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Abstract

Mathematicians have long employed decomposition techniques to prove inequali-
ties, yet automating this process remains a significant challenge in computational
mathematics. We introduce IneqSearch, a hybrid reasoning system that integrates
symbolic computation with large language models (LLMs) to address this chal-
lenge. IneqSearch reformulates inequality proving as a structured search problem:
identifying appropriate combinations of theorems that decompose expressions into
non-negative components. The system combines a symbolic solver for deductive
reasoning with an LLM-based agent for constructive proof exploration, effectively
implementing methodologies observed in formal mathematical practice. A key
contribution of IneqSearch is its iterative learning mechanism that systematically
incorporates newly proven results into its theorem database, enabling knowledge
acquisition during practice that enhances its capabilities without requiring hu-
man intervention. In empirical evaluation on 437 Olympiad-level inequalities,
IneqSearch successfully proves 342 problems, significantly outperforming existing
methods and demonstrating the effectiveness of integrating symbolic and neural
approaches for mathematical reasoning.

1 Introduction

Automating the proof of Olympiad-level inequalities in computational mathematics represents a
fundamental benchmark for evaluating the capabilities and boundaries of artificial general intel-
ligence [1, 2, 3, 4]. Inequality proofs typically require both deductive inference and insightful
transformations, making them valuable benchmarks for evaluating progress toward general-purpose
mathematical reasoning. Recent approaches have made progress in mathematical reasoning through
natural language proof generation using large language models (LLMs) [5, 6], formal proof tech-
niques via automated theorem proving (ATP) [7, 8, 9, 10], and mixed methods that combine these two
strategies [11, 12]. However, algebraic inequalities remain challenging, as they require constructing
proofs within an infinite reasoning space.

To prove an inequality F ≥ 0, a common and effective strategy is to transform F into a more
manageable form by decomposing the original expression into tractable components. For instance,
many proofs in Olympiad inequalities rely on intricate scaling techniques, which often employ

∗This work was done during an internship at BAAI
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



auxiliary lemmas (e.g., Cauchy-Schwarz) or identity-based rewritings. These techniques naturally
lead to a decomposition of F , allowing it to be expressed as a sum of non-negative components,
namely F = F1 + F2 + · · ·, where each Fi ≥ 0. Inspired by this idea, we develop an automated
approach that reformulates the proof of inequalities as a search problem, aiming to decompose
the target expression F into a sum of known non-negative terms, i.e., F =

∑
i Fi. Implementing

this strategy in practice faces two critical challenges: (1) Inequality decomposition requires strong
deductive reasoning to manipulate complex expressions. (2) Constructive proofs demand innovative
strategies to adapt lemmas to specific problem structures.

To address these challenges, we introduce IneqSearch, a hybrid reasoning system that integrates sym-
bolic computation with large language models, in which inequality proving is framed as an iterative
search process. Specifically, leveraging the robust deductive capability of symbolic computation, we
introduce a symbolic solver that formulates inequality proving as a search problem, enabling precise
and systematic deductive reasoning. In parallel, an LLM-based inductive agent is designed to explore
constructive proofs, utilizing the inductive strengths of LLM to propose novel scaling techniques and
transformations. A distinguishing feature of IneqSearch is its iterative learning mechanism, which
autonomously incorporates solved inequalities into its knowledge base, continuously enhancing its
proving capability and scalability to complex problems. This design reflects the cumulative nature of
mathematical knowledge, where established results facilitate subsequent discoveries. Furthermore,
IneqSearch ensures soundness by constructing verifiable proofs, and achieves interpretability through
human-readable and transparent proving steps.

IneqSearch is evaluated on a benchmark of 437 Olympiad-level inequalities, significantly outperform-
ing leading methods. Notably, on the challenging MO-INT dataset [1], our method achieves 100%
success rate, demonstrating its effectiveness for particularly difficult cases.

2 Inequality Proving

We first formalize the inequality proving problem before introducing IneqSearch.

2.1 Problem Formulation

Formally, an inequality proving problem involves verifying non-negativity of an expression under
specific conditions. For an inequality with n variables {xi}ni=1 ∈ Rn, a problem P = ⟨F,C⟩ is
defined by an inequality expression F (x1, . . . , xn) and a condition expression C(x1, . . . , xn), which
can be formulated as:

Prove that F (x1, . . . , xn) ≥ 0 when C(x1, . . . , xn) ▷◁ 0, (1)
where ▷◁∈ {=,≥, >}. We refer to F as the inequality and C as the assumption, where C may be
absent if no additional condition is required. To focus on core mathematical proof techniques, we
assume all variables are positive, as cases involving negative values can typically be proven in a
similar manner.

2.2 Decomposition-based Proving

The fundamental methodology underlying our approach reformulates inequality proving as a decom-
position task [13]. This approach is based on the principle that many complex inequalities can be
systematically reduced to combinations of established non-negative expressions. We employ two
methods for inequality decomposition (see Appendix A for technical details):

Elementary Cyclic Polynomial Decomposition (ECPD) ECPD provides a systematic framework
for representing and manipulating expressions in inequality proofs. An elementary cyclic polynomial
of degree d in n variables can be expressed as

C
(n)
k1,k2,...,km

=
∑
cyc

xk1
1 xk2

2 · · ·xkm
m ,

where m ≤ n and k1 + k2 + · · · + km = d. This representation enables the transformation of
complex expressions into standardized forms, making them more amenable to systematic analysis.
For example, we have:

(n− 1)
(
C

(n)
1

)2
− 2nC

(n)
1,1 ≥ 0,

(
C

(3)
1

)3
− 2C

(3)
1 C

(3)
1,1 − 3C

(3)
2,1 ≥ 0.
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Figure 1: Overview of the proving pipeline. The solver starts proving by processing the given problem
into a standard format. Then theorem search identifies applicable theorems from the database and
attempts to decompose the inequality. If the proof fails, an inductive agent explores transformations
to generate potential directions. If the proof succeeds, the logic system expands the theorem database
by integrating newly proven results.

Sum of Squares (SOS) The SOS method provides a powerful certification mechanism for poly-
nomial non-negativity through quadratic decomposition. A polynomial T (x1, . . . , xn) is an SOS
polynomial if it can be expressed as T =

∑
i t

2
i , where each ti is a real polynomial. For example,

x4 + y4 − 4xy + 2 = (x2 − y2)2 + 2(xy − 1)2 is a sum of squares. In practice, finding an SOS
decomposition is formulated as a semidefinite programming problem, enabling automated discovery
of decompositions for complex polynomials.

3 The IneqSearch System

The development of IneqSearch is motivated by the observation that effective inequality proving
requires both systematic deductive reasoning and constructive insight. The system architecture reflects
this dual requirement, implementing a methodology that progresses from direct proof attempts to
theorem-based search, and finally to exploration of problem transformations when simpler approaches
are insufficient. As depicted in Figure 1, IneqSearch is built upon a proving pipeline that integrates
symbolic computation, theorem search, and language model-guided exploration.

3.1 The Symbolic Solver

The symbolic solver S forms the deductive core of IneqSearch, enabling robust algebraic manipula-
tions through preprocessing and theorem search.

Preprocessing Given a problem P = ⟨F,C⟩, the solver first standardizes it to facilitate subsequent
processing: (1) For homogeneous inequalities without explicit constraints, S introduces an addi-
tional normalization assumption

∑
i xi = 1. (2) Fractional expressions are converted to equivalent

numerator-only forms through algebraic manipulation. (3) The solver attempts to eliminate radical

3



subexpressions in F using techniques analogous to unrad in SymPy; if unsuccessful, it retains the
original form.

The preprocessing step ensures that the original problem is systematically transformed into an
equivalent and standardized form, making it suitable for subsequent procedures.

Theorem Search For simple problems, direct application of ECPD or SOS methods often suffices.
When these approaches are inadequate, IneqSearch implements a more comprehensive search strategy.
This search systematically examines possible representations of the target expression F as a linear
combination of established theorems from the database, effectively decomposing the original problem
into previously solved components.

The theorem database T stores axioms and proven theorems in the form ti = ⟨gi, hi⟩, indicating that
gi ≥ 0 under the assumption hi = 0. A direct corollary is that any non-negative linear combination
of theorems is also non-negative:∑

i

λigi ≥ 0, ∀i, hi = 0 ∧ λi ≥ 0. (2)

Given an inequality expression, the solver identifies applicable theorems, i.e. those for which hi = 0
is satisfied, and formulates the search problem as follows:

Find λi and fi such that

F =

k∑
i

λifi, λi ≥ 0, fi ∈ Tc,
(3)

where Tc = {gi | i = 1, 2, . . . , k} is the set of applicable theorems. The search problem corresponds
to solving a system of equations for the coefficients {λi}ki=1. To obtain a numerical solution, we
formulate a linear programming problem to determine feasible real values for {λi}ki=1. Specifically,
if the search problem is feasible, S tries to find a numerical solution where the coefficients {λi}ki=1
are non-negative and satisfy all the required constraints of the problem. When the entire search is
successful, the inequality problem is proven; otherwise, the proof fails.

3.2 The Inductive Agent

For challenging problems where the symbolic solver fails, it may become necessary to rely on
more sophisticated algebraic methods, including the adoption of widely used lemmas such as the
Cauchy-Schwarz inequality. We employ an LLM-based inductive agentM to explore constructive
proof strategies. The agent analyzes the structure of the inequality and proposes transformations using
well-known inequalities (such as AM-GM, Cauchy-Schwarz, etc.) and homogenization, enabling
further exploration. As illustrated in Figure 2, the exploration follows two directions: (1) Application
of auxiliary inequalities to scale the original expression into more manageable forms. (2) Target shift
by replacing constants based on given assumptions to achieve more homogeneous expressions.

For each difficult problem, given the infinite possibilities of constructive approaches, we askM to
provide multiple possible choices at each step, and let S verify the validity of the explored scaling
techniques.

Proof Construction Example Taking the case in Figure 2 as an example, the solution process
begins with S attempting direct methods, finding that neither ECPD nor SOS produces an immediate
result. The system then queries its theorem database but fails to identify a suitable combination of
existing results. Subsequently, the inductive agent analyzes the inequality structure and proposes
several choices.

For the left-hand side expression,M considers it suitable to adopt the Cauchy-Schwarz inequality,
which states that (

∑
a2)(

∑
b2) ≥ (

∑
ab)2. M then proposes two possible constructions by

assigning b =
∑

cyc x
2 + yz and b =

∑
cyc x(x

2 + yz). For the right-hand side, which is a
constant, it can be rewritten using the assumption, enabling the original problem to be reformulated
in several equivalent forms. For example,M multiplies it by

∑
cyc x

2/3 or
√∑

cyc x
2/3. Using

these transformations, the symbolic solver can attempt to prove a total of 8 additional inequality
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Target Shift

Inequality Adaption

Figure 2: Exploration strategies utilizing the Cauchy-Schwarz inequality and homogenization. The
exploration process proceeds in two directions:M adapts the inequality by transforming the left-hand
side into multiple manageable forms, and rewrite the right-hand side into equivalent expressions that
eliminate assumption.

forms. Finally, S successfully proves
(
∑

cyc x2)2∑
cyc x(x2+yz) ≥

√
3
∑

cyc x
2/2 under no assumptions. This

completed proof is subsequently integrated into the theorem database, demonstrating how IneqSearch
combines deductive verification with constructive exploration to expand its proving capabilities.

3.3 The Self-improving Mechanism

A distinguishing feature of IneqSearch is its iterative learning capability that continuously expands
the theorem database. As discussed earlier, the proving capability of IneqSearch is directly tied to
the richness of the theorem database T . To enhance this capability, IneqSearch employs an iterative
learning paradigm that continuously expands T by incorporating previously proven inequalities.

Logic System L During the proving process of a problem P , L maintains a set SP containing all
intermediate conclusions. After completion, proven theorems from SP are selectively incorporated
into T . For instance, if a proof forms a chain E1 ≥ 0, E2 ≥ 0, . . . , Em ≥ 0 where (Ei ≥ 0) ⊢
(Ei+1 ≥ 0), each Ei is analyzed and potentially added to the database. This ensures that every
theorem in T has been rigorously validated, guaranteeing the system’s soundness.

Iterative Learning Initially, T contains only basic axioms (Appendix A.3). As IneqSearch solves
problems, it progressively learns new theorems. This self-improving mechanism enables the system
to tackle increasingly complex problems over time, as each solved problem potentially provides new
tools for addressing more challenging cases.

3.4 Formal Proof Generation

Process:: To prove:
Inequality (1 + 1/x)*(1 + 1/y)*(1 + 1/z) - 64 >= 0, Assumption x + y + z - 1 = 0.   

Simplify:: After simplification of numerator:
Inequality -64*x*y*z + (x + 1)*(y + 1)*(z + 1) >= 0, Assumption x + y + z - 1 = 0.

Method:: Search existing theorem set.
Result:: Proved by theorem (TH_3) (TH_10): 
Σxy - 63*xyz + 2 = (1)*(Σxy - 9*xyz) + (2)*(1 - 27*xyz) >= 0.

Transform:: Update after ECPD:
Σxy - 63*xyz + 2, Eq(Σx, 1).

Figure 3: Proof generated by IneqSearch.

The overall proof logic is straightforward to understand. It primarily involves algebraic transforma-
tions and theorem search, systematically breaking down complex inequalities into manageable steps.
The proof generation process mainly focuses on logging the procedure, including the transformations
applied, the use of assumptions, and the theorems referenced during the proof. For instance, in
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Table 1: Performance comparison of different models.

Proof Type Model INEQ-437 MO-INT-20

# Solved Success Rate # Solved Success Rate

Natural Language
Gemini-2.0-Flash 62 14.2% 0 0%
DeepSeek-R1 149 34.1% 4 20%
OpenAI o3-mini 154 35.2% 3 15%

Lean4

Gemini-2.0-Flash 0 0% 0 0%
DeepSeek-Prover-V1.5 1 0.2% 0 0%
OpenAI o3-mini 2 0.5% 0 0%
AIPS – – 10 50%
LIPS w/ 4o-mini 264 60.4% 18 90%
LIPS w/ o3-mini 273 62.5% 18 90%

Formal IneqSearch w/ 4o-mini 334 76.4% 19 95%
IneqSearch w/ o3-mini 342 78.3% 20 100%

Figure 3, each transformation step is logged, providing a clear and transparent explanation of the
process.

4 Experimental Results

To evaluate the performance of our method, a comparison of IneqSearch with baseline and state-
of-the-art methods is presented, along with a performance analysis of each component through an
ablation study. The iterative progress is analyzed to observe the system’s self-improving capabilities.
In the end, several case studies are provided for the visualization of IneqSearch’s advantages.

4.1 Experimental Setup

Data Collection We constructed INEQ-437, a benchmark of 437 Olympiad-level inequalities
compiled from authoritative sources [14, 13]. We included all problems expressible in the form of
Equation 1 without manual selection, representing approximately 90% of inequalities in these sources.
The detailed content of the benchmark can be found in the supplementary materials.

Baselines We evaluated IneqSearch against leading LLMs (Gemini-2.0-Flash [15], OpenAI o3-
mini [16], DeepSeek-Prover-V1.5 [17], DeepSeek-R1 [18]) and hybrid systems (AIPS [1], LIPS [19])
across both natural language and formal proofs. The temperature hyperparameter is set to 0.3 for all
language models when applicable.

Evaluation For fair comparison, we used a three-shot setting in all comparison experiments.
For natural language proofs, correctness was manually verified by experts. For formal proofs in
Lean4, correctness was automatically verified. We report the number of problems solved and the
corresponding success rate for each dataset.

4.2 Main Results

Our experiments reveal a notable pattern: the integration of symbolic reasoning and neural approaches
creates a system far more powerful than either approach alone. As shown in Table 1, while state-
of-the-art language models struggle with the precision required for inequality proofs, and symbolic
methods alone lack creative problem-solving abilities, IneqSearch combines the strengths of both
worlds.

Analysis shows that the most powerful reasoning language model (o3-mini) solves only 35% and 15%
of problems in INEQ-437 and MO-INT-20, respectfully, highlighting the limitations of purely neural
approaches. Notably, language models demonstrate substantial difficulty in producing formal Lean4
proofs, with success rates below 1%. In contrast, IneqSearch achieves a 78.3% success rate on these
challenging inequalities, demonstrating the effectiveness of the integrated approach in mathematical
reasoning tasks. Hybrid methods like AIPS and LIPS show improved performance over pure LLM
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Table 2: Ablation study on IneqSearch components.

ECPD SOS Target Shift Exploration Iterative Learning Problems Solved

✓ – – – – 126
✓ ✓ – – – 257
✓ ✓ ✓ – – 292
✓ ✓ – ✓ – 325
✓ ✓ ✓ ✓ – 334
✓ ✓ ✓ ✓ ✓ 342

approaches but still fall short of IneqSearch’s capabilities. By integrating inductive exploration with
rigorous deduction, IneqSearch ensures both correctness and interpretability in its proofs. Detailed
error analysis of LLM-generated proofs is provided in Appendix E.

Performance on High-Difficulty Problems IneqSearch shows strong performance on problems
that are difficult for existing methods. On the MO-INT-20 dataset, which contains real inequalities
from Olympiad competitions, many problems require multi-step scaling and are often non-symmetric
and non-homogeneous (see Appendix D). These characteristics pose significant challenges for
symbolic solvers and LLMs.

First, symbolic solvers often failed to directly solve such problems. For example, the Polish-2004
problem requires the use of the Hölder inequality, while USAMO 2017 P6 involves the tangent
line trick. Purely algebraic techniques, such as direct decomposition, rarely uncover these methods.
Without such approaches, analyze the original expressions becomes extremely difficult.

Second, some problems require substantial algebraic manipulation and comparison. For instance, in
IMO 2020 P2, even after applying the AM-GM inequality, the proof involves adding, subtracting,
and comparing over thirty monomials. LLMs can often identify where AM-GM should be applied,
but they usually cannot complete the subsequent deductive steps. In some cases, the models even
doubts the correctness of its initial step.

These challenges persist even for state-of-the-art hybrid approaches. While other methods such as
AIPS and LIPS are only able to solve a subset of the dataset, IneqSearch, in contrast, achieves full
coverage by successfully proving all 20 problems.

4.3 Ablation Study

Table 2 presents a systematic ablation analysis of IneqSearch’s components, highlighting their
individual contributions to the system’s performance. The baseline model, which uses only the
symbolic solver, solves 257 problems. The integration of target shift for homogenization provides a
marginal improvement, solving 35 additional problems. The inclusion of LLM exploration further
boosts performance, increasing the number of solved problems to 334. Finally, the iterative learning
mechanism resolves 8 additional complex problems that were previously unsolved, achieving a
total of 342 problems solved. These results demonstrate the complementary nature of the system’s
components and the effectiveness of integrating symbolic and neural approaches.

4.4 Iterative Progress Analysis

The performance of IneqSearch demonstrates consistent improvement across multiple learning
iterations. Figure 4 quantifies this progression, documenting an increase from 257 successfully solved
problems initially to 342 problems after multiple rounds of theorem acquisition and proof refinement.
In each round, IneqSearch traverses the entire benchmark and attempts to prove each inequality
within it. The theorem base will be updated once after completing the round, ensuring that any newly
discovered results become available as tools for subsequent iterations.

This iterative improvement follows a pattern consistent with incremental knowledge acquisition,
where each round builds upon previously established results. By systematically incorporating new
theorems into its proof, IneqSearch is able to unlock solutions to problems that were previously
inaccessible. Figure 5 illustrates a representative case of this process, where theorem TH82, estab-
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Figure 5: IneqSearch successfully proves a hard problem leverag-
ing a previous proven inequality.

lished in earlier rounds, enables the solution of a previously unresolved inequality, exemplifying the
practical benefit of cumulative learning.

The observed improvement pattern demonstrates the effectiveness of the system’s knowledge accu-
mulation mechanism, where each new theorem potentially extends the range of solvable problems.
The continual expansion of mathematical tools underlies the robust performance gains observed
throughout the iterative process.

4.5 Computation Cost

IneqSearch first attempts to prove each inequality using the symbolic solver. If this attempt fails, the
system proceeds to call the LLM for further exploration. In our implementation, there are 5 inequality
lemmas to be explored, and each inequality exploration calls the LLM once, with one additional retry
if the first call is invalid. The exploration of inequality lemmas is conducted in parallel, allowing us
to collect all possible valid scaled expressions after exploration.

Table 3 summarizes the average runtime and time budget for the proving steps of IneqSearch with
o3-mini on our INEQ-437 benchmark. Only the major time-consuming steps are listed, and the steps
are not strictly sequential in the implementation. Other routine algebraic manipulations are omitted,
as their runtimes are comparatively negligible. The reported runtime for each process refers to the
average time per single execution, although each process may be called multiple times within a proof.
For accurate measurement of actual solving time, we report the runtime for successful proofs, where
IneqSearch requires only 12.3 seconds on average per problem, demonstrating high efficiency.

Table 4 presents the average solving time for successfully solved problems and compares our method
to LIPS and o3-mini. Compared to LIPS, our approach achieves more than a 100× speedup in
runtime. While these results are convincing in practice, we note that this direct runtime comparison is
not entirely fair from an algorithmic perspective, as the majority of the time cost in LIPS arises from
repeated LLM calls. Our method is primarily solver-driven and typically requires far fewer LLM
calls per problem.
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Table 3: Runtime analysis (in seconds) of the proof workflow on INEQ-437.
Module Process Avg. Runtime Time Budget

Solver

ECPD Transform 0.6 30
Theorem Search 41.6 240
SOS 0.4 30
Total 12.3 300

Inductive Agent
(o3-mini)

Equality Condition 17.3 180
Target Shift 19.1 180
AM-GM Ineq. Expl. 32.6 180
Cauchy-Schwarz Ineq. Expl. 27.3 180
Hölder’s Ineq. Expl. 41.0 180
Jensen’s Ineq. Expl. 34.4 180
Tangent Line Ineq. Expl. 37.9 180
Total 65.8 300

Overall 24.1 900

Table 4: Comparison of solving time (in seconds) and success rate.
Methods Avg. Runtime Success Rate
OpenAI o3-mini 63 35.2%
LIPS w/ 120 min budget 5187 62.5%
LIPS w/ 90 min budget 2946 50.3%
IneqSearch w/o LLM 12 66.8%
IneqSearch w/ o3-mini 24 78.3%

4.6 Error Case in LLM’s Output

Our analysis of LLM-generated proofs reveals critical consistency issues, underscoring the necessity
of formal verification in mathematical reasoning. When proving complex inequalities, LLMs are
prone to making subtle yet critical errors in logical deductions or algebraic calculations. For example,
in solving the inequality

√
6x+ 1 +

√
6y + 1 +

√
6z + 1 ≤ 3

√
3, Gemini2 produces contradictory

results in two attempts at calculating derivatives, as shown in Figure 6.

Such inconsistencies suggest that while LLMs can mimic advanced mathematical reasoning, they
require an automated verifier to ensure the correctness of steps and prevent hallucinations, especially
when solving problems that require rigorous deductive reasoning. Therefore, integrating rigorous
verification mechanisms is essential for both the reliability and trustworthiness of LLM-assisted
mathematical problem solving.

Attempt 1
Attempt 2

Figure 6: LLM generates inconsistent content in two attempts.

5 Discussion

IneqSearch implements a critical principle for automated mathematical reasoning: continuously
acquiring and applying mathematical knowledge. Its improved performance shows that effective
reasoning relies on leveraging established results to construct new proofs, reflecting the cumulative
nature of mathematics.
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A promising research direction involves utilizing LLMs to extract generalizable patterns from
specific problems. This approach aligns with established mathematical methodology: observation
of patterns, formulation of conjectures, and subsequent verification. For example, consider the
following IMO problem: for positive real numbers a, b, c, d such that ab+ bc+ cd+ da = 1, show
that a3

b+c+d + b3

c+d+a + c3

d+a+b +
d3

a+b+c ≥
1
3 . This problem can be extended to a broader class of

inequalities, such as
∑n

i
x3
i

s−xi
≥ 4k2

(n−1)n where s =
∑

i xi and k2 =
∑

i<j xixj . The key insight is
recognizing that denominators of the form s− xi and the cyclic condition ab+ bc+ cd+ da = 1 can
be abstracted to the setting k2 =

∑
i<j xixj , representing an elementary symmetric polynomial of

degree 2. Maintaining homogeneity during this abstraction process is essential. Such generalizations
require pattern recognition and analytical reasoning capabilities well-suited to LLMs’ strengths.

6 Related Work

Our work integrates advances in mathematical reasoning, automated theorem proving, and Olympiad
problem solving.

6.1 Mathematical Reasoning

Automated mathematical reasoning has progressed through several complementary approaches.
Benchmarks like MATH [20] and GSM8K [21] have established standards for evaluating reasoning
capabilities. Advances in deep learning for symbolic mathematics [22] and automated theorem
proving [23, 24, 25, 17] have emerged through neural-guided proof assistants. Formal systems like
Lean [26, 27, 28] provide verification frameworks with extensive theorem libraries. Additional
approaches include curriculum learning [29] and step-by-step verification [6]. Despite these advances,
inequality proving remains challenging due to its requirements for precise algebraic manipulation
and problem-specific insights.

6.2 Olympiad Problem Solving

Recent innovations in automated Olympiad problem-solving include formal mathematics benchmarks
like MiniF2F [7] and multimodal challenges in OlympiadBench [2]. Domain-specific systems such
as AlphaGeometry [3] have demonstrated success in plane geometry through learned construction of
auxiliary elements. For inequality problems, LIPS [19] combines language models for expression
rewriting with symbolic optimization tools, while AIPS [1] explores autonomous theorem genera-
tion. Our work extends these approaches by implementing a systematic framework for inequality
decomposition with iterative theorem acquisition, creating a self-improving system for mathematical
reasoning.

7 Conclusion and Future Work

This work offers three main contributions: (1) it reformulates inequality proving as a theorem-based
decomposition search, enabling the systematic breakdown of complex inequalities into manageable
subproblems using established mathematical results; (2) it develops a hybrid system that combines
symbolic verification with LLM-guided exploration, leveraging both rigorous algorithmic reasoning
and the flexible problem-solving capabilities of LLMs; and (3) it implements an iterative learning
mechanism that continuously improves the system through ongoing theorem acquisition, allowing it
to expand its knowledge base and enhance its proving abilities over time. The effectiveness of this
approach is demonstrated by the system’s strong performance on challenging Olympiad inequalities,
including complete coverage of the MO-INT-20 dataset.

Future work should extend this methodology to other mathematical domains and further enhance gen-
eralization capabilities. The framework of decomposing complex problems, searching for established
patterns, and incorporating new knowledge represents a generalizable approach to mathematical
reasoning, with applications in formal verification and automated problem solving.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix Limitation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theorems stated are either from established literature or are provided with
accompanying proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Experimental Results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The data is provided. The code is not yet ready for publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Experimental Results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We use n-short settings in experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: No GPU was used in the experiments. All computations can be executed on a
standard personal computer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM usage is declared.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Proof Methodologies

A.1 Elementary Cyclic Polynomial Decomposition

Elementary Cyclic Polynomial Decomposition (ECPD) is a calculation-based approach designed
for proving cyclic inequalities. This method enables us to leverage computational tools and to build
a unified-format theorem library for addressing complex algebraic inequalities, extending beyond
cyclic cases alone.

A fundamental principle in algebraic inequality theory is that the structure of the polynomial—whether
symmetric or merely cyclic—determines the most suitable basis for its decomposition and analysis.

Theorem 1. Let T (x1, x2, . . . , xn) be a symmetric polynomial in n variables. Then T can always be
expressed as a polynomial in terms of the elementary symmetric polynomials S1, S2, . . . , Sn, where

S1 =

n∑
i=1

xi, S2 =
∑

1≤i<j≤n

xixj , . . . , Sn = x1x2 . . . xn.

This classical result allows for the reduction of symmetric inequalities to expressions involving only
the elementary symmetric polynomials. Such a reduction significantly simplifies both theoretical
analysis and computational verification, as the search space for potential equalities or extreme cases
is greatly narrowed.

For polynomials exhibiting cyclic symmetry, a parallel decomposition exists, which forms the
backbone of the ECPD method:

Theorem 2. Let T (x1, x2, . . . , xn) be a cyclic polynomial of in n variables. Then T can always be
expressed as a polynomial in terms of the elementary cyclic polynomials C(n)

k1,k2,...,km
, where

C
(n)
k1,k2,...,km

=
∑
cyc

xk1
1 xk2

2 . . . xkm
m ,

with m ≤ n and k1 + k2 + . . .+ km = deg T .

The introduction of the elementary cyclic basis enables systematic treatment of cyclic inequalities,
especially when the expressions are not fully symmetric. By expressing any cyclic polynomial in this
basis, we unlock the potential for automated computation and algorithmic proof strategies, as well as
a unified language for theorems and results.

A.2 Sum of Squares

One of the fundamental procedures for proving inequalities is to rewrite them as a sum of squares,
thereby establishing the non-negativity of a given expression. This property forms the foundation of
the SOS method.

Theorem 3 (Hilbert). Let T (x1, x2, . . . , xn) be a polynomial.

• If T ≥ 0 and is homogeneous, then T can be expressed as

T =
∑
k

t2k,

where tk are certain real rational functions.

• If T ≥ 0 and is non-homogeneous, and {xi}ni=1 satisfies the condition
∑

xi ≤ 1, then T can be
expressed as

T =
∑
k

ck a
α1
1 aα2

2 . . . aαn
n

(
1−

∑
ai

)αn+1

,

where {αi}n+1
i=1 are non-negative integers and ck > 0.
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These theorems are qualitative results that help establish the existence of a method to prove that
a polynomial is non-negative. For homogeneous functions, this is achieved by analyzing sums of
squares, while for non-homogeneous functions, it involves expressing the polynomial as a sum of
non-negative quantities. In [30], this principle is implemented based on an explicit semidefinite
program.

SDPSOS Given a real polynomial T (x1, . . . , xn), together with inequality constraints g1(x) ≥
0, . . . , gk(x) ≥ 0 and equality constraints h1(x) = 0, . . . , hl(x) = 0, the SDPSOS method seeks to
certify nonnegativity of T under these constraints by constructing a SOS representation:

T (x) =

k∑
i=0

si(x) gi(x) +

l∑
j=1

tj(x)hj(x),

where g0(x) := 1, each si(x) is an SOS polynomial, and tj(x) are arbitrary polynomials. Each
SOS term can be written as si(x) = vi(x)

⊤Mivi(x), where Mi is a symmetric positive semidefinite
matrix and vi(x) is the vector of monomial basis elements up to a prescribed degree.

Thus, certifying nonnegativity reduces to finding matrices M0,M1, . . . ,Mk ⪰ 0 and polynomials
tj(x) such that

T (x) =

k∑
i=0

vi(x)
⊤Mivi(x) gi(x) +

l∑
j=1

tj(x)hj(x),

with all coefficients matching when both sides are expanded. The entries of the Gram matrices Mi

and the coefficients of tj(x) become variables in a system of linear equations, while the positive
semidefiniteness of Mi is imposed as a semidefinite constraint.

Therefore, the problem of certifying nonnegativity via SOS reduces to the following explicit semidef-
inite program (SDP):

Find symmetric matrices M0,M1, . . . ,Mk ⪰ 0 and polynomials t1(x), . . . , tl(x)

such that

T (x) =

k∑
i=0

vi(x)
⊤Mivi(x) gi(x) +

l∑
j=1

tj(x)hj(x)

subject to Mi ⪰ 0, i = 0, . . . , k.

This modeling is possible because the set of all positive semidefinite matrices forms a convex cone,
and the set of solutions to the linear equations is an affine subspace; their intersection is a convex set.
Therefore, the problem becomes a convex optimization problem with linear equality constraints and
matrix positivity constraints. If T (x) and the constraints exhibit symmetry, equivalent terms under
the symmetry group can be identified, reducing the size of the SDP. Additionally, if T (x) vanishes at
certain points (equality cases), the corresponding Gram matrices are further constrained to have these
directions in their kernel, reflecting additional algebraic structure.

A.3 Axioms in Theorem Database

IneqSearch is designed to evolve from basic problem-solving capabilities to an advanced level of
expertise through continuous learning and adaptation. Initially, the theorem database contains a set of
fundamental theorems from Murihead’s inequality, Shur’s inequality and Vasc’s inequality, which
serve as axioms.
Theorem 4 (Muirhead’s Inequality). Let x1, x2, . . . , xn be non-negative real numbers, and let
a = (a1, . . . , an) and b = (b1, . . . , bn) be two sequences of non-negative integers in non-increasing
order. If a majorizes b, that is,

k∑
i=1

ai ≥
k∑

i=1

bi for all 1 ≤ k < n, and
n∑

i=1

ai =

n∑
i=1

bi,

then the following inequality holds:∑
σ∈Sn

x
aσ(1)

1 x
aσ(2)

2 . . . x
aσ(n)
n ≥

∑
σ∈Sn

x
bσ(1)

1 x
bσ(2)

2 . . . x
bσ(n)
n ,
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where Sn denotes the set of all permutations on n elements.

In this work, we develop an automated pipeline for the systematic generation of Muirhead-type
inequalities. Given the number of variables n and the total degree d, the algorithm enumerates all
possible integer partitions (a1, a2, . . . , an) in non-increasing order with a1 + . . .+ an = d. For each
pair of partitions (a,b) such that a majorizes b, the corresponding difference of symmetric sums is
constructed:

Fa,b(x1, . . . , xn) =
∑
σ∈Sn

x
aσ(1)

1 . . . x
aσ(n)
n −

∑
σ∈Sn

x
bσ(1)

1 . . . x
bσ(n)
n .

Each inequality is then canonicalized by factoring and removing any constant multipliers. To
ensure minimality, the collection is further filtered to eliminate redundant inequalities via numerical
evaluation and linear dependence checks.

B Inductive Agent Configuration

B.1 Prompt Template

Here, we present the prompt template used to automate the application of the Cauchy-Schwarz
inequality with the LLM. Other exploration prompts are similar and we will include them at the
revised version.

Prompt for Cauchy-Schwarz Inequality Exploration

We are solving an inequality problem. Please do not use the code interpreter.
The inequality is: {S_str}
We have the following important information:
1. Equality holds for: {cond_str}
2. Assumption condition: {assump_str}

Now, we want to use the Cauchy-Schwarz inequality to scale S, so that we can obtain an expression which
is easier to handle. The term indices are: {term_dict}
Recall that the Cauchy-Schwarz inequality is:
(
∑n

i=1 Ai)(
∑n

i=1 Bi) ≥ (
∑n

i=1 Ci)
2 or

∑n
i=1 Ci ≤

√
(
∑n

i=1 Ai)(
∑n

i=1 Bi), where Ci =
√
AiBi

Follow these steps to determine whether the original inequality is suitable for applying the Cauchy-Schwarz
inequality:
1. Identify the terms that are suitable for the Cauchy-Schwarz inequality, and return their term indices.
2. Determine the role of these terms as Ai or Ci based on their coefficients: Ai for positive, Ci for negative.
(1) If the role is Ai, use the first form of the given Cauchy-Schwarz inequality; otherwise, use the second.
(2) Ensure that the role (Ai or Ci) is included among the terms of S.
3. Design Bi so that the other role (Ai or Ci) is easy to handle.
4. If the Cauchy-Schwarz inequality is applicable, return the corresponding term indices as a list of integers.

Provide your analysis and calculation steps, and summarize your answer in a JSON. The JSON format
begins with ```json as shown below. Each term should be a LaTeX string without the $ symbol, and the
product sign * should be explicitly written between parentheses in the expressions:
```json
{
"applicable": true or false,
"role": "A_i" or "C_i",
"term_numbers": [num1, num2, ...] corresponding to the indices of A1/C1, A2/C2, ...
"B_1": latex formula corresponding to A1 or C1,
"B_2": latex formula corresponding to A2 or C2,
...
}

For each input inequality, we decompose it into individual algebraic terms, assign each term a
unique index, and represent them in LaTeX format as a dictionary (term_dict). For example, for
the inequality a2 + b2 + c2 ≥ ab + bc + ca, the term_dict would be {1: “a^2”, 2: “b^2”, 3:
“c^2”, 4: “-ab”, 5: “-bc”, 6: “-ca”}. We also provide the equality condition (cond_str) and the
assumptions (assump_str) as LaTeX strings in the prompt, ensuring the model has access to all
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relevant information during reasoning. The prompt instructs the model to analyze the structure of each
term to determine its role in the Cauchy-Schwarz inequality as either Ai or Ci, and to systematically
design the corresponding Bi for each.

B.2 Post-processing

In the model response, we extract the relevant terms from term_dict according to the
term_numbers in the JSON, and combine them with the extracted Bi expressions to automati-
cally assemble a standard Cauchy-Schwarz inequality. For example, if the role is Ai, we construct(∑

i

Ai

)(∑
i

Bi

)
≥

(∑
i

√
AiBi

)2

.

Any error encountered during this construction process (as detected by our multiple symbolic checks)
is regarded as an exploration failure.

C Limitation

Theorem search method equipped with ECPD and SOS is theoretically capable of solving all
inequality problems within Equation 1. However, in practice, the search process is often challenging.
Our methodology relies on the decomposition identity F =

∑
Fi, where a necessary condition for a

successful search is that the equality conditions must be satisfied for all subcomponents:

Suppose x = (x1, x2, . . . , xn) such that F (x) = 0.

Then for every i, from Fi(x) ≥ 0 , we have Fi(x) = 0.

For many hard inequalities, the equality conditions are uncommon or may not exist in R+, necessitat-
ing case-by-case analysis. For example, consider proving the inequality 12(

∑
cyc x

2y2)(
∑

cyc x
3) ≤∑

cyc xy under the assumption x+ y + z = 1. The equality holds if and only if (x, y, z) = (0, 0, 1)

up to permutation. Then all theorems g for which g(0, 0, 1) ̸= 0 will not be applicable.

Such cases demonstrate that equality conditions can be highly restrictive. Consequently, if there
are not enough applicable theorems with this equality condition in the database, it will limit the
applicability and effectiveness of the search in practice.

D Additional Examples

Here are some examples drawn from MO-INT-20 dataset [1] for our method illustration.

• IMO 1990 Shortlist
For a > 0, b > 0, c > 0, d > 0 such that ab+ bc+ cd+ da = 1, show that:

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c
≥ 1

3

• Poland 2004:
For a > 0, b > 0, c > 0, d > 0, show that:

a

(a3 + 63bcd)
1
3

+
b

(63acd+ b3)
1
3

+
c

(63abd+ c3)
1
3

+
d

(63abc+ d3)
1
3

≥ 1

• USAMO 2017 P6:
For a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 such that a+ b+ c+ d = 4, show that:

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
≥ 2

3

• IMO 2020 P2:
For a ≥ b, b ≥ c, c ≥ d, d > 0 such that a+ b+ c+ d = 1, show that:

(a+ 2b+ 3c+ 4d)aabbccdd < 1
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E LLM Proof Generation

For the Lean4 code generation task, each problem is initially translated into Lean4 code using a fixed
template. The LLMs are then prompted to complete the code. One example Lean4 code is:

import Mathlib

theorem inequality_problem
(x y z : R)
(hx : x > 0) (hy : y > 0) (hz : z > 0) (cond : x +

y + z = 1):
(1 + 1 / x) * (1 + 1 / y) * (1 + 1 / z) ≥ 64:= by

The corresponding response of o1-mini is provided below.

import Mathlib

theorem inequality_problem
(x y z : R)
(hx : x > 0) (hy : y > 0) (hz : z > 0)
(cond : x + y + z = 1) :
(1 + 1/x) * (1 + 1/y) * (1 + 1/z) ≥ 64:= by
have h_sym : x = y ∧ y = z :=

by
let f := λ (x y z : R)
(1 + 1/x) * (1 + 1/y) * (1 + 1/z)
sorry

cases h_sym with hxy hyz
subst hxy
subst hyz
have h_val : x = 1/3 := by

rw [←cond] at hyz
linarith

rw h_val
simp
norm_num
exact le_refl 64

Based on the messages from the Lean4 server, the code contains several errors. These errors include
an Invalid Pattern caused by the use of an improper constructor, Unsolved Goals due to the lack of a
proof for the symmetry assumption (x = y ∧ y = z), and an Unexpected Token error arising from
the use of ∗ instead of a valid logical operator. These issues indicate issues with pattern matching,
incomplete proofs, and syntax within the code.

Our analysis of the outputs for several problems reveals frequent errors, such as confusion between
Lean3 and Lean4 syntax, including the misuse of begin and Real.sq_nonneg. For more complex
problems, the models often fail to perform even basic logical reasoning during code generation.

In the natural language testing setup, problems are presented in LaTeX format, and LLMs are tasked
directly with generating proofs. The proof produced by o1-mini is presented in Figure 7, which
successfully solves the problem.
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To prove that for positive real numbers  satisfying , the inequality

holds, we use Jensen's Inequality with a convex function.

Key Steps
1. Rewrite the product as:

2. Take natural logarithms:

3. Use the convex function , whose second derivative , to apply Jensen's
Inequality:

4. Multiply by 3 and exponentiate:

Conclusion
Equality holds when , satisfying . Thus:

for all  with .

x, y, z x + y + z = 1

1 + ​ 1 + ​ 1 + ​ ≥(
x

1 ) (
y

1 ) (
z

1) 64

1 + ​ 1 + ​ 1 + ​ =(
x

1 ) (
y

1 ) (
z

1) ​ ​ ​(
x

x + 1) (
y

y + 1) (
z

z + 1)

ln 1 + ​ 1 + ​ 1 + ​ =[(
x

1 ) (
y

1 ) (
z

1)] ln 1 + ​ +(
x

1 ) ln 1 + ​ +(
y

1 ) ln 1 + ​(
z

1)

f(t) = ln 1 + ​( t
1 ) f (t) =′′

​ >[t(t+1)]2
1 0

​ ≥
3

ln 1 + ​ + ln 1 + ​ + ln 1 + ​(
x
1 ) (

y
1 ) (

z
1 )

ln 1 + ​ =(
1
3) ln(4)

ln 1 + ​ 1 + ​ 1 + ​ ≥[(
x

1 ) (
y

1 ) (
z

1)] ln(64) ⇒ 1 + ​ 1 + ​ 1 + ​ ≥(
x

1 ) (
y

1 ) (
z

1) 64

x = y = z = ​3
1 x + y + z = 1

1 + ​ 1 + ​ 1 + ​ ≥(
x

1 ) (
y

1 ) (
z

1) 64

x, y, z > 0 x + y + z = 1

Figure 7: Natural language proof of o1-mini. It correctly adopts Jensen’s Inequality and successfully
solves the problem.
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