm,ℓ

)
− log 2, (4)

where the last inequality stems from the fact that d(p, q) ≥
p log(1/q) − log 2 for all p, q ∈ [0, 1]. By dividing both
sides of equation (4) by Tm,ℓ, we can rearrange the inequal-
ity as follows:

Tm,ℓ

Pπ(nm) [̂ı = 2] log(1/pµ,Tm,ℓ
)

≥
(
Eπ(nm) [ω1(Tm,ℓ)]d(π

(nm)
1 , µ1)

+ Eπ(nm) [ω2(Tm,ℓ)]d(π
(nm)
2 , µ2) +

log 2

Tm,ℓ

)−1

.

Given that a better than uniform algorithm is consistent, it
follows that Pπ(nm) [̂ı = 2] = 1 − pπ(nm),Tm,ℓ

ℓ→∞−−−→ 1

from π
(nm)
1 < π

(nm)
2 . Driving ℓ→∞ first, and then letting

m→∞, we obtain

lim
m→∞

lim
ℓ→∞

Tm,ℓ

log(1/pµ,Tm,ℓ
)

≥ 1

(1− x)d(a, µ1) + xd(a, µ2)
. (5)

Next, we use the following lemma related to the function
g and prove after completing the proof of Theorem 3.3.
Lemma 3.5 is visualized in the left-hand side of Figure 1.

Lemma 3.5. For any a ∈ (0, 1), x ∈ [0, 1] such that x ̸=
1/2, there exists µ ∈ Λ such that µ1 > µ2, λ(x,µ) = a,
and g(x,µ) < g(1/2,µ).

Plugging such µ into (5) yields that

lim
m→∞

lim
ℓ→∞

Tm,ℓ

log(1/pµ,Tm,ℓ
)
≥ 1

g(x,µ)
>

1

g(1/2,µ)
.

This contradicts the assumption that the algorithm is better
than uniform. □

Proof of Lemma 3.5. We assume that x ∈ (1/2, 1]. The
case for x ∈ [0, 1/2) will be addressed at the end. We first
present Proposition 3.6, whose proof is given in Appendix A,
and its visualization is shown in the right panel of Figure 1.

Proposition 3.6. For any a ∈ (0, 1), x ∈ (1/2, 1], there
exists an instance µ ∈ Λ such that (i) µ1 > µ2, µ1+µ2 ≥ 1,
(ii) λ(x,µ) = a, and (iii) x∗(µ) < (1/2 + x)/2.

Let µ ∈ Λ be an instance satisfying the conditions of
Proposition 3.6. If x∗(µ) ≤ 1/2, the strict concavity
of g(·,µ) immediately implies that g(1/2,µ) > g(x,µ).
On the other hand, if x∗(µ) > 1/2, we can observe
that x∗(µ) < (1/2 + x)/2 ≤ 3/4, which leads to δ =
x∗(µ) − 1/2 ≤ min{x∗(µ), 1 − x∗(µ)}. We use the fol-
lowing proposition.

Proposition 3.7. Suppose µ1 > µ2 and µ1 + µ2 ≥ 1.
For any positive δ ≤ min{x∗(µ), 1− x∗(µ)}, g(x∗(µ)−
δ,µ) ≥ g(x∗(µ) + δ,µ).

The proof and visualization of Proposition 3.7 can be found
in Appendix B and Figure 2, respectively. Setting δ =
x∗(µ)− 1/2, we obtain the following inequality

g(1/2,µ) = g(x∗(µ)− δ,µ) ≥ g(x∗(µ) + δ,µ).

Using the strict concavity of g(·,µ) again and the fact that
x∗(µ)+δ = 2x∗(µ)−1/2 < x, we derive that g(1/2,µ) ≥
g(x∗(µ) + δ,µ) > g(x,µ). This concludes the proof when
x ∈ (1/2, 1].

Next, we consider the proof when x ∈ [0, 1/2). To this aim,
we use the following symmetrical property of g(x,µ).

Proposition 3.8. Denote µ̄ = (1 − µ2, 1 − µ1). For any
x ∈ (0, 1), for any µ ∈ Λ, g(1 − x, µ̄) = g(x,µ) and
λ(1− x, µ̄) = 1− λ(x,µ).

The proof of Proposition 3.8 is presented in Appendix A.3.
The previous proof (replacing xwith 1−x ∈ (1/2, 1]) yields
the existence of µ ∈ Λ such that g(1− x,µ) < g(1/2,µ)
and λ(1 − x,µ) = 1 − a. Let µ̄ = (1 − µ2, 1 − µ1),
Proposition 3.8 and the strict concavity of g(·,µ) imply that

g(x, µ̄) = g(1− x,µ) < g(1/2,µ) = g(1/2, µ̄),

and λ(x, µ̄) = 1 − λ(1 − x,µ) = a. This concludes
the proof for x ∈ [0, 1/2), thus completing the proof of
Lemma 3.5.

4. Error Rate of Consistent and Stable
Algorithms

In this section, we establish that the performance of any
stable and consistent algorithm is either equivalent to or
worse than that of uniform sampling.

Theorem 4.1. If an algorithm is consistent and stable, then

∀µ ∈ Λ, lim
T→∞

T

log(1/pµ,T )
≥ 1

g(1/2,µ)
.
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Figure 1. Left: Visualization of Lemma 3.5 with a = 0.55 and x = 0.51. The blue region indicates where µ1 > µ2 and g(x,µ) <
g(1/2,µ). The red curve represents λ(x,µ) = a. The intersection of the blue region and red curve validates Lemma 3.5. Right:
Visualization of Proposition 3.6 with a = 0.55 and x = 0.51. The green region indicates (i) µ1 > µ2, µ1 + µ2 ≥ 1. The red
curve represents (ii) λ(x,µ) = a. The blue region shows (iii) x∗(µ) < ( 1

2
+ x)/2. The intersection of the three regions validates

Proposition 3.6.

Proof. Without loss of generality, assume 1(µ) = 1,
namely, µ1 > µ2. For any π ∈ Λ such that π1 < π2,
applying a standard change-of-measure argument, as in the
proof of Theorem 3.3, yields that

Eπ[N1(T )]d(π1, µ1) + Eπ[N2(T )]d(π2, µ2)

≥ d(Pπ [̂ı = 2],Pµ [̂ı = 2])

≥ Pπ [̂ı = 2] log (1/pµ,T )− log 2. (6)

Since π1 < π2, the consistent assumption yields that Pπ [̂ı =

2] = 1− pπ,T
T→∞−−−−→ 1. Dividing the both sides of (6) by

T and taking T →∞, we obtain

lim
T→∞

T

log(1/pµ,T )
(7)

≥ lim
T→∞

1

Eπ[ω1(T )]d(π1, µ1) + Eπ[ω2(T )]d(π2, µ2)

by simply rearranging the terms. Next, we let a = λ( 12 ,µ).
Since the algorithm is stable, there exists {π(n)}∞n=1 ⊂ Λ

such that π(n)
1 < π

(n)
2 , π(n) n→∞−−−−→ (a, a), and

lim
n→∞

lim
T→∞

Eπ(n) [ω2(T )] = lim
n→∞

lim
T→∞

Eπ(n) [ω2(T )] =
1

2
.

Notice that previous equations also imply that

lim
n→∞

lim
T→∞

Eπ(n) [ω2(T )] = lim
n→∞

lim
T→∞

(1− Eπ(n) [ω1(T )])

= 1− lim
n→∞

lim
T→∞

Eπ(n) [ω1(T )]

=
1

2
. (8)

Thus, rearranging (8) yields that

lim
n→∞

lim
T→∞

Eπ(n) [ω1(T )] =
1

2
.

Plugging them into (7) and taking n to infinity yields that

lim
T→∞

T

log(1/pµ,T )
≥ lim

n→∞
(An)

−1 =
(

lim
n→∞

An

)−1

≥ 2

d(a, µ1) + d(a, µ2)
=

1

g(1/2,µ)
.

where An is the limit superior of the sequence(
Eπ(n) [ω1(T )]d(π

(n)
1 , µ1)+Eπ(n) [ω2(T )]d(π

(n)
2 , µ2)

)
T∈N.

We remark that the combination of Theorems 3.3 and 4.1
leads to Theorem 2.2.

5. K-Armed Bandits with K ≥ 3

Extending our results to the general case where there are
more than two arms is challenging. We investigate whether
existing adaptive algorithms could be better than uniform
algorithms. This question is not easy to answer because
existing analyses of these algorithms provide upper bounds
only on their error rates. Even if these upper bounds are,
for some instances, worse than the error rate of the uniform
sampling algorithm, it does not imply that the latter performs
better on these instances. To answer the question, we also
need to derive lower bounds on their error rates (which is
challenging – refer to (Wang et al., 2023) for a detailed
discussion).

In this section, we restrict our attention to the celebrated Suc-
cessive Rejects (SR) algorithm (Audibert et al., 2010), and
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Figure 2. Visualization of the function g(x,µ) properties. The left panel shows the partition of Λ into four regions by µ1 = µ2 and
µ1 + µ2 = 1, with blue indicating x∗(µ) < 1/2 and red indicating x∗(µ) > 1/2. Four bandit instances are chosen symmetrically from
these regions for further analysis. The right panels show the functions g(x,µ(A)) = g(x,µ(C)) (top) and g(x,µ(B)) = g(x,µ(D))
(bottom), demonstrating the asymmetrical property as stated in Proposition 3.7.

we manage to derive the exact expression of its asymptotic
error rate. From there, we exhibit instances where surpris-
ingly, the uniform sampling algorithm provably outperforms
the SR algorithm.

5.1. The Successive Rejects Algorithm

Algorithm 1 Successive Rejects (SR)
Initialization CK ← [K], j ← K;
for t = 1, 2, . . . , T do

if (j > 2 and mink∈Cj Nk(t) ≥ T
jlogK

) then
ℓj ← argmink∈Cj

µ̂k(t) (tie broken arbitrarily),
Cj−1 ← Cj \ {ℓj}, and j ← j − 1

end if
Sample At ← argmink∈Cj

Nk(t) (tie broken arbitrar-
ily), update {Nk(t)}k∈Cj

and µ̂(t)
end for
ℓ2 ← argmink∈C2

µ̂k(T ) (tie broken arbitrarily)
Return ı̂← argmaxk∈C2 µ̂k(T ) (tie broken arbitrarily)

Consider the FB-BAI problem with K arms as described in
the introduction. For this problem, the SR algorithm starts
by initializing the set of candidate arms as CK = [K]. The
sampling budget is partitioned intoK−1 phases. Following
each phase, SR discards the empirically determined worst-
performing arm from the candidate set. During each phase,
SR adopts a uniform sampling strategy for the arms within
the candidate set.

The phase lengths are determined as follows. Define
logK := 1/2 +

∑K
k=2 1/k. When the candidate set, de-

noted by Cj , comprises more than two arms, i.e., j > 2,
in the corresponding phase, SR works as follows: (i)
each arm within Cj is sampled until the round t at which

mink∈Cj
Nk(t) ≥ T/(jlogK). (ii) the arm identified as

the empirical worst, denoted by ℓj , is then discarded, which
means Cj−1 = Cj\{ℓj}. During the final phase, SR samples
the two remaining arms evenly and recommends ı̂, the arm
that exhibits the higher empirical mean in C2. Algorithm 1
presents the pseudo-code of SR.

5.2. Exact Analysis of SR

In Theorem 2 in (Wang et al., 2023), the authors show that
SR satisfies for any µ ∈ Λ

lim
T→∞

T

log(1/pµ,T )
≤ max

j=2,...,K

jlogK

Γj(µ)
. (9)

where

Γj(µ) := min
J∈Jj(µ)

inf
λ∈Λ:λ1(µ)≤mink∈J λk

∑
k∈J

d(λk, µk),

and Jj(µ) := {J ⊆ [K] : |J | = j, 1(µ) ∈ J}. We
show the bound (9) is in fact tight. Indeed, in the following
theorem whose proof is presented in Appendix D, we derive
a matching lower bound.

Theorem 5.1. Under the Successive Rejects algorithm (Au-
dibert et al., 2010), for any µ ∈ Λ,

lim
T→∞

T

log(1/pµ,T )
= max

j=2,...,K

jlogK

Γj(µ)
.

5.3. Instances Where Uniform Sampling Outperforms
SR

We can use Theorem 5.1 to assess whether the SR algorithm
is better than uniform. The next theorem shows that it is not
even for three-armed bandits.

6
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Theorem 5.2. There exists a three-armed bandit instance
in which uniform sampling strictly outperforms SR asymp-
totically.

Proof. From Theorem 5.1, for any µ ∈ Λ, the error rate of
SR satisfies

lim
T→∞

T

log(1/pµ,T )
= max

{
8

3Γ2(µ)
,

4

Γ3(µ)

}
. (10)

As for uniform sampling, the error rate satisfies (Glynn &
Juneja, 2004)

lim
T→∞

T

log(1/pµ,T )
=

3

Γ2(µ)
. (11)

Thank to Proposition D.4 in Appendix D.1, we can com-
pute Γ2(0.5, 0.3, 0.3) ≈ 0.0426387 and Γ3(0.5, 0.3, 0.3) ≈
0.0562588, which implies

(10) ≈ 71.1 > 70.3587 ≈ (11).

We conclude that SR has a higher error rate than the uniform
sampling algorithm in the instance (0.5, 0.3, 0.3).

We can use the results from Proposition D.4 in Appendix D.1
to numerically compare the error rates of the SR and uni-
form sampling algorithms. In Figure 3, we plot the set of
instances µ such µ1 > µ2 = µ3 where the SR algorithm has
an higher error rate than the uniform sampling algorithm.

Figure 3. The blue area corresponds to instances µ = (µ1, µ2, µ2)
such that µ1 > µ2 = µ3 and such that the uniform sampling
algorithm strictly outperforms the SR algorithm. The red dashed
line is the set of instances such that µ1 = µ2.

6. Related Work and Discussion
In this section, we start by stating rigorously the two open
problems in (Qin, 2022) and that we address in this paper.
We then present the related work for the FB-BAI problem in
general, and finally discuss existing results for the two-arm
case.

6.1. Open Problems Stated in (Qin, 2022)

Problem 1 (Qin, 2022) consists of investigating whether
there exists a better than uniform algorithm that strictly
outperforms uniform sampling on some instances. Based
on Theorem 2.2, we can conclude that no such algorithms
exist in two-armed bandits.

Problem 2 (Qin, 2022) consists in investigating whether
the two following properties can hold simultaneously:

(a) Lower bound. There exist an algorithm class A and a
function Γ∗ : Λ 7→ R such that for any algorithm in A,

∀µ ∈ Λ, lim
T→∞

T

log(1/pµ,T )
≥ Γ∗(µ).

(b) Upper bound. There is a single algorithm inA satisfies

∀µ ∈ Λ, lim
T→∞

T

log(1/pµ,T )
≤ Γ∗(µ).

For problems with more than two arms, (Garivier & Kauf-
mann, 2016) conjecture that the lower bound discussed
above for two-arm bandits can be generalized. However,
again, (Ariu et al., 2021) prove that for any algorithm, when
the number of arms is large, there exists at least one instance
where the algorithm cannot reach the lower bound. Our
Theorem 4.1 addresses this open problem by considering A
as the set of consistent and stable algorithms, by setting

Γ∗(µ) =
1

g(1/2,µ)
,

and by using the fact that the uniform sampling algorithm
matches the corresponding lower bound.

6.2. Fixed-Budget Best-Arm Identification

The study of fixed-budget best-arm identification has been
relatively recent (Audibert et al., 2010; Bubeck et al., 2011),
especially when compared to regret minimization (Lai &
Robbins, 1985; Cappé et al., 2013) and fixed-confidence
best-arm identification (Chernoff, 1959; Even-Dar et al.,
2006; Garivier & Kaufmann, 2016). Since then, algorithms
such as Successive Rejects (SR) (Audibert et al., 2010), Se-
quential Halving (Karnin et al., 2013), and UGapE (Gabillon
et al., 2012) have been proposed with performance guaran-
tees.

A first lower bound on the error rate for FB-BAI has been
proposed in (Audibert et al., 2010). They prove that for
any algorithm that knows the reward distributions of the
arms, but does not know the order in which they corre-
spond to the arms, there exists a bandit instance such that
the probability of misidentification is lower bounded by

7
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exp(− cT
H2

), where c > 0 is some universal constant and
H2 := maxk ̸=1(µ)

k
(µ1(µ)−µk)2

.

In (Carpentier & Locatelli, 2016), the authors prove that
for any algorithm, there exist bandit instances such that
the probability of error for one of the instances is lower
bounded by exp(− 400T

H2 logK ), where K is the number of the
arms. The authors of (Ariu et al., 2021) revisit this lower
bound, and demonstrate that no algorithm can universally
achieve the same error probability as the best static algo-
rithm, particularly when the number of arms is large.

(Komiyama et al., 2022) presents a minimax characteri-
zation of the error probability. They also conjecture that
exploration that adapts to the instance is costly.

The recent study (Wang et al., 2023) investigates the FB-BAI
problem using large deviation techniques. They relate the er-
ror probability to the Large Deviation Principle satisfied by
the stochastic process capturing the empirical proportions
of arm pulls and the sample means. Leveraging the connec-
tion, they not only enhance the guarantee of the Successive
Rejects (SR) but also devise and analyze a novel algorithm
with more adaptive rejections, Continuous Rejects (CR).
The CR algorithm demonstrates superior performance both
theoretically and numerically. Note however, that as SR, the
CR algorithm is identical to the uniform sampling algorithm
in bandit problems with two arms.

6.3. A/B Testing

For two-armed bandits, in (Kaufmann et al., 2014; 2016),
the authors try to provide a characterization of the minimal
instance-specific error probability for fixed-budget best-arm
identification. For Bernoulli rewards, they establish a lower
bound of this probability satisfied by any consistent algo-
rithm:

∀µ ∈ Λ, lim
T→∞

T

log(1/pµ,T )
≥ min

x∈(0,1)

1

g(x,µ)
. (12)

(Kaufmann et al., 2014; 2016) also note, as in (Glynn &
Juneja, 2004), that the best static algorithm (that requires
the knowledge of µ) matches this lower bound. They do
not find an adaptive algorithm that universally matches the
lower bound across all bandit instances. Our results state
that this is indeed impossible.

Now for Gaussian rewards, (Kaufmann et al., 2014; 2016)
derive an error probability lower bound satisfied by con-
sistent algorithms. They also show that when the learner
is aware of the variances of the rewards, one may find an
algorithm whose performance matches this lower bound on
all instances. This algorithm is a static algorithm that pulls
the first arm σ1/(σ1 + σ2)T + o(T ) times and the second
arm σ2/(σ1 + σ2)T + o(T ) times, where σ2

1 and σ2
2 are the

variances of the rewards of arm 1 and 2, respectively.

In (Degenne, 2023), the author shows that, for Bernoulli
bandits, a universally optimal algorithm matching the lower
bound (12) does not exist. Specifically, for any algorithm,
there exists an instance and a static algorithm such that the
considered algorithm performs strictly worse than the best
static algorithm on the instance. Essentially, characterizing
the instance-specific minimal error rate within a class of
algorithms that includes all static algorithms is impossible.
In this paper, we show that adaptive algorithms cannot even
compete with a single static algorithm, namely the uniform
sampling algorithm, on all instances.

7. Conclusion
In this paper, we investigated the problem of finding uni-
versally optimal algorithms for Fixed-Budget Best-Arm
Identification (FB-BAI) in stochastic multi-armed bandits
with Bernoulli rewards. We found that, surprisingly, for
two-armed bandits (the A/B testing problem), no algorithm
strictly outperforms the uniform sampling algorithm. We
actually proved that within a natural and wide class of con-
sistent and stable algorithms, uniform sampling is univer-
sally optimal. Extending these results to the case of more
than two arms is challenging. So far we have not found any
adaptive algorithm outperforming uniform sampling for all
instances. For example, we were able to exactly characterize
the asymptotic error probability of the celebrated Successive
Rejects (SR) algorithm. As it turns out, SR is outperformed
by uniform sampling in some instances.

Our study advances the understanding of the FB-BAI prob-
lem. However, we obtained a complete picture only for A/B
testing with Bernoulli rewards. A similar picture is for now
out of reach for general reward distributions. Indeed, the
minimal error probability is not known even in the case of
Gaussian reward distributions with unknown variances or in
the case where these distributions are within one parameter
exponential family. In the latter case, we conjecture that
uniform sampling remains universally optimal. For prob-
lems involving more than two arms, the FB-BAI problem
becomes even more challenging. We are currently working
on extending the notion of stable algorithms, and on com-
paring their performance to that of the uniform sampling
algorithm.

Impact Statement
This paper focuses on discussing the existence of universally
optimal algorithms for best-arm identification. It presents
work whose goal is to advance the field of Machine Learning.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., Stoltz,
G., et al. Kullback–leibler upper confidence bounds for
optimal sequential allocation. Annals of Statistics, 2013.

Carpentier, A. and Locatelli, A. Tight (lower) bounds for
the fixed budget best arm identification bandit problem.
In Proc. of COLT, 2016.

Chernoff, H. Sequential design of experiments. The Annals
of Mathematical Statistics, 30(3):755–770, 1959.

Combes, R. and Proutiere, A. Unimodal bandits: Regret
lower bounds and optimal algorithms. In Proc. of ICML,
2014.

Degenne, R. On the existence of a complexity in fixed
budget bandit identification. In Proc. of COLT, 2023.

Even-Dar, E., Mannor, S., Mansour, Y., and Mahadevan,
S. Action elimination and stopping conditions for the
multi-armed bandit and reinforcement learning problems.
JMLR, 7(6), 2006.

Gabillon, V., Ghavamzadeh, M., and Lazaric, A. Best arm
identification: A unified approach to fixed budget and
fixed confidence. Proc. of NeurIPS, 2012.

Garivier, A. and Kaufmann, E. Optimal best arm identifica-
tion with fixed confidence. In Proc. of COLT, 2016.

Garivier, A., Ménard, P., and Stoltz, G. Explore first, exploit
next: The true shape of regret in bandit problems. Mathe-
matics of Operations Research, 44(2):377–399, 2019.

Glynn, P. and Juneja, S. A large deviations perspective
on ordinal optimization. In Proc. of the 2004 Winter
Simulation Conference, 2004.

Karnin, Z., Koren, T., and Somekh, O. Almost optimal
exploration in multi-armed bandits. In Proc. of ICML,
2013.
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A. Proof of Proposition 3.6
This section aims to prove Proposition 3.6, restated below for convenience.
Proposition 3.6. For any a ∈ (0, 1), x ∈ ( 12 , 1], there exists an instance µ ∈ Λ such that (i) µ1 > µ2, µ1 + µ2 ≥ 1, (ii)
λ(x,µ) = a, and (iii) x∗(µ) < ( 12 + x)/2.

Proof. Bernoulli distributions belong to the single-parameter exponential family. Thus, there is a strictly convex function
ϕ : R 7→ R specific to these distributions. We denote by d̄ the corresponding Bregman divergence. More precisely,
ϕ(ξ)] := log(1 + eξ) with ϕ′(ξ) = eξ

1+eξ
and ϕ′−1(µ) = log µ

1−µ . For a given µ ∈ Λ, there is a parameter ξ ∈ R2 with
ξ1 = ϕ′−1(µ1) and ξ2 = ϕ′−1(µ2) (note that ϕ′ is an invertible function). Let Λ̄ = {ξ ∈ R2 : ξ1 ̸= ξ2} = ϕ′−1(Λ) as the
set of all parameters. d(µ1, µ2) can be written as:

d(µ1, µ2) = d̄(ξ2, ξ1) = ϕ(ξ2)− ϕ(ξ1)− (ξ2 − ξ1)ϕ′(ξ1). (13)

Following this formalism, we can present the conditions (i), (ii), and (iii) that are equivalent to the conditions (i), (ii) and
(iii) used in the proposition. The proof and visualization for the lemma below can be found in Appendix C and Figure 4
respectively.

Lemma A.1. The statement of Proposition 3.6 is equivalent to the following: for any α ∈ R, x ∈ ( 12 , 1], there exists
an instance ξ ∈ Λ̄ such that (i) ξ1 > ξ2, ξ1 ≥ −ξ2, (ii) (1 − x)ξ1 + xξ2 = α, and (iii) d̄(ξ1, (1 − x̃)ξ1 + x̃ξ2) >
d̄(ξ2, (1− x̃)ξ1 + x̃ξ2), where x̃ = ( 12 + x)/2.

Figure 4. Visualization of Lemma A.1 with a = 0.55 and x = 0.51. The green region indicates (i) ξ1 > ξ2, ξ1 ≥ −ξ2. The red curve
represents (ii) (1−x)ξ1+xξ2 = α. The blue region shows (iii) d̄(ξ1, (1− x̃)ξ1+ x̃ξ2) > d̄(ξ2, (1− x̃)ξ1+ x̃ξ2), where x̃ = ( 1

2
+x)/2.

We consider two cases: (a) when α < 0 and (b) when α ≥ 0.

Case (a) (α < 0). We show that ξ = (−α/(2x− 1), α/(2x− 1)) satisfies (i), (ii), (iii). As α < 0, x > 1/2, (i) follows
directly. (ii) follows as (1− x)ξ1 + xξ2 = (1− 2x)ξ1 = α. As for (iii), observe that

ξ̃ = (1− x̃)ξ1 + x̃ξ2 =
(2x̃− 1)α

2x− 1
< 0.

Hence ϕ′(ξ̃) = eξ̃

1+eξ̃
< 1

2 . As a consequence,

d̄(ξ1, ξ̃)− d̄(ξ2, ξ̃) = ϕ(ξ1)− ϕ(ξ2)− ϕ′(ξ̃)(ξ1 − ξ2)

= log

(
1 + eξ1

1 + e−ξ1

)
− ϕ′(ξ̃)2ξ1

= ξ1

(
1− 2ϕ′(ξ̃)

)
> 0.

10
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Case (b) (α ≥ 0). We claim that there is a half diskD := {ξ ∈ R2 : ∥ξ − (α, α)∥∞ < δ, ξ1 > ξ2} for some δ > 0 such that
(iii) holds whenever ξ ∈ D. We then show the intersection of the disk and the line L := {ξ ∈ R2 : (1− x)ξ1 + xξ2 = α}
is nonempty and satisfies (i) and (ii).

Assume that ξ1 > ξ2. On the one hand, applying Lemma C.3 with α = ξ1 and β = (1− x̃)ξ1 + x̃ξ2 implies that there is
r1 ∈ [ξ2, ξ1] such that

d̄(ξ1, (1− x̃)ξ1 + x̃ξ2) =
ϕ′′(r1)x̃

2(ξ1 − ξ2)2

2
. (14)

On the other hand, applying the same lemma with α = ξ2 and β = (1− x̃)ξ1 + x̃ξ2, we find r2 ∈ [ξ2, ξ1] such that

d̄(ξ2, (1− x̃)ξ1 + x̃ξ2) =
ϕ′′(r2)(1− x̃)2(ξ1 − ξ2)2

2
. (15)

Since ϕ′′(ξ) = eξ

(1+eξ)2
is a continuous function from R to R>0, Lemma C.4 implies that there exist δ > 0 such that

minr∈[ξ2,ξ1] ϕ
′′(r)x̃2 > maxr∈[ξ2,ξ1] ϕ

′′(r)(1− x̃)2 if ∥ξ − (α, α)∥∞ < δ. Thus by (14) and (15), we conclude that if ξ ∈
D := {ξ ∈ R2 : ∥ξ − (α, α)∥∞ < δ, ξ1 > ξ2}, then (iii) holds. Obviously,D∩L = ∪s∈(0,δ/x){(α+xs, α−(1−x)s)} ≠ ∅.
Consider ξ = (α+ xs, α− (1− x)s) with some s ∈ (0, δ/x), we have ξ1 > α > ξ2 and ξ1 + ξ2 = 2α+ (2x− 1)s ≥ 0,
hence ξ satisfies (i). (ii) holds directly by definition of L.

A.1. Proof for the Closed-Form Expressions of g(x,µ) and λ(x,µ)

Here, we aim to present the proof of the following closed-form expressions for g(x,µ) and λ(x,µ):

Lemma A.2. For any µ ∈ Λ, for any x ∈ (0, 1), the following equations hold.

λ(x,µ) =
( µ1

1−µ1
)1−x( µ2

1−µ2
)x

1 + ( µ1

1−µ1
)1−x( µ2

1−µ2
)x
, (2)

g(x,µ) = − log((1− µ1)
1−x(1− µ2)

x + µ1−x
1 µx

2). (3)

Proof. Again, we denote ξ1 = ϕ′−1(µ1) = log( µ1

1−µ1
), ξ2 = ϕ′−1(µ2) = log( µ2

1−µ2
) as in the proof of Proposition 3.6.

The minimization problem
min

λ∈[0,1]

(
(1− x)d(λ, µ1) + xd(λ, µ2)

)
(16)

can be written as:
min

λ∈[0,1]

(
(1− x)d̄(ξ1, ϕ′−1(λ)) + xd̄(ξ2, ϕ

′−1(λ))
)
,

or equivalently,
min
η∈R

(
(1− x)d̄(ξ1, η) + xd̄(ξ2, η)

)
. (17)

One can observe that
∂

∂η

(
(1− x)d̄(ξ1, η) + xd̄(ξ2, η)

)
=
(
η − (1− x)ξ1 − xξ2

)
ϕ′′(η)

has a unique root at the point η = η(x, ξ) = (1− x)ξ1 + xξ2. As ϕ′ is an invertible mapping, we conclude that ϕ′(η(x, ξ))
is the unique minimizer to the minimization problem (16). Therefore,

λ(x,µ) = ϕ′((1− x)ξ1 + xξ2)

= ϕ′

(
log

((
µ1

1− µ1

)1−x(
µ2

1− µ2

)x
))

=
( µ1

1−µ1
)1−x( µ2

1−µ2
)x

1 + ( µ1

1−µ1
)1−x( µ2

1−µ2
)x
.

11
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Finally, (3) can be obtained as follows.

g(x,µ) = (1− x)d̄(ξ1, η(x, ξ)) + xd̄(ξ2, η(x, ξ))

= (1− x) (ϕ(ξ1)− ϕ(η(x, ξ))− (ξ1 − η(x, ξ))ϕ′(η(x, ξ))) + x (ϕ(ξ2)− ϕ(η(x, ξ))− (ξ2 − η(x, ξ))ϕ′(η(x, ξ)))
= (1− x)ϕ(ξ1) + xϕ(ξ2)− ϕ(η(x, ξ))− ((1− x)ξ1 + xξ2 − η(x, ξ))ϕ′(η(x, ξ))
= (1− x)ϕ(ξ1) + xϕ(ξ2)− ϕ(η(x, ξ))

= (1− x)ϕ
(
log(

µ1

1− µ1
)

)
+ xϕ

(
log(

µ2

1− µ2
)

)
− ϕ

(
(1− x) log( µ1

1− µ1
) + x log(

µ2

1− µ2
)

)
= − log((1− µ1)

1−x(1− µ2)
x + µ1−x

1 µx
2).

A.2. Proof for the Strong Concavity of g(x,µ)

Lemma A.3. For any µ ∈ Λ, for any x ∈ (0, 1), ∂2

∂2xg(x,µ) < 0.

Proof. As shown in the proof of Lemma A.2,

g(x,µ) = (1− x)ϕ(ξ1) + xϕ(ξ2)− ϕ(η(x, ξ)), (18)

where ξ1 = ϕ′−1(µ1), ξ2 = ϕ′−1(µ2), and η(x, ξ) = (1− x)ξ1 + xξ2. We differentiate (18) with respect to x:

∂

∂x
g(x,µ) = ϕ(ξ2)− ϕ(ξ1) + (ξ1 − ξ2)ϕ′(η(x, ξ)),

∂2

∂2x
g(x,µ) = −(ξ1 − ξ2)2ϕ′′(η(x, ξ)) < 0.

A.3. Proof of Proposition 3.8

Proposition 3.8. Denote µ̄ = (1 − µ2, 1 − µ1). For any x ∈ (0, 1), for any µ ∈ Λ, g(1 − x, µ̄) = g(x,µ) and
λ(1− x, µ̄) = 1− λ(x,µ).

Proof. From (3), we obtain

g(1− x, µ̄) = − log((1− µ1)
1−x(1− µ2)

x + µ1−x
1 µx

2)

= g(x,µ).

Lastly, by (2), we have

λ(1− x, µ̄) = (1− µ1)
1−x(1− µ2)

x

(1− µ1)1−x(1− µ2)x + µ1−x
1 µx

2

= 1− µ1−x
1 µx

2

(1− µ1)1−x(1− µ2)x + µ1−x
1 µx

2

= 1− λ(x,µ).

This concludes the proof.
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B. Proof of Proposition 3.7
Proposition 3.7. Suppose µ1 > µ2 and µ1 + µ2 ≥ 1. For any positive δ ≤ min{x∗(µ), 1− x∗(µ)},

g(x∗(µ)− δ,µ) ≥ g(x∗(µ) + δ,µ).

Proof. For simplicity, let x∗ = x∗(µ), and define

ĝ(x,µ) = exp(−g(x,µ)) = (1− µ1)
1−x(1− µ2)

x + µ1−x
1 µx

2 . (19)

Consider the function f(δ) := ĝ(x∗ + δ,µ)− ĝ(x∗ − δ,µ). In order to demonstrate that f(δ) ≥ 0 using the mean value
theorem, we show that the first-order derivative, f ′(δ), is non-negative for all δ ∈ (0,min{x∗(µ), 1− x∗(µ)}).

By definition of x∗, we have ∂ĝ(x∗,µ)
∂x = 0, i.e.,

(1− µ1)
1−x∗

(1− µ2)
x∗

log

(
1− µ2

1− µ1

)
+ µ1−x∗

1 µx∗

2 log

(
µ2

µ1

)
= 0.

This implies that
(1− µ1)

1−x∗
(1− µ2)

x∗

log
(

µ1

µ2

) =
µ1−x∗

1 µx∗

2

log
(

1−µ2

1−µ1

) . (20)

Let M be the value of (20). M ≥ 0 as µ1 > µ2. Recalling the definition of f(δ) and (19), we get

f(δ) =M log

(
µ1

µ2

)[(
1− µ2

1− µ1

)δ

−
(
1− µ2

1− µ1

)−δ
]
−M log

(
1− µ2

1− µ1

)[(
µ1

µ2

)δ

−
(
µ1

µ2

)−δ
]

and

f ′(δ) =M log

(
µ1

µ2

)
log

(
1− µ2

1− µ1

)[(
1− µ2

1− µ1

)δ

+

(
1− µ2

1− µ1

)−δ

−
(
µ1

µ2

)δ

−
(
µ1

µ2

)−δ
]
.

Observe that the first three factors on the r.h.s. of the above expression are all positive, since µ1 > µ2. For the last factor,
we first have 1−µ2

1−µ1
≥ µ1

µ2
, according to Lemma C.5 in Appendix C. Additionally, note that the mapping z 7→ zδ + z−δ is

increasing when z > 0. From these observations, we can conclude that f ′(δ) ≥ 0, which completes the proof.
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C. Technical Lemmas
Lemma 3.4. Let a ∈ (0, 1). Assume that the statement (B) of Definition 3.2 does not hold. Then for any {π(n)}∞n=1 ⊂
{π ∈ Λ : π1 < π2} such that π(n) n→∞−−−−→ (a, a), there exists a value x ∈ [0, 1] and increasing subsequences of integers
{nm}∞m=1, {Tm,ℓ}∞ℓ=1 ⊂ N such that

lim
m→∞

lim
ℓ→∞

Eπ(nm) [ω2(Tm,ℓ)] = x ̸= 1

2
.

Proof. First, Lemma C.1 shows that the equations

lim
n→∞

lim
T→∞

Eπ(n) [ω2(T )] = lim
n→∞

lim
T→∞

Eπ(n) [ω2(T )] =
1

2

in the statement (B) of Definition 3.2 is equivalent to the statement: ∀ε > 0, ∃N ∈ N such that ∀n ≥ N , ∃Tn ∈ N,
∀T ≥ Tn, ∣∣∣∣Eπ(n) [ω2(T )]−

1

2

∣∣∣∣ < ε.

Its negation is: there exists ε ∈ (0, 12 ] such that ∀N ∈ N, ∃n̄ ≥ N such that ∀T ∈ N, ∃T̄n̄ ≥ T such that∣∣∣∣Eπ(n̄) [ω2(T̄n̄)]−
1

2

∣∣∣∣ ≥ ε. (21)

In the above statement, let select N arbitrarily, and fix a corresponding n̄. If we take T = 1, we can find T̄n̄ = T̄n̄,1 ≥ 1
satisfying (21). Next, we take T = T̄n̄,1 + 1, we can find T̄n̄ = T̄n̄,2 > T̄n̄,1 satisfying (21). By repeating this operation, we
can construct an increasing sequence of integers {T̄n̄,ℓ}∞ℓ=1 such that:

∀ℓ ∈ N,
∣∣∣∣Eπ(n̄) [ω2(T̄n̄,ℓ)]−

1

2

∣∣∣∣ ≥ ε.
We have now proved that there exists ε ∈ (0, 12 ] such that ∀N ∈ N, ∃n̄ ≥ N such that

∃{T̄n̄,ℓ}∞ℓ=1 : ∀ℓ ∈ N, T̄n̄,ℓ < T̄n̄,ℓ+1 and
∣∣∣∣Eπ(n̄) [ω2(T̄n̄,ℓ)]−

1

2

∣∣∣∣ ≥ ε. (22)

Again, in the above statement, if we take N = 1, we can find n̄1 ≥ 1 satisfying (22). Next, if we take N = n̄1 + 1, we
can find n̄ = n̄2 > n̄1 satisfying (22). By repeating this operation, we can construct an increasing sequence of integers
{n̄m}∞m=1 satisfying (22). In summary, we have found an increasing sequence of integers {n̄m}∞m=1 and for all m, an other
increasing sequence of integers {T̄n̄m,ℓ}∞ℓ=1 such that:

∀(m, ℓ) ∈ N2,

∣∣∣∣Eπ(n̄m) [ω2(T̄n̄m,ℓ)]−
1

2

∣∣∣∣ ≥ ε. (23)

From the Bolzano–Weierstrass theorem, a bounded sequence always contains a convergent subsequence. Thus, for each
m ∈ N, one can always find {Tn̄m,ℓ}∞ℓ=1 ⊂ {T̄n̄m,ℓ}∞ℓ=1 such that {Eπ(n̄m) [ω2(Tn̄m,ℓ)]}∞ℓ=1 converges. We denote by xn̄m

its limit, i.e., limℓ→∞ Eπ(n̄m) [ω2(Tn̄m,ℓ)] = xn̄m
. Note that from (23), with some ε ∈ (0, 12 ],

∀m ∈ N,
∣∣∣∣xn̄m

− 1

2

∣∣∣∣ ≥ ε. (24)

Futher observe that of course, xn̄m ∈ [0, 1] for all m. Using the Bolzano–Weierstrass theorem again, there exists
{nm}∞m=1 ⊂ {n̄m}∞m=1 such that xnm converges to x ∈ [0, 1], i.e, limm→∞ xnm = x. From (24), we remark that
|x− 1

2 | ≥ ε. The constructed x, {nm}∞m=1, and {Tm,ℓ}∞ℓ=1 satisfy the desired claim, which concludes the proof.
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Lemma C.1. Let {ψ(n, T )}∞n,T=1 be a double sequence of real numbers. The following two statements are equivalent:

(I) lim
n→∞

lim
T→∞

ψ(n, T ) = lim
n→∞

lim
T→∞

ψ(n, T ) =
1

2

(II) ∀ε > 0,∃N ∈ N : ∀n ≥ N,
(
∃Tn ∈ N,∀T ≥ Tn,

∣∣∣∣ψ(n, T )− 1

2

∣∣∣∣ < ε

)
.

Proof. We first prove that (II) ⇒ (I). We rewrite (II) as follows: ∀ε > 0, ∃N ∈ N such that ∀n ≥ N , ∃Tn ∈ N,
∀T ≥ Tn,

1

2
− ε < ψ(n, T ) <

1

2
+ ε. (25)

By taking limT→∞ and limT→∞ of (25), we obtain the following statement: ∀ε > 0, ∃N ∈ N such that ∀n ≥ N ,

1

2
− ε ≤ lim

T→∞
ψ(n, T ) ≤ lim

T→∞
ψ(n, T ) ≤ 1

2
+ ε.

Therefore, we get (I).

Next we prove that (I)⇒ (II). Observe that limn→∞ limT→∞ ψ(n, T ) = 1/2 implies for any η1 > 0, there exists N ∈ N,
such that ∀n ≥ N ,

lim
T→∞

ψ(n, T ) ≤ 1

2
+ η1. (26)

As a consequence of (26), for any η1 > 0,∃N ∈ N such that ∀n ≥ N , for any η2 > 0, ∃Tn ∈ N such that ∀T ≥ Tn,

ψ(n, T ) ≤ 1

2
+ η1 + η2. (27)

Similarly, limn→∞ limT→∞ ψ(n, T ) = 1/2 implies: for any η1 > 0,∃N ∈ N such that ∀n ≥ N , for any η2 > 0, ∃Tn ∈ N
such that ∀T ≥ Tn,

ψ(n, T ) ≥ 1

2
− η1 − η2. (28)

Combing (27) and (28), for any η1 > 0, ∃N(= max{N,N}) such that ∀n ≥ N , for any η2 > 0, ∃Tn(= max{Tn, Tn})
such that ∀T ≥ Tn, 1

2 − η1 − η2 ≤ ψ(n, T ) ≤ 1
2 + η1 + η2. By taking η1 = ε/2 and η2 = ε/2, we obtain the statement:

for any ε > 0, ∃N ∈ N such that ∀n ≥ N , ∃Tn ∈ N such that ∀T ≥ Tn, 1
2 − ε ≤ ψ(n, T ) ≤

1
2 + ε, which completes the

proof.

Lemma A.1. The statement of Proposition 3.6 is equivalent to the following: for any α ∈ R, x ∈ ( 12 , 1], there exists
an instance ξ ∈ Λ̄ such that (i) ξ1 > ξ2, ξ1 ≥ −ξ2, (ii) (1 − x)ξ1 + xξ2 = α, and (iii) d̄(ξ1, (1 − x̃)ξ1 + x̃ξ2) >
d̄(ξ2, (1− x̃)ξ1 + x̃ξ2), where x̃ = ( 12 + x)/2.

Proof. We show the equivalence of (i) to (i), (ii) to (ii), and (iii) to (iii) in the following.

Equivalence of (i) to (i). Note that µ1 > µ2 can be rewritten as ϕ′(ξ1) > ϕ′(ξ2). As ϕ′ is a strictly increasing function, it
holds if and only if ξ1 > ξ2. As for µ1 + µ2 ≥ 1, its equivalent statement is

1 ≤ ϕ′(ξ1) + ϕ′(ξ2) =
eξ1 + eξ2 + 2eξ1+ξ2

(1 + eξ1)(1 + eξ2)
.

By rearranging the above inequality, we obtain ξ1 > −ξ2.

15
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Equivalence of (ii) to (ii). Introduce the following notation.

ḡ(x, ξ) := inf
λ̄∈R

(1− x)d̄(ξ1, λ̄) + xd̄(ξ2, λ̄) = g(x, ϕ′(ξ1), ϕ
′(ξ2)),

λ̄(x, ξ) := argmin
λ̄∈R

(1− x)d̄(ξ1, λ̄) + xd̄(ξ2, λ̄) = ϕ′−1(λ(x, ϕ′(ξ1), ϕ
′(ξ2))),

and x̄∗(ξ) := argmax
x∈(0,1)

ḡ(x, ξ) = x∗(ϕ′(ξ1), ϕ
′(ξ2)).

We use the following lemma from (Degenne, 2023).

Lemma C.2 (Lemma 19 in (Degenne, 2023)). For any ξ ∈ Λ̄, x ∈ [0, 1], λ̄(x, ξ) = (1− x)ξ1 + xξ2 and x̄∗(ξ) = ξ1−η(ξ)
ξ1−ξ2

,

where η(ξ) = ϕ′−1(ϕ(ξ1)−ϕ(ξ2)
ξ1−ξ2

).

The equivalence of (ii) to (ii) directly follows from Lemma C.2.

Equivalence of (iii) to (iii). From Lemma C.2, x̄∗(ξ) = x∗(ϕ′(ξ1), ϕ
′(ξ2)) < ( 12 + x)/2 = x̃ for a given x ∈ ( 12 , 1] is

equivalent to

ϕ′−1

(
ϕ(ξ1)− ϕ(ξ2)

ξ1 − ξ2

)
= η(ξ) > (1− x̃)ξ1 + x̃ξ2.

By denoting ξ̃ = (1− x̃)ξ1 + x̃ξ2, we then arrange it as:

ϕ(ξ1)− ϕ(ξ̃)− ϕ′(ξ̃)(ξ1 − ξ̃) > ϕ(ξ2)− ϕ(ξ̃)− ϕ′(ξ̃)(ξ2 − ξ̃),

that is, d̄(ξ1, ξ̃) > d̄(ξ2, ξ̃). This concludes the proof of Lemma A.1.

Lemma C.3. Given α, β ∈ R, there exists min{α, β} ≤ r ≤ max{α, β} such that

d̄(α, β) =
(α− β)2ϕ′′(r)

2
.

Proof. The first and second derivatives of d̄ are:

∂

∂α
d̄(α, β) = ϕ′(α)− ϕ′(β) and

∂2

∂2α
d̄(α, β) = ϕ′′(α).

Using Taylor’s equality, we have r ∈ [min{α, β},max{α, β}] such that

d̄(α, β) = d̄(β, β) + (α− β) ∂
∂α

d̄(β, β) +
(α− β)2

2

∂2

∂2α
d̄(r, β) =

(α− β)2ϕ′′(r)
2

.

Lemma C.4. Suppose f : R 7→ R>0 is a continuous function. For any α ∈ R, x ∈ ( 12 , 1), there exist δ > 0 s.t. if
∥ξ − (α, α)∥∞ < δ and ξ1 > ξ2, then

min
r∈[ξ2,ξ1]

f(r)x2 > max
r∈[ξ2,ξ1]

f(r)(1− x)2.

Proof. As x ∈ ( 12 , 1), we derive 1
4x2 < 1 < 1

4(1−x)2 . By the continuity of f and f(α) > 0, there exists δ > 0 such that if
|r − α| < δ,

f(α)

4x2
< f(r) <

f(α)

4(1− x)2
.

16
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Consequently, when ∥ξ − (α, α)∥∞ < δ and ξ1 > ξ2,

min
r∈[ξ2,ξ1]

f(r) ≥ min
|r−α|<δ

f(r) >
f(α)

4x2
and max

r∈[ξ2,ξ1]
f(r) ≤ max

|r−α|<δ
f(r) <

f(α)

4(1− x)2
,

which yields that minr∈[ξ2,ξ1] f(r)x
2 > f(α)

4 > maxr∈[ξ2,ξ1] f(r)(1− x)2.

Lemma C.5. If µ1 > µ2 and µ1 + µ2 ≥ 1, then 1−µ2

1−µ1
≥ µ1

µ2
.

Proof. Observe that the given two assumptions can be rewritten as µ1 − 1
2 > µ2 − 1

2 and 1
2 − µ2 ≤ µ1 − 1

2 . Thus, we
conclude that

(1− µ2)µ2 = −
(
µ2 −

1

2

)2

+
1

4
≥ −

(
µ1 −

1

2

)2

+
1

4
= (1− µ1)µ1,

which is equivalent to the desired conclusion.
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D. Proof of Theorem 5.1
Throughout this section, we assume, without loss of generality, that µ1 > µ2 ≥ . . . ≥ µK . Recall that

Γj(µ) = min
J∈Jj(µ)

inf
λ∈Λ:λ1≤mink∈J λk

∑
k∈J

d(λk, µk), (29)

and Jj(µ) = {J ⊆ [K] : |J | = j, 1 ∈ J}.

Proof of Theorem 5.1. As mentioned in Section 5.2, (Wang et al., 2023) establishes that

lim
T→∞

T

log(1/pµ,T )
≤ max

j=2,...,K

jlogK

Γj(µ)
, ∀µ ∈ Λ. (9)

Hence we just need to prove the following Lemma D.1.

Lemma D.1. Under Algorithm 1, one has

lim
T→∞

T

log(1/pµ,T )
≥ max

j=2,...,K

jlogK

Γj(µ)
, ∀µ ∈ Λ. (30)

Combining (9) and (30), we then complete the proof.

Proof of Lemma D.1. For all j = 2, . . . ,K, let Ej = {ℓj = 1} be the event that SR discards the best arm, 1, when there are
j candidates remaining. As under the event ∪Kj=2Ej , 1 is removed before the end, we have

pµ,T =

K∑
j=2

Pµ[Ej ] ≥ Pµ[Ej ], ∀j = 2, . . . ,K.

Consequently, the above inequalities imply that

lim
T→∞

T

log(1/pµ,T )
≥ max

j=2,...,K
lim

T→∞

T

log(1/Pµ[Ej ])
.

The proof of the lemma is reduced to showing that for any j = 2, . . . ,K,

lim
T→∞

T

log(1/Pµ[Ej ])
≥ jlogK

Γj(µ)
. (31)

Proof of (31). Let j ∈ {2, . . . ,K}. For convenience, we set µK+1 equal to 0. We then consider some λ ∈ Λj , where

Λj =

{
λ ∈ (0, 1)K × {0} : µj+1 < λ1 ≤ min

k∈[j]
λk, and λk = µk,∀k ≥ j + 1

}
.

Applying a standard change-of-measure argument, as in the proof of Theorem 2.2, yields that

K∑
k=1

Eµ[Nk(⌊θT ⌋)]d(λk, µk) ≥ d(Pλ[Ej ],Pµ[Ej ]) ≥ Pλ[Ej ] log
(

1

Pµ[Ej ]

)
− log 2, (32)

where the last inequality stems from the fact that d(p, q) ≥ p log(1/q)− log 2 for all p, q ∈ [0, 1]. Thanks to law of large
number, as T → ∞, Eµ[ωk(⌊θT ⌋)] → 1

jlogK
for each k = 1, . . . , j, and Pλ[Ej ] → 1. Taking T to infinity in (32) yields

that

lim
T→∞

T

log(1/Pµ[Ej ])
≥ jlogK∑j

k=1 d(λk, µk)
.

18
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Since the above inequality holds for all λ ∈ Λj , we have

lim
T→∞

T

log(1/Pµ[Ej ])
≥ sup

λ∈Λj

jlogK∑j
k=1 d(λk, µk)

=
jlogK

infλ∈Λj

∑j
k=1 d(λk, µk)

=
jlogK

Γj(µ)
,

where the last equation directly follows from (39) in Proposition D.4 in Appendix D.1.

D.1. Derivation of Computationally Tractable Form of Γj(µ)

Throughout this subsection, we define the function Ψj : Rj 7→ R as:

Ψj(x1, . . . , xj) := inf
η∈Rj :η1≤mink∈[j] ηk

j∑
k=1

d̄(xk, ηk). (33)

In the following, we establish important properties of Ψj for a fixed j ∈ {2, . . . ,K}. These properties will help us to
understand Γj(µ).

Proposition D.2. If x1 > x2 ≥ . . . ≥ xj , then

Ψj(x1, . . . , xj) =

∑
k∈Ij(x)

d̄(xk,

∑
k′∈Ij(x) xk′

|Ij(x)| )

|Ij(x)|
, (34)

where Ij(x) =
{
i ∈ {2, . . . , j} : xi(j − i+ 1) < x1 +

∑
i<k≤j xk

}
∪ {1}. Moreover, the minimizer η∗ of (33) satisfies:

xj < η∗1 ≤ mink∈[j] η
∗
k, i.e.,

Ψj(x1, . . . , xj) = inf
η∈Rj :xj<η1≤mink∈[j] ηk

j∑
k=1

d̄(xk, ηk). (35)

Proof. Observe that in the optimization problem (33), there exists η ∈ Rj such that all the constraints are strict (satisfying
Slater’s condition). Thus, the solution of (33) can be identified by verifying the KKT conditions. The corresponding
Lagrangian function is

L(η, α2, . . . , αj) =

j∑
k=1

d̄(xk, ηk) +

j∑
k=2

αk(η1 − ηk), ∀(η, α2, . . . , αj) ∈ Rj × Rj−1
≥0 .

Let (η∗, α∗
2, . . . , α

∗
j ) be a saddle point of L. It satisfies KKT conditions:

η∗1 ≤ η∗k,∀k = 2, . . . , j, (Primal Feasibility)
α∗
k ≥ 0, ∀k = 2, . . . , j, (Dual Feasibility)

∂

∂ηk
L(η∗, α∗

2, . . . , α
∗
j ) = 0, ∀k = 1, . . . , j, (Stationarity)

α∗
k(η

∗
1 − η∗k) = 0, ∀k = 2, . . . , j. (Complementarity)

Recall that d̄(x, η) = ϕ(x)− ϕ(η)− (x− η)ϕ′(η) (see (13)), the partial differentiation on the second argument is hence
∂
∂η d̄(x, η) = ϕ′′(η)(η − x). We rewrite the above stationarity condition as:

ϕ′′(η∗1)(η
∗
1 − x1) +

j∑
k=2

α∗
k = 0; ϕ′′(η∗k)(η

∗
k − xk) = α∗

k, ∀k = 2, . . . , j, (Stationarity)
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Next observe that ∀i ∈ Ij(x) \ {1}, it holds that∑
k∈Ij(x)

xk

|Ij(x)|
− xi =

1

|Ij(x)|

 ∑
k∈Ij(x)

xk − |Ij(x)|xi


≥ 1

|Ij(x)|

x1 + ∑
i<k≤j

xk − (j − i+ 1)xi

 > 0, (36)

where the first inequality stems from x1 > x2 ≥ . . . ≥ xK , and the last one holds directly from the definition of Ij(x).

One can verify (η∗, α∗
2, . . . , α

∗
j ) defined below satisfies the KKT conditions listed above.

η∗i =

{ ∑
k∈Ij(x) xk

|Ij(x)| , if i ∈ Ij(x),
xi, otherwise,

α∗
i =

 ϕ′′(

∑
k∈Ij(x) xk

|Ij(x)| )

(∑
k∈Ij(x) xk

|Ij(x)| − xi
)
, if i ∈ Ij(x),

0, otherwise,

where α∗
i ≥ 0, ∀i ∈ Ij(x) as (36). As for (35), we observe that {1, j} ∈ Ij(x) as x1 > xj . Hence the above minimizer η∗

needs to satisfy that xj < η∗1 ≤ mink∈[j] η
∗
k, and (35) follows directly.

Proposition D.3. Let (x1, . . . , xj) ∈ Rj be such that x1 > x2 ≥ . . . ≥ xj . Then, for any k ̸= 1, we have
∂

∂xk
Ψj(x1, . . . , xj) ≤ 0. Consequently, if y,y′ ∈ {z ∈ Rj : z1 > z2 ≥ . . . ≥ zj} are such that y1 = y′1 and

yk ≥ y′k for all k = 2, . . . , j, then it follows that Ψj(y1, y2, . . . , yj) ≤ Ψj(y1, y
′
2, . . . , y

′
j).

Proof. Recall that d̄(x, η) = ϕ(x)− ϕ(η)− (x− η)ϕ′(η) (see (13)), together with (34) in Proposition D.2, one can deduce
that

Ψj(x) =
∑

k∈Ij(x)

ϕ(xk)− |Ij(x)|ϕ(
∑

k∈Ij(x)
xk

|Ij(x)|
). (37)

From the r.h.s of (37), the partial differential on the k-th coordinate yields that

∂

∂xk
Ψj(x1, . . . , xj) =

{
0, if k /∈ Ij(x),
ϕ′(xk)− ϕ′(

∑
k∈Ij(x) xk

|Ij(x)| ), otherwise.

Let i ∈ Ij(x) \ {1}, the definition of Ij(x) implies that

xi <

∑
i<k≤j xk

j − i+ 1
≤
∑

k∈Ij(x)
xk

|Ij(x)|
.

Because ϕ′ is a strictly increasing function, we then conclude that ∂
∂xk

Ψj(x1, . . . , xj) ≤ 0, ∀k = 2, . . . , j.

We next present the useful forms for Γj(µ) for any j = 2, . . . ,K.

Proposition D.4. Let ξk = ϕ′−1(µk) = log µk

1−µk
, ∀k ∈ [K] with µ1 > µ2 ≥ . . . ≥ µK , where ϕ is the strictly convex

function shown in Appendix A. Then

Γj(µ) =

∑
k∈Ij(µ) d̄(ξk,

∑
k′∈Ij(µ) ξk′

|Ij(µ)| )

|Ij(µ)|
, (38)

where Ij(µ) =
{
i ∈ {2, . . . , j} : ξi(j − i+ 1) < ξ1 +

∑
i<k≤j ξk

}
∪ {1}. Moreover, the minimizer (J∗,λ∗) of (29)

satisfies, J∗ = [j], µj+1 < λ∗1 ≤ mink∈[j] λ
∗
k, and λ∗k = µk ∀k ≥ j + 1, i.e.,

Γj(µ) = inf
λ∈Λj

j∑
k=1

d(λk, µk), (39)
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where

Λj =

{
λ ∈ (0, 1)K : µj+1 < λ1 ≤ min

k∈[j]
λk, and λk = µk,∀k ≥ j + 1

}
.

Proof. Recall that Γj(µ) = minJ∈Jj(µ) infλ∈Λ:λ1≤mink∈J λk

∑
k∈J d(λk, µk). The fact that d(λk, µk) = d̄(ξk, ϕ

′−1(λk))
(see (13)) implies that

Γj(µ) = min
J∈Jj(µ)

inf
η∈Rj :λ1≤mink∈J λk

∑
k∈J

d̄(ξk, ηk)

= min
J∈Jj(µ)

Ψj(ξJ1
, . . . , ξJj

), (40)

where Jk denotes the k-th smallest index in J . Recall that Jj(µ) = {J ⊆ [K] : |J | = j, 1(µ) ∈ J}, hence [j] ∈ Jj(µ).
Therefore, from Proposition D.3 and ξ1 > ξ2 ≥ . . . ≥ ξK , we deduce that

min
J∈Jj(µ)

Ψj(ξJ1 , . . . , ξJj ) = Ψj(ξ1, . . . , ξj). (41)

(38) follows as the consequence of (40), (41), and (34) in Proposition D.2.
As for (39), (40), (41), and (35) in Proposition D.2 yield that

Γj(µ) = inf
η∈Rj :ξj<η1≤mink∈[j] ηk

j∑
k=1

d̄(ξk, ηk). (42)

Using fact that d̄(ξk, ϕ′−1(λk)) = d(λk, µk) again, one can derive (39) from (42).
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E. Examples of Stable Algorithms
In this section, we present various examples of stable algorithms (Definition 3.2). We show that algorithms following one
of the design principles below are stable. We assume that in all cases, there is an initialization phase where each arm is
sampled ⌊αT ⌋ times for some α > 0. This ensures that the arm rewards will be estimated accurately and that the algorithms
are consistent. In the second phase, the algorithm design can be:

1. Uniform Sampling if Empirically Close. The algorithm equally samples arms whenever the estimated gap |µ̂1(τ)−
µ̂2(τ)| of the mean arm rewards on the τ = ⌊αT ⌋-th round falls below a fixed threshold ε > 0 is stable. No rules are
added if the estimated gap is above the threshold. The algorithm could, for example, use the estimated optimal static
exploration rate x∗(µ̂(t)) = argmaxx g(x, µ̂(t)). The algorithm with such a choice is referred to as ETT (Estimate
and Thresholded Tracking), and it is discussed in E.1.

2. Track a Symmetric Continuous Function of the Empirical Rewards. Here, the algorithm samples arms so that up to
round the t-th round, arm 2 has been sampled tf(µ̂(t)) where f is a continuous function satisfying f(a, a) = 1/2
for any a and µ̂(t) denotes the empirical rewards at round t. We refer to this kind of algorithm as TCSF (Track-a-
Continuous-Symmetric-Function), and it is discussed in E.2.

We present these algorithms in detail below and establish their stability. We note that the class of algorithms satisfying
one of the above design principles is wide, and this makes the class of stable and consistent algorithms relevant. Simple
numerical experiments are presented at the end of this section, in E.4.

E.1. The ETT Algorithm

The pseudo-code of ETT is presented in Algorithm 2.
Lemma E.1. The algorithm ETT with input α ∈ (0, 1/2) and ε > 0 is stable.

Algorithm 2 Estimate and Thresholded Tracking (ETT)
1: Input: α > 0, ε > 0
2: Play each arm max{⌊αT ⌋, 1} times
3: τ ← 2max{⌊αT ⌋, 1}
4: Estimate the optimal allocation x̂∗ ← argmaxx g(x, µ̂(τ))
5: if |µ̂1(τ)− µ̂2(τ)| > ε then
6: for t = τ + 1, . . . , T do

7: play At ←
{

2 if x̂∗ > N2(t)
t ,

1 otherwise
8: end for
9: else

10: for t = τ + 1, . . . , T do
11: play At ← argminkNk(t) (tie broken arbitrarily)
12: end for
13: end if
14: ı̂← argmaxk∈{1,2} µ̂k(T ) (tie broken arbitrarily)
15: Output: ı̂

Proof of Lemma E.1. From the definition of a stable algorithm (Definition 3.2), it suffices to show limT→∞ Eµ[ω2(T )] =
1/2 whenever |µ1 − µ2| < ε/3. We observe that

|µ̂1(2⌊αT ⌋)− µ̂2(2⌊αT ⌋)| ≤ |µ̂1(2⌊αT ⌋)− µ1|+ |µ1 − µ2|+ |µ2 − µ̂2(2⌊αT ⌋)|

≤ ε

3
+ |µ̂1(2⌊αT ⌋)− µ1|+ |µ2 − µ̂2(2⌊αT ⌋)| ,

where the first inequality is from the triangle inequality. Hence,

{|µ̂1(2⌊αT ⌋)− µ̂2(2⌊αT ⌋)| > ε} ⊆
{
|µ̂1(2⌊αT ⌋)− µ1| >

ε

3

}
∪
{
|µ̂2(2⌊αT ⌋)− µ2| >

ε

3

}
. (43)
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Furthermore, the design of Algorithm 2 yields that if |µ̂1(2⌊αT ⌋)− µ̂2(2⌊αT ⌋)| ≤ ε, then |ω2(T )− 1/2| ≤ 1/T . This
fact together with (43) yields that

Pµ

[∣∣∣∣ω2(T )−
1

2

∣∣∣∣ > 1

T

]
≤ Pµ [|µ̂1(2⌊αT ⌋)− µ̂2(2⌊αT ⌋)| > ε]

≤ Pµ

[
|µ̂1(2⌊αT ⌋)− µ1| >

ε

3

]
+ Pµ

[
|µ̂2(2⌊αT ⌋)− µ2| >

ε

3

]
≤ 4 exp

(
−18⌊αT ⌋

ε2

)
, (44)

where the last inequality is an application of Hoeffding inequality. From (44), we can conclude that limT→∞ Eµ [ω2(T )] =
1/2 and hence Algorithm 2 is stable.

E.2. The TCSF Algorithm

Let f : [0, 1]2 → [0, 1] be a continuous function such that f(a, a) = 1/2 for all a. We propose two versions of the TCSF
algorithm, one randomized and one de-randomized. Their pseudo-codes are presented in Algorithms 3 and 4, respectively.

Algorithm 3 Randomized TCSF
1: Input: function f and α > 0
2: Play each arm max{⌊αT ⌋, 1} times
3: τ ← 2max{⌊αT ⌋, 1}
4: for t = τ + 1, . . . , T do

5: play At ←
{

2 w.p. f(µ̂(t))
1 w.p. 1− f(µ̂(t))

6: end for
7: ı̂← argmaxk∈{1,2} µ̂k(T ) (tie broken arbitrarily)
8: Output: ı̂

Algorithm 4 De-randomized TCSF
1: Input: function f and α > 0
2: Play each arm max{⌊αT ⌋, 1} times
3: τ ← 2max{⌊αT ⌋, 1}
4: for t = τ + 1, . . . , T do

5: play At ←
{

2 if ω2(t) < f(µ̂(t))
1 otherwise

6: end for
7: ı̂← argmaxk∈{1,2} µ̂k(T ) (tie broken arbitrarily)
8: Output: ı̂

In the following, we show that Algorithm 3 (resp. Algorithm 4) is stable in Lemma E.2 (resp. Lemma E.3).

Lemma E.2. If f : [0, 1]2 7→ (0, 1) be a continuous function satisfying that f(a, a) = 1/2, ∀a ∈ [0, 1], then Algorithm 3 is
stable.

Proof. Thanks to Lemma E.4 in Appendix E.3, it suffices to show (53) and (54). In the following, we prove (53), and (54)
hold in a similar manner. To this aim, we fix a ∈ (0, 1) and ε > 0. As f is continuous at (a, a) and f(a, a) = 1/2, there
exists η > 0 such that |f(x, y)− 1/2| < ε if ∥(x, y)− (a, a)∥∞ < η. (53) follows provided that we show

lim
T→∞

Eµ [ω2(T )] ≥
1

2
− ε, ∀µ ∈ Λ such that ∥µ− (a, a)∥∞ <

η

2
. (45)

23



On Universally Optimal Algorithms for A/B Testing

Let µ ∈ Λ such that ∥µ− (a, a)∥∞ < η
2 and T ∈ N such that αT > 1. We observe

Eµ[ω2(T )] ≥ α−
1

T
+

1

T
Eµ[

T∑
t=τ+1

1{At = 2}]

≥ α− 1

T
+

1

T
Eµ[

T∑
t=τ+1

1{At = 2, ∥µ̂(t)− µ∥∞ ≤ η/2}]

= α− 1

T
+

1

T
Eµ[

T∑
t=τ+1

f(µ̂(t))1{∥µ̂(t)− µ∥∞ ≤ η/2}], (46)

where the last inequality is simply from the algorithm design. Notice that if ∥µ̂(t)− µ∥∞ ≤ η/2, then ∥µ̂(t)− (a, a)∥∞ ≤
η, and hence f(µ̂(t)) > 1/2− ε. We then derive that

Eµ[

T∑
t=τ+1

f(µ̂(t))1{∥µ̂(t)− µ∥∞ ≤ η/2}] ≥ (
1

2
− ε)Eµ[

T∑
t=τ+1

1{∥µ̂(t)− µ∥∞ ≤ η/2}]

= (
1

2
− ε)(T − τ − Eµ[

T∑
t=τ+1

1{∥µ̂(t)− µ∥∞ > η/2}]). (47)

As for each t > τ and k ∈ {1, 2}, Nk(t) ≥ αT ≥ α(t − τ), an application of Lemma E.5 in Appendix E.3 with
H = {t > τ}, ζ = α and δ = η/2 yields that

Eµ

[
T∑

t=τ+1

1{|µ̂k(t)− µk| >
η

2
}

]
≤ 4

αη2
, ∀k = 1, 2. (48)

Using (46)-(47)-(48), we conclude that

Eµ [ω2(T )] ≥ α−
1

T
+ (

1

2
− ε) (T − τ − 4/αη2)

T
≥ α− 1

T
+ (

1

2
− ε) (T − αT + 1− 4/αη2)

T
,

and (45) follows.

Lemma E.3. If f : [0, 1]2 7→ (0, 1) be a continuous function satisfying that f(a, a) = 1/2, ∀a ∈ [0, 1], then Algorithm 4 is
stable.

Proof. Thanks to Lemma E.4 in Appendix E.3, it suffices to show (53) and (54). In the following, we prove (54), and (53)
hold in a similar manner. To this aim, we fix a ∈ (0, 1) and ε > 0. As f is continuous at (a, a) and f(a, a) = 1/2, there
exists η > 0 such that |f(x, y)− 1/2| < ε if ∥(x, y)− (a, a)∥∞ < η. (54) follows as long as we show

lim
T→∞

Eµ [ω2(T )] ≤
1

2
+ ε, ∀µ ∈ Λ such that ∥µ− (a, a)∥∞ <

η

2
. (49)

Let µ ∈ Λ such that ∥µ− (a, a)∥∞ < η
2 and T ∈ N such that αT > 1. From the algorithm design, we deduce that

Eµ[ω2(T )] ≤ α+
1

T
+

1

T
Eµ[

T∑
t=τ+1

1{ω2(t) ≤ f(µ̂(t))}]

≤ α+
1

T
+

1

T

(
Eµ[

T∑
t=τ+1

1{ω2(t) ≤ f(µ̂(t)), ∥µ̂(t)− µ∥∞ ≤
η

2
}] + Eµ[

T∑
t=τ+1

1{∥µ̂(t)− µ∥∞ >
η

2
}]

)
.

(50)

As for each t > τ and k ∈ {1, 2}, Nk(t) ≥ αT ≥ α(t − τ), an application of Lemma E.5 in Appendix E.3 with
H = {t > τ}, ζ = α and δ = η/2 yields that

Eµ

[
T∑

t=τ+1

1{|µ̂k(t)− µk| >
η

2
}

]
≤ 4

αη2
, ∀k = 1, 2. (51)
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Next we observe that ∥µ̂(t)− µ∥∞ ≤
η
2 implies that ∥µ̂(t)− (a, a)∥∞ ≤ η, and f(µ̂(t)) < 1/2 + ε thanks to the triangle

inequality. Thus, the third term in (50) is bound as:

Eµ[

T∑
t=τ+1

1{ω2(t) ≤ f(µ̂(t)), ∥µ̂(t)− µ∥∞ ≤
η

2
}] ≤ Eµ[

T∑
t=τ+1

1{ω2(t) ≤
1

2
+ ε}]

= Eµ[

T∑
t=τ+1

1{N2(t) ≤ t(
1

2
+ ε)}]

≤ Eµ[

T∑
t=τ+1

1{N2(t) ≤ T (
1

2
+ ε)}]

≤ T (1
2
+ ε)− ⌊αT ⌋

≤ T (1
2
+ ε)− αT + 1. (52)

By (51)-(52), we derive (50) is bounded by

α+
1

T
+

1

T

(
T (

1

2
+ ε)− αT + 1 +

4

αη2

)
.

By taking the limit superior on the above upper bound, we get (49).

E.3. Technical Lemmas

Lemma E.4. Suppose that an algorithm satisfies

lim
(µ1,µ2)→(a,a)

lim
T→∞

Eµ[ω2(T )] =
1

2
, ∀a ∈ (0, 1), (53)

and

lim
(µ1,µ2)→(a,a)

lim
T→∞

Eµ[ω2(T )] =
1

2
, ∀a ∈ (0, 1). (54)

Then it is a stable algorithm.

Proof. Let a ∈ (0, 1), we show (A) in Definition 3.2 holds, and (B) follows similarly. Consider a sequence {λ(n)}n∈N

defined as: λ(n)1 = a+ 1−a
2n and λ(n)2 = a− a

2n for all n ∈ N. The assumption (53) implies that

lim
n→∞

lim
T→∞

Eλ(n) [ω2(T )] =
1

2
.

On the other hand, the assumption (54) implies that

lim
n→∞

lim
T→∞

Eλ(n) [ω2(T )] =
1

2
.

Thus, (A) is satisfied with the above sequence {λ(n)}n∈N.

Lemma E.5 ((Combes & Proutiere, 2014)). Let ζ > 0 and H ⊂ N be a (random) set of rounds such that {t ∈ H} is
Ft−1-measurable for all t ≥ 1. Furthermore, we assume for each t ∈ H , we have Nk(t) ≥ ζ

∑t
s=1 1{s∈H}. Then for all

δ > 0,

Eµ

∑
t≥1

1{t ∈ H, |µ̂k(t)− µk| > δ}

 ≤ 1

ζδ2
.
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E.4. Numerical Experiments

We illustrate the performance of the ETT algorithm with α = 1/4 and different thresholds ε, and compare it to that
of the uniform sampling algorithm and to that of an Oracle algorithm that selects arms using optimal exploration rate
x∗(µ) = argmaxx g(x,µ). We consider the instance: µ = (0.0005, 0.0001). For this instance, the optimal budget
allocation is approximately x∗(µ) ≈ 0.43434.

We first examine how the algorithms behave when the sampling budget varies. Figure 5 illustrates the estimated error
probabilities as the budget changes from T = 6000 to T = 40000. The error probabilities are derived from 40000 trials
for each setting and algorithm. In all budget scenarios, the Oracle algorithm outperforms the others, while ETT performs
comparably or worse than the uniform sampling algorithm. This observation aligns with our Theorem 4.1.

We then investigate the sensitivity of ETT to the input value ε. Figure 6 displays the error probability with a fixed budget of
T = 20000 and varying ε from 0 to 0.0008. The error probability is again determined from 40000 trials for each setting and
algorithm. Regardless of ε, the performance of ETT is similar to or worse than that of the uniform sampling algorithm,
further supporting our Theorem 4.1. Given that µ1 − µ2 = 0.0004, the relatively low performance of ETT with ε < 0.0004
compared to that of the uniform sampling algorithm suggests that relying less on the estimated optimal allocation could
yield better results.
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Figure 5. Error probability comparison across algorithms for varying sample budgets (T = 6000 to T = 40000). Derived from 40000
trials for each setting and algorithm.
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Figure 6. Error probability comparison for varying ETT threshold inputs (ε = 0 to ε = 0.0008). Derived from 40000 trials for each
setting and algorithm.
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