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ABSTRACT

A fundamental bottleneck in human-AI collaboration is the “intention expression
gap,” the difficulty for humans to effectively convey complex, high-dimensional
thoughts to AI. This challenge often traps users in inefficient trial-and-error loops
and is exacerbated by the diverse expertise levels of users. We reframe this
problem from passive instruction following to a Socratic collaboration paradigm,
proposing an agent that actively probes for information to resolve its uncertainty
about user intent. we name the proposed agent Nous, trained to acquire profi-
ciency in this inquiry policy. The core mechanism of Nous is a training framework
grounded in the first principles of information theory. Within this framework, we
define the information gain from dialogue as an intrinsic reward signal, which is
fundamentally equivalent to the reduction of Shannon entropy over a structured
task space. This reward design enables us to avoid reliance on costly human pref-
erence annotations or external reward models. To validate our framework, we de-
velop an automated simulation pipeline to generate a large-scale, preference-based
dataset for the challenging task of scientific diagram generation. Comprehensive
experiments, including ablations, subjective and objective evaluations, and tests
across user expertise levels, demonstrate the effectiveness of our proposed frame-
work. Nous achieves leading efficiency and output quality, while remaining ro-
bust to varying user expertise. Moreover, its design is domain-agnostic, and we
show evidence of generalization beyond diagram generation. Experimental re-
sults prove that our work offers a principled, scalable, and adaptive paradigm for
resolving uncertainty about user intent in complex human-AI collaboration.

1 INTRODUCTION

The transition of AI from an efficient tool to a true collaborative partner hinges on solving a
core challenge: achieving a shared understanding with the user (Liang & Banks, 2025). While
Large Language Models (LLMs) demonstrate remarkable fluency in text generation, their passive,
instruction-following nature falters when faced with the inherent incompleteness of human intent
expression (Shneiderman, 2022). This limitation is especially evident in creative and technical do-
mains (Amershi et al., 2019; Fan et al., 2023). In such settings, users may hold highly innovative
ideas yet struggle to articulate them with precision (Chang et al., 2025). When attempting to realize
these ideas with AI, they often fall into a frustrating “guessing game,” which in turn forces task goals
to emerge gradually and be refined through collaborative processes (Oihane et al., 2024). The gap
between a user’s high-dimensional mental model and their ability to convey it in a machine-readable
format has been described as the “intention gap,” (Vanessa et al., 2024) which forces collaboration
into inefficient trial-and-error loops (Buçinca et al., 2020). As a result, the entire burden of precise
articulation falls on the human, and this paradigm is fundamentally unsustainable for complex tasks.

Our research stems from a core insight: Why must humans always painstakingly teach the AI,
instead of the AI intelligently guiding the human? We advocate for a paradigm shift: envisioning AI
not as a passive follower, but as an agent actively bridging this gap (McGrath et al., 2024; Haase &
Pokutta, 2024). Inspired by the Socratic method, we treat it not merely as pedagogy but as a model
for collaborative discovery (Liu et al., 2024). A Socratic agent does not simply await commands; it
formulates strategic questions to systematically resolve its uncertainty about the user’s goal (Patil &
Patwardhan, 2020; Sahu, 2024). Each question-answer turn becomes a deliberate act of information
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seeking, designed to maximize convergence toward a shared, high-fidelity understanding (Elmqvist
et al., 2025; Yao et al., 2025; Khorsand & Pourahmadi, 2025; Thomas & Houssineau, 2024).

To this end, we introduce Nous, an agent designed to acquire proficiency in an optimal inquiry
policy. The central mechanism of Nous is a training framework grounded in the first principles of
information theory (Cover & Thomas, 2006; Wu et al., 2025; Khandelwal et al., 2025).Within this
framework, we define the information gain from dialogue as an intrinsic reward, formally equivalent
to the reduction of Shannon entropy over possible task specifications. By relying on this objective
and computationally tractable signal,Nous avoids dependence on costly human preference annota-
tions or external reward models (Spera & Agrawal, 2025; Li et al., 2023; Agarwal et al., 2022).

To validate this framework, we select scientific diagram generation as our testbed, a prototypical
instance of the intention gap. The task is both high-dimensional and logically structured, providing
objective criteria for evaluation while remaining sufficiently challenging (Basole & Major, 2024;
Han et al., 2023). Building on this, we construct an automated simulation pipeline to generate a
large-scale, preference-based dataset tailored to this setting (Shao et al., 2024). Finally, we con-
ducted comprehensive experiments and evaluations, which demonstrated the effectiveness of our
method. Moreover, the framework is domain-agnostic: we further show evidence of generaliza-
tion beyond diagram generation through additional experiments in co-creative contexts (Haase &
Pokutta, 2024; Singh et al., 2025). (1) Nous, an intelligent agent that instantiates the Socratic in-
teraction paradigm with structured belief modeling. (2) An information-theoretic reinforcement
learning framework, using dialogue-driven information gain as an intrinsic reward and eliminating
the need for human annotation or external reward models. (3) An automated large-scale simula-
tion pipeline, generating dialogue strategy learning data to support scalable training and evaluation.

2 RELATED WORK

Our work is situated at the intersection of three key areas in AI and human-computer interaction:
goal-oriented dialogue, active learning, and large language model alignment.

Goal-Oriented Dialogue Systems. Traditional task-oriented dialogue (TOD) systems, typified by
datasets like MultiWOZ (Budzianowski et al., 2018; Ramadan et al., 2018; Eric et al., 2019; Zang
et al., 2020), excel in explicit slot-filling tasks such as booking flights (Young et al., 2013; Wen et al.,
2017). However, these systems operate on a convergent retrieval” paradigm, assuming a fixed set
of slots to retrieve a pre-existing database entry. In contrast, creative design tasks involve divergent
construction,” where the goal is to create a novel specification from scratch, requiring dynamic at-
tribute combinations rather than static forms. While recent LLM-based approaches explore proactive
clarification in QA (Lee et al., 2023b; Darji & Lutellier, 2025) or future-planning (Xu et al., 2024),
most remain passive recipients of instructions. Our work moves beyond both traditional TOD and
passive LLMs: Nous navigates a combinatorially complex specification space to resolve ambiguity,
transforming the agent into an active inquirer for open-ended construction.

Active Learning and Optimal Experiment Design. The principle of reducing uncertainty by ask-
ing questions is rooted in active learning and optimal experiment design (Beluch et al., 2018; Lewis
& Gale, 1994). Prior dialogue-policy research has incorporated entropy reduction as a signal for
clarification (Padmakumar & Mooney, 2020), and recent studies formalize question quality directly
via expected information gain (Mazzaccara et al., 2024; Geishauser et al., 2021; Xing et al., 2024).
However, these methods typically target static datasets or constrained “20-questions” benchmarks.
Our contribution is to extend this principle to dynamic dialogue for creative design: instead of select-
ing a data point, Nous learns to generate natural language questions that probe a latent goal space.
Training this generative policy with entropy reduction as a real-time reward bridges classical theory
with modern LLM interaction (Piriyakulkij et al., 2024; Chen et al., 2025; Zhao et al., 2025).

LLM Alignment and Preference-Based Learning. Aligning LLMs with human intent is a central
challenge. Preference-based methods such as RLHF (Christiano et al., 2017; Ouyang & et al., 2022),
PPO-based optimization (Schulman et al., 2017), and more recent approaches like GRPO (Shao
et al., 2024), DPO (Rafailov et al., 2023), and RLAIF (Bai et al., 2022; Lee et al., 2023c) rely on
costly preference labels or heuristic feedback. Our method offers a scalable alternative: we define
an intrinsic reward from information gain, bypassing external reward models and the associated
annotation cost. By applying offline RL (Levine et al., 2020; Kostrikov et al., 2021) on automatically
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Figure 1: The multi-stage curation pipeline for the dataset and the details of model training.
We began with a raw dataset of approximately 1 million figures downloaded from scientific papers
in different fields on arXiv and PMC. This dataset was first filtered using the CLIP model to remove
data plots (such as bar charts and line graphs), resulting in 29,000 images. Next, we used the
Qwen-2.5-VL-72B model to retain true schematic diagrams, reducing the dataset to 8,000 images.
Finally, three PhD students conducted a manual review to ensure the relevance, clarity, and quality
of each figure, resulting in a final dataset of 1,100 images. From this curated dataset, 1,000 figures
were used to build the empirical prior and train simulations, while 100 figures were set aside for
testing. Detailed explanations regarding data distribution and open-source licenses are provided in
Appendix .

generated preferences, Nous avoids proxy misspecification while maintaining principled grounding
in task structure, offering a complementary path for alignment in structured co-creative tasks.

AI for Design and Creativity. A growing body of work envisions AI as a co-creative partner in
domains such as design and engineering (Tang et al., 2024; Singh et al., 2025). Most systems em-
phasize generation-providing suggestions or auto-completions. However, effective creation depends
on a well-defined goal. Our approach is unique in focusing on the “front-end” of co-creation: clar-
ifying the user’s initial, ambiguous intent through dialogue. This emphasis on intent understanding
complements existing generative systems and lays a stronger foundation for accurate, relevant, and
user-aligned downstream outputs.

3 METHODOLOGY

Our methodology is presented in three parts. First, we establish a formal information-theoretic
framework, deriving an intrinsic and tractable reward signal from first principles (Sec. 3.1). Next, we
detail the complete offline training pipeline, which includes an automated simulation for preference
data generation and the offline policy optimization algorithm. (Sec. 3.2). Finally, we introduce the
baseline models used for our comparative experiments (Sec. 3.3).

3.1 AN INFORMATION-THEORETIC FRAMEWORK FOR OPTIMAL INQUIRY

To learn an effective inquiry strategy, the agent requires a quantitative metric for guidance. Drawing
from classical information theory, we define a reward signal based on information gain, which mea-
sures the informational value of each question-answer turn. We validate our method on the scientific
chart generation task, where the dialogue is modeled as a process of reducing epistemic uncertainty
over a structured state space. The information gain from a user’s response is formally defined as the
Kullback-Leibler (KL) divergence between the posterior and prior belief states(the agent’s probabil-
ity distribution over user intentions). We prove this metric simplifies to the reduction in the system’s
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Shannon entropy. This provides an intrinsic reward signal, directly calculable from the agent’s belief
state, for optimizing the inquiry policy without requiring a separate, pre-trained reward model.

Formalizing the Diagram Specification Space. We begin by defining the object of our inquiry.
A complete scientific diagram specification, denoted by G, is conceptualized as a point in a high-
dimensional, discrete state space. A diagram specification is represented by a set of N attributes,
V = {V1, V2, . . . , VN}. Each attribute Vi takes a value vi from its finite, discrete domain Si. A com-
plete and valid diagram specification is an instantiation g = (v1, v2, . . . , vN ) where vi ∈ Si for all
i ∈ {1, . . . , N}. The attributes are designed to be comprehensive, covering aspects such as overall
layout (Vlayout), color palettes (Vcolor), the number and types of components (Vnum comp, V

(k)
comp type),

and interconnections (V (i,j)
conn ).

Quantifying and Decomposing Epistemic Uncertainty. At any turn t in the dialogue, the agent’s
knowledge about the user’s desired diagram is captured by a probabilistic belief state, Pt(G). For
computational tractability, we assume the attributes Vi are conditionally independent given the di-
alogue history Ht. While this is a simplifying assumption, we argue it is a tractable and effective
first-order approximation, as the greatest reduction in uncertainty, particularly in early dialogue,
comes from resolving major, orthogonal attributes (e.g., overall layout, number of components).

This allows the joint distribution to be factorized:

Pt(G) = P (V1, . . . , VN | Ht) =

N∏
i=1

P (Vi | Ht). (1)

The agent’s initial belief state, P0(G), is an empirical prior derived from a large-scale corpus D of
existing diagrams, where each prior probability is estimated via maximum likelihood:

P0(Vi = vj) =
CountD(Vi = vj)

|D|
. (2)

The total uncertainty of the system is the Shannon entropy of the belief state Pt(G). A critical
consequence of the independence assumption is that the total entropy decomposes into a sum of
marginal entropies:

H(Pt(G)) = −
∑
g∈G

Pt(g) log2 Pt(g) =

N∑
i=1

H(Pt(Vi)) , (3)

where H(Pt(Vi)) = −
∑

vj∈Si
Pt(Vi = vj) log2 Pt(Vi = vj). This decomposition is crucial, as it

allows us to track uncertainty on a per-attribute basis.

Belief State Update and Reward Function. The dialogue proceeds as a sequence of belief state
updates. An answer At is mapped by a semantic parser f to evidence Et, which imposes hard
constraints on a subset of attributes VEt

. In our simulation, f is implemented as a few-shot prompted
LLM, whose parsing accuracy is ensured by the Oracle’s templated responses, providing a reliable
signal for reward calculation. This updates the belief from a prior Pt to a posterior Pt+1 via Bayesian
conditioning. For any constrained attribute, the posterior becomes a deterministic Kronecker delta
function, Pt+1(Vi = vj) = δjk, while unconstrained attributes remain unchanged.

We define our reward signal rt as the reduction in Shannon entropy of the belief state:

rt ≡ IG(At) = H(Pt(G))−H(Pt+1(G)) . (4)

Intuitively, this quantity measures the informational value of the user’s answer. From an information-
theoretic perspective, the expected value of this entropy reduction equals the mutual information
between At and G, which can be written as an expectation over a KL divergence:

E[IG(At)] = I(At;G) = EAt

[
DKL

(
Pt+1(G) ∥Pt(G)

)]
. (5)

Thus maximizing information gain is identical to maximizing the reduction of uncertainty.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

By substituting the entropy decomposition from Eq. 3 into Eq. 4, we derive a tractable reward
function:

rt =

(
N∑
i=1

H(Pt(Vi))

)
−

(
N∑
i=1

H(Pt+1(Vi))

)
=

N∑
i=1

(H(Pt(Vi))−H(Pt+1(Vi))) . (6)

Under our hard-constraint update model, the posterior entropy H(Pt+1(Vi)) becomes zero for any
newly constrained attribute Vi ∈ VEt

, and remains unchanged for all other attributes. Therefore, the
sum in Eq. 6 simplifies to include only the terms for the resolved attributes:

rt =
∑

Vi∈VEt

H(Pt(Vi)) . (7)

This final equation states that the utility of an answer is the sum of the prior entropies of the at-
tributes it clarifies. This signal is intrinsic, computationally efficient, and provides a robust foun-
dation for optimizing the agent’s inquiry policy. It is worth noting that we employ an unweighted
sum of entropy reduction. We avoid manual weighting because Shannon entropy naturally embeds
an “implicit statistical weighting”: attributes with higher variance in the empirical prior yield larger
information gain, automatically guiding the agent to prioritize statistically significant uncertainties
without subjective heuristics.

3.2 OFFLINE POLICY OPTIMIZATION

With a defined reward signal, we can now train the agent’s inquiry policy. Our approach is a fully of-
fline process, which enhances stability and computational efficiency. It consists of two main stages:
first, we generate a large-scale, static dataset of preference-ranked inquiries through simulation;
second, we use this dataset to train the policy via an offline reinforcement learning algorithm.

Automated Preference Data Generation Our training process relies on a large-scale preference
dataset, Dpref, which we generate through an automated simulation framework. This simulation
requires two key components: a “empirical prior” to provide prior probabilities (as in Eq. 2) and
a set of ground-truth tasks. We construct both from a high-quality corpus of scientific diagrams,
curated through a multi-stage filtering pipeline detailed in Figure 1.

Within the simulation, an “Oracle” agent, holding a ground-truth specification from our curated set,
provides answers to inquiries proposed by multiple candidate models. The information gain for
each inquiry is calculated via Eq. 7, yielding a training sample {p, {r1, . . . , rk}, {R1, . . . , Rk}},
consisting of a prompt, a group of candidate responses, and their corresponding reward scores.

Offline Adaptation of Group Relative Policy Optimization. To optimize our policy πθ on
the static dataset Dpref, we adapt the objective function from Group Relative Policy Optimization
(GRPO) for an offline setting. While GRPO was originally proposed as an online algorithm that
iteratively samples from the policy, we find its core objective is well-suited for offline training in our
context. The rationale for this offline adaptation is twofold. First, the task of “asking a good ques-
tion” is a capability already inherent in pretrained LLMs. The distribution of our generated candidate
responses is therefore not expected to be drastically different from what the policy would generate,
making on-policy sampling less critical. Second, using a static dataset eliminates the computational
overhead of online generation, leading to a much more efficient and stable training pipeline.

For each group of responses, we first normalize the rewards into advantage estimates A(ri, p) via
z-scoring within the group. This stabilizes the learning process across different prompts. Our offline
algorithm then maximizes the following PPO-style clipped surrogate objective:

LPolicy(θ) = E(p,ri,Ai)∼Dpref [min (ρi(θ)Ai, clip(ρi(θ), 1− ϵ, 1 + ϵ)Ai)] (8)

where the probability ratio ρi(θ) = πθ(ri|p)/πref (ri|p)measures the policy change against a frozen
reference policy πref . The clipping function clip(·) constrains this ratio to a trusted region, prevent-
ing overly aggressive and destabilizing policy updates.

To further regularize the policy and ensure it does not deviate excessively from the pre-trained base
model, we incorporate a KL-divergence penalty, leading to the final loss function:

Ltotal(θ) = LPolicy(θ)− βDKL(πθ(·|p) ||πref (·|p)) (9)
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where β is a hyperparameter controlling the strength of the KL penalty. The log-probabilities
log π(r|p) are computed autoregressively. To ensure the policy is only trained on its generation,
we apply a loss mask so that the gradients are backpropagated only through the tokens of the re-
sponse r, not the prompt p.

3.3 CONTRASTING METHODS FOR ABLATION STUDY

To rigorously evaluate the effectiveness of the offline GRPO (OfG) paradigm, we will use several
other key baselines to train Nous for comparison in the experiments.

Supervised Fine-Tuning (SFT): A baseline model fine-tuned only on the highest-reward (prompt,
response) pairs from our dataset. This helps isolate the contribution of preference-based optimiza-
tion over simple imitation learning. Direct Preference Optimization (DPO): To compare against a
prominent pairwise preference learning method, we implement a DPO baseline. DPO optimizes the
policy to directly increase the log-probability ratio of preferred to dispreferred responses, using only
the best and worst responses from each group. Online GRPO (OnG): To validate the efficiency
and stability of the offline approach, we also train a model using an online GRPO pipeline. This
involves an initial SFT warm-up, followed by an iterative process of sampling responses from the
policy, calculating their rewards, and updating the policy. All training methods ultimately include
an SFT to train their ability for final integrated description.

4 EXPERIMENTS

We conduct a comprehensive set of experiments to evaluate our proposed framework. Our evaluation
is designed to answer four key research questions: (1) Does our information-theoretic approach
lead to more efficient interactions compared to established baselines? (2) Does higher interaction
efficiency translate to superior quality in the final generated artifact? (3) Is the information gain-
based reward signal the critical component of our framework’s success? (4) How robust is the
learned inquiry policy to variations in user expertise?

4.1 EXPERIMENTAL SETUP

Models Under Evaluation. Our primary model, Nous, is built upon Qwen3-8B and trained with
full-parameter fine-tuning. For evaluation, we consider two groups of baselines. Trained Baselines:
three Nous variants trained with alternative methods (SFT, DPO, OnG; see Section 3.3). Prompt-
Based Baselines: a proprietary model (GPT-5: GPT-few ,GPT-zero) and a large open-source model
(Qwen3-235B: Qwen-few, Qwen-zero), each tested under zero-shot and few-shot prompting. All
prompts are instantiated using the Socratic prompting paradigm (Chang, 2023), which encourages
the model to ask clarifying questions before producing a figure. We include these as the most
relevant horizontal comparison, since no other mature baselines exist for scientific figure generation.
Full prompt templates and hyperparameters are given in the Appendix.

Evaluation Task and Data. We take the task of scientific diagram generation in human-AI col-
laboration as our test scenario. The test data comes from a hold-out set of 100 complex real-world
diagrams (see Figure1, for detailed sources see Appendix E). For each diagram, we simulate an in-
teraction where the agent must elicit the complete specification from an Oracle. The Oracle, which
holds the ground-truth specification for a target diagram and is configured identically to the one used
for generating our training data. Each dialogue begins with a generic initial request, “I want to create
a scientific diagram,” and concludes when the agent indicates it has gathered sufficient information
by outputting a final, consolidated description of the diagram. This automated simulation ensures a
fair, controlled, and reproducible comparison across all models.

Evaluation Metrics. We employ a multifaceted evaluation strategy to assess both the process
and the outcome: Interaction Efficiency: (1)We measure this by the average number of turns an
agent takes to complete the dialogue, (2)and the cumulative information gain achieved throughout
the interaction. Higher efficiency is indicated by fewer turns and a steeper information gain curve.
Output Quality: We assess the quality of the final specification from two complementary angles:
(1) subjective preference scores, where the final generated diagrams are evaluated by human and AI

6
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Table 1: Experimental results of interaction efficiency, training resource consumption, and dynamic
information gain.

Turns Total IG Resource Information Gain Dynamics at Turn (↑)

Model (↓) (↑) hours(↓) Turn 1 Turn 5 Turn 10 Turn 15 Turn 20

Nous (OfG) 20.3 120.5 28.5 10.4 66.6 99.1 113.7 120.5
Nous (OnG) 22.0 115.8 93 7.8 59.4 88.4 107.2 114.3
Nous (DPO) 21.5 111.3 15 13.9 65.8 90.7 101.5 110.9
Nous (SFT) 17.1 94.3 13 12.6 78.1 90.5 94 94.3

GPT-few 22.6 93.5 N/A 9.1 60.4 77.4 88.1 92.1
GPT-zero 26.5 84.8 N/A 11.3 43.2 59.7 72.7 78.3
Qwen-few 19.5 90.5 N/A 10.6 61.1 76.4 85.9 90.5
Qwen-zero 25.3 81.5 N/A 6.6 48.1 64.4 77.2 80.3

Figure 2: Experimental results of Interaction Efficiency. (a) The average number of dialogue turns
for each model to complete information collection; (b) The average information gain obtained during
the dialogue for each model; (c) The dynamic change of information gain during the dialogue

judges through pairwise comparisons, and (2) a suite of objective, specification-based metrics that
quantitatively score the generated diagrams against the ground truth.

4.2 MAIN RESULTS

4.2.1 INTERACTION EFFICIENCY

Dialogue Turns and Resource Cost: Table 1 details the average number of dialogue turns and the
associated training costs. First, all trained models complete the task in fewer turns than their non-
trained counterparts. Then the performance of the SFT-trained agent shows the highest dialogue
efficiency and the lowest training resources, but this brevity corresponds to the lowest total infor-
mation gain among all trained models, indicating a premature and incomplete inquiry process. In
contrast, the agent trained with OfG maintains a competitive turn count while requiring resources
only marginally higher than DPO and significantly lower than OnG. This result highlights the scal-
ability and cost-effectiveness of our offline training framework.

Information Gain (IG) Dynamics: Figure 2 plots the cumulative information gain against the num-
ber of dialogue turns, offering a more granular view of the inquiry strategies. The agents trained via
OnG and OfG exhibit the most sustained information gain curves, demonstrating a robust ability to
consistently pose high-value questions throughout the interaction. The SFT-trained agent, however,
reveals a critical weakness: despite a strong start, its performance mirrors that of the non-trained
models after the initial turns. They all fall into an “information bottleneck,” where the ability to
ask meaningful, probing questions sharply diminishes, causing their gain curves to flatten. This
empirically validates the “frustrating guessing game” that motivated our work and underscores the
necessity of a structured, goal-oriented training paradigm to overcome this fundamental limitation.

7
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Table 2: Model win rate results under different tie-handling protocols: (1) “Win”: ties not counted;
(2) “W/T(0.5)”: ties contribute 0.5; (3) “W/T”: ties count as 1. All win-rate proportions are based
on 400 pairwise judgments per model pair (100 prompts × 2 judges × 2 renderers); the standard
error of a proportion is at most 0.025, so all 95% confidence intervals are within ±0.05.

4o-image-1 nano-banana

Model Human Judge(↑) GPT-5 Judge(↑) Human Judge(↑) GPT-5 Judge(↑)

Win W/T(0.5) W/T Win W/T(0.5) W/T Win W/T(0.5) W/T Win W/T(0.5) W/T

Nous (OfG) 0.68 0.71 0.73 0.69 0.72 0.76 0.61 0.66 0.72 0.55 0.61 0.66
Nous (OnG) 0.69 0.72 0.75 0.63 0.67 0.71 0.60 0.65 0.70 0.54 0.61 0.67
Nous (DPO) 0.59 0.61 0.64 0.56 0.61 0.67 0.57 0.64 0.71 0.54 0.59 0.65
Nous (SFT) 0.49 0.51 0.53 0.42 0.48 0.55 0.38 0.48 0.57 0.37 0.48 0.59

GPT-few 0.45 0.47 0.50 0.45 0.52 0.58 0.34 0.44 0.54 0.39 0.47 0.56
GPT-zero 0.29 0.32 0.35 0.27 0.32 0.37 0.29 0.37 0.46 0.36 0.47 0.57
Qwen-few 0.36 0.40 0.43 0.35 0.42 0.48 0.35 0.42 0.49 0.32 0.41 0.49
Qwen-zero 0.23 0.27 0.30 0.24 0.28 0.32 0.26 0.33 0.40 0.28 0.36 0.44

Figure 3: Model scores under different tie-handling protocols. (a) Results of human evaluation; (b)
Results of GPT-5 model evaluation.

4.2.2 OUTPUT QUALITY

Subjective comparison We used two text-to-image backbone models (4o-image-1 and nano-
banana) to generate two images based on the final natural language specifications of each model.
These images were evaluated twice for their drawing quality through pairwise comparisons by hu-
man reviewers and GPT-5 with reference to the test set, resulting in a total of 11,200 comparisons.
Table 2 reports the results under the evaluation protocols of three tie-handling methods, the results
from the two judging protocols were highly consistent, lending reliability to the evaluation setup.
Among the trained models, Nous trained with OfG and OnG achieved the highest win rates, outper-
forming DPO and SFT. The non-trained baselines lagged behind, with GPT-based models generally
stronger than Qwen-based ones. Detailed pairwise results are visualized in Figure 3, and case studies
are provided in the Appendix J.

Objective metrics: To complement these subjective judgments with reproducible quantitative
scores, we employed the VisPainter framework,a tool that converts text specifications into editable
vector graphics, with examples and descriptions provided in the Appendix E and J. This evaluates
diagram specifications across six dimensions: Precision, Recall, Design Error Rate, Blank Ratio,
Readability, and Alignment. Weighted score is calculated by applying weights of [0.2, 0.2, 0.2,
0.05, 0.25, 0.1] to these six dimensions, shown in Table 3 and Figure 4(a), highlight clear differ-
ences: OnG and OfG perform better in terms of drawing precision, recall, and readability. This is
attributed to more detailed and information-rich image descriptions. The same applies to the blank
ratio; thanks to more abundant component information, more efficient space utilization is achieved.
Unexpected results were observed in terms of design error rate and alignment. This is because the
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Table 3: Results of the final generated charts using the VisPainter framework. Higher scores in each
item are better, and the design error rate has also been inverted to follow the same principle.

Model Precision Recall Design Blank Readability Alignment Score

Nous (OfG) 0.83 0.84 0.51 0.83 0.79 0.88 0.76
Nous (OnG) 0.84 0.86 0.49 0.81 0.80 0.90 0.77
Nous (DPO) 0.80 0.81 0.52 0.78 0.75 0.87 0.74
Nous (SFT) 0.76 0.79 0.53 0.74 0.71 0.91 0.72

GPT-few 0.63 0.74 0.51 0.69 0.59 0.93 0.65
GPT-zero 0.42 0.77 0.55 0.61 0.41 0.93 0.57
Qwen-few 0.67 0.73 0.53 0.66 0.64 0.91 0.67
Qwen-zero 0.40 0.78 0.54 0.67 0.38 0.93 0.57

Figure 4: Visualization of experimental results. (a) Evaluation results of each model; (b) Results of
ablation experiment 1; (c) Results of ablation experiment 2.

number of output elements is proportional to the chance of making mistakes during the drawing
process, so SFT and prompt-based baseline models show higher scores in error rate and alignment.
These patterns further confirm that models trained with principled inquiry signals have advantages
over untrained models.

4.3 ABLATION STUDIES

Reward Function: To validate the critical role of our proposed information-theoretic reward sig-
nal, we conducted an ablation study. We replaced it with a heuristic-based “slot-counting” reward,
which simply counts the number of specified attributes in each turn and treats all attributes equally.
Using this new reward, we trained a model variant named Nous-Counting with the same OfG method
on a dataset of identical scale, generated using the process from Section 3.2.

We evaluated this model under the identical experimental setup, with the results presented in Table
4 and 4(b). Nous-Counting completes dialogues in fewer turns, but it achieves substantially lower
information gain and final output quality. This is because the slot-counting reward encourages a
greedy policy that maximizes the quantity of resolved attributes, not their informational value. The
model learns to ask broad, low-impact questions rather than strategically targeting high-entropy
attributes first. This study confirms that our information-theoretic reward is essential for guiding the
agent to learn an inquiry strategy that is not just superficially fast, but deeply effective.

User Expertise: Real-world collaboration involves users with diverse levels of expertise. We
evaluated the robustness of Nous by testing it against three user personas: an Expert Oracle that uses
precise technical terms (e.g., directed acyclic graph”), a Novice Oracle that uses vague, descriptive
language (e.g., show it like a flowchart... with no loops”), and a group of ten participants representing
real-world Human Users. To rigorously assess practical utility, we conducted human evaluations
under two distinct settings: (1) Zero-start, where users describe their intents from scratch, and (2)
Draft-start, where users provide an initial draft prompt containing partial information.
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As shown in Table 4, Nous demonstrates strong adaptability across all user types. In the Zero-start
setting, human users required fewer turns (17.3) than the Simulator (20.3) due to the higher infor-
mation density of natural language, where users tend to disclose multiple attributes per turn. Most
notably, the Draft-start setting demonstrated a significant efficiency leap, reducing the interaction
to just 7.6 turns while maintaining high generation quality (Score 0.74). This highlights a central
advantage of our Socratic framework: rather than relying on flawless user input, it strategically
poses follow-up questions to progressively converge on the user’s intent, proving effectively robust
whether starting from vague descriptions or partial drafts.

Table 4: Quantitative evaluation of reward mechanisms and user adaptability. The table reports
interaction turns, total Information Gain (IG), and win rates against human/GPT-5 judges. The upper
section validates the superiority of our Information Entropy reward over a Counting baseline. The
lower section demonstrates performance stability across different user levels, including simulated
oracles and real humans starting from scratch (Zero) or partial drafts (Draft).

Turns Total IG Score Human Judge(↑) GPT-5 Judge(↑)

Method (↓) (↑) (↑) Win W/T(0.5) W/T Win W/T(0.5) W/T

Nous-Entropy 20.3 120.53 0.76 0.68 0.70 0.72 0.60 0.63 0.66
Nous-Counting 13.6 97.11 0.63 0.28 0.30 0.32 0.34 0.37 0.40

Expert Oracle 20.3 120.53 0.76 0.41 0.50 0.59 0.33 0.49 0.65
Novice Oracle 24.1 122.47 0.74 0.42 0.49 0.57 0.38 0.51 0.64
Human User Zero 17.3 126.44 0.75 0.40 0.51 0.61 0.38 0.49 0.61
Human User Draft 7.6 42.31 0.74 0.42 0.50 0.59 0.37 0.51 0.64

5 CONCLUSION

This paper addresses a bottleneck in human-AI collaboration: “intention expression gap.” We shift
the paradigm from passive instruction-following to active, Socratic collaboration, introducing Nous,
an agent that learns to resolve uncertainty about user intent through thoughtful inquiry. Our contribu-
tion is a training framework grounded in information theory, defining information gain as an intrin-
sic reward to eliminate costly human annotation and external reward models. We further show that
Offline GRPO provides an efficient and stable path for training such agents. Experiments demon-
strate that Nous achieves leading efficiency and output quality, while ablations confirm that the
information-theoretic reward, rather than simple heuristics, is the decisive factor, and the agent re-
mains robust across diverse levels of user expertise. In sum, this work presents a principled, scalable,
and adaptive paradigm for resolving intent ambiguity, shifting the communication burden away from
humans and moving us closer to AI partners capable of genuine collaborative thought.
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Reproducibility Statement The models, prompts, data generation code, and model training code
we used are all open-source. We have provided the code required to reproduce our research results in
the supplementary materials. After the blind review period, we will release the complete code repos-
itory. To ensure the reproducibility of this paper, we have made efforts in the following aspects: (1)
The code and data will be open-sourced once the paper is accepted. (2) We have conducted extensive
experiments under different settings to verify the general applicability of the proposed framework.
(3) We have provided a framework and evaluation methods based on open-source models, signifi-
cantly improving reproducibility.
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6 APPENDIX

A STATEMENT ON LLMS USAGE

The authors used large language models (LLMs) during the writing process solely for language
refinement and editing. It should be explicitly stated that LLMs were not employed in any core
aspects of the research, including the formulation of research ideas, the design of methodologies,
the execution of experiments, or the development of conclusions. All scholarly contributions were
made independently by the authors.

B EXTENDED DISCUSSION OF RELATED WORK

Clarification and Inquiry as Strategy. A growing body of work recognizes the strategic value
of asking clarifying questions. In open-domain QA, for example, clarification has been shown to
improve accuracy by resolving ambiguity before answering (Lee et al., 2023b). Other approaches
model the decision of whether and when to ask a question based on the expected utility of future di-
alogue turns, effectively learning an optimal timing policy (Xu et al., 2024). In specialized domains
like code generation, clarification also improves correctness, highlighting its broad value (Darji &
Lutellier, 2025). While these methods validate the importance of proactive inquiry, they often op-
timize for single-answer correctness using heuristic signals or rely on downstream annotations to
estimate future value. Nous shifts the focus from when to ask to what to ask. Our framework aims
for convergence toward a complete, high-dimensional specification, where the reward is an imme-
diate, intrinsic signal derived from entropy reduction over structured attributes, providing a stable,
cumulative signal for optimizing the content of each inquiry.

Information Gain as a Measure of Question Quality. Our work builds on the principle of using
information theory to quantify question value. In task-oriented dialogue, early frameworks used
reward estimation to guide policy learning, though often as a proxy for external goals like booking
success (Takanobu et al., 2019; Geishauser et al., 2021). More directly, work in visual dialogue
has used information gain to explicitly model the value of “confirmation questions” (e.g., yes/no
questions), demonstrating that such inquiries efficiently reduce the candidate set and improve suc-
cess rates in guessing games like GuessWhat?! (Hu et al., 2024). Similarly, recent research estab-
lishes the “20 questions” game as a benchmark for active information seeking in LLMs, using ex-
pected information gain to rank and select the most discriminative question from a set of candidates
generated via Chain-of-Thought prompting (Mazzaccara et al., 2024; Sahu, 2024). These studies
collectively affirm that an entropy-based objective is a powerful tool for guiding efficient inquiry.
However, directly applying existing information-theoretic methods to open-ended construction tasks
faces significant challenges. For instance, UoT (Uncertainty of Thoughts) (Hu et al., 2024) relies
on simulation-based planning, which becomes computationally intractable in our high-dimensional
state space (> 35, 000 combinations) due to the curse of dimensionality. Similarly, prompting-based
clarification methods like CQ-Gen (Lee et al., 2023a) often focus on high-level semantic disam-
biguation rather than structural constraint resolution. In contrast, Nous integrates entropy reduction
as a real-time intrinsic reward for a generative policy, avoiding the need for expensive full enumer-
ation while maintaining precision in structural alignment. Nous integrates and advances these ideas
into a scalable learning paradigm. Instead of using information gain as a post-hoc selection heuris-
tic (Xiao et al., 2025) or applying it to a constrained set of question types, we use it as a real-time,
intrinsic reward to train a generative policy. This enables Nous to learn to generate open-ended, nat-
ural language questions, which offers a significant advantage in high-dimensional, structured design
spaces. In this way, we bridge the gap between the theoretical appeal of information gain and the
practical challenge of training a proactive conversational agent for complex, creative tasks.

Socratic Prompting versus Learnable Strategy. Socratic prompting, exemplified by Prompting
Large Language Models with the Socratic Method (Chang, 2023), encourages models to ask ques-
tions before answering through templates. SocraticLM: Exploring Socratic Personalized Teach-
ing (Liu et al., 2024) extends this to personalized instruction, while Hybrid Evaluation of Socratic
Dialogue for Teaching (Ilkou et al., 2025) evaluates its educational benefits and limits. While these
approaches highlight the pedagogical value of Socratic interaction, they remain prompt-based or
domain-specific. Nous extends the paradigm into a trainable policy: information gain defines the
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objective, and offline preference data enables optimization. This transforms “asking questions” from
prompt-driven behavior into a generalizable capability robust across user types.

Comparison with Traditional Slot-Filling Paradigms. While inspired by traditional Task-
Oriented Dialogue (TOD), Nous addresses a fundamentally different problem scope. TOD systems
typically perform extraction and retrieval: the user’s intent is assumed to map to a specific entry
in a database (e.g., a restaurant), and the system’s goal is to fill static slots to filter this database.
Nous, conversely, performs clarification and construction: the target (a scientific diagram) does not
yet exist. The ”slots” in our context are dynamic and interdependent (e.g., graph type dictates avail-
able attributes), and the goal is to align with a vague mental image rather than a database record.
This distinction necessitates our shift from supervised slot-filling to reinforcement learning based
on intrinsic information gain.

Summary. Prior work can be grouped into two broad directions: Socratic prompting methods that
encourage proactive questioning through templates or pedagogy, and a method to achieve accurate
question answering by quantifying the value of questions through entropy or mutual information.
Nous advances both threads by combining structured belief states, closed-form entropy-based re-
wards, and offline policy optimization, thereby making clarification a scalable, principled, and gen-
eralizable strategy rather than a heuristic or template.

Table 5: Supplementary horizontal comparison experiments. As baseline models (UoT, CQ-Gen)
cannot generate the finalized structural prompt for image generation, we compare only the interac-
tion efficiency (Dialogue Turns) and the total Information Gain (Total IG). Nous (OfG) denotes our
proposed method.

Prompt Type Method Turns(↓) Total IG(↑)

Nous(OfG) 17.3 126.44
Promp Zero UoT 33.6 38.38

CQ-Gen 7.1 9.72

Nous(OfG) 7.6 42.31
Prompt Draft UoT 37.6 12.30

CQ-Gen 9.7 14.61

C SUPPLEMENTARY TO ABLATION EXPERIMENTS

To investigate the impact of training data quality on the final policy, we adjusted the data generation
process. In addition to the Template Oracle, we introduced two variants: a Vague Oracle (providing
incomplete information) and a Noisy Oracle (interjecting irrelevant information in its responses).
Using these three data sources, we trained three respective models: Nous-Template, Nous-Vague,
and Nous-Noisy. Distinct from the discussion on user expertise in Section 4.3, this section evaluates
our framework’s learning ability under different training data conditions.

The experimental results, shown in Table 6, reveal the following: Adaptability to Vagueness. Nous-
Vague’s performance in standard tests was comparable to the baseline model. This demonstrates the
framework’s effectiveness: although its training data (19,123 samples) was longer than the baseline
data (11,851 samples) due to more clarification turns, leading to increased training time, the model
still learned the core strategy of identifying high information-gain questions from these seemingly
“inefficient” dialogues. Filtering of Noise. Nous-Noisy also performed nearly identically to the
baseline model. This reveals a key property of our information-theoretic reward: it has a natural
“immunity” to irrelevant information. Since noise cannot reduce the entropy of any attribute, its in-
formation gain reward is zero. Consequently, the training process automatically filters out the impact
of noise, allowing the model to focus on learning genuinely effective question-answer patterns.

This study demonstrates our framework’s high robustness to training data quality. Crucially, it also
validates the robustness of our semantic parser, which successfully maps varied and imperfect re-
sponses back to the same underlying attributes, a key requirement for real-world application.
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Table 6: Supplementary ablation study experimental results. Considering the significant time costs
associated with data construction, model training, and drawing using VisPainter, the evaluation re-
sults of VisPainter are omitted in this experiment. Conduct model image generation evaluation
experiments using nano-banana.

Turns Total IG Human Judge(↑) GPT-5 Judge(↑)

Method (↓) (↑) Win W/T(0.5) W/T Win W/T(0.5) W/T

Nous-Template 20.3 120.5 0.29 0.53 0.76 0.34 0.52 0.69
Nous-Vague 22.1 117.1 0.30 0.50 0.69 0.29 0.50 0.70
Nous-Noisy 19.7 115.8 0.26 0.48 0.70 0.33 0.49 0.65

D GENERALIZATION VALIDATION

Experimental Setting. To test whether our framework generalizes beyond scientific diagram gen-
eration, we evaluate it in collaborative novel writing. This domain differs substantially from diagram
creation in both task structure and interaction dynamics, yet retains properties that make systematic
study feasible. Novel writing is open-ended and creative, but it is also composed of recurring ele-
ments such as characters, settings, and events. These elements can be represented as structured state
vectors, enabling the construction of a empirical prior and the computation of per-turn information
gain. At the same time, evaluation is relatively tractable: the quality of co-created narratives can
be assessed through outline coverage and comparative judgments of readability and fidelity. These
characteristics make collaborative novel writing another ideal testbed for examining the generality
of our Socratic inquiry framework.

Data Preparation and Training. We collect novels from publicly available corpora. Since long-
form narratives are often lengthy and would substantially increase the workload, we simplify the
data by selecting representative chapters as test material, which are further rewritten through AI-
assisted editing to avoid copyright concerns. In total, we obtain 120 processed samples, with 100
used for training and 20 for testing. From each sample, we extract structured elements such as
characters, settings, conflicts, and resolutions to form state vectors and construct a empirical prior as
the prior. The data construction process follows the main text: the ground truth outline is provided
to an Oracle, which answers model queries during simulation. Each question–answer pair is scored
by information gain to create a preference dataset. Nous (OfG) is trained with offline GRPO, Nous
(SFT) with supervised fine-tuning, and GPT baselines (zero-shot and few-shot: GPT-zero, GPT-
fews) are included for evaluation.

Evaluation Metrics. For evaluation, we adopt two dimensions consistent with the main paper:
interaction efficiency and output quality. Interaction efficiency is measured by dialogue turns and
total information gain, reflecting whether a model can ask high quality questions within a limited
number of turns. Output quality is assessed through outline coverage and subjective quality evalu-
ation. Specifically, we compare the generated summaries of novel passages using both human and
GPT judges in pairwise evaluations. These metrics provide a balanced view of how effectively the
models gather information and how well they translate it into coherent creative output.

Results and Discussion. Novel writing represents a common and relatively structured domain,
where LLMs already possess strong intrinsic capabilities. As shown in Table 7, this leads to notable
efficiency for untrained models, which complete dialogues in fewer turns. However, Nous (OfG)
achieves about 15% higher cumulative information gain compared to untrained baselines, confirm-
ing the benefit of entropy-based training. In terms of outline coverage, both OfG and SFT perform
strongly, while GPT-few and GPT-zero show little distinction. For subjective evaluations by humans
and GPT-5 judges, trained models consistently outperform baselines, though the margin is smaller
than in our main domain. This may be due to the limited dataset size or the strong prior ability of
LLMs in storytelling. Overall, the results validate that our framework retains effectiveness in a dis-
tinct creative domain, reinforcing its generalization capability and highlighting directions for future
work in broader applications.
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Discussion: Applicability Boundaries and Marginal Utility. While the experiments confirm the
mechanism’s universality, we observe a difference in the magnitude of improvement between the
scientific diagram task (main paper) and the novel writing task. We attribute this difference pri-
marily to the High Baseline Effect. Modern LLMs have internalized massive amounts of narrative
structures during pre-training, providing them with a strong prior for storytelling. Even without ac-
tive inquiry, baselines like GPT-4 can generate coherent narratives, leading to diminishing marginal
returns for additional clarification. In contrast, scientific diagramming is an atypical generation
task requiring precise spatial logic and strict constraints-areas where LLM priors are weak. Con-
sequently, Nous delivers a qualitative leap in the diagram domain, whereas in the novel domain, it
provides incremental optimization.

Based on these findings, we further define the Applicability Boundaries of our framework. We
posit that the optimal operating zone for Nous is characterized by two key features: first, High
Structural Constraints, where tasks possess objective logic (e.g., topological structures vs. pure
brainstorming) that allows for accurate entropy calculation and efficient inquiry; and second, a Sig-
nificant Intention Gap, where the user holds a specific, complex goal but struggles to articulate it.
If a task allows for arbitrary open-ended generation where the user’s intent itself is divergent, the
value of eliminating uncertainty naturally decreases.

Table 7: Novel writing generalization experiment results. Dialogue efficiency and output quality are
reported. All win-rate proportions are based on 80 pairwise judgments per model pair (20 prompts
× 2 judges × 2 renderers).

Turns Total IG Coverage Human Judge(↑) GPT-5 Judge(↑)

Method (↓) (↑) (↑) Win W/T(0.5) W/T Win W/T(0.5) W/T

Nous (OfG) 14.2 65.4 0.77 0.51 0.54 0.57 0.51 0.56 0.61
Nous (SFT) 11.1 60.7 0.73 0.49 0.51 0.53 0.44 0.51 0.57
GPT-few 10.4 57.8 0.68 0.43 0.46 0.50 0.40 0.48 0.56
GPT-zero 13.7 55.2 0.67 0.46 0.49 0.51 0.37 0.45 0.53

E DETAILED INTRODUCTION TO THE VISPAINTER FRAMEWORK AND
IN-DEPTH ANALYSIS OF EXPERIMENTAL RESULTS

We incorporate the VisPainter framework to establish a quantitative evaluation pipeline, comple-
menting the evaluations presented in Section 4.2.2. While subjective assessments by humans or
AI focus on perceptual alignment, they lack granular quantification. VisPainter addresses this by
providing an end-to-end process—from generation to execution—where output quality can be mea-
sured against specific, quantifiable indicators provided by VisBench. This integration serves as a
critical supplement to our experiments, providing objective metrics to corroborate the effectiveness
of our proposed method.

Introduction to the VisPainter Framework We adopt VisPainter as a baseline because it ad-
dresses a key limitation of diffusion-based text-to-image models: instead of producing rasterized
bitmaps, it generates fully editable vector diagrams. This property is crucial for scientific illustra-
tion, where accuracy, semantic clarity, and iterative refinement are essential.

VisPainter is a multi-agent framework built on the Model Context Protocol (MCP), organized into
three collaborative roles. The Manager parses intent and coordinates tasks; the Designer drafts and
refines layouts; and the Toolbox provides over thirty MCP-wrapped atomic drawing operations. In
our experimental setup, GPT-4o serves as the Manager and Gemini-1.5-Pro as the Designer, while
the Toolbox handles structured execution. These roles collaborate to translate natural language
instructions into structured, editable diagrams through iterative refinement.

Furthermore, the evaluation module within VisPainter is VisBench, a benchmark designed for sci-
entific schematics. It provides seven evaluation metrics across four dimensions: accuracy, recall,
design error rate, blank space rate, readability, alignment, and design steps. In our evaluation, we
focus strictly on output quality, excluding the ”design steps” metric. The VisBench dataset contains
360 entries, split evenly between T2I (Text-to-Image) and TI2I (Text-Image-to-Image) scenarios.
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Our 100 test sets are selected from the T2I subset. This integration transforms VisPainter from
a generative system into a rigorous research platform, ensuring reproducible and fair benchmark-
ing. To the best of our knowledge, VisPainter was developed concurrently with our work, and its
open-source release is forthcoming.

In-depth Analysis of Metric Validity In the results of Experiment 4.2.2, we observe a divergence
in metric trends: while accuracy and recall improve significantly with our method, scores for design
error rate and alignment show a slight decline. This phenomenon can be attributed to the intrinsic
trade-off between information richness and execution complexity. Metrics such as Recall and Accu-
racy are positively correlated with information richness; as Nous captures more detailed constraints,
the prompt becomes denser, naturally driving these scores higher. Conversely, metrics like Align-
ment and Design Error Rate are negatively correlated with task complexity. Since the capability of
the backend designer (i.e., the plotting model) is fixed, increasing the number of components and
structural constraints exponentially raises the execution difficulty. Untrained models often output
simplistic diagrams with fewer elements, leaving little room for execution errors, which paradoxi-
cally results in higher ”stability” scores. Therefore, the slight drop in these specific metrics reflects
the increased challenge of rendering high-fidelity diagrams rather than a failure of the inquiry agent.
Ultimately, the significant gains in semantic accuracy outweigh these minor execution artifacts.

F LIMITATIONS AND FUTURE WORK

Limitations The Attribute Independence Assumption: For computational tractability, we as-
sume conditional independence between attributes. Although this is a reasonable and effective first-
order approximation, many real-world tasks involve complex dependencies; for instance, a specific
layout choice might constrain the types of available components. We acknowledge that ignoring
these correlations may lead to an overestimation of entropy, causing the agent to adopt a more con-
servative strategy (e.g., asking redundant confirmatory questions). However, this reduction to linear
complexity is a necessary trade-off for real-time inference, avoiding the exponential overhead of
modeling full coupling. Furthermore, our hard-constraint update mechanism ensures robustness by
forcing the posterior probability to collapse upon explicit user feedback, thereby restricting the cost
of this assumption to minor efficiency losses rather than systemic intention misalignment. Our cur-
rent model does not explicitly model these interactions, leaving this as a promising direction for
future work.

Future Work The framework presented here has the potential to generalize to other structured
domains, such as UI design, data visualization, or game creation. Beyond this broad applicability,
two research directions are especially promising.

Learning the Task Space: Future agents could move beyond a fixed attribute set by inferring
relevant attributes and their structure directly from interaction or large dialogue corpora. This would
allow the framework to adapt dynamically to new tasks without manual specification.

Toward Mixed-Initiative Dialogue: Our current model is agent-led. A natural extension is to
support mixed-initiative collaboration, where users proactively contribute information and the agent
must decide whether to integrate it or pivot its strategy. This would yield more natural and adaptive
interaction.

Together, these directions point toward making inquiry-driven collaboration more generalizable and
human-like.

G IMPLEMENTATION DETAILS

Training Environment and Hyperparameters All models were trained using a full-parameter
fine-tuning approach on a high-performance computing cluster equipped with 8x NVIDIA H200
(141GB) GPUs. We utilized bfloat16 mixed-precision training to optimize for speed and memory
efficiency. The key hyperparameters used for training each of the models are detailed in Table 8. We
selected these parameters based on preliminary experiments to ensure stable and effective training
for each respective method.
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Table 8: Hyperparameters for SFT, DPO, OnG, and OfG.
Hyperparameter SFT DPO OnG OfG
Model & Data Configuration
Base Model Qwen3-8B
Fine-tuning Method Full-parameter
Training Precision bfloat16
Max Sequence Length 4096

Optimization
Optimizer AdamW
Learning Rate (lr) 1e-6 1e-6 1e-6 1e-6
LR Scheduler Type Cosine
Warmup Steps 50 50 50 50
Epochs 5 5 5 5
Batch Size (per device) 1 1 1 1
Gradient Accum. Steps 2 2 2 2
Weight Decay 0.01 0.01 0.01 0.01
Regularization & RL-specific
KL Coefficient (β) N/A 0.1 0.01 0.01
PPO Clip Epsilon (ϵ) N/A N/A 0.2 0.2

H DATASET DETAILS

Our dataset was constructed from a corpus of scientific papers sourced from arXiv and PubMed Cen-
tral (PMC), covering a wide range of disciplines to ensure diversity. The primary arXiv categories
included Computer Science (43.1%), Physics (22.7%), Quantitative Biology (14.8%), Electrical En-
gineering (11.5%), and others such as Economics and Statistics (7.9%). All source materials were
confirmed to be under open-access licenses (e.g., Creative Commons, arXiv.org non-exclusive li-
cense) that permit reuse for research. The initial pool of approximately 1 million figures was refined
through a multi-stage pipeline: an initial filtering with CLIP to remove data plots, followed by a
fine-grained selection of schematic diagrams using Qwen-2.5-VL-72B. A final manual verification
by three domain experts ensured the relevance and quality of each diagram, resulting in a curated
set of 1,100 figures. Of these, 1,000 were used for training and 100 were held out for testing. To
ensure the reproducibility of our experiments involving proprietary models, all API calls for data
generation and evaluation were made using model versions available after 4-14-2025.

I PROMPTS

All prompt templates, data construction, model training, and result evaluation codes are included
in the attachments submitted along with the article. Here we provide the Socratic prompting tem-
plates used for our zero-shot and few-shot baselines. The core idea is to encourage the assistant to
proactively ask clarifying questions before finalizing the diagram specification:

I.1 ZERO-SHOT SOCRATIC PROMPTING

"You are an assistant that helps design scientific diagrams.
Do not produce the diagram immediately. Instead, follow these steps:
1. Ask the user a clarifying question about the diagram (e.g., type,

layout, number of components, connections, or style).
2. Continue asking such clarifying questions until enough information has

been gathered to produce a complete diagram specification.
3. Only after clarification is complete, summarize the final diagram

specification in a structured format (JSON).
Remember:
- Ask focused, concrete questions (one per turn).
- Avoid vague or open-ended questions.
- The final specification must be complete and self-contained."
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I.2 FEW-SHOT SOCRATIC PROMPTING

"You are an assistant that helps design scientific diagrams.
Do not produce the diagram immediately. Instead, follow these steps:
1. Ask the user a clarifying question about the diagram (e.g., type,

layout, number of components, connections, or style).
2. Continue asking such clarifying questions until enough information has

been gathered to produce a complete diagram specification.
3. Only after clarification is complete, summarize the final diagram

specification in a structured format (JSON).
Remember:
- Ask focused, concrete questions (one per turn).
- Avoid vague or open-ended questions.
- The final specification must be complete and self-contained.
Here are two example questions for your reference:Example 1: Example 2:"

J DATA AND ILLUSTRATION EXAMPLE

Data Example Example of offline GRPO training data based on information entropy:

" {
"prompt": "User: I want to create a scientific diagram.\nAssistant:
What specific element or component should serve as the target
identifier (connection.to_id) for the connections ...",
"responses": [

"What is the primary scientific concept this diagram aims to
illustrate?",

"What is the primary scientific concept or model you intend to
illustrate with these components and connections?",

"What is the fundamental scientific concept or process that your
diagram is intended to illustrate?",

"What primary scientific concept or system does this diagram aim to
illustrate?",
"What is the primary scientific concept or system that this diagram

is intended to illustrate?",
"What overall visual structure do you envision for your diagram?",
"Which overall diagram type do you envision such as a flowchart

...?",
"What specific element or component should ...?"

],
"reward": [

16.83,
13.91,
10.56,
8.21,
6.78,
4.09,
1.32,
0.0

]
},"

Example of offline GRPO training data based on slot-counting:

" {
"prompt": "User: I want to create a scientific diagram.",
"responses": [

"What is the primary scientific concept this diagram aims to
illustrate?",

"What is the primary scientific concept or topic that this diagram
is intended to illustrate?",

"What is the primary scientific concept or topic that this diagram
aims to illustrate?",
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"What are the main components of your scientific diagram, and what
unique identifiers (component.id) will you assign to each?",

"What specific components (component.id) do you envision in your
diagram, and what identifiers or labels should be assigned to each to
clarify their roles?",
"Which key components (nodes) do you envision for your diagram, and

how would you uniquely identify each (i.e., what are their
respective component IDs)?",

"Can you identify the distinct components for your diagram by
assigning specific IDs or names, and briefly describe the role of
each?",

"What are the main components (component.id) you envision including
in your scientific diagram, and what specific role does each play in
illustrating the concept?"
],
"reward": [

4.0,
2.0,
2.0,
1.0,
1.0,
1.0,
1.0,
1.0

]
},"

Objective metrics This section presents drawing examples generated using the VisPainter frame-
work, as shown in Figure 5.

Figure 5: This section presents drawing examples generated using the VisPainter framework
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Subjective comparison This section presents drawing examples generated by two models (4o-
image-1 and nano-banana), as shown in Figure 6.

Figure 6: Partial Examples of Model-Generated Images
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