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Abstract

Spherical harmonics are the key ingredient in equivariant neural networks often
used in Geometric Deep Learning applications to molecules, proteins, and materials
where it is crucial to imbue the model with rotational and translational symmetries.
However, computing spherical harmonics at higher orders and on larger inputs
often constitutes a major performance bottleneck in equivariant models. In this
work, we propose a set of efficient forward and backward kernels implemented in
the Triton language for computing spherical harmonics on systems of up to 100
million atoms. Experimentally, the Triton implementation brings improvements of
up to 5× in time and up to 3× in memory compared to the popular e3nn library
while being portable to any GPU accelerator with the Triton backend.

1 Introduction

Equivariant neural networks are among the key components of Geometric Deep Learning [Bronstein
et al., 2021] enabling numerous scientific applications from molecular conformation generation [Sator-
ras et al., 2021] and protein-ligand binding [Corso et al., 2023, 2024] to protein folding [Jumper
et al., 2021] to materials discovery [Merchant et al., 2023, Miret et al., 2023, 2024]. Equivariant
architectures, commonly applied to atomistic systems with 3D coordinates, preserve symmetries and
equivariances of geometric quantities under transformations pertaining to the input space [Duval
et al., 2023]. For example, the potential energy of a unit cell of a solid-state material does not change
after (is invariant to) translations, rotations, and reflections (forming the E(3) group) in the 3D space
whereas forces applied to atoms change propotionally (are equivariant) to rotations (forming the
SO(3) group).

Spherical tensors and spherical harmonics, being irreducible representations of the rotation group
SO(3), are common components of equvariant architectures such as SE(3)-Transformer [Fuchs et al.,
2020], SEGNN [Brandstetter et al., 2021], NequIP [Batzner et al., 2022], MACE [Batatia et al., 2022],
eSCN [Passaro and Zitnick, 2023], and Equiformer [Liao and Smidt, 2023, Liao et al., 2024]. At
the same time, computing spherical harmonics (especially at higher orders) is bottlenecked by the
recurrent nature of the algorithm that becomes more significant on larger systems.

In this work, we propose efficient forward and backward pass kernels implemented in Triton [Tillet
et al., 2019] for computing spherical harmonics and enabling higher-order terms on systems of up
to 100 million atoms. To the best of our knowledge, this is the first attempt to leverage low-level
optimizations and ML compilers for efficient spherical harmonics. Other available implementa-
tions [Geiger et al., 2022, Bonev et al., 2023] rely on PyTorch and struggle with time and memory
complexity on large inputs and higher orders. Performance-wise, as shown in Section 2.3, the kernels
demonstrate up to 5× speedups compared to the popular e3nn library [Geiger et al., 2022] used
in many equivariant models. On top of that, thanks to the portability of Triton, the kernels can be
executed on any GPU regardless of the vendor including Nvidia, AMD and Intel.
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2 Methodology

2.1 Spherical harmonics

The spherical harmonics (Y l
m) are a set of polynomial functions that are irreducible representations

of the SO(3) symmetry group – by expanding Cartesian features in this basis, we transform them
into equivariant ones. The basis is parametrized by l and m, referred to as degree and order, that
have physical interpretations representing angular momentum: the former represents the total orbital
angular momentum, while the latter is the projection of l along the z axis. For a given degree l there
exist 2l + 1 values of m. For example, as described in Duval et al. [2023], for a p = (x, y, z) point
on the unit sphere S2 ⊂ R3, second-order l = 2 spherical harmonics Y (2)

m can be expressed as:

Y
(0)
0 (p) = c0

Y
(1)
−1 (p) = c1y, Y

(1)
0 (p) = c1z, Y

(1)
1 (p) = c1x,

Y
(2)
−2 (p) = c2xy, Y

(2)
−1 (p) = c2yz, Y

(2)
0 (p) =

c2

2
√
3
(2z2 − x2 − y2),

Y
(2)
1 (p) = c2xz, Y

(2)
2 (p) =

c2
2
(x2 − y2),

where c0, c1, and c2 are normalization constants.

Currently, equivariant graph neural networks utilize spherical harmonics by mapping cartesian features
of n nodes that span Rn×3, to their spherical harmonic counterparts Rn×(2l+1), where l is used as a
hyperparameter. Subsequent composition of tensor products with learned weights transform these
primitive features into non-linear, expressive messages; all the while preserving equivariance. For
larger values of l, we nominally obtain a richer feature space: by encoding additional, progressively
complex polynomial functions, and by convergence to a complete basis set as l → ∞. The latter,
however, has yet to be systematically explored – part in due to the computational demand of evaluating
the spherical harmonics, which naively correspond to O(l3) computational complexity. Although
there exist algorithmic ways to reduce SO(3) convolutions to SO(2) convolutions [Passaro and
Zitnick, 2023], the polynomial complexity still remains and presents a significant computational
challenge. This requirement doubles the computational cost, owing to the fact that their derivatives
are required not only for neural network training, but also for evaluating atomic forces (i.e. the
derivative of the energy with respect to atom positions).

2.2 Triton & P3 Principles for High-Performance Computing

Triton [Tillet et al., 2019] is a framework for efficient parallel programming with a particular focus
on accelerating common building blocks and operations used in deep neural networks. Furthermore,
Triton bundles a Python-based language syntax with a compiler. As such, the higher-level language
interface is detached from the low-level compilation which makes Triton programs easier to imple-
ment and maintain and, at the same time, makes them portable to different hardware that supports
the compiler. In high-performance computing (HPC), for example, Triton is among the standard
tools for efficient, scalable, and parallelizable training and inference of large neural networks. In
particular, Triton kernels implementing fast matrix multiplication, attention, and softmax became
widely used with FlashAttention [Dao et al., 2022, Dao, 2024] becoming ubiquitous in Large Lan-
guage Models (LLMs). Similarly, an efficient implementation of parallel scans enabled scaling state
space models [Gu and Dao, 2023] to the sizes of LLMs.

In HPC, performance, portability, and productivity (P3) are tightly coupled concepts that characterize
the ability of an application to not only successfully run on different hardware platforms with little
to no code changes (or “divergence”), but also able to execute to their respective theoretical limits
Pennycook et al. [2016, 2019], Pennycook and Sewall [2021]. While there has yet to be a quantitative
P3 study of Triton programs (such as efficient kernels for deep learning workloads), the language
shows good promise in terms of P3 by providing a high-level, single source code that does not
require hardware specialization by the developer (productivity), whilst offering the ability to perform
low-level optimizations such as cache blocking (performance) provided that the platform (portability)
has a Triton backend implementation.
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Figure 1: Performance improvement of forward-backward passes using the Triton spherical harmonics
kernels relative to e3nn for 1 ≤ l ≤ 4, as a function of the number of nodes.

2.3 Benchmarking

Experimental setup. Development and benchmarking were performed on Intel® Data Center GPU
Max Series 1550 (128 GB HBM2e memory) using oneAPI 2024.0, PyTorch 2.1.0 [Paszke et al.,
2019], the XPU version of Intel® Extension for PyTorch 2.1.10, and the 2.1.0 release version of the
XPU backend for Triton (commit 69998dd). The baseline e3nn is the latest available pypi release,
which is version 0.5.1 from 2022-12-12.

We compare a Triton port of the spherical harmonics functions against those implemented in e3nn.
Unit tests were written to ensure the two versions produced identical forward and backward results,
within a relative tolerance of 10−4. Derivatives up to l = 4 are reproduced in the Appendix, and were
obtained by symbolic differentiation using sympy [Meurer et al., 2017].

Measurements. All results discussed here exclude the time required for just-in-time compilation,
which occurs the first time a combination of kernel and input shapes is encountered. For node scaling,
we report the median time taken to perform a forward and backward pass based on 90 experiments
following 10 warm-up steps (which includes kernel compilation), for a given number of nodes.

3 Results & Discussion

Experimental results on time and memory scaling of Triton kernels are shown in Figure 2 and their
comparison with e3nn in Figure 1. For training, where a batched graph might comprise upwards of
102 to 106 atoms, implementing spherical harmonics in Triton afforded ∼5× faster forward-backward
evaluation than e3nn. The gains are even more pronounced on higher-order spherical harmonics
(l = 4). Furthermore, we observe a constant time footprint (on the order of milliseconds) with small
memory consumption, i.e., up to 200 MB for 106 atoms.

The improved performance can be attributed to two factors: (1) cache blocking and (2) kernel fusion.
Cache blocking keeps intermediate values that are necessary for computation in cache, thereby
mitigating significantly slower read operations from GPU memory. Kernel fusion reduces overhead
associated with launching GPU kernels, by virtue of having fewer separate kernels to execute. While
torchscript offers some degree of fusion, it is unable to perform the same aggressive fusion in the
forward and backward passes as a hand-written kernel in Triton.

For l = 4, the Triton implementation of spherical harmonics required an average of 39.55/40.96 GB of
read/write operations, contrasting against the torchscript compiled e3nn version, which required
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Figure 2: Performance scaling of forward-backward passes with spherical harmonics from e3nn as a
function of the number of nodes, for 1 ≤ l ≤ 4. The top axis corresponds to the expected memory
usage for the number of nodes at single floating point precision. The vertical line corresponds to the
last-level cache size (408 MB) for the Intel® Data Center GPU Max Series 1550.

104.95/53.97 GB. In other words, the Triton implementation reduces the number of GPU memory
reads by a factor of ∼2.6.

On larger batches of 107 to 108 atoms, we still observe up to 3× speedups over e3nn albeit time
complexity starts to grow reaching the order of a second for 4-th order spherical harmonics on 108

atoms. We attribute this decrease in Triton performance to the available last-level cache size on a
GPU (408 MB), that is, upon hitting the memory limit, read operations from the main GPU memory
start to be prevalent. Nevetheless, the kernels allow to fit 4-th order spherical harmonics of a large
108 atomic system within 10 GB of GPU memory which is acceptable for most consumer- and
server-grade accelerators.

Finally, we note that Triton is portable across GPUs thanks to the LLVM backend. The same kernels
can be reused regardless of vendor/platform as long as they support Triton.

Future Work By providing compute-efficient implementations of spherical harmonics, we hope
to spur additional research and development of equivariant neural network architectures, as well as
further benchmarking of common architectures which rely on spherical harmonics. The code is open
sourced under Apache 2.0, and can be found at https://github.com/IntelLabs/EquiTriton.

Beyond the spherical harmonics, the work we have shown here demonstrates how Triton can be
used to improve the performance of scientific AI workflows: tensor products are another essential
building block of equivariant models, and the broader community would likely benefit from a similar
treatment.
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4 Conclusions

A Appendix

A.1 Expressions and derivatives of spherical harmonics

We omit l = 0 as it does not contribute gradients. We use use the same notation as e3nn to ensure
consistency between the kernels regarding the superscript of Y —normally it represents m, but
for ease of comparison and comprehension, is used to index the polynomial in the same way as
implemented in e3nn [Geiger et al., 2022]. For the derivatives, we express the collective derivative
of a particular degree (e.g. Y2) with respect to each axis in terms of the gradient vector originating
from each order/polynomial (e.g. ∇Y 1

2 ).

A.1.1 l = 1

Y 0
2 =

√
3x (1)

Y 1
2 =

√
3y (2)

Y 2
2 =

√
3z (3)

(4)

The derivatives are constants
√
3.
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A.1.2 l = 2

Y 0
2 =

√
15xz (5)

Y 1
2 =

√
15xy (6)

Y 2
2 =

√
15yz (7)

Y 3
2 =

√
5
(
−0.5x2 + y2 − 0.5z2

)
(8)

Y 4
2 =

√
15

(
−x2 + z2

)
2

(9)

The derivatives of Y2, with respect to each cartesian axis:

∂Y2

∂x
=

√
15∇Y 0

2 z +
√
15∇Y 1

2 y −
√
5∇Y 3

2 x−
√
15∇Y 4

2 x (10)

∂Y2

∂y
=

√
15∇Y 1

2 x+
√
15∇Y 2

2 z + 2
√
5∇Y 3

2 y (11)

∂Y2

∂z
=

√
15∇Y 0

2 x+
√
15∇Y 2

2 y −
√
5∇Y 3

2 z +
√
15∇Y 4

2 z (12)

A.1.3 l = 3

Y 0
3 =

1

6

√
42Y 0

2 z − Y 4
2 x (13)

Y 1
3 =

√
7Y 0

2 y (14)

Y 2
3 =

1

8

√
168x(4y2 − x2 ∗ z2) (15)

Y 3
3 =

1

2

√
7y(2y2 − 3x2z2) (16)

Y 4
3 =

1

8

√
168z(4y2 − x2 ∗ z2) (17)

Y 5
3 =

√
7Y 4

2 y (18)

Y 6
3 =

1

6

√
42Y 4

2 z − Y 0
2 x (19)

The derivatives of Y3, with respect to each cartesian axis; in this case, the expressions have been
partially evaluated by removing dependencies with respect to earlier terms (e.g. ∇Y2), resulting in
literals:
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∂Y3

∂x
=

√
15∇Y 0

3

(
−1.62018517460196x2 + 1.08012344973464z2 + 0.540061724867322z2

)
+ 2.64575131106459

√
15∇Y 1

3 yz

−∇Y 2
3

(
4.8605555238059x2 − 6.48074069840786y2 + 1.62018517460197z2

)
− 7.93725393319377∇Y 3

3 xy − 3.24037034920393∇Y 4
3 xz

− 2.64575131106459
√
15∇Y 5

3 xy −
√
15∇Y 6

3 z (2.16024689946929x+ 1.08012344973464x)
(20)

∂Y3

∂y
= 2.64575131106459

√
15∇Y 1

3 xz + 12.9614813968157∇Y 2
3 xy

−∇Y 3
3

(
3.96862696659689x2 − 7.93725393319377y2 + 3.96862696659689z2

)
+ 12.9614813968157∇Y 4

3 yz − 1.3228756555323
√
15∇Y 5

3

(
x2 − z2

)
(21)

∂Y3

∂z
=

√
15∇Y 0

3 x (1.08012344973464z + 2.16024689946929z) + 2.64575131106459
√
15∇Y 1

3 xy

− 3.24037034920393∇Y 2
3 xz − 7.93725393319377∇Y 3

3 yz

−∇Y 4
3

(
1.62018517460197x2 − 6.48074069840786y2 + 4.8605555238059z2

)
+ 2.64575131106459

√
15∇Y 5

3 yz

−
√
15∇Y 6

3

(
1.08012344973464x2 + 0.540061724867322x2 − 1.62018517460196z2

)
(22)
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A.1.4 l = 4

Y 0
4 =

3

4

√
2(Y 0

3 z + Y 6
3 x) (23)

Y 1
4 =

3

4
Y 0
3 y +

3

8

√
6Y 1

3 z +
3

8

√
6Y 5

3 x (24)

Y 2
4 = − 3

56

√
14Y 0

3 z +
3

14

√
21Y 1

3 y +
3

56

√
210Y 2

3 z +
3

56

√
(210)Y 4

3 x+
3

56

√
14Y 6

3 x (25)

Y 3
4 = − 3

56

√
42Y 1

3 z +
√
328

√
105Y 2

3 y +
√
328

√
70Y 3

3 x+
3

56

√
(42)Y 5

3 x (26)

Y 4
4 = − 3

28

√
42Y 2

3 x+
3

7

√
7Y 3

3 y −
3

28

√
42Y 4

3 z (27)

Y 5
4 = − 3

56

√
42Y 1

3 x+
3

28

√
70Y 3

3 z +
3

28

√
105Y 4

3 y −
3

56

√
42Y 5

3 z (28)

Y 6
4 = − 3

56

√
14Y 0

3 x− 3

56

√
210Y 2

3 x+
3

56

√
210Y 4

3 z +
3

14

√
21Y 5

3 y −
3

56

√
14Y 6

3 z (29)

Y 7
4 = −3

8

√
6Y 1

3 x+
3

8

√
6Y 5

3 z +
3

4
Y 6
3 y (30)

Y 8
4 =

3

4

√
2(−Y 0

3 x+ Y 6
3 z) (31)

The derivatives of Y4, with respect to each cartesian axis; in this case, the expressions have been
partially evaluated by removing dependencies with respect to earlier terms (e.g. ∇Y3,∇Y2), resulting
in literals:

∂Y4

∂x
= −

√
15∇Y 0

4 (3.43693177121688x
2z + 3.43693177121688x2z − 1.14564392373896z3

− 1.14564392373896z3) +
√
15∇Y 1

4 y(−4.8605555238059x2 + 3.24037034920393z2

+ 1.62018517460197z2)−∇Y 2
4 (0.649519052838329

√
15x2z

− 2.77555756156289× 10−17
√
15x2z + 7.54672942406179x2z − 2.59807621135332

√
15y2z

− 10.0623058987491y2z + 0.21650635094611
√
15z3 + 2.51557647468726z3)

−∇Y 3
4 y(0.918558653543692

√
15x2 + 16.0090306546024x2 − 9.48683298050514y2

+ 0.918558653543692
√
15z2 + 5.33634355153414z2 + 0.459279326771846

√
15

(
x2 − z2

)
)

+∇Y 4
4

(
−9.0xy2 + 2.25xz2 − 9.0xy2 + 2.25xz2 + 4.5x3

)
−∇Y 5

4 yz
(
1.83711730708738

√
15x− 0.918558653543692

√
15x+ 10.6726871030683x

)
−∇Y 6

4 (2.59807621135332
√
15xy2 − 0.21650635094611

√
15xz2 + 2.51557647468726xz2

+ 10.0623058987491xy2 − 2.51557647468726xz2 + 0.21650635094611
√
15xz2 − 5.03115294937453x3

− 0.433012701892219
√
15x3)−

√
15∇Y 7

4 yz (6.48074069840786x+ 3.24037034920393x)

−
√
15∇Y 8

4

(
1.14564392373896xz2 + 4.58257569495584xz2 + 1.14564392373896xz2 − 2.29128784747792x3

)
(32)
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∂Y4

∂y
=

√
15∇Y 1

4 x
(
−1.62018517460197x2 + 3.24037034920393z2 + 1.62018517460197z2

)
+∇Y 2

4 xz
(
20.1246117974981y + 5.19615242270663

√
15y

)
−∇Y 3

4 x(5.33634355153414x
2 − 28.4604989415154y2 + 0.918558653543692

√
15z2

+ 5.33634355153414z2 + 0.459279326771846
√
15

(
x2 − z2

)
)

−∇Y 4
4

(
9.0x2y + 9.0x2y + 9.0yz2 + 9.0yz2 − 12.0y3

)
−∇Y 5

4 z(0.918558653543692
√
15x2 + 5.33634355153414x2 − 28.4604989415154y2

+ 5.33634355153414z2 − 0.459279326771846
√
15

(
x2 − z2

)
)

−∇Y 6
4

(
10.0623058987491x2y − 10.0623058987491yz2 + 2.59807621135332

√
15y

(
x2 − z2

))
−
√
15∇Y 7

4 z
(
3.24037034920393x2 + 1.62018517460197x2 − 1.62018517460197z2

)
(33)

∂Y4

∂z
= −

√
15∇Y 0

4 (1.14564392373896x
3 − 3.43693177121688xz2 − 3.43693177121688xz2

+ 1.14564392373896x3) +
√
15∇Y 1

4 xy (3.24037034920393z + 6.48074069840786z)

−∇Y 2
4 (0.21650635094611

√
15x3 − 2.59807621135332

√
15xy2 − 10.0623058987491xy2

+ 0.649519052838329
√
15xz2 − 2.77555756156289× 10−17

√
15xz2 + 7.54672942406179xz2

+ 2.51557647468726x3)

−∇Y 3
4 xy

(
−0.918558653543692

√
15z + 10.6726871030683z + 1.83711730708738

√
15z

)
+∇Y 4

4

(
2.25x2z + 2.25x2z − 9.0y2z − 9.0y2z + 4.5z3

)
−∇Y 5

4 y(0.918558653543692
√
15x2 + 5.33634355153414x2 − 9.48683298050514y2

+ 0.918558653543692
√
15z2 + 16.0090306546024z2 − 0.459279326771846

√
15

(
x2 − z2

)
)

+∇Y 6
4 (−0.21650635094611

√
15x2z + 2.51557647468726x2z − 2.51557647468726x2z

+ 0.21650635094611
√
15x2z + 2.59807621135332

√
15y2z + 10.0623058987491y2z

− 5.03115294937453z3 − 0.433012701892219
√
15z3)

−
√
15∇Y 7

4 y
(
3.24037034920393x2 + 1.62018517460197x2 − 4.8605555238059z2

)
−
√
15∇Y 8

4

(
1.14564392373896x2z + 4.58257569495584x2z + 1.14564392373896x2z − 2.29128784747792z3

)
(34)
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