
Deep Networks Always Grok and Here is Why

Ahmed Imtiaz Humayun* 1 Randall Balestriero 2 Richard Baraniuk 1

Abstract
Grokking, or delayed generalization, is a phe-
nomenon where generalization in a deep neural
network (DNN) occurs long after achieving near
zero training error. Previous studies have reported
the occurrence of grokking in specific controlled
settings, such as DNNs initialized with large-
norm parameters or transformers trained on al-
gorithmic datasets. We demonstrate that grokking
is actually much more widespread and material-
izes in a wide range of practical settings, such as
training of a convolutional neural network (CNN)
on CIFAR10 or a Resnet on Imagenette. We in-
troduce the new concept of delayed robustness,
whereby a DNN groks adversarial examples and
becomes robust, long after interpolation and/or
generalization. We develop an analytical expla-
nation for the emergence of both delayed gener-
alization and delayed robustness based on a new
measure of the local complexity of a DNN’s input-
output mapping. Our local complexity measures
the density of the so-called “linear regions” (aka,
spline partition regions) that tile the DNN input
space, and serves as a utile progress measure for
training. We provide the first evidence that for
classification problems, the linear regions undergo
a phase transition during training whereafter they
migrate away from the training samples (making
the DNN mapping smoother there) and towards
the decision boundary (making the DNN mapping
less smooth there). Grokking occurs post phase
transition as a robust partition of the input space
emerges thanks to the linearization of the DNN
mapping around the training points. bit.ly/grok-
adversarial.

1. Introduction
Grokking is a surprising phenomenon related to represen-
tation learning in Deep Neural Networks (DNNs) whereby
DNNs may learn generalizing solutions to a task long after

1Rice University 2Independent. Correspondence to: Ahmed
Imtiaz Humayun <imtiaz@rice.edu>.

∗Work done while author was at Google.

L
oc

al
C

om
pl

ex
ity

A
cc

ur
ac

y

0

20

40

60

80
clean test
Adv. = 0.06
Adv. = 0.10
Adv. = 0.13
Adv. = 0.16
Adv. = 0.20

100 101 102 103 104 105

20

40

60

train test random

Optimization Steps

Figure 1. Deep Neural Networks grok robustness. When training
a ResNet18 on CIFAR10, without any controlled initialization
as in Liu et al. (2022), the network starts grokking adversarial
examples generated using Projected Gradient Descent (Madry
et al., 2017) after 104 optimization steps (top) and attains almost
equal robustness and generalization performance after 2 × 105

steps. We see that, prior to grokking, the network undergoes a
phase change during training in the local complexity, i.e., the local
density of non-linearities in the input space (bottom). After test
accuracy converges, the network starts migrating its non-linearities
away from the data points and closer to the decision boundary
(see Figure 2), eventually reducing the complexity of the learned
function around the data points. This increase and subsequent
decrease in local non-linearity is a phenomenon visible for a wide
variety of networks and training settings (see Figure 6). In this
paper, we show that this particular training dynamic always results
in delayed generalizaion or robustness.

interpolating the training dataset, i.e., reaching near zero
training error. It was first demonstrated by (Power et al.,
2022) on simple Transformer architectures performing mod-
ular addition or division. Subsequently, multiple studies
have reported instances of grokking for settings outside of
modular addition, e.g., DNNs initialized with large weight
norms for MNIST, IMDb (Liu et al., 2022), or XOR cluster

1

ar
X

iv
:2

40
2.

15
55

5v
1

 [
cs

.L
G

]
 2

3
Fe

b
20

24

https://bit.ly/grok-adversarial
https://bit.ly/grok-adversarial

Grokking Happens All the Time and Here is Why
L

oc
al

C
om

pl
ex

ity
A

cc
ur

ac
y

0

25

50

75

100 Adv. = 0.06
Adv. = 0.10
Adv. = 0.13

Adv. = 0.16
Adv. = 0.20

100 101 102 103 104
0

2

4

train test random

Optimization Steps

Figure 2. Emergence of Robust Partition. We train a 4-layer ReLU MLP of 200 width, on 1K samples from MNIST for 105 optimization
steps, with batch size 200. We see that the network starts grokking adversarial examples after approximately 104 optimization steps (top-
left). The local complexity around data points (bottom-left) follows a double descent curve with the final descent starting approximately
after 104 optimization steps as well. Where do the non-lienarities migrate to? In the middle and right images we present analytically
computed visualizations of the DNN input space partition (Humayun et al., 2023a). The partition or linear regions are visualized across a
2D domain in the input space, that intersects three training samples. We see that during the final descent in local complexity, a unique
structure emerges in the DNN partition geometry, where a large number of non-linearities (black lines) have concentrated around the
decision boundary (red line). We dub this phenomenon Region Migration. Animation for the whole training run in bit.ly/grok-splinecam .

data (Xu et al., 2023). For all the reported instances, DNNs
that grok show a standard behavior in the training loss/accu-
racy curves approaching zero error as training progresses.
The test error however, remains high even long after training
error reaches zero. After a large number of training itera-
tions, the DNN starts grokking–or generalizing–to the test
data. This paper concerns the following question:

Question. How subjective is the onset of grokking on the test
data? When grokking does not manifest as a measurable
change in the test set performance, could there exist an
alternate test dataset for which grokking would occur?

To find an answer to the question, we look past the test
dataset towards progressively generated adversarial sam-
ples, i.e., we generate adversarial samples after each train-
ing update by using PGD (Madry et al., 2017) attacks on
the test data and monitor accuracy on adversarial samples.
Note that it is not guaranteed that robustness towards ad-
versarial samples would emerge with generalization, quite
the contrary has been demonstrated in previous papers. For
example, Tsipras et al. (2018) introduced the generalization-
robustness trade-off, Ilyas et al. (2019) demonstrated that
robust networks learn fundamentally different representa-
tions. On the other hand, Li et al. (2022) introduced the
notion of ’robust generalization’ and provided theoretical
proof of its existence under linear separability conditions,
indicating that robustness may be achieved alongside gener-
alization. We report the following observation:

Observation. For a number of training settings, with stan-

dard initialization with or without weight decay, DNNs
grok adversarial samples long after generalizing on the
test dataset. We dub this phenomenon delayed robustness,
a novel form of grokking previously unreported.

We make this observation for a number of training settings
including for fully connected networks trained on MNIST
(Figure 2), CNNs trained on CIFAR10 and CIFAR100 (Fig-
ure 6), and ResNet18 without batch-normalization, trained
on CIFAR10 (Figure 1) and Imagenette (Figure 6). We
generate adversarial examples after each training step using
ℓ∞-PGD with varying ϵ ∈ {0.06, 0.10, 0.13, 0.16, 0.20},
α = 0.0156 and 10 (100 for MNIST) PGD steps. This
observation answers our initial question: indeed there can
exist a dataset other than the test dataset for which grokking
manifests in classification accuracy. Moreover, we observe
that the same phenomenon occurs when test set grokking is
induced via initialization scaling (Figure 7).

Question. How can we explain both delayed generalization
and delayed robustness?

It has previously been established that both robustness and
generalization are a function of the expressivity (Xu & Man-
nor, 2012; Li et al., 2022) as well as the local linearity (Qin
et al., 2019; Balestriero & LeCun, 2023; Humayun et al.,
2023b) of a DNN. To explain grokking, we propose a novel
complexity measure based on the local non-linearity of the
DNN. Our novel measure does not rely on the dataset, labels,
or loss function that is used during training. It behaves as
a progress measure (Barak et al., 2022; Nanda et al., 2023)

2

https://bit.ly/grok-splinecam

Grokking Happens All the Time and Here is Why

Figure 3. Curvature and complexity. Visual depiction of Equa-
tion (2) with a toy affine spline S : R2 → R, obtained by
training an MLP to regress the piecewise function f(x1, x2) =
{sin(x1) + cos(x2)}1x1<0. Regions in the input space partition
Ω (left) and the graph of the affine spline function (right) are ran-
domly colored. The spline partition has significantly higher density
of non-linearities for x1 < 0, i.e., the local complexity is higher
where the function has more curvature.

that exhibits dynamics correlating with the onset of both de-
layed generalization and robustness, opening new avenues
to study grokking and DNN training dynamics. We show
that DNNs undergo phase a change in the local complexity
(LC) averaged over data points. Based on these dynamics,
we come to the following conclusion:

Claim. Grokking occurs due to the emergence of a robust
input space partition by a DNN, through a linearization of
the DNN function around training points as a consequence
of training dynamics.

We summarize the contributions as follows:

• We observe for the first time delayed robustness, a
novel form of grokking for DNNs that occurs for a
whide range of training settings and co-occurs with
delayed generalization.

• We develop a novel progress measure (Barak et al.,
2022) for DNN’s based on the local complexity of a
DNN’s input space partition. Our proposed measure
is a proxy for the DNN’s expressivity, it is task ag-
nostic yet informative of training dynamics. Using
our measure, we detect three phases in training: two
descent phases and an ascent phase. This is the first
time that such dynamics in a DNN’s partition are re-
ported. We crucially observe that a DNN’s partition
regions concentrate around the decision boundary long
after interpolation, a phenomenon we term as region
migration.

• We pinpoint the origin of grokking via the spline view-
point of DNNs (Balestriero & Baraniuk, 2018), con-
nect it with the circuits viewpoint (Olah et al., 2020),

and show that grokking always occurs during region
migration.

• Through a number of ablation studies we connect the
training phases with DNN design parameters and study
their changes during memorization/generalization.

We organize the rest of the paper as follows. In Section. 2
we overview the spline interpretation of deep networks and
introduce our proposed local complexity measure. We also
draw contrasts with common interpretability frameworks,
e.g., the commonly used notion of circuits (Olah et al., 2020)
in mechanistic interpretability. In Section. 3 we introduce
the double descent characteristics of local complexity and
connect region migration, i.e., the final phase of the dou-
ble descent LC dynamics with grokking. We also present
results showing that grokking does not happen when using
batch normalization and provide theoretical justification.
We present results connecting grokking with parameteriza-
tion and memorization. Finally we mention conclusions
drawn from the presented results and limitations of our anal-
ysis.

2. Local Complexity: A New Progress Measure
Barak et al. (2022) introduced the notion of progress mea-
sures for DNN training, as scalar quantities that are causally
linked with the training state of a network. The spline frame-
work enables us to introduce our proposed progress measure,
the local complexity of a DNN’s partition. In later sections
we show that local complexity dynamics are directly linked
to grokking and present results showing its dependence on
training and architectural parameters.

2.1. Deep Networks are Affine Spline Operators
DNNs primarily perform a sequential mapping of an input
vector x through L nonlinear transformations, i.e., layers,
as in

fθ(x) ≜ W (L) . . .a
(
W (2)a

(
W (1)x+ b(1)

)
+ b(2)

)
· · ·+ b(L), (1)

starting with some input x. For any layer ℓ ∈ {1, . . . , L},
the W (ℓ) weight matrix, and the b(ℓ) bias vector can be
parameterized to control the type of operation for that layer,
e.g., a circulant matrix as W (ℓ) results in a convolutional
layer. The operator a is an element-wise nonlinearity, e.g.,
ReLU, and θ is the set of all parameters of the network.
According to Balestriero & Baraniuk (2018), for any a that
is a continuous piecewise linear function, fθ is a continuous
piecewise affine spline operator. That is, there exists a parti-
tion Ω of the DNN’s input space RD (for example, Figure 3
left) comprised of non-overlapping regions that span the
entire input space. On any region of the partition ω ∈ Ω,
the DNN’s input-output mapping is a simple affine mapping

3

Grokking Happens All the Time and Here is Why

Datapoints
Local Neighborhood
Vertices

Input Space, ℝD

Embedding Space, ℝl

Orthogonal Vectors

Activating Vertices
Neuron Hyperplane

Deactivating Vertices

wTx+b>0

wTx+b<0

wTx+b=0

1) 2) 3)

Figure 4. Local Complexity Approximation. 1) Given a point in the input space x ∈ RD , we start by sampling P orthonormal vectors
{v1, v2, ..., vP } to obtain cross-polytopal frame Vx = {x± r ∗ vp∀p} centered on x, where r is a radius parameter. We consider the
convex hull conv(Vx) as the local neighborhood of x. 2) If any neuron hyperplane intersects the neighborhood conv(Vx) then the
pre-activation sign will be different for the different vertices. We can therefore count the number neurons for a given layer, which results
in sign changes in the pre-activation of Vx to quantify local complexity x for that layer. 3) By embedding Vx to the input of the next layer,
we can obtain a coarse approximation of the local neighborhood of x and continue computing local complexity in a layerwise fashion.

with parameters (Aω, bω). In short, we can express fθ as

fθ(x) =
∑
ω∈Ω

(Aωx+ bω)1{x∈ω}, (2)

where, 1{x∈ω} is an indicator function that is non-zero for
x ∈ ω.

Curvature and Linear Regions. Formulations like that in
Equation (2) that represent DNNs as continuous piecewise
affine splines, have previously been employed to make theo-
retical studies amenable to actual DNNs, e.g. in generative
modeling (Humayun et al., 2022), network pruning (You
et al., 2021), and OOD detection (Ji et al., 2022). Empirical
estimates of the density of linear regions in the spline parti-
tion have also been employed in sensitivity analysis (Novak
et al., 2018), quantifying non-linearity (Gamba et al., 2022),
quantifying expressivity (Raghu et al., 2017) or to estimate
the complexity of spline functions (Hanin & Rolnick, 2019).
We demonstrate the relationship between function curvature
and linear region density through a toy example in Figure 3.
In Figure 3-left and Figure 2-(middle,right), any contigu-
ous line is a non-linearity in the input space, corresponding
to a single neuron of the network. All the non-linearities
re-orient themselves during training to be able to obtain
the target function (Figure 3-right). Therefore, in Figure 3,
we see that DNN partitions have higher density of linear
regions/non-linearities/knots in the spline partition, where
the function curvature is higher.

2.2. Measuring Local Complexity using the Deep
Network Spline Partition

Suppose a domain is specified as the convex hull of a set
of vertices V = [v1, . . .vp]

T in the DNN’s input space.
We wish to compute the local complexity or smoothness
(Hanin & Rolnick, 2019) for neighborhood V = conv(V).

0 1 2 3 4 5 6 7 8
Layer Idx

5

0

5

10

15

20

Ec
ce

nt
ric

ity

0.01438
0.02637

0.04833

0.08859

0.16238

0.00001
0.00002
0.00003
0.00006

0.00011
0.00021
0.00038
0.00070

0.00127
0.00234
0.00428
0.00785

0.01438
0.02637
0.04833
0.08859

0.16238
0.29764
0.54556
1.00000

Figure 5. Deformation with depth. Change of average eccen-
tricity (Xu et al., 2021) of the input space neighborhoods Vx by
different layers of a CNN trained on the CIFAR10 dataset, for
different radius r. We see that, for larger radius, the deforma-
tion increases with depth almost exponentially. For r ≤ 0.014
deformation is low, indicating that smaller radius neighborhoods
are reliable for LC computation on deeper networks. Values are
averaged over neighborhoods sampled for 1000 training points
from CIFAR10. For ResNet18 see Figure 16.

Consider a single hidden layer of a network. Let’s denote
the DNN layer weight as W (ℓ) ≜ [w

(ℓ)
1 , . . . ,w

(ℓ)

D(ℓ)], b(ℓ)

where ℓ is the layer index, w(ℓ)
i is the i-th row of W (ℓ)

or weight of the i-th neuron, and D(ℓ) is the output space
dimension of layer ℓ. The forward pass through this layer
for V can be considered an inner product with each row of
the weight matrix W (ℓ) followed by a continuous piecewise
linear activation function. Without loss of generality, let’s
consider ReLU as the activation function in our network.
The partition at the input space of layer ℓ can therefore be

4

Grokking Happens All the Time and Here is Why
L

oc
al

C
om

pl
ex

ity
A

cc
ur

ac
y

0

25

50

75

100 Adv. = 0.06
Adv. = 0.10
Adv. = 0.13
Adv. = 0.16
Adv. = 0.20

100 101 102 103 104 105

5

10

15

train test random

0

25

50

75

100

100 101 102 103 104 105

10

20

0

25

50

75
Adv. = 0.06
Adv. = 0.13
Adv. = 0.20

100 101 102 103 104 105
0

25K

50K

75K

100K

Optimization Steps

Figure 6. Grokking across datasets and architectures. From left to right, examples of delayed robustness emerging late in training for a
CNN trained on CIFAR10, CNN trained on CIFAR100, and ResNet18 trained on the Imagenette2 dataset. Clear double descent behavior
visible in the local complexity of CNN with CIFAR10 and CIFAR100. The ResNet18 trained with Imagenette obtains a very high local
complexity during the ascent phase of training. To compute local complexity we consider 25 dimensional neighborhoods centered on
1024 train, test or random samples. We use r = 0.005 for CNN and r = 10−4 for ResNet18.

expressed as the set of all hyperplane equations formed via
the neuron weights such as:

∂Ω =

D(ℓ)⋃
i=1

H
(ℓ)
i (3)

H
(ℓ)
i =

{
x ∈ RD(ℓ−1)

: ⟨w(ℓ)
i ,x⟩+ b

(ℓ)
i = 0

}
, (4)

which is also the set of layer ℓ non-linearities. Let, Φ =
f1:ℓ−1(V) be the embedded representation of the neighbor-
hood V by layer ℓ− 1 of the network. Therefore, approxi-
mating the local complexity of V induced by layer ℓ, would
be equivalent to counting the number of linear regions in,

Φ ∩ ∂Ω =

D(ℓ)⋃
i=1

Φ ∩H
(ℓ)
i . (5)

The local partition inside Φ results from an arrangement of
hyperplanes; therefore the number of regions is of the order
ND(ℓ−1)

(Toth et al., 2017), where

N = |{i : i = 1, 2..D(ℓ) and H
(ℓ)
i ∩ Φ ̸= ∅}|, (6)

is the number of hyperplanes from layer ℓ intersecting
Φ. We consider N as a proxy for local complexity for
any neighborhood Φ. To make computation tractable, let,
Φ ≈ Φ̂ = conv(f1:ℓ−1(V)). Therefore, for Φ̂, any sign
changes in layer ℓ pre-activations is due to the correspond-
ing neuron hyperplanes intersecting conv(V). Therefore
for a single layer, the local complexity (LC) for a sample
in the input space can be approximated by the number of
neuron hyperplanes that intersect V embedded to that lay-
ers input space. If we consider input space neighborhoods

with the same volume, then local complexity measures the
un-normalized density of non-linearity in an input space
locality. We highlight that this is tied to the VC-dimension
of (ReLU) DNN (Bartlett et al., 2019) where the more re-
gions are present the more expressive the decision boundary
can be (Montufar et al., 2014). In Figure 4, we provide
a visual explanation of our method for local complexity
approximation through a cartoon schematic diagram. To
summarize, we consider randomly oriented P dimensional
ℓ1 norm balls with radius r, i.e., cross-polytopes centered
on any given data point x as a frame defining the neighbor-
hood. We therefore follow the steps entailed in Figure 4 in
a layerwise fashion, to approximate the local complexity in
the prescribed neighborhood.

Sensitivity of approximation to P and r One of the pos-
sible limitations of local complexity measure is the defor-
mation of the local neighborhood when its passed through
a network from layer to layer, as shown in Figure 4. For
different radius r of the input space neighborhood Vx cen-
tered on any arbitrary data point x, we compute the change
of graph eccentricity (Xu et al., 2021) by different layers of
a CNN to measure the degree of deformation by each layer.
We present the results in Figure 5 for 1000 different training
data points for a CNN trained on CIFAR10. The higher the
deformation, the less reliable the approximation. Here, layer
index 0 corresponds to the input space. We see that below a
certain radius value, deformation by the CNN is limited and
does not exponentially increase. In subsequent experiments,
e.g., Figure 19, we have also observed that the dynamics
of local complexity is similar between large and small r
neighborhoods. We present more validation experiments in
Appendix A.

5

Grokking Happens All the Time and Here is Why
A

cc
ur

ac
y

0 20K 40K 60K 80K 100K
0

20

40

60

80

100 Train
Test
Adv. = 0.06
Adv. = 0.10
Adv. = 0.13
Adv. = 0.16
Adv. = 0.20

Optimization Steps Opt. Step 77035 Opt. Step 83375 Opt. Step 95381

Figure 7. Grokking visualized. We induce grokking by randomly initializing a 4 depth 200 width ReLU MLP and scaling the initialized
parameters by eigth following (Liu et al., 2022). In the leftmost figure, we can see that the grokking is visible for both the test samples as
well as adversarial examples generated using the test set. We see that the network robustness, periodically increases. By visualization the
partition and curvature of the function across a 2D slice of the input space (Humayun et al., 2023a), we see that the network periodically
increases the concentration of non-linearity around its decision boundary, making the boundary sharper at each robustness peak. This
occurs even when the network doesn’t undergo delayed generalization (Figure 2). As the local complexity around the decision boundary
increases, the local complexity around data points farther from the decision boundary decreases (Figure 18).

A
cc

ur
ac

y

101 102 103 104 105
0

25

50

75

100

train acc. test acc.
20

40

60train LC
test LC
random LC

L
ocalC

om
plexity

Optimization Steps

Figure 8. Region migration in nodular addition. By measuring
the local complexity for the GeLU activated fully connected layers
of a Transformer architecture, we see that here as well, region
migration occurs during grokking.

Experimental Setup For all experiments we sample 1024
train test and random points for local complexity (LC) com-
putation, except for the MNIST experiments, where we use
1000 training points (all of the training set where applicable)
and 10000 test and random points for LC computation. We
use r = 0.005 and P = 25 unless specified otherwise and
except for the ResNet18 experiments with Imagenette where
we use r = 10−4. For training, we use the Adam optimizer
and a weight decay of 0 for all the experiments except for the
MNIST-MLP experiments where we use a weight decay of
0.01. Unless specified, we use CNNs with 5 convolutional
layers and two linear layers. For the ResNet18 experiments
with CIFAR10, we use a pre-activation architecture with
width 16. For the Imagenette experiments, we use the stan-
dard torchvision Resnet architecture. For all settings we do
not use Batch Normalizaiton, as reasoned in Appendix B. In
all our plots, we denote training accuracy/LC using green,
test accuracy/LC using orange and random LC using blue
colors. We also color curves for adversarial examples using

different shades of orange. All local complexity plots show
the 99% confidence interval.

3. Local Complexity Training Dynamics and
Grokking

3.1. Emergence of a Robust Partition.
We start our exploration of the training dynamics of deep
neural networks by formalizing the phases of local complex-
ity observed during training. In all our experiments either
involving delayed generalization or robustness, we see three
distinct phases in the dynamics of local complexity:

• The first descent, when the local complexity start by de-
scending after initialization. This phase is subject to the net-
work parameterization as well as initialization, e.g., when
grokking is induced in the MLP-MNIST case with scaled
initialization, we do not see the first descent (Figure 21,
Figure 9).

• The ascent phase, when the local complexity accumu-
lates around both training and test data points. The ascent
phase happens ubiquitously, and the local complexity gener-
ally keeps ascending until training interpolation is reached
(e.g., Figure 6, Figure 1). During the ascent phase, the
training local complexity may be higher for training data
points than for test data points, indicating an accumulation
of non-linearities around training data compared to test data
Figure 2.

• The second descent phase or region migration phase, dur-
ing which the network moves the linear regions or non-
linearities away from the training and test data points. Fo-
cusing on Figure 2-bottom-left and Figure 21 for the MLP-
MNIST setting, one perplexing observation that we make is
that the local complexity around random points – uniformly

6

Grokking Happens All the Time and Here is Why

A
cc

ur
ac

y

100 101 102 103 104 105

0.2

0.4

0.6

0.8

1.0 train test

L
oc

al
C

om
pl

ex
ity

100 101 102 103 104 105
0

5

10

15

20

25 depth 2
depth 3
depth 4
depth 5
depth 6

100 101 102 103 104 105

5

10

15
depth 2
depth 3
depth 4
depth 5
depth 6

Optimization Steps

Figure 9. Local complexity across depths. From left to right, accuracy, local complexity around training and local complexity around
test data points, for an MLP trained on MNIST with width 200 and varying depth. As depth is increased the max LC during ascent phase
becomes larger. We can also see a distinct second peak right before the descent phase.

sampled from the domain of the data – also decreases dur-
ing the final descent phase. This would mean that the non-
linearities are not randomly moving away from the training
data, but systematically reorganizing where we do not have
our LC approximation probes. To better understand the
phenomenon, we consider a square domain D that passes
through three MNIST training points, and use Splinecam
(Humayun et al., 2023a) to analytically compute the input
space partition on D. In short, Splinecam uses the weights
of the network to exactly compute the input space represen-
tation of each neuron’s zero-level set on D (black lines in
Figure 2). We present Splinecam visualizations for differ-
ent optimization steps in Figure 2, Figure 7, and Figure 18.
Through these visualizations, we see clear evidence that
during the second descent phases of training, linear regions
or the non-linearities of the network, migrate close to the
decision boundary creating a robust partition in the input
space. The robust partition contains large linear regions
around the training data, as suggested by papers in literature
as a precursor for robustness (Qin et al., 2019). Moreover,
during region migration, the network intends to lower the
local complexity around training points, resulting in a de-
crease in local complexity around training even compared
to test data points.

Local complexity as progress measure While we don’t
quite understand why the network goes from accumulation
to repelling of non-linearities around the training data be-
tween the ascent and second descent phases, we see that
the second descent always precedes the onset of delayed
generalization or delayed robustness. In Figure 7-middle
and right, we present splinecam visualizations for a network
during grokking. The colors denote the norm of the slope
parameter Aω for each region ω computed obtained via
SplineCam. We see that while a network groks, the regions
start concentrating around the decision boundary where the
network has the highest norm. This is intuitive because
in such classification settings, an increase of local com-
plexity around the decision boundary allows the function
to sharply transition from one class to another. Therefore,
therefore the more the non-linearites converge towards the
decision boundary, the higher the function norm can be

L
oc

al
C

om
pl

ex
ity

0

50

100
Adv. = 0.06
Adv. = 0.13
Adv. = 0.20

100 101 102 103 104 105

10

20
train test random

Optimization Steps

Figure 10. Batch-norm removes grokking. Training a CNN with
an identical setting as in Figure 6-left, except the CNN now has
Batch Normalization layers after every convolution. With the
presence of batchnorm, the LC values increase, the initial descent
gets removed and most importantly, grokking does not occur for
adversarial samples.

while smoothly transitioning as well. We have provided
an animation showing the evolution of partition geometry
and emergence of the robust partition during training here3.
In the animation, we can see that the partition periodically
switches between robust configurations during region migra-
tion. As time progresses we see increasing accumulation of
the non-linearities around the decision boundary. These re-
sults undoubtedly show that the local non-linearity or local
complexity dynamics is directly tied to the partition geome-
try and emergence of delayed generalization/robustness.

Relationship with Circuits A common theme in mecha-
nistic interpretability, especially when it comes to explaining
the grokking phenomenon, is the idea of ’circuit’ formation
during training (Nanda et al., 2023; Varma et al., 2023; Olah
et al., 2020). A circuit is loosely defined as a subgraph of
a deep neural network containing neurons (or linear com-
bination of neurons) as nodes, and weights of the network
as edges. Recall that Equation (2) expresses the operation

3bit.ly/grok-splinecam

7

https://bit.ly/grok-splinecam

Grokking Happens All the Time and Here is Why
L

oc
al

C
om

pl
ex

ity

100 101 102 103 104 105 106

2

4

6

8 N:1000
N:5000
N:10000
N:30000
N:60000

Optimization Steps

Figure 11. Memorization requirement delays grok. When train-
ing an MLP on varying number of randomly labeled MNIST sam-
ples, we see that with increase in the number of samples, the local
complexity dynamics get delayed, especially the ascent phase gets
elongated. This shows that with increased demand for memoriza-
tion the network takes longer to complete ascent and later undergo
region migration.

of the network in a region-wise fashion, i.e., for all input
vectors {x : x ∈ ω}, the network performs the same affine
operation using parameters (Aω, bω) while mapping x to
the output. The affine parameters for any given region,
are a function of the active neurons in the network as was
shown by Humayun et al. (2023a) (Lemma 1). Therefore
for each region, we necessarily have a circuit or subgraph of
the network performing the linear operation. Between two
neighboring regions, only one node of the circuit changes.
From this perspective, our local complexity measure can be
interpreted as a way to measure the density of unique cir-
cuits formed in a locality of the input space as well. While
in practice this would result in an exponential number of
circuits, the emergence of a robust partition show that to-
wards the end of training, the number of unique circuits get
drastically reduced. This is especially true for sub-circuits
corresponding to deeper layers only. In Figure 17, we show
the robust partition in a layerwise fashion. We can see that
for deeper layers, there exists large regions, i.e., embedding
regions with only one circuit operation through the layer.
This result, matches with the intuition provided by Nanda
et al. (2023) on the cleanup phase of circuit formation late
in training.

4. What Affects the Progress Measure?
Parameterization In Figures 12, 19 and 21, we see that
increasing the number of parameters either by increas-
ing depth, or by increasing width of the network in our
MNIST-MLP experiments, hastens region migration, there-
fore makes grokking happen earlier.

Weight Decay regularizes a neural network by reducing the
norm of the network weights, therefore reducing the per
region slope norm as well. We train a CNN with depth 5
and width 32 on CIFAR10 with varying weight decay. In

L
oc

al
C

om
pl

ex
ity

100 101 102 103 104 105
0

5

10

15

20
width 2000
width 1000
width 500
width 100
width 20

100 101 102 103 104 105
0

5

10

15

20
width 2000
width 1000
width 500
width 100
width 20

Optimization Steps

Figure 12. Increasing width hastens region migration. LC dy-
namics while training an MLP with varying width on MNIST.
For the peak LC achieved around training points during the ascent
phase, we see an initial increase and then decrease as the network
gets overparameterized. For test and random samples, we see the
LC during ascent phase saturating as we increase width.

Figure 22 we present the train, test and random LC for our
experiments for neighborhoods of different radius. Weight
decay does not seem to have a monotonic behavior as it both
delays and hastens region migration, based on the amount
of weight decay.

Batch Normalization. Batch normalization removes
grokking. In Appendix B, we show that at each layer ℓ
of a DN, BN explicitly adapts the partition so that the parti-
tion boundaries are as close to the training data as possible.
This is confirmed by our experiments in Figure 10 where
we see that grokking adversarial examples ceases to occur
compared to the non-batchnorm setting in Figure 6. BN
also removes the first descent, monotonically increasing the
local complexity around the data manifold and after a while
undergoing a phase change and decreasing. The degree of
region migration is reduced during this phase, as can be seen
in the higher LC when we use batch normalization. While
training a ResNet18 with Batch Norm on Imagenet Full (Fig-
ure 15), we see that the local complexity keeps increasing
indefinitely, removing any signs of region migration.

Activation function While most of our experiments use
ReLU activated networks, in Figure 26 we present results
for a GeLU activated MLP, as well as in Figure 8 we present
results for a GeLU activated Transformer. For both settings
we see similar training dynamics as is observed for ReLU.

Effect of Training Data. We control the training dataset
to either induce higher generalization on higher memoriza-
tion. Recall that in our MNIST experiments, we use 1k
training samples. We increase the number of samples in our
dataset to monitor the effect of grokking Figure 20 and LC
Figure 24. We see that increasing the size of the dataset
hastens grokking. On the other hand we also sweep the
dataset size for a random label memorization task Figure 11,
Figure 28. We see that in this case, increasing dataset size re-
sults in more memorization requirement, therefore it delays
the region migration phase.

8

Grokking Happens All the Time and Here is Why

5. Conclusions and Limitations
We persued a thorough empirical study of grokking, both
on the test dataset and adversarial examples generated using
the test dataset. We obtained new observations hinting that
grokking is a common phenomenon in deep learning that
is not restricted to particular tasks or DNN initialization.
Upon this discovery, we delved into DNNs geometry to
isolate the root cause of both delayed generalization and
robustness which we attributed to the DNN’s linear region
migration that occurs in the latest phase of training. Again,
the observation of such migration of the DNN partition is a
new discovery of its own right. We hope that our analysis
has provided novel insights into DNNs training dynamics
from which grokking naturally emerges. While we empir-
ically study the local complexity dynamics, a theoretical
justification behind the double descent behavior is lacking.
At a high level, it is clear that the classification function
being learned has its curvature concentrated at the decision
boundary and approximation theory would normally dic-
tate a free-form spline to therefore concentrate its partition
regions around the decision boundary to minimize approx-
imation error. However, it is not clear why that migration
occurs so late in the training process, and we hope to study
that in future research. We also see empirical evidence of
region migration while using Adam as the optimizer. The
training dynamics of stochastic gradient descent, as well as
sharpness aware minimization (Andriushchenko & Flam-
marion, 2022) can also be studied using our framework.
There can be possible connections between region migra-
tion and neural collapse (Papyan et al., 2020) which are not
explored in this paper. The spline viewpoint of deep neural
networks may provide strong geometric insights to assist in
mechanistic understanding in future works as well.

Acknowledgements
Humayun and Baraniuk were supported by NSF grants
CCF1911094, IIS-1838177, and IIS-1730574; ONR
grants N00014- 18-12571, N00014-20-1-2534, and MURI
N00014-20-1-2787; AFOSR grant FA9550-22-1-0060; and
a Vannevar Bush Faculty Fellowship, ONR grant N00014-
18-1-2047.

References
Andriushchenko, M. and Flammarion, N. Towards under-

standing sharpness-aware minimization. In International
Conference on Machine Learning, pp. 639–668. PMLR,
2022.

Balestriero, R. and Baraniuk, R. A spline theory of deep
networks. In Proc. ICML, pp. 374–383, 2018.

Balestriero, R. and Baraniuk, R. G. Batch normalization
explained. arXiv preprint arXiv:2209.14778, 2022.

Balestriero, R. and LeCun, Y. Police: Provably optimal
linear constraint enforcement for deep neural networks.
In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
1–5. IEEE, 2023.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: Sgd
learns parities near the computational limit. Advances
in Neural Information Processing Systems, 35:21750–
21764, 2022.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight vc-dimension and pseudodimension bounds
for piecewise linear neural networks. The Journal of
Machine Learning Research, 20(1):2285–2301, 2019.

Gamba, M., Chmielewski-Anders, A., Sullivan, J., Azizpour,
H., and Bjorkman, M. Are all linear regions created
equal? In AISTATS, pp. 6573–6590, 2022.

Garbin, C., Zhu, X., and Marques, O. Dropout vs. batch
normalization: an empirical study of their impact to deep
learning. Multimedia Tools and Applications, 79:12777–
12815, 2020.

Hanin, B. and Rolnick, D. Complexity of linear regions in
deep networks. arXiv preprint arXiv:1901.09021, 2019.

Humayun, A. I., Balestriero, R., and Baraniuk, R. Polarity
sampling: Quality and diversity control of pre-trained
generative networks via singular values. In CVPR, pp.
10641–10650, 2022.

Humayun, A. I., Balestriero, R., Balakrishnan, G., and Bara-
niuk, R. G. Splinecam: Exact visualization and charac-
terization of deep network geometry and decision bound-
aries. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
3789–3798, June 2023a.

Humayun, A. I., Casco-Rodriguez, J., Balestriero, R., and
Baraniuk, R. Provable instance specific robustness via
linear constraints. In 2nd AdvML Frontiers Workshop
at International Conference on Machine Learning 2023,
2023b.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. Adversarial examples are not bugs, they
are features. Advances in neural information processing
systems, 32, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Ji, X., Pascanu, R., Hjelm, R. D., Lakshminarayanan, B.,
and Vedaldi, A. Test sample accuracy scales with training

9

Grokking Happens All the Time and Here is Why

sample density in neural networks. In Conference on
Lifelong Learning Agents, pp. 629–646. PMLR, 2022.

Kubo, M., Banno, R., Manabe, H., and Minoji, M. Im-
plicit regularization in over-parameterized neural net-
works. arXiv preprint arXiv:1903.01997, 2019.

Li, B., Jin, J., Zhong, H., Hopcroft, J., and Wang, L. Why
robust generalization in deep learning is difficult: Perspec-
tive of expressive power. Advances in Neural Information
Processing Systems, 35:4370–4384, 2022.

Liu, Z., Michaud, E. J., and Tegmark, M. Omnigrok:
Grokking beyond algorithmic data. arXiv preprint
arXiv:2210.01117, 2022.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. On
the number of linear regions of deep neural networks. In
NeurIPS, pp. 2924–2932, 2014.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217, 2023.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J.,
and Sohl-Dickstein, J. Sensitivity and generalization
in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 5(3):e00024–001, 2020.

Papyan, V., Han, X., and Donoho, D. L. Prevalence of
neural collapse during the terminal phase of deep learn-
ing training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfit-
ting on small algorithmic datasets. arXiv preprint
arXiv:2201.02177, 2022.

Qin, C., Martens, J., Gowal, S., Krishnan, D., Dvijotham,
K., Fawzi, A., De, S., Stanforth, R., and Kohli, P. Adver-
sarial robustness through local linearization. Advances in
Neural Information Processing Systems, 32, 2019.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Dick-
stein, J. S. On the expressive power of deep neural net-
works. In ICML, pp. 2847–2854, 2017.

Tan, J., LeJeune, D., Mason, B., Javadi, H., and Baraniuk,
R. G. A blessing of dimensionality in membership infer-
ence through regularization. In International Conference

on Artificial Intelligence and Statistics, pp. 10968–10993.
PMLR, 2023.

Toth, C. D., O’Rourke, J., and Goodman, J. E. Handbook of
discrete and computational geometry. CRC press, 2017.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy.
arXiv preprint arXiv:1805.12152, 2018.

Varma, V., Shah, R., Kenton, Z., Kramár, J., and Kumar,
R. Explaining grokking through circuit efficiency. arXiv
preprint arXiv:2309.02390, 2023.

Xu, H. and Mannor, S. Robustness and generalization.
Machine learning, 86:391–423, 2012.

Xu, K., Ilić, A., Iršič, V., Klavžar, S., and Li, H. Comparing
wiener complexity with eccentric complexity. Discrete
Applied Mathematics, 290:7–16, 2021.

Xu, Z., Wang, Y., Frei, S., Vardi, G., and Hu, W. Benign
overfitting and grokking in relu networks for xor cluster
data. arXiv preprint arXiv:2310.02541, 2023.

You, H., Balestriero, R., Lu, Z., Kou, Y., Shi, H., Zhang, S.,
Wu, S., Lin, Y., and Baraniuk, R. Max-affine spline
insights into deep network pruning. arXiv preprint
arXiv:2101.02338, 2021.

10

Grokking Happens All the Time and Here is Why

0 2 4 6 8 10
shift

101

102

LC

P=2
P=22
P=42
P=62
P=82

P=102
P=122
P=142
P=162
P=182

P=202
P=222
P=242
P=262
P=282

P=302
P=322
P=342
P=362
P=382

0 2 4 6 8 10
shift

100

101

102

LC

r=0.1
r=0.5

r=1
r=5

r=10
r=50

r=100

Figure 13. LC for a P dimensional neighborhood with radius r while being shifted from the origin [0]d to vector [10]d. In left, we vary P
with fixed r = 5 while on right we vary r for fixed P = 20. We see that for all the settings, shifting away from the origin reduces LC. The
increase of LC with the neighborhood dimensionality P gets saturated as we increase P , showing that lower dimensional neighborhoods
can be good enough for approximating LC. Increasing r on the other hand, increases LC and reduces LC variations between shifts, since
the neighborhood becomes larger and LC becomes less local.

A. Empirical analysis of our proposed method
Computing the exact number of linear regions or piecewise-linear hyperplane intersections for an deep network with
N-dimensional input space neighborhood has combinatorial complexity and therefore is intractable. This is one of the key
motivations behind our approximation method.

MLP with zero bias. To validate our method, we start with a toy experiment with a linear MLP with width 400, depth
50, 784 dimensional input space, initialized with zero bias and random weights. In such a setting all the layerwise
hyperplanes intersect the origin at their input space. We compute the LC around the input space origin using our method, for
neighborhoods of varying radius r = {0.0001, 0.001, 0.01, 0.1, 1, 10} and dimensionality P = {2, 10, 25, 50, 100, 200}.
For all the trials, our method recovers all the layerwise hyperplane intersections, even with a neighborhood dimensionality
of P = 2.

Non-Zero Bias Random MLP with shifting neighborhood. For a randomly initialized MLP, we expect to see lower local
complexity as we move away from the origin (Hanin & Rolnick, 2019). For this experiment we take a width 100 depth 18
MLP with input dimensionality d = 784, Leaky-ReLU activation with negative slope 0.01. We start by computing LC at
the origin [0]d, and linearly shift towards the vector [10]d. We see that for all the settings, shifting away from the origin
reduces LC. LC gets saturated with increasing P , showing that lower dimensional neighborhoods can be good enough
for approximating LC. Increasing r on the other hand, increases LC and reduces LC variations between shifts, since the
neighborhood becomes larger and LC becomes less local.

Trained MLP comparison with SplineCam. For non-linear MLPs, we compare with the exact computation method
Splinecam (Humayun et al., 2023a). We take a depth 3 width 200 MLP and train it on MNIST for 100K training steps. For
20 different training checkpoints, we compute the local complexity in terms of the number of linear regions computed via
SplineCam and number of hyperplane intersections via our proposed method. We compute the local complexity for 500
different training samples. For both our method and SplineCam we consider a radius of 0.001. For our method, we consider
a neighborhood with dimensionality P = 25. We present the LC trajectories in Fig. 27. We can see that for both methods
the local complexity follows a similar trend with a double descent behavior.

Deformation of neighborhood by deep networks. As mentioned in Appendix A, we compute the local complexity in a
layerwise fashion by embedding a neighborhood conv(V) into the input space for any layer and computing the number of
hyperplane intersections with conv(V ℓ), where V ℓ is the embedded vertices at the input space of layer ℓ. The approximation
of local complexity is therefore subject to the deformation induced by each layer to conv(V). To measure deformation
by layers 1 to ℓ − 1, we consider the undirected graph formed by the vertices V ℓ and compute the average eccentricity
and diameter of the graphs (Xu et al., 2021). Eccentricity for any vertex v of a graph, is denoted by the maximum shortest
path distance between v and all the connected vertices in the graph. The diameter is the maximum eccentricity over
vertices of a graph. Recall from Appendix A that conv(V) where V = {x ± rvp : p = 1...P} for an input space point
x, is a cross-polytope of dimensionality P , where only two vertices are sampled from any of the orthogonal directions
vp. Therefore, all vertices share edges with each other except for pairs {(x + rvp, x − rvp) : p = 1...P}. Given such
connectivity, we compute the average eccentricity and diameter of neighborhoods conv(V ℓ) around 1000 training points

11

Grokking Happens All the Time and Here is Why

0 1 2 3 4 5 6 7 8
Layer Idx

5

0

5

10

15

20

Ec
ce

nt
ric

ity
0.01438
0.02637

0.04833

0.08859

0.16238

0.00001
0.00002
0.00003
0.00006

0.00011
0.00021
0.00038
0.00070

0.00127
0.00234
0.00428
0.00785

0.01438
0.02637
0.04833
0.08859

0.16238
0.29764
0.54556
1.00000

0 1 2 3 4 5 6 7 8
Layer Idx

5

0

5

10

15

20

Di
am

et
er

0.01438
0.02637

0.04833

0.08859

0.00001
0.00002
0.00003
0.00006

0.00011
0.00021
0.00038
0.00070

0.00127
0.00234
0.00428
0.00785

0.01438
0.02637
0.04833
0.08859

0.16238
0.29764
0.54556
1.00000

Figure 14. Change of avg. eccentricity and diameter (Xu et al., 2021) of the input space neighborhood by different layers of a CNN
trained on the CIFAR10 dataset. For different sampling radius r of the sampled input space neighborhood V , the change of eccentricity
and diameter denotes how much deformation the neighborhood undergoes between layers. Here, layer 0 corresponds to the input space
neighborhood. Numbers are averaged over neighborhoods sampled for 1000 training points from CIFAR10. For larger radius the
deformation increases with depth exponentially. For r ≤ 0.014 deformation is lower, indicating that smaller radius neighborhoods are
reliable for LC computation on deeper networks. Confidence interval shown in red, is almost imperceptible.

Figure 15. Training a ResNet18 with batchnorm on Imagenet Full. LC is computed only on test points using 1000 test set samples.
Computing LC 1000 samples takes approx. 28s on an RTX 8000.

from CIFAR10 for a trained CNN (Fig. 14). We see that for larger r both of the deformation metrics exponentially increase,
where as for r ≤ 0.014 the deformation is lower and more stable. This shows that for lower r our LC approximation for
deeper CNN networks would be better since the neighborhood does not get deformed significantly.

B. Understanding Batch Normalization and its effect on the partition
Suppose the usual layer mapping is

zℓ+1 = a (Wℓzℓ + cℓ) , ℓ = 0, . . . , L− 1 (7)

While a host of different DNN architectures have been developed over the past several years, modern, high-performing
DNNs nearly universally employ batch normalization (BN) (Ioffe & Szegedy, 2015) to center and normalize the entries
of the feature maps using four additional parameters µℓ, σℓ, βℓ, γℓ. Define zℓ,k as kth entry of feature map zℓ of length
Dℓ, wℓ,k as the kth row of the weight matrix Wℓ, and µℓ,k, σℓ,k, βℓ,k, γℓ,k as the kth entries of the BN parameter vectors
µℓ, σℓ, βℓ, γℓ, respectively. Then we can write the BN-equipped layer ℓ mapping extending (1) as

zℓ+1,k = a

(
⟨wℓ,k, zℓ⟩ − µℓ,k

σℓ,k
γℓ,k + βℓ,k

)
, k = 1, . . . , Dℓ. (8)

The parameters µℓ, σℓ are computed as the element-wise mean and standard deviation of Wℓzℓ for each mini-batch during
training and for the entire training set during testing. The parameters βℓ, γℓ are learned along with Wℓ via SGD.4 For each

4Note that the DNN bias cℓ from (1) has been subsumed into µℓ and βℓ.

12

Grokking Happens All the Time and Here is Why

0 2 4 6 8 10 12 14 16
Layer Idx

10 2

10 1

100

101

Ec
ce

nt
ric

ity

0.00428
0.00785

0.01438

0.02637

0.04833

0.08859

0.16238

0.29764

0.54556

0.00001
0.00002
0.00003
0.00006

0.00011
0.00021
0.00038
0.00070

0.00127
0.00234
0.00428
0.00785

0.01438
0.02637
0.04833
0.08859

0.16238
0.29764
0.54556
1.00000

0 2 4 6 8 10 12 14 16
Layer Idx

10 2

10 1

100

101

Di
am

et
er

0.00428
0.00785

0.01438

0.02637

0.04833

0.08859

0.16238

0.29764

0.54556

0.00001
0.00002
0.00003
0.00006

0.00011
0.00021
0.00038
0.00070

0.00127
0.00234
0.00428
0.00785

0.01438
0.02637
0.04833
0.08859

0.16238
0.29764
0.54556
1.00000

Figure 16. Change of avg. eccentricity and diameter (Xu et al., 2021) of the input space neighborhood by different layers of a ResNet18
trained on the CIFAR10 dataset, similar to the setting of Fig. 14. Resnet deforms the input neighborhood by reducing the avg. eccentricity
and diameter of the neighborhood graphs. For r ≤ 0.014 deformation is lower, indicating that smaller radius neighborhoods are reliable
for LC computation on deeper networks.

mini-batch B during training, the BN parameters µℓ, σℓ are calculated directly as the mean and standard deviation of the
current mini-batch feature maps Bℓ

µℓ ←
1

|Bℓ|
∑

zℓ∈Bℓ

Wℓzℓ, σℓ ←
√

1

|Bℓ|
∑

zℓ∈Bℓ

(
Wℓzℓ − µℓ

)2
, (9)

where the right-hand side square is taken element-wise. After SGD learning is complete, a final fixed “test time” mean µℓ

and standard deviation σℓ are computed using the above formulae over all of the training data,5 i.e., with Bℓ = Xℓ.

The Euclidean distance from a point v in layer ℓ’s input space to the layer’s kth hyperplane Hℓ,k is easily calculated as

d(v,Hℓ,k) =
|⟨wℓ,k,v⟩ − µℓ,k|
∥wℓ,k∥2

(10)

as long as ∥wℓ,k∥ > 0.

Then, the average squared distance between Hℓ,k and a collection of points V in layer ℓ’s input space is given by

Łk(µℓ,k,V) =
1

|V|
∑
v∈V

d (v,Hℓ,k)
2
=

σ2
ℓ,k

∥wℓ,k∥22
, (11)

C. What affects the robust partition? Reprise
Depth. In Figure 19 we plot LC during training on MNIST for Fully Connected Deep Networks with depth in {2, 3, 4, 5}
and width 200. In each plot, we show both LC as well as train-test accuracy. For all the depths, the accuracy on both the
train and test sets peak during the first descent phase. During the ascent phase, we see that the train LC has a sharp ascent
while the test and random LC do not.

The difference as well as the sharpness of the ascent is reduced when increasing the depth of the network. This is visible for
both fine and coarse r scales. For the shallowest network, we can see a second descent in the coarser scale but not in the
finer r scale. This indicates that for the shallow network some regions closer to the training samples are retained during later
stages of training. One thing to note is that during the ascent and second descent phase, there is a clear distinction between
the train and test LC. This is indicative of membership inference fragility especially during latter phases of training. It has
previously been observed in membership inference literature (Tan et al., 2023), where early stopping has been used as a
regularizer for membership inference. We believe the LC dynamics can shed a new light towards membership inference and
the role of network complexity/capacity.

In Figure 10, we plot the local complexity during training for CNNs trained on CIFAR10 with varying depths with and
without batch normalization. The CNN architecture comprises of only convolutional layers except for one fully connected

5or more commonly as an exponential moving average of the training mini-batch values.

13

Grokking Happens All the Time and Here is Why

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 17. Layerwise visualization of the input space partition for a 2D domain passing through a training set triad, after robust partition
formation. The partition is visualized for an MLP with depth 6 and width 200, trained on 1000 samples from MNIST, similar to the setting
described in Figure 2. We see that deeper layer neurons partake more in the formation of the robust partition, compared to shallower
layers. This is due to the fact that deeper layer neurons can be more localized in the input space due to the non-linearity induced by
preceding layers.

layer before output. Therefore when computing LC, we only take into account the convolutional layers in the network.
Contrary to the MNIST experiments, we see that in this setting, the train-test LC are almost indistinguishable throughout
training. We can see that the network train and test accuracy peaks during the ascent phase and is sustained during the
second descent. It can also be noticed that increasing depth increases the max LC during the ascent phase for CNNs which
is contrary to what we saw for fully connected networks on MNIST. The increase of density during ascent is all over the
data manifold, contrasting to just the training samples for fully connected networks.

In Appendix, we present layerwise visualization of the LC dynamics. We see that shallow layers have sharper peak during
ascent phase, with distinct difference between train and test. For deeper layers however, the train vs test LC difference is
negligible.

Width. In Figure 12 we present results for a fully connected DNN with depth 3 and width {20, 100, 500, 1000, 2000}.
Networks with smaller width start from a low LC at initialization compared to networks that are wider. Therefore for small
width networks the initial descent becomes imperceptible. We see that as we increase width from 20 to 1000 the ascent
phase starts earlier as well as reaches a higher maximum LC. However overparameterizing the network by increasing the
width further to 2000, reduces the max LC during ascent, therefore reducing the crowding of neurons near training samples.
This is a possible indication of how overparameterization performs implicit regularization (Kubo et al., 2019), by reducing
non-linearity or local complexity concentration around training samples.

Weight Decay regularizes a neural network by reducing the norm of the network weights, therefore reducing the per region
slope norm as well. We train a CNN with depth 5 and width 32 and varying weight decay. In Fig. 22 we present the train
and random LC for our experiments. We can see that increasing weight decay also delays or removes the second descent in
training LC. Moreover, strong weight decay also reduces the duration of ascent phase, as well as reduces the peak LC during
ascent. This is dissimilar from BN, which removes the second descent but increases LC overall.

Batch Normalization. It has previously been shown that Batch normalization (BN) regularizes training by dynamically
updating the normalization parameters for every mini-batch, therefore increasing the noise in training (Garbin et al., 2020).
In fact, we recall that BN replaces the per-layer mapping from Equation (1) by centering and scaling the layer’s pre-activation
and adding back the learnable bias b(ℓ). The centering and scaling statistics are computed for each mini-batch. After learning
is complete, a final fixed “test time” mean µ(ℓ) and standard deviation σ(ℓ) are computed using the training data. Of key
interest to our observation is a result tying BN to the position in the input space of the partition region from (Balestriero
& Baraniuk, 2022). In particular, it was proved that at each layer ℓ of a DN, BN explicitly adapts the partition so that the
partition boundaries are as close to the training data as possible. This is confirmed by our experiments in Fig. 10 we present
results for CNN trained on CIFAR10, with and without BN.

D. Extra Figures

14

Grokking Happens All the Time and Here is Why

Figure 18. Partition visualization for 2D domains localized around the decision boundary (top) and away from the decision boundary
(bottom) for the grokking setup presented in Figure 7. All the plots are show for the optimization step 95381. Number of regions in the
partition for top-right, top-left, bottom-right, and bottom-left are 123156, 88362, 33273, and 32018 respectively. The domain used for all
of the plots has the same area/volume. Therefore, close to the decision boundary, the region density is much higher compared to away
from the decision boundary. This is evidence of region migration happening during the latter phases of training.

15

Grokking Happens All the Time and Here is Why
L

oc
al

C
om

pl
ex

ity

100 101 102 103 104 105

0

2

4

6

8

train test random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

0

1

2

3

4

5

6

train test random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

0

1

2

3

4

5

train test random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

0

1

2

3

4

5

train test random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

0

1

2

3

4

5

6

train test random

0.2

0.4

0.6

0.8

1.0

A
ccuracy

Optimization Steps

Figure 19. MLP with width 200 and varying depth being trained on 1000 samples from MNIST. Increasing the depth of the network
decreases the sharpness of the LC peak during ascend phase. Deeper networks also tend to have a sharper decline in the training LC
during region migration.

A
cc

ur
ac

y

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PGD = 0.125, steps=100, alpha=4/255

N:5000
N:10000
N:30000
N:60000
N:1000

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PGD = 0.192, steps=100, alpha=4/255

N:5000
N:10000
N:30000
N:60000
N:1000

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PGD = 0.259, steps=100, alpha=4/255

N:5000
N:10000
N:30000
N:60000
N:1000

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PGD = 0.325, steps=100, alpha=4/255

N:5000
N:10000
N:30000
N:60000
N:1000

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PGD = 0.392, steps=100, alpha=4/255

N:5000
N:10000
N:30000
N:60000
N:1000

Optimization Steps

Figure 20. For an MLP with depth 4 and width 200, we train with varying training set sizes and evaluate the adversarial performance after
each training iteration. We see that with increasing dataset size, the network groks earlier in time, as can be visible in the adversarial
grokking curves for all the different epsilon values.

16

Grokking Happens All the Time and Here is Why
L

oc
al

C
om

pl
ex

ity

100 101 102 103 104 105
0

2

4

6

8

10

12
r = 0.05, depth = 2

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

2.5

5.0

7.5

10.0

12.5

15.0
r = 0.05, depth = 3

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0

5

10

15

r = 0.05, depth = 4

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0

5

10

15

20

r = 0.05, depth = 5

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0

5

10

15

20

25

r = 0.05, depth = 6

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0.0

2.5

5.0

7.5

10.0

12.5

r = 0.1, depth = 2

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

5

10

15

r = 0.1, depth = 3

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

5

10

15

20

25
r = 0.1, depth = 4

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0
5

10
15
20
25
30

r = 0.1, depth = 5

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

10

20

30

40
r = 0.1, depth = 6

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0

5

10

15

20

25

r = 0.5, depth = 2

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
10

20

30

40

50
r = 0.5, depth = 3

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

20

40

60

80
r = 0.5, depth = 4

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

20

40

60

80

100

120
r = 0.5, depth = 5

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

50

100

150

r = 0.5, depth = 6

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

10

20

30

40

r = 1, depth = 2

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
20

40

60

80

r = 1, depth = 3

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

25

50

75

100

125

150
r = 1, depth = 4

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

50

100

150

200

r = 1, depth = 5

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

50

100

150

200

250

300

r = 1, depth = 6

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

25
50
75

100
125
150

r = 5, depth = 2

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

100

150

200

250

300
r = 5, depth = 3

train test random 0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

100

200

300

400

500 r = 5, depth = 4

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

100

200

300

400

500

600

r = 5, depth = 5

train test random
0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

200

400

600

800
r = 5, depth = 6

train test random
0.2

0.4

0.6

0.8

1.0

A
ccuracy

Optimization Steps

Figure 21. Training a 200 width MLP on MNIST with initialization scaling of 8 and varying depths. Along the row, we consider larger
and larger radius neighborhoods for local complexity approximation.

Training Samples Test Samples Random Samples

L
oc

al
C

om
pl

ex
ity

100 101 102 103 104

125

150

175

200

225

250

r = 0.1

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104

125

150

175

200

225

250

r = 0.1

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104

90

100

110

120

130

r = 0.1

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104

12.5

15.0

17.5

20.0

22.5

25.0

27.5

r = 0.01

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104

12.5

15.0

17.5

20.0

22.5

25.0

27.5

r = 0.01

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104
8

9

10

11

12

13

14

r = 0.01

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104

1.5

2.0

2.5

r = 0.001

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104

1.5

2.0

2.5

r = 0.001

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

100 101 102 103 104

0.8

1.0

1.2

1.4

r = 0.001

wdecay 0
wdecay 0.0001
wdecay 0.001
wdecay 0.01
wdecay 0.05
wdecay 0.1
wdecay 1

Optimization Steps

Figure 22. Local complexity dynamics training an MLP on MNIST with weight decay

17

Grokking Happens All the Time and Here is Why

Training Samples Test Samples Random Samples

L
oc

al
C

om
pl

ex
ity

100 101 102 103 104 105 106

2

4

6

8 N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105 106

2

4

6

8 N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105 106

1

2

3 N:1000
N:5000
N:10000
N:30000
N:60000

Optimization Steps

Figure 23. Increasing the volume of randomly labeled training data. Continued from Figure 11. Increasing the number of randomly
labeled training samples delays the ascent phase of the LC training dynamics for both training and test samples. For random samples the
behavior is not affected as much.

Training Samples Test Samples Random Samples

L
oc

al
C

om
pl

ex
ity

100 101 102 103 104 105
0.0

0.5

1.0

r = 0.01

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

0.2

0.4

0.6

0.8

1.0

r = 0.01

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

0.2

0.4

0.6

r = 0.01

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105
0

2

4

r = 0.05

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

1

2

3

4

5

r = 0.05

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

1

2

3

r = 0.05

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105
0.0

2.5

5.0

7.5

10.0

r = 0.1

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

2

4

6

8

10

r = 0.1

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

2

4

6

r = 0.1

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105
0

20

40

r = 0.5

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

10

20

30

40

50

r = 0.5

N:1000
N:5000
N:10000
N:30000
N:60000

100 101 102 103 104 105

10

20

30

r = 0.5

N:1000
N:5000
N:10000
N:30000
N:60000

Optimization Steps

Figure 24. Dataset size does not affect the onset of region migration. Local complexity dynamics training an MLP on MNIST with
weight decay

18

Grokking Happens All the Time and Here is Why

100 101 102 103 104 105
0.90

0.92

0.94

0.96

0.98

1.00
tra D:1000
tra D:5000
tra D:10000
tra D:30000
tra D:60000
tes D:1000
tes D:5000
tes D:10000
tes D:30000
tes D:60000

Figure 25. Training and Test accuracy for the different datset sizes presented in Figure 24.

A
cc

ur
ac

y

L
ocalC

om
plexity

Optimization Steps

Figure 26. LC dynamics for a GeLU-MLP with width 200 and depth {3, 4, 5} presented from left to right. LC is calculated at 1000
training points and 10000 test and random points during training on MNIST.

Figure 27. Comparing the local complexity measured in terms of the number of linear regions computed exactly by SplineCAM (Humayun
et al., 2023a) and number of hyperplane cuts by our proposed method. Both methods exhibit the double descent behavior.

19

Grokking Happens All the Time and Here is Why
L

oc
al

C
om

pl
ex

ity

100 101 102 103 104 105
0

2

4

6

8

10

12
r = 0.05, depth = 2

train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

2.5

5.0

7.5

10.0

12.5

15.0
r = 0.05, depth = 3

train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

5

10

15

r = 0.05, depth = 4
train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

5

10

15

20

r = 0.05, depth = 5
train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

5

10

15

20

25

r = 0.05, depth = 6
train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0

1

2

3

4

5
r = 0.01, depth = 2

train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0

2

4

6

8

10
r = 0.01, depth = 3

train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105
0

2

4

6

8

10

12
r = 0.01, depth = 4

train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

2
4
6
8

10
12

r = 0.01, depth = 5
train
test
random

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105

2.5

5.0

7.5

10.0

12.5

r = 0.01, depth = 6
train
test
random

0.2

0.4

0.6

0.8

1.0

A
ccuracy

Optimization Steps

Figure 28. Random label radius and depth Sweep

20

