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Abstract: Reinforcement Learning (RL) has been shown effective in domains
where the agent can learn policies by actively interacting with its operating envi-
ronment. However, if we change the RL scheme to offline setting where the agent
can only update its policy via static datasets, one of the major issues in offline
reinforcement learning emerges, i.e. distributional shift. We propose a Pessimistic
Offline Reinforcement Learning (PessORL) algorithm to actively lead the agent
back to the area where it is familiar by manipulating the value function. We focus
on problems caused by out-of-distribution (OOD) states, and deliberately penalize
high values at states that are absent in the training dataset, so that the learned
pessimistic value function lower bounds the true value anywhere within the state
space. We evaluate the PessORL algorithm on various benchmark tasks, where we
show that our method gains better performance by explicitly handling OOD states,
when compared to those methods merely considering OOD actions.
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1 Introduction

Reinforcement learning (RL), especially with high-capacity models such as deep nets, has shown its
power in many domains, e.g., gaming, healthcare, and robotics. However, typical training schemes of
RL algorithms rely on active interaction with the environments. It limits their applications in domains
where active data collection is expensive or dangerous (e.g., autonomous driving). Recently, offline
reinforcement learning (offline RL) has emerged as a promising candidate to overcome this barrier.
Different from traditional RL methods, offline-RL learns the policy from a static offline dataset
collected without iterative interaction with the environment. Recent works have shown its ability
in solving various policy learning tasks [1, 2, 3]. However, offline RL methods suffer from several
major problems. One of them is distributional shift. Unlike online RL algorithms, the state and action
distributions are different during training and testing. As a result, RL agents may fail dramatically
after deployed online. For example, in safety-critical applications such as autonomous driving,
overconfident and catastrophic extrapolations may occur in out-of-distribution (OOD) scenes [4].

Many prior works [5, 6, 7, 8, 9, 10] try to mitigate this problem by handling OOD actions. They
discourage the policies to visit OOD actions by designing conservative value functions, or estimating
the uncertainty of Q-functions. Although constraining the policy can implicitly mitigate the problem
of state distributional shift, few works have adopted measures to explicitly handle OOD states
during the training stage. In this work, we propose the Pessimistic Offline Reinforcement Learning
(PessORL) framework to explicitly limit the policy from visiting both unseen states and actions. We
refer to the states or the actions that are not included in the training data as the unseen states or the
unseen actions.

Our PessORL framework is inspired by the concept of pessimistic MDP in [11], where the reward is
significantly small for unseen state-action pairs. We aim to limit the magnitude of the value function at
unseen states, so that the agent can avoid or recover from unseen states. It is then crucial to precisely
detect OOD states and shape the value function at those states. Since prior methods on OOD actions
are derived from a similar concept, we can adapt their approaches to handle OOD states. There are
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mainly two approaches in the literature. One is to estimate the epistemic uncertainty of Q-function
and subtract it from the original Q-function to get a conservative Q-function [6, 7, 8, 9, 10]. The other
is to regularize the Q-function during the learning process [5]. The first method is highly sensitive to
the trade-off between the uncertainty estimation and the original Q-function [12, 13] and the quality
of uncertainty estimation [14].

Therefore, we follow the second approach, and add a conservative regularization term to the policy
evaluation step of PessORL to shape the value function. We prove that PessORL learns a pessimistic
value function that lower bounds the true value function, and forces the policy to avoid or recover
from out-of-distribution states and actions. We evaluate the PessORL algorithm on various benchmark
tasks. The performance of our method matches the state-of-the-art offline RL methods. In particular,
we show that, by explicitly handling OOD states, we can further improve the policy performance
compared to those methods merely considering OOD actions.

2 Related Works

A big challenge for offline reinforcement learning methods is to deal with the problems caused by
unvisited states or actions in training data, which is also known as distributional shift. In model-free
offline reinforcement learning, some works used importance sampling to fill the gap between the
learned policy and the behavior policy in the training dataset [15, 16, 17, 18, 19]. There are also
many works constrained the learned policy to be similar to the behavior policy by explicit constraints
in the training dataset [6, 20, 21, 22, 23], so that the agent can avoid out-of-distribution actions during
test time. The work in [13] proposed a latent space to constrain the policy to avoid deviating from the
training data support. One further step to make the agent avoid actions that may cause itself deviate
from the training data support is to get a conservative value function and thus a conservative policy.
The works in [7, 8, 6, 9, 10] estimate the uncertainty of the learned Q-function, and then directly
subtract it from the Q-function to get a conservative Q-function. Another way to get a conservative
Q-function is to regularize the Q-function in the optimization problem during the learning process [5].
In model-based reinforcement learning (MBRL), there are also many algorithms that constrain the
exploitation in the environment with effective uncertainty estimation methods [24, 25, 26, 27, 28, 11].
It is considered to be mature and reliable to detect OOD actions and states by methods from MBRL.
Most of the aforementioned methods focus on OOD actions but not have explicit mechanism to deal
with OOD states. In this paper, we focus on OOD states and propose a method to learn a pessimistic
value function by adding regularization terms when updating Q-functions, and follow the works in
the MBRL domain to establish the module to detect OOD states in our algorithm.

3 Background
3.1 Offline Reinforcement Learning

Given a Markov decision process (MDP), an RL agent aims to maximize the expectation of cumulative
rewards. The MDP is represented by a tuple M = (S,A,P, r, �), where S is the state space, A is
the action space, P : S ⇥A ⇥ S ! [0, 1] is the transition function, r : S ⇥A ! R is the reward
function, and � is the discount factor. Typical RL algorithms optimize the policy using experience
collected when interacting with the environment. Unlike those online learning paradigms, offline-RL
algorithms rely solely on a static offline dataset, denoted by D =
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In this work, we focus on dynamic-programming-based RL algorithms under the offline setting,
where we extract a policy from a learned value function for the underlying MDP in the training data.
Standard Q-learning method estimates an approximate Q-function parametrized by ✓, i.e. Q̂✓(st,at).
In each iteration, the Q-function is updated as follows:

Q̂k+1
✓  argmin

Q

1

2
Es,a,s0⇠D

⇣
Q(s,a)� B̂⇡Q̂k

✓(s,a)
⌘2�

(policy evaluation), (1)

where B̂⇡ is the empirical Bellman update operator defined as:

B̂⇡Q̂k
✓(s,a) = r(s,a) + �Ea0⇠⇡̂k(a0|s0)

h
Q̂k

✓(s
0,a0)

i
. (2)

For discrete action space, we define ⇡̂k as the optimal policy induced by the learned Q-function,
i.e. ⇡̂k(a|s) = �

h
a = argmaxa Q̂k

✓(s,a)
i
. In this case, B̂⇡ collides into the Bellman optimality
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operator. When the action space is continuous, we follow actor-critic algorithms to approximate the
optimal policy by executing a policy improvement step after policy evaluation in each iteration:

⇡̂k+1  argmax
⇡

Es⇠D,a⇠⇡(a|s)

h
Q̂k+1

✓ (s,a)
i

(policy improvement). (3)

In the rest of the paper, we denote E(Q, B̂⇡Q̂k
✓) =

1

2
Es,a,s0⇠D

⇣
Q(s,a)� B̂⇡Q̂k

✓(s,a)
⌘2�

as the

Bellman update error for simplicity.

3.2 Uncertainty-Based Methods and Pessimistic Value Functions

By observing Eqn. 1, it is obvious that the Q-function Q̂✓ is never evaluated or updated at states or
actions that never appear in the dataset. The agent may behave unexpectedly or unpredictably at
those unseen states or actions during test time. For dynamic-programming-based approaches, one
way to address the issue of unseen actions is to estimate the epistemic uncertainty of Q-function
and subtract it from the original Q-function [6, 7, 8, 9, 10]. The uncertainty is estimated based
on an ensemble of learned Q-functions, and the final conservative Q-function becomes Qc(s,a) =
EQ⇠PD(Q)[Q(s,a)�↵Unc(PD(Q))], where Unc is defined to be some uncertainty estimation metric,
and PD(Q) is the distribution over possible Q-functions. Because the uncertainty metric is directly
subtracted, uncertainty-based methods is highly sensitive to the quality of uncertainty estimation.
Meanwhile, it is difficult to find an ideal ↵ to balance the original Q-function and Unc.

Another way is to regularize the Q-function at the step of policy evaluation. A representative example
is Conservative Q-Learning (CQL) [5]. Assuming that the dataset D is collected with a behavior
policy ⇡�(a|s), and ⇡̂k(a|s) is the learned policy at iteration k, the policy evaluation step in CQL
becomes:

Q̂k+1  argmin
Q

↵
�
Es⇠D,a⇠⇡̂k(a|s)[Q(s,a)]� Es⇠D,a⇠⇡�(a|s)[Q(s,a)]

�
+ E(Q, B̂⇡Q̂k

✓). (4)

In the rest of the paper, we denote C(Q) as the cost term adopted from the CQL, i.e., C(Q) =
↵
�
Es⇠D,a⇠⇡̂k(a|s)[Q(s,a)]� Es⇠D,a⇠⇡�(a|s)[Q(s,a)]

�
. It is worth noting that the aforementioned

methods all focus on OOD actions, but they do not have an explicit mechanism to deal with OOD
states, which motivates us to develop the PessORL framework in this work.

4 Pessimistic Offline Reinforcement Learning Framework

In this section, we introduce the PessORL framework to mitigate the issue of state distributional shift.
In particular, we propose a novel conservative regularization term in the policy evaluation step. It can
then be integrated into Q-learning or actor-critic algorithm, which will be described in Sec. 5.

4.1 How To Deal With OOD States

Assuming the dataset D is collected with a behavior policy ⇡�(a|s), and the states s are distributed
according to a distribution d⇡� (s) in the dataset, we propose to solve the problem caused by state
distributional shift by augmenting the policy evaluation step in CQL [5] with a regularization term
scaled by a trade-off factor ":

min
Q

"
�
Es⇠d�(s),a⇠⇡̂k(a|s) [Q(s,a)]� Es⇠d⇡� (s),a⇠⇡̂k(a|s)[Q(s,a)]

�
+E(Q, B̂⇡Q̂k

✓)+C(Q), (5)

where d�(s) is a particular state distribution of our choice.

The idea is to use the minimization term "
�
Es⇠d�(s),a⇠⇡̂k(a|s) [Q(s,a)]

�
to penalize high values at

unseen states in the dataset, and the maximization term "
�
Es⇠d⇡� (s),a⇠⇡̂k(a|s)[Q(s,a)]

�
to cancel the

penalization at in-distribution states. The regularized Q-function could then push the agent towards
regions close to the states from the dataset, where the values are higher. To achieve it, we need to
find a distribution d�(s) that assigns high probabilities to states far away from the dataset, and low
probabilities to states near the training dataset. We will instantiate a practical design of d�(s) in
Sec. 5. For now, we just assume d�(s) assigns high probabilities to OOD states.
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4.2 Theoretical Analysis

In this section, we analyze the theoretical properties of the proposed policy evaluation step. The proof
and more details can be found in Appendix A.

We define k 2 N as the iteration of policy evaluation, i.e. Q̂k denotes the optimized Q-function in the
k�th iteration obtained by PessORL. Q⇡ is defined to be the true Q-function under a policy ⇡(a|s)
in the underlying MDP without any regularization. The true Q-function can be written in a recursive
form via the exact Bellman operator, B⇡ , as Q⇡ = B⇡Q⇡ . We define V̂ k as the value function under
a policy ⇡(a|s), V̂ k(s) = Ea⇠⇡(a|s)[Q̂

k(s,a)]. For the true value function V ⇡ in the underlying
MDP, we also have V ⇡ = B⇡V ⇡ .

We first introduce the theorem that the learned value function is a lower bound of the true one without
considering the sampling error defined in the Lemma A.1.

Theorem 4.1 Assume we can obtain the exact reward function r(s,a) and the transition function
T (s0|s,a) of the underlying MDP. Let V̂ ⇡(s) = limk!1 V̂ k(s). Then 8s 2 S, the learned value
function via Eqn. 5 is a lower bound of the true one, i.e., V̂ ⇡(s)  V ⇡(s), if the ratio

"

↵
satisfies

"

↵
 min

s

 
X

a

⇡(a|s)

⇡(a|s)
⇡�(a|s)

� 1

�! ��d�(s)� d⇡� (s)
��

d⇡� (s)

X

a

⇡2(a|s)
⇡�(a|s)

!�1

.

It is worth noting that the learned value function still lower bounds the true value function for any state
and action in the training datasets, i.e. s,a 2 D, even when we consider the sampling error defined in
the Lemma A.1. Further details are shown in Corollary A.1. We have no reward or transition pair
collected at unseen states or actions outside the training dataset, so it is impossible to bound the error
outside the training dataset when consider the sampling error introduced by the reward function and
the transition function.

We can now step further and show that the values at OOD states are lower than those at in-distribution
states based on the learned value function. The proof can be found in Appendix A.3.

Theorem 4.2 For any state s 2 S, if " > 0 is sufficiently large, then the expectation of the learned
value function via Eqn. 5 under the state marginal d⇡� (s) in the training data is higher than that
under d�(s), i.e., Es⇠d�(s)[V̂

⇡(s)] < Es⇠d⇡� (s)[V̂
⇡(s)].

During training time, we can at least evaluate Q-values of OOD actions based on in-distribution
states. However, there is actually no information about immediate rewards at OOD states, thus no
information about Q-values. Intuitively, under offline settings, the best we can do to mitigate the
problem of OOD states is to suppress values at these OOD states, and raising values at in-distribution
states, so that the agent can be attracted to the area where it is familiar near the training data. Thm. 4.2
indeed tells us PessORL models a value function that assigns smaller values to OOD states compared
to those at in-distribution states. Optimizing a policy under such a value function is similar to forcing
the policy to avoid unknown states and actions.

In summary, PessORL can learn a pessimistic value function that lower bounds the true value
function. Furthermore, this value function assigns smaller values to OOD states compared to those at
in-distribution states, which helps the agent avoid or even recover from OOD states.

5 Implementing the Algorithm

In this section, we introduce a practical PessORL algorithm based on Eqn. 5. This algorithm simply
modifies the policy evaluation step of Deep Q-Learning or Soft Actor-Critic algorithms, which is
easy to implement.

5.1 Detecting OOD states

In prior to designing the algorithm, we need to choose a proper d�(s), which requires a tool for
OOD state detection. Following [11, 14, 29], we use bootstrapping to detect OOD states. In

4



particular, we train a bag of Gaussian dynamics models [29] {P̂1, P̂2, . . . , P̂n} where each model
is P̂i(·|s,a) = N (s + f̂�i(s,a), ⌃̂�i). The function f̂�i outputs the mean difference between the
next state and the current state, and ⌃�i models the standard deviation. OOD states are detected
by estimating the uncertainty of bootstrap models at a given state s 2 S. Concretely, we define

u⇡(s) = Ea⇠⇡(a|s)


1
n

Pn
i=1

⇣
f̂�i(s,a)� f̄�(s,a)

⌘2�
, where f̄�(s,a) =

1

n

Pn
i=1 f̂�i(s,a) is the

mean of outputs of all f̂�i , and the actions are drawn from a policy distribution ⇡. A high u⇡(s) value
indicates the state is more likely to be an unseen state. Given a set of sampled states {s1, s2, . . . , sn},

we can define a discrete distribution over it using u⇡(s): ⇣(si) =
u(si)P
j u(sj)

, i = 1, 2, ..., n, which

assign high probabilities to OOD states. In the following section, we will use it to construct the
distribution d�(s).

5.2 Practical Implementation of PessORL

We now introduce a practical PessORL algorithm. In practice, to obtain a well-defined distribution
d�, we add an additional optimization problem over d� into the original optimization problem. The
resulting optimization problem for the policy evaluation step is:

min
Q

max
d�

⇥
"
�
Es⇠d�(s),a⇠⇡̂k(a|s) [Q(s,a)]� Es⇠d⇡� (s),a⇠⇡̂k(a|s)[Q(s,a)]

�
+R(d�)

⇤

+ E(Q, B̂⇡Q̂k
✓) + C(Q), (6)

where R(d�) is a regularization term inspired by [5] in order to stabilize the training. If we choose
R(d�) = �DKL(d�(s) || ⇣(s)), where ⇣(s) is the distribution we obtained from uncertainty estima-
tions, then d�(s) / ⇣(s) exp

⇣
V ⇡̂k

(s)
⌘

, where V ⇡̂k

(s) = Ea⇠⇡̂k(a|s) [Q(s,a)]. The resulting d�

is intuitively reasonable, because it assigns high probabilities to OOD states with high uncertainty
estimations. In particular, d� assigns higher probabilities to states with high values, because we
expect to penalize harder on them than those with low values already. With this choice of d� in

Algorithm 1: Pessimistic Offline Reinforcement Learning (PessORL)
1 Initialize: A Q network Q✓ parametrized by ✓, A target network Q✓̄ = Q✓ parametrized by

✓̄, a policy network ⇡' parametrized by ', and a bag of dynamics models {P̂1, P̂2, . . . , P̂n}
to detect OOD states;

2 // Dynamics Models Training (Models are used by u⇡'(s) to detect OOD states in the
policy evaluation step)

3 for step i in range(0, M ) do
4 Train dynamics models {P̂1, P̂2, . . . , P̂n} according to the transitions in the dataset D, so

that we can later obtain an uncertainty estimation model u⇡(s) in the policy evaluation
step;

5 end
6 // Policy Evaluation and Improvement
7 for step t in range(0, N ) do
8 Update Q✓ according to Eqn. 7 with learning rate ✏✓ and u⇡'(s):
9 ✓t  ✓t�1 + ✏✓r✓J(✓) ;

10 Update ⇡' according to the soft actor critic style objective and learning rate ✏':
11 't  't�1 + ✏'Es⇠d⇡� (s),a⇠⇡'(a)[Q✓(s,a)� log ⇡'(a|s)];
12 if t mod target_update == 0 then
13 Soft Update the target network ✓̄t  (1� ⌧)✓̄t�1 + ⌧✓t�1

14 end
15 end
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Eqn. 6, we obtain the following PessORL policy evaluation step:

min
Q

J(Q) = min
Q

"

 
log
X

s

⇣(s) exp
⇣
V ⇡̂k

(s)
⌘
� Es⇠d⇡� (s)[V

⇡̂k

(s)]

!

+ E(Q, B̂⇡Q̂k
✓) + C(Q). (7)

The first term in Eqn. 7 is very similar to weighted softmax values over the state space. It penalizes
the softmax value over the state space, but also considers the distances between sample points and
the training data. The two terms following the trade-off factor " is actually trying to decrease the
discrepancy between the softmax value over OOD states and the average value over in-distribution
states. Intuitively, it should enforce the learned value function to output higher values at in-distribution
states, and lower values at out-of-distribution states. The logsumexp term in Eqn. 7 also mitigates the
requirement for an accurate uncertainty estimation ⇣(s) over the entire state space. Only those states
with high values contribute to the regularization.

The complete algorithm is shown in Algorithm 1. We include the version for continuous action
space which requires a policy network here, and note that if the action space is discrete, then we
no longer need a policy network but just an implicit policy based on the learned Q-function. We
implement PessORL on top of CQL [5], with its default hyperparameters. We also apply Lagrangian
dual gradient descent to automatically adjust the trade-off factor ". During the training process of
offline reinforcement learning algorithms such as CQL and PessORL, we only have access to the
dataset D instead of d⇡� (s) and ⇡�(a|s). Therefore, we follow the convention in reinforcement
learning community and approximated all expectations by Monte Carlo estimation in Eqn. 7.

6 Experiments

We compare our algorithm to prior offline algorithms: two state-of-the-art offline RL algorithms
BEAR [6] and CQL [5]; two baselines adapted directly from online algorithms, actor-critic algorithm
TD3 [30] and DDQN [31]; and behavior cloning (BC). The TD3 baseline is applied when the action
space is continuous, whereas DDQN is trained when the action space is discrete. We evaluate each
algorithm on a wide range of task domains, including tasks with both continuous and discrete state
and action space. All baselines are run with the default code and hyperparameters from the original
repositories. In particular, we are interested in the comparison between our algorithm with CQL,
because we essentially add an additional state regularization term to the original CQL framework.

6.1 Performance on Various Environments
Pointmass Mazes. The task for the agent in this domain is to learn from expert demonstrations
to navigate from a random start to a fixed goal. The expert dataset, which contains around 1000
trajectories all from the same start point to the same goal, is collected by online trained RL policy.
During the test time of offline RL algorithms, we reset the start to a random point in the state space
and the goal to the same fixed point as the dataset. In this way, the performance of the agent at unseen
states are evaluated.

Before showing the performance, we first check if the OOD states detection is accurate, and hence,
if we can successfully penalize high values at unseen states in training datasets. We evaluate the
effectiveness of the OOD states detection method based on the accuracy of uncertainty estimation
in the environment Pointmass. Figure 1(b) and (c) are visualizations of the training datasets and
estimated uncertainty u⇡(s), both of which have the coordinate systems the same as that in the map
(figure 1(a)). We use different colors in figure 1(b) and (c) to represent different values at each point
in the map. The uncertainty estimations tend to be high (yellow areas in Fig. 1(c)) in area where the
state density is low (blue areas in Fig 1(b)), and vice versa. This trend empirically shows that our
uncertainty estimations are reasonable. We can trust them to detect OOD states when training offline
RL algorithms.

We include the learning curves in figure 1(d), in which we evaluate each algorithm based on 3 random
seeds, and report the average return. The shaded area represents the standard deviation of each
evaluation. As we can see in the figures, PessORL outperforms other baselines in both hard and super
hard environments. PessORL benefits from the augmented policy evaluation step in Eqn. 7. The
learned value function produces high values at areas that have low uncertainty estimations, and low
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Figure 1: (a) The whole map of the environment; (b) The state density in training dataset; (c) The
visualization of uncertainty estimation; (d) The learning curves. The top row (1) and the bottom row
(2) are corresponding to PointmassHard-v0 and PointmassSuperHard-v0, respectively. We can see
that almost all trajectories in the training datasets are located around the optimal trajectory from the
start to the goal in the yellow areas in (b), indicating they are collected by a near-optimal policy.

values at highly uncertain areas (OOD states). Therefore, the agent can be “attracted” to the high
value areas from low value and unfamiliar areas.

Gym Tasks. In this domain, we focus on the locomotion environments from MuJoCo, including
Walker2d-v2, Hopper-v2, Halfcheetah-v2, and Ant-v2. Unlike Pointmass environment, we directly
adopt the d4rl datasets [32] as our training data in the gym domains. We include four different types
of datasets in our experiments, namely, “medium”, “medium-expert”, “random”, and “expert”. The
“medium”, “random”, and “expert” dataset are all collected by a single policy, which is an either
early-stopping trained, or randomly initialized, or fully trained expert policy. The “medium-expert”
dataset is generated by mixing mediocre and expert quality data. We show the normalized scores
averaged over 4 random seeds for all methods on gym domain in table 1. We directly ran all baselines

Table 1: Performance on Gym and Adroit Domains
Domain Task BC TD3 BEAR CQL PessORL

Gym

hopper-medium 29.71± 2.43 0.80± 1.11 50.08± 4.49 63.04± 8.64 76.39 ± 4.80
walker2d-medium 13.06± 1.74 4.91± 1.08 34.20± 8.57 70.67± 0.95 75.95 ± 2.96
halfcheetah-medium 35.81± 0.96 24.60± 0.79 41.25± 2.45 48.66± 0.11 49.21 ± 0.59
ant-medium 83.42± 9.63 �63.55± 0.28 �45.78± 3.18 51.29± 3.92 85.31 ± 8.56

hopper-medium-expert 85.22± 1.38 12.12± 0.64 37.67± 1.84 105.84± 3.62 112.80 ± 4.30
walker2d-medium-expert 16.12± 0.58 4.77± 2.06 17.29± 2.46 75.27± 13.33 89.67 ± 6.73
halfcheetah-medium-expert 37.04 ± 2.77 �1.41± 0.99 �2.93± 4.54 19.13± 9.81 24.33± 12.24
ant-medium-expert 66.49 ± 0.76 �63.54± 0.92 31.31± 8.72 34.44± 30.36 49.95± 16.76

hopper-random 9.44± 1.41 8.47± 0.52 9.29± 2.58 10.36± 3.68 10.82 ± 4.11
walker2d-random 2.08± 0.54 6.04 ± 1.08 0.72± 0.82 1.11± 5.01 2.66± 3.15
halfcheetah-random 2.25± 0.45 27.95± 0.59 2.16± 0.28 26.62± 1.28 28.58 ± 0.96
ant-random 26.00± 0.57 �37.31± 1.16 24.05± 2.42 26.65± 8.65 27.86 ± 4.87

hopper-expert 109.82± 1.44 1.81± 1.04 0.78± 4.57 104.41± 10.26 110.67 ± 8.60
walker2d-expert 60.66± 2.26 �0.95± 0.58 21.37± 3.52 105.55± 2.91 109.37 ± 4.94
halfcheetah-expert 94.22 ± 1.09 �1.40± 2.85 13.55± 7.67 80.19± 14.55 71.33± 20.16
ant-expert 73.57 ± 3.28 55.07± 1.99 44.65± 10.39 59.04± 20.66 60.54± 17.83

Adroit

pen-human 34.46± 0.83 �3.83± 0.43 35.62± 1.34 54.49± 7.58 63.07 ± 4.36
door-human 1.46± 0.06 �0.19± 0.01 �0.33± 0.05 1.86± 0.29 2.28 ± 0.14
hammer-human 1.35± 0.09 0.26± 0.12 0.46± 0.03 3.91± 0.34 4.24 ± 0.28
relocate-human 0.04± 0.02 �0.32± 0.03 �0.30± 0.10 0.15± 0.04 0.33 ± 0.12

pen-cloned 23.58± 1.14 �3.91± 0.36 28.92± 9.62 35.23± 11.03 39.02 ± 9.25
door-cloned 0.15± 0.08 �0.33± 0.01 �0.16± 0.04 1.72 ± 0.14 1.69± 0.35
hammer-cloned 0.40± 0.07 0.25± 0.04 0.21± 0.34 0.53± 0.52 0.95 ± 0.38
relocate-cloned �0.24± 0.11 -0.14 ± 0.08 �0.23± 0.13 �0.28± 0.57 �0.26± 0.24
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from their original repositories with their default parameters, and we only report the average scores we
actually obtained. As we can see in the table, PessORL outperforms all other offline RL methods on
a majority of tasks on gym domains. PessORL works especially well with mediocre quality datasets
according to the results. In fact, it is one of the advantages of offline RL methods over behavior
cloning on medium quality datasets, because offline RL methods take advantage of the information
both from the reward and the underlying state and action distributions in training datasets, instead of
simply imitating behavior policies as behavior cloning. Medium quality datasets are also considered
to be similar to real-world datasets. Therefore, it is important for an offline RL method to perform
well in medium quality datasets. We also note that PessORL shares some good properties with CQL,
such as satisfying performance on mixed quality datasets. PessORL and CQL both outperform other
offline methods on medium-expert datasets with PessORL better between them. The reason is that
offline RL methods can “stitch” [32] different trajectories from different policies together according
to the information from the reward.

Adroit Tasks The adroit domain [33] provides more challenging tasks than the Pointmass environ-
ment and the gym domain. The tasks include controlling a 24-DoF simulated Shadow Hand robot to
twirl a pen, open a door, hammer a nail, and relocate a ball. Similar to the datasets in the gym domain,
we also directly use the d4rl datasets as the training datasets in our experiments. The performance of
PessORL and all baselines is shown in table 1. The normalized scores of all methods are average
returns on 5 random seeds. We note that PessORL has better performance than other baselines on
adroit domains. It is a great advantage for PessORL to learn useful skills from human demonstrations
on these high dimensional and highly realistic robotic simulations.

6.2 Discussions and Limitations

Figure 2: (a) The learning curves in hopper-
medium-v0. (b) The discrepancy �k as a function
of gradient steps for PessORL, CQL, and BEAR.

The main contribution of this work is to explic-
itly limit the values at OOD states, so that the
learned policy can act conservatively at OOD
states and drives the agent back to the famil-
iar areas near the training data. We are inter-
ested to see if our framework can indeed in-
duce a different behavior on OOD states. We
use �k = maxs2S [V (s)] � Es⇠D[V (s)] as a
metric to evaluate it at each iteration. If �k is
close to zero, then intuitively it indicates the
values at OOD states are lower than those at in-
distribution states. In Fig. 2, we plot �k at each
iteration in hopper-medium-v0. As is shown in
the figure, PessORL successfully limits �k to be non-positive, which meets our goal in this work and
aligns with the statement in theorem 4.2.

On the gym domain, we notice that the performance of PessORL and CQL on datasets containing
expert trajectories is not satisfying, often not as good as BC. We believe it is because of overly
conservative value estimation. In fact, it is widely believed that conservative methods suffer from
underestimation [14]. The conservative objective function in Eqn. 7 sometimes assign values that are
too low to OOD states and actions. Besides, the uncertainty estimation method cannot be guaranteed
to be precise on high-dimensional spaces. It is actually a possible future work direction to solve the
underestimation and uncertainty estimation problems in conservative methods.

7 Conclusion
We propose a Pessimistic Offline Reinforcement Learning framework to deal with out-of-distribution
states. In particular, we add a regularization term in policy evaluation step to shape value function,
so that we can improve its extrapolation to OOD states. We also provide theoretical guarantees that
the learned pessimistic value function lower bounds the true one and assigns smaller values to OOD
states compared to those at in-distribution states. We evaluate the PessORL algorithm on various
benchmark tasks, where we show that our method gains better performance by explicitly handling
OOD states compared to those methods merely considering OOD actions.
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