
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MMRC: MEASURING MASSIVE-COMPUTATIONAL
MATH REASONING WITH CODE IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce MMRC, a benchmark of 500 curated problems designed to evalu-
ate large language models (LLMs) on their ability to integrate mathematical rea-
soning with code execution. Unlike existing benchmarks that emphasize either
elementary or olympiad-level mathematics, MMRC focuses on university-level
subjects including calculus, discrete mathematics, linear algebra, linear program-
ming, mathematical physics, numerical computation, and scientific computing.
Each problem is deliberately adapted to impose substantial computational work-
loads, making text-only reasoning infeasible and requiring code execution for
accurate solutions. We evaluate 120 model configurations, spanning open- and
closed-source models, on MMRC under two paradigms: Code-Invoked Reason-
ing (CIR), where models generate Python scripts, and Math-Code Agent (MCA),
where models dynamically interact with a Python interpreter. Code integration
consistently improves accuracy on complex tasks while reducing token usage, es-
tablishing MMRC as the first systematic benchmark for math–code integrated rea-
soning and advancing LLMs toward real-world problem solving.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have transitioned them from basic lan-
guage understanding to sophisticated logical reasoning (Wei et al., 2022b; Chowdhery et al., 2022),
achieving significant success in STEM-related tasks (Comanici et al., 2025). Mathematics, as both
a fundamental science and a rigorous benchmark, plays a pivotal role in evaluating the reasoning
capabilities of these models (Hendrycks et al., 2021). However, as mathematical tasks become more
complex, particularly in engineering applications, solutions often require intensive computation or
large-scale simulations (Lewkowycz et al., 2022; Li et al., 2022). Text-based reasoning alone is
insufficient for these tasks. Integrating textual reasoning with code execution allows models to
maintain logical coherence while delegating computational tasks to code, resulting in more efficient
and accurate outcomes compared to purely autoregressive methods(Gao et al., 2023; Schick et al.,
2023; Yao et al., 2023).

Current benchmarks, as showed in Table 1, which cover a range of problems from elementary arith-
metic to olympiad-level challenges, primarily evaluate text-based reasoning and symbolic manipula-
tion. While these benchmarks are important for assessing basic reasoning skills, they fail to capture
the full range of abilities required in real-world applications, where mathematical reasoning often
involves the integration of algorithmic design and code execution. This gap highlights the need
for a benchmark that evaluates a model’s ability to combine reasoning with computational tasks, a
capability that remains largely unaddressed in existing frameworks.

In this paper, we introduce MMRC, a benchmark of 500 problems designed to evaluate a model’s
ability to integrate textual reasoning with code execution. Unlike existing benchmarks that focus
on advanced mathematical domains, MMRC emphasizes generality and progressive capability im-
provement. It covers university-level mathematics, including calculus, discrete mathematics, linear
algebra, linear programming, mathematical physics, numerical computation, and scientific comput-
ing.

Each problem is crafted to impose substantial computational workloads, making purely textual rea-
soning infeasible. A representative sample is shown in Figure 1. As a result, models must invoke
code execution to solve the problems accurately. In addition to increasing numerical complexity,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Code 1: xxxx 芳达根据自己的题起标题

Code 2: Linear Programming

Stage 1: Define Decision Variables
Identify the core variables to model the problem: Let \(x_{f,c} \) represent the area (in hectares)
of crop \(c \) (where \(c = 1, \dots, 7 \)) planted in field \(f \) (where \(f = 1, 2, 3 \)). These 21
non-negative variables (\(x_{f,c} \ge 0 \)) capture all possible allocations.

Stage 2: Formulate the Objective
Define the goal to optimize: Maximize total profit, calculated as the sum of profits from each
crop in each field. Profit for crop \(c \) in field \(f \) equals the product of its profit per ton
(\(p_c \)), yield per hectare in that field (\(Y_{f,c} \)), and planted area (\(x_{f,c} \)). Thus, the
objective is:
 \max \sum_{f=1}^{3} \sum_{c=1}^{7} p_c \cdot Y_{f,c} \cdot x_{f,c}

Stage 3: Specify Constraints
Outline all constraints that restrict variable values:
1. **Field utilization**: Each field must be fully planted, so \(\sum_c x_{f,c} =
\text{FieldSize}_f \) for \(f = 1, 2, 3 \).

5. **Non-negativity**: All \(x_{f,c} \ge 0 \).
This forms a linear programming (LP) problem with linear objective and constraints, solvable
via an LP solver. Due to the large computation load of manual solving, we will convert the
above objective and constraints into a mathematical model recognizable by programming tools.
Now we start programming.
“”“

”“”

F_x1 = F(x1)
J_x1 = J(x1)
delta_x = np.linalg.solve(J_x1, -F_x1)
print(f"\nUpdate vector: delta_x = {delta_x}")

Code 1: Data Structure

A crop planner needs to allocate 7 types of crops
across 3 fields (with a fixed total area of fields).
Each crop has sp determine the non-negative
planting area of each crop in each field to
maximize the total profit.

Question

Code 3: Main Function

Sample: First mathematically model complex problems, then solve them with linear programming.

Figure 1: A sample from the MMRC benchmark. In this case, textual reasoning is indispensable
for determining the exact quantity to be solved. However, once the target equation is identified, our
tailored adaptation renders it extremely difficult, even impossible, for the model to solve purely in
natural language. Thus, we guide the model to employ code for formal modeling and numerical
computation, as illustrated by the use of dynamic programming in this example.

the problems introduce algorithmic challenges, such as recursive calls and numerical simulations.
Authored by doctoral-level and master-level mathematics students, the problems were selected from
an initial pool of 1,200, with each requiring at least three hours of adaptation, code integration, and
cross-verification.

We evaluate 120 distinct model configurations, spanning open-source, closed-source, and
math/code-specialized models, using the MMRC benchmark across two reasoning and code
paradigms. In CIR mode, models generate and execute a Python script with reasoning embedded
as comments. In MCA mode, the model interacts with a Python interpreter, dynamically decid-
ing when to invoke code. Our analysis shows that models achieve substantially higher accuracy on
the base set than on the hard set, confirming that the partition effectively captures varying levels
of computational reliance. At the same time, code execution serves as a double-edged sword. On
analytically tractable base problems, forcing models to invoke code can disrupt otherwise viable
reasoning trajectories and could lead to accuracy drops. By contrast, on code-dependent hard prob-
lems, code becomes indispensable, consistently improving overall accuracy. In addition, on the hard
set, code execution often reduces token costs by compressing lengthy textual derivations into con-
cise scripts. Finally, error analysis reveals complementary weaknesses across inference modes: CIR
highlights the brittleness of one-shot program generation due to syntax and implementation errors,
whereas MCA suppresses low-level coding mistakes but exposes deeper flaws in abstract reasoning
and problem understanding.

Overall, this work introduces the MMRC benchmark as a novel tool for evaluating LLMs, offering
a more comprehensive evaluation that aligns closely with real-world problem-solving tasks.

2 RELATED WORK

Mathematics Benchmarks. Early math benchmarks like AddSub (Hosseini et al., 2014) and
SingleEq (Koncel-Kedziorski et al., 2015) focused on basic arithmetic and algebra. Later,
datasets such as GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), and Multi-
Arith (Roy & Roth, 2016) increased difficulty, followed by more challenging benchmarks like
MATH (Hendrycks et al., 2021) and MMLU-Pro (Wang et al., 2024). Recently, even harder
benchmarks like AIME (aim, 2024 URL https://maa.org/math-competitions/american-invitational-
mathematics-examination-aime), Omni-Math (Gao et al., 2024), and FrontierMath (Glazer et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of MMRC with existing mathematical reasoning benchmarks. MMRC
is designed at the university level with expert-authored, computation-intensive, and code-integrated
problems.

Benchmark
Design Characteristics

Level Size Eval
MetricsExpert Comp.- Code-

Original Intensive Integrated
GSM8K (Cobbe et al., 2021) ✗ ✗ ✗ Grade School 8.5k Acc
MATH (Hendrycks et al., 2021) ✗ ✗ ✗ High School 12.5k Acc
CARP (Zhang et al., 2023) ✗ ✗ ✓ Middle School 4.9k Acc
DynaMath (Zou et al., 2024) ✗ ✗ ✗ Mixed 5010 Acc+Rob
MathCheck (Zhou et al., 2024) ✗ ✗ ✗ Mixed 4.5k Acc+Rob
Omni-Math (Gao et al., 2024) ✗ ✗ ✗ Competition 4.4k Acc
FrontierMath (Glazer et al., 2024b) ✓ ✓ ✗ Research Hundreds Acc
HARP (Yue et al., 2024) ✗ ✗ ✗ Competition 5.4k Acc
OlympMATH (Sun et al., 2025) ✗ ✗ ✗ Competition 200 Acc
HARDMATH (Fan et al., 2024) ✗ ✗ ✗ Graduate 1.5k Acc
OlympiadBench (He et al., 2024) ✗ ✗ ✗ Competition 8.5k Acc

MMRC (Ours) ✓ ✓ ✓ University 500 Acc+Eff

2024a) have been introduced to test advanced mathematical reasoning. In contrast, MMRC uniquely
targets the integration of natural language and code execution, addressing tasks that require signif-
icant computational power. As illustrated in Table 1, MMRC offers several key advantages over
existing benchmarks.

Reasoning with Large Language Models. The introduction of chain-of-thought (CoT) prompt-
ing (Wei et al., 2022a) marked a key advance in LLM reasoning by breaking down complex prob-
lems into intermediate steps (Sprague et al., 2024). Models like OpenAI-o1 (Jaech et al., 2024) and
Deepseek-R1 (Guo et al., 2025a), along with reinforcement learning-based fine-tuning, have further
enhanced large-scale reasoning. Ongoing research explores more efficient reasoning paradigms (Ag-
garwal & Welleck, 2025; Nayab et al., 2024; Lee et al., 2025) and self-evolving models (Shinn et al.,
2023; Zelikman et al., 2022; Yang et al., 2023).

Code-Integrated Mathematical Reasoning. While LLMs show strong reasoning skills, they strug-
gle with complex numerical computations, leading to inaccuracies and high computational costs. To
address this, integrating code execution has become a key strategy. Initial approaches like Program
of Thoughts (Chen et al., 2022) and MathCoder (Wang et al., 2023) focused on generating code for
calculations. Later methods, including PAL (Gao et al., 2023), Tora (Gou et al., 2023), and Mumath-
Code (Yin et al., 2024), combined natural language reasoning with code execution. However, these
approaches have been primarily evaluated on easier datasets like GSM8K, where natural language
is often sufficient. Our work builds on these agent-based methods and demonstrates that integrating
code execution can significantly improve accuracy on more complex problems that truly require it.

3 THE MMRC BENCHMARK

3.1 OVERVIEW

The core objective of the MMRC dataset is to evaluate a model’s ability to integrate mathematics
with code in reasoning. It contains 500 carefully curated and adapted problems, each combining
nontrivial logical structures with demanding computational requirements. To capture performance
across different levels of difficulty, MMRC is divided into two subsets: MMRC-Base and MMRC-
Hard.

Both subsets scale the computational component to challenging levels, involving combinatorial
search spaces, deep recursion, or advanced numerical methods. The key distinction lies in their
dependence on programmatic execution. Problems in MMRC-Base can, in principle, be solved
manually but only through extremely tedious calculation, serving as a baseline for computational
reasoning. In contrast, MMRC-Hard problems are effectively unsolvable without code, often re-
quiring large-scale numerical simulation or recursive procedures. This two-tiered design enforces
code-assisted reasoning while preserving the logical structure of mathematical derivations, requiring

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Linear Prog.
7%

Numerical Linear
Algebra 8%

Stochastic
Simulation 4%

Number Theory
Algorithms 8%

NumberStatistics

Code Usage Catogories
Code Usage Subcatogories

Total Subjects

Number of MMRC-Base
Number of MMRC-Hard
Calculus
Disctete Mathematics
Linear Programming

Scientific Computation
Mathematical Physics

7
3

129
123
93

10
200
300

40
34

Numerical computation 27

Linear Algebra 54
Base

40%

Hard

60%

Linear Prog.

27%

Scientific
Comp. 6%

Lin
ea

r
Al

ge
br

a 2
4%

Calculus
31%

Discrete Math.
32%

Linear Algebra
2%

Calculus
22%

Disc
ret

e M
ath

.

20%

Math. Physics
11%

Numerical Comp.
8%

Numerica
l & Simulati

on

32%Sy
m

bo
lic

 &
 A

na
ly

ti
ca

l
33

 %

Algorithmic & Discrete

35%

Nu
me

ric
al

op
t.

37
%

Calculus & Diff.
Equations 51%

An
aly

tic
al

So
lvi

ng
47

%

Symbolic Calculus

41%

Expression
Manipulation 12%

Search & Dynamic
Programming 39% Combinatorics &

Enumeration 53%

(a) Distribution of subjects (b) Taxonomy of Computational Tasks in MMRC (c) Benchmark statistics

Figure 2: Statistical overview of the MMRC dataset. (a) Distribution of mathematical subjects
across the MMRC-Base (N=200) and MMRC-Hard (N=300) subsets. (b) Distribution of problems
among the three major code usage categories. (c) Detailed statistics of the benchmark, including
problem counts by subset and subject.

models to alternate between natural language reasoning and computational execution, an ability we
consider essential for solving complex tasks.

Subjects Coverage. Unlike other benchmarks for complex mathematical problems that emphasize
increasingly advanced knowledge beyond the practical scope of many models, MMRC is designed to
evaluate general mathematical–code reasoning ability. Its coverage focuses on standard university-
level mathematics while maintaining broad disciplinary diversity. As shown in Figure 2(a) and
Figure 2(c), the dataset spans a wide range of subjects, including calculus, discrete mathematics,
linear algebra, linear programming, mathematical physics, numerical computation, and scientific
computing.

Code Usage Coverage Code execution enables LLMs to reduce reliance on natural language rea-
soning, lowering computational overhead while improving accuracy. For instance, computing the
eigenvalues of a five-dimensional matrix is far more efficient than predicting them through token
generation. MMRC tasks are therefore designed to test a hybrid reasoning-execution paradigm: rea-
soning and modeling are expressed in text, while final results are obtained through code execution.
As shown in Figure 2(b), the code spans three major categories: (1) Numerical and Simulation,
such as large-scale matrix operations and differential equation solving; (2) Algorithmic and Discrete
Methods, including recursive search and dynamic programming; and (3) Symbolic and Analytical
Computation, covering expression manipulation and equation solving. Detailed definitions and rep-
resentative examples are provided in Appendix B.

3.2 DATA CURATION PIPELINE

Data Collection and Rewriting. To build a high-quality dataset, we collaborated with mathematics
students from leading universities worldwide, primarily at the PhD and Master’s level. They con-
tributed to both problem creation and verification, covering domains such as calculus, linear algebra,
probability theory, and operations research. To broaden coverage, experts from the natural sciences
also provided domain-specific problems. Although MMRC does not aim to require highly advanced
knowledge, strict accuracy and methodological rigor were enforced. Each contributor was assigned
only to areas they had studied or applied within the past year, and all followed a structured workflow
to organize and refine their problems.

Collection.The effectiveness of MMRC depends on the quality of its problems, each of which must
satisfy two requirements. Scalable Computational Complexity: Problems should extend to large-
scale tasks, not only by increasing numerical size but also by enriching computational logic through
deeper recursion or more complex iterative structures. Robust Reasoning Demand: Problems must
preserve substantial reasoning complexity, ensuring they challenge both natural language reasoning
and computational procedures. This dual focus provides a rigorous test of a model’s ability to
perform code-assisted reasoning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A
ns

w
er

This forms a linear programming (LP)
problem with linear objective and
constraints, solvable via an LP solver.
Due to the large computation load
of manual solving, we will convert
the above objective and constraints
into a mathematical

Q
ue

st
io

n

Stage 1: Define Decision
Variables Identify the core
variables to model the problem:
Let \(x_{f,c} \) represent the
area (in hectares)
Here, we

Text
def count_colorings():
 n = len(graph)
 if n == 0:
 return 1
 color_assignment = [-1] * n
 def is_safe(vertex, color):
 for i in range(n):

Code

Text

Code

… Finally, based on the code
results, we obtain 2.3 × 10⁻⁴
as a calculation result. Next,
we will conduct verification
on whether this number is
correct. Firstly,

Text

Code

Text

Logic Checking

Text

Code

Text

Code

Text

Text

Text

Text

Result

Result

Act as a professional mathematician. I’ll
provide a problem statement and solution.
Please conduct a rigorous
 logical review of its validity, focusing
closely on: (1) whether each step flows …

Code Checking

Text

Code

Text

Code

Text

LLM Test Platform
Result2Result1

Result2Result1

Output

Given Output

LLM

Final Checking

D
ata Collection

Prelim
inary A

I Checking
Post Checking

Text

Code

Answ
er

Result

Text

Code
Result

Text

LLM

Random ScreeningCross-Validation

Error rate > 80%

High-Frequency Error Review

Data Item

Data Item

Data Item

Data Item

Data Item

Data Item

Data Item

Data Item

In-domain

Data item5Data item4Data item3Data item2
Data item1

Data item5Data item4Data item3Data item2
Data item1

Choosing
10 items

Code

Text

Text

Text Result

Result

Code Answ
er

z

Data Item

…

Experiments

LLMs

Result Count Error
Rate

>80%
…

Figure 3: Verification pipeline of the MMRC dataset. The process consists of two stages: AI-
based preliminary checking during data construction and human post-review after compilation. The
preliminary stage includes three steps: logic consistency validation, code execution with result com-
parison, and a final acceptance decision made by a large language model. The post-review stage
further ensures quality through cross-validation among contributors, re-examination of high-error
problems, and random expert screening, where only subsets with all sampled problems passing are
approved for release.

Rewriting. The original problems, though complex, did not fully meet our requirement that
language-only reasoning should fail. We therefore adapted intermediate steps by replacing numeri-
cal data and computational logic with much larger values, substantially increasing complexity.

Code Generation and Result Computation. The expanded logic was intended to encourage solutions
through executable code rather than long-form natural language reasoning. Contributors worked in
a standardized Python environment with basic computational libraries. They generated executable
code, embedded it into the problems, and computed the final solutions.

Review and Submission. Each problem underwent verification through code execution. Contributors
submitted a complete package consisting of the original problem and solution, the adapted version, a
description of the adaptation process, all code snippets, execution results, and source documentation.

Data Verification. Since MMRC problems are extensively adapted from their original sources, both
reasoning logic and computational steps may diverge considerably. Ensuring correctness therefore
requires a rigorous verification pipeline that goes beyond simple numerical checks. As illustrated in
Figure 3, the process consists of two stages: a preliminary AI-based review during data construction
and a comprehensive human review after dataset compilation.

Preliminary AI Checking. Each finalized problem undergoes a three-step automated check: (1) Logic
check: Code outputs are substituted into the reasoning chain to confirm consistency. (2) Code check:
Programs are executed in a standardized environment, and results are compared with the logic check
while monitoring for errors. (3) Final check: A large model integrates these results to produce the
acceptance decision.

Post Human Review. After compilation, problems are reviewed through three complementary mech-
anisms: (1) Cross-validation: Contributors in the same domain review each other’s problems using
the original solutions. (2) High-error review: Problems with high error rates in preliminary experi-
ments are re-examined. (3) Random Screening: Senior experts review ten problems per domain, and
only datasets where all sampled problems pass are approved for release.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 EVALUATION FRAMEWORK

To rigorously evaluate model capabilities on the MMRC dataset, we designed a comprehensive
evaluation framework. It assesses models across three distinct inference modes designed to probe
different facets of their reasoning and tool-use abilities, coupled with a robust, two-stage verification
protocol for accurate assessment.

Our framework probes model capabilities via three distinct modes: Internal Reasoning (IR), for
baseline tool-free problem-solving; Code-Invoked Reasoning (CIR), for generating a complete
solution as a single program; and Math-Code Agent (MCA), for iterative problem-solving with
a code interpreter. The critical difference between the two tool-assisted modes is that CIR tests a
model’s ability for comprehensive, “one-shot” programmatic planning, whereas MCA evaluates its
capacity for interactive reasoning and step-by-step refinement based on execution feedback.

To handle the diverse answer formats in MMRC, our two-stage verification protocol first uses a
powerful LLM judge for efficient initial triage. Cases marked as Uncertain are then passed to a
second-stage formal verifier, which uses a symbolic mathematics library for a definitive and precise
judgment. A detailed exposition of this framework, including the evaluation modes, verification
protocol, prompts, and environment setup, is provided in Appendix C.

4 EXPERIMENTS

To systematically evaluate the ability of modern LLMs to integrate reasoning with code, we con-
ducted a comprehensive set of experiments on the MMRC benchmark. These experiments address
three central questions: how accuracy varies across models and reasoning paradigms when compar-
ing analytically tractable problems in the base set with code-dependent problems in the hard set;
what computational costs, measured in token consumption, are associated with different solution
strategies and how these costs relate to performance; and what predominant failure modes arise
when models attempt to solve complex problems, revealing the key bottlenecks in current reasoning
and coding abilities.

4.1 EXPERIMENTAL SETUP

Evaluation Protocol. Our evaluation spans the base and hard subsets, testing models under three
inference modes (IR, CIR, and MCA) and two prompting styles inspired by cognitive frame-
works (Kahneman, 2011; Wei et al., 2022b). Fast models directly generate answers in a single
pass (e.g., DEEPSEEK V3), while slow models produce explicit reasoning or plans before giving
final solutions (e.g., DEEPSEEK R1). We evaluate 20 representative LLMs, including proprietary,
open-source, and math/code-specialized models. The full model list with versions, API endpoints,
and other information is provided in Appendix D.

Execution and Decoding. All experiments used greedy decoding (temperature 0) with a maximum
context of 128k tokens and a per-turn output limit of 60k tokens. MCA mode was capped at 10
iterations. For coding-augmented modes (CIR and MCA), code was executed in a secure Python
sandbox with a 30-second timeout and 512MB memory limit. Additional details on the environment
and prompts are provided in Appendix C.3 and Appendix C.4.

Overview of Analysis. Table 2 summarizes the overall evaluation results. The following sections
examine these findings in relation to our research questions: §4.2 analyzes accuracy trends, §4.3
evaluates efficiency, and §4.4 provides an error analysis.

4.2 MAIN RESULTS: ACCURACY ANALYSIS

The accuracy results in Table 2 and Figure 4 highlight three main findings on integrated mathemati-
cal reasoning.

MMRC validates the necessity of code execution. A sharp performance drop from the base to
the hard set confirms the benchmark design. For example, DEEPSEEK V3.1-FAST falls from 84.4%
(IR, base) to 24.1% (IR, hard). Even the best hard-set accuracy, 43.4% by CLAUDE 4 SONNET-FAST
with CIR, remains modest, underscoring the challenge of robustly combining reasoning with code.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Main Results on Base and Hard Questions. Bold numbers indicate the best performance
within each column

Model
Metric IR CIR MCA

Base Hard Base Hard Base Hard

ACC Tok ACC Tok ACC Tok ACC Tok ACC Tok ACC Tok

O
pe

n-
so

ur
ce

M
od

el
s

DeepSeek R1-slow 61.3% 3.8k 0.5% 0.4k 81.1% 5.1k 29.7% 6.0k 76.9% 4.7k 13.7% 5.3k
- - - - +19.8% +1.2k +29.2% +5.6k +15.6% +0.9k +13.2% +5.0k

DeepSeek V3-fast 73.6% 1.1k 15.6% 2.1k 70.3% 0.3k 25.9% 0.5k 75.5% 1.0k 29.7% 1.9k
- - - - -3.3% -0.8k +10.4% -1.5k +1.9% -0.1k +14.2% -0.1k

DeepSeek V3.1-fast 84.4% 1.3k 24.1% 2.9k 72.6% 0.4k 30.2% 0.7k 87.7% 1.6k 40.1% 3.6k
- - - - -11.8% -0.9k +6.1% -2.2k +3.3% +0.3k +16.0% +0.7k

GLM-4.5 Air-fast 74.1% 1.7k 10.8% 10.6k 63.7% 0.4k 18.9% 1.0k 75.5% 2.9k 26.9% 6.4k
- - - - -10.4% -1.3k +8.0% -9.5k +1.4% +1.2k +16.0% -4.1k

GLM-4.5 Air-slow 76.9% 13.0k 22.6% 40.8k 81.1% 33.7k 26.9% 41.8k 78.3% 37.7k 18.4% 50.3k
- - - - +4.2% +20.6k +4.2% +1.0k +1.4% +24.7k -4.2% +9.5k

LLaMA 4 Scout-fast 61.3% 1.0k 6.6% 1.2k 66.5% 0.3k 15.6% 0.5k 70.8% 1.1k 16.0% 1.8k
- - - - +5.2% -0.6k +9.0% -0.7k +9.4% +0.1k +9.4% +0.6k

Qwen3 235B-fast 74.5% 1.5k 10.8% 2.5k 71.2% 0.3k 22.2% 0.5k 76.4% 1.1k 29.7% 2.5k
- - - - -3.3% -1.2k +11.3% -2.0k +1.9% -0.4k +18.9% -0.0k

Qwen3 235B-slow 83.0% 14.5k 29.2% 28.0k 81.6% 14.7k 36.8% 20.7k 79.7% 14.8k 29.7% 26.2k
- - - - -1.4% +0.2k +7.5% -7.4k -3.3% +0.3k +0.5% -1.9k

Qwen3 32B-fast 73.1% 2.9k 8.5% 12.9k 26.9% 17.0k 9.0% 10.4k 73.6% 1.3k 24.5% 3.8k
- - - - -46.2% +14.2k +0.5% -2.5k +0.5% -1.6k +16.0% -9.1k

Qwen3 32B-slow 80.7% 16.8k 22.2% 45.8k 35.4% 23.9k 23.1% 29.0k 75.9% 16.1k 22.6% 41.6k
- - - - -45.3% +7.0k +0.9% -16.8k -4.7% -0.8k +0.5% -4.1k

Qwen3 8B-fast 64.6% 1.8k 6.6% 8.9k 54.7% 0.6k 12.7% 1.6k 68.4% 1.0k 15.1% 3.5k
- - - - -9.9% -1.2k +6.1% -7.3k +3.8% -0.8k +8.5% -5.4k

Qwen3 8B-slow 80.2% 22.9k 18.9% 49.0k 76.9% 14.7k 29.2% 29.9k 78.8% 17.6k 19.8% 45.8k
- - - - -3.3% -8.2k +10.4% -19.1k -1.4% -5.3k +0.9% -3.1k

Pr
op

ri
et

ar
y

M
od

el
s Claude 4 Sonnet-fast 83.0% 1.1k 17.0% 1.3k 84.4% 0.8k 43.4% 1.2k 83.5% 3.7k 34.0% 3.7k

- - - - +1.4% -0.3k +26.4% -0.1k +0.5% +2.6k +17.0% +2.4k
Gemini 2.5 Flash-slow 81.6% 5.5k 20.3% 19.7k 79.2% 3.6k 34.9% 14.3k 80.7% 6.5k 31.1% 20.8k

- - - - -2.4% -1.9k +14.6% -5.4k -0.9% +1.0k +10.8% +1.1k
Gemini 2.5 Flash Lite-fast 84.4% 6.9k 24.5% 31.9k 78.8% 6.3k 30.7% 16.6k 85.4% 5.7k 24.1% 24.5k

- - - - -5.7% -0.6k +6.1% -15.4k +0.9% -1.3k -0.5% -7.4k
Gemini 2.5 Pro-slow 82.5% 5.7k 33.0% 14.9k 71.2% 5.5k 32.5% 11.8k 70.8% 6.2k 36.8% 12.1k

- - - - -11.3% -0.2k -0.5% -3.1k -11.8% +0.6k +3.8% -2.8k

Sp
ec

ia
liz

ed
M

od
el

s Mathstral 7B-fast 27.4% 0.9k 0.5% 1.2k 29.2% 0.3k 1.4% 0.5k 32.5% 1.5k 5.7% 1.9k
- - - - +1.9% -0.6k +0.9% -0.7k +5.2% +0.5k +5.2% +0.7k

Qwen2.5-Math 72B-fast 56.6% 1.0k 4.7% 1.1k 62.7% 0.8k 11.8% 0.9k 59.0% 0.9k 3.3% 1.1k
- - - - +6.1% -0.2k +7.1% -0.2k +2.4% -0.0k -1.4% -0.0k

Qwen2.5-Math 7B-fast 49.1% 0.8k 2.4% 1.0k 57.1% 0.6k 8.5% 0.8k 47.6% 0.9k 2.4% 1.1k
- - - - +8.0% -0.2k +6.1% -0.3k -1.4% +0.1k +0.0% +0.1k

Qwen3-Coder 30B-fast 55.7% 2.2k 7.5% 4.2k 73.6% 0.7k 22.6% 3.6k 63.7% 3.0k 21.2% 4.7k
- - - - +17.9% -1.5k +15.1% -0.6k +8.0% +0.8k +13.7% +0.4k

Code augmentation is not universally beneficial. On the base set, where problems remain an-
alytically tractable, forcing code often reduces accuracy. QWEN3-32B-SLOW drops from 80.7%
(IR) to 35.4% (CIR). MCA mode is more stable, as its flexibility helps avoid unnecessary tool calls,
showing that code should be used selectively.

On hard problems, coding is indispensable. For the hard set, both CIR and MCA consistently
outperform IR. CIR often provides reliable gains (e.g., QWEN3-235B-SLOW: 29.2% IR → 36.8%
CIR). The best overall result is also achieved under the CIR mode, with CLAUDE 4 SONNET-FAST
reaching 43.4%. Further analysis of CIR and MCA modes, as well as the impact of the fast vs. slow
setting, is provided in Appendix E.

4.3 ANALYSIS OF COMPUTATIONAL COST

Beyond accuracy, computational cost measured by token consumption is a critical factor for assess-
ing the practical viability of different problem-solving strategies. Our analysis based on the Tok
data in Table 2 shows that the relationship between cost and performance is nuanced, revealing both
opportunities for efficiency and risks of inefficiency.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIR MCA IR Base Hard Fast Slow

Gem
ini

 2.5
 Pro

Qwen3
 23

5B

Gem
ini

 2.5
 Flas

h L
ite

Deep
Seek

 V3.1

GLM-4.
5 A

ir

Qwen3
 32

B

Gem
ini

 2.5
 Flas

h

Qwen3
 8B

Clau
de

4 S
onn

et

Deep
Seek

 V3

Qwen3
 23

5B

GLM-4.
5 A

ir

Qwen3
 32

B

Qwen3
-Code

r 3
0B

Qwen3
 8B

LLaM
A 4 S

cou
t

Qwen2
.5-

Math
 72

B

Qwen2
.5-

Math
 7B

Deep
Seek

 R1

Math
stra

l 7B

103

104

To
ke

ns

Figure 4: Overall accuracy on the MMRC base and hard subsets. This figure provides a high-
level comparison of model performance across different settings, highlighting the stark difficulty
increase on the hard set.

Code as a reasoning compressor on the base set. Tool-augmented modes often consume fewer
tokens than pure IR because analytically tractable problems still require lengthy step-by-step deriva-
tions in text. Code provides a compact representation. This effect is most evident in slow models
with high IR costs. For example, QWEN3-32B-SLOW reduces its usage from 45.8k (IR) to 29.0k
(CIR), saving more than 15k tokens.

Efficiency of MCA vs. CIR depends on model style. Neither tool-augmented mode is consis-
tently more efficient. Fast models often benefit from MCA due to concise tool calls, while slow
models gain more from CIR, which replaces long reasoning traces with a single script. For instance,
DEEPSEEK V3.1-FAST saves 2.2k tokens in CIR compared to IR, whereas MCA slightly increases
cost.

The efficiency trap. Higher token consumption does not guarantee higher accuracy, particularly
on the hard set. MCA is prone to unproductive iterative loops. For example, GLM-4.5 AIR-SLOW
achieves 26.9% accuracy with 41.8k tokens in CIR, but only 28.4% with 50.3k tokens in MCA. This
shows that efficient and well-structured strategies outperform verbose ones prone to reasoning drift.

4.4 ERROR ANALYSIS

The distribution of errors is highly model-dependent, reflecting differences in architecture and train-
ing. Some models perform well in CIR by generating correct programs in one pass but struggle
with iterative MCA refinement, while others adapt better interactively yet fail at producing com-
plex monolithic scripts. In the main analysis, we focus on GEMINI-2.5-PRO, whose strong overall
accuracy makes its failure modes particularly informative. To diagnose errors systematically, we
map them onto a reasoning-to-code pipeline: (1) Understanding—grasping the problem and con-
straints; (2) Reasoning—formulating the correct abstract plan and mathematical model; (3) Imple-
mentation—translating the plan into correct code logic; (4) Syntax—producing syntactically valid
programs; and (5) Format—adhering to output specifications. This framework enables us to locate
failures within specific cognitive stages rather than merely counting them, with detailed examples
provided in Appendix G.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Distribution of error types in MCA

Reasoning
45.1%

Un
de
rst
an
din
g

31
.4%

Implementation

22.5% Format
1.0%

(b) Distribution of error types in CIR

Syntax
36.4%

Im
pl
em

en
ta
ti
on

28
.0
%

Understanding
22.0%

Re
aso
nin
g

13
.1% Format

0.5%

Figure 5: Distribution of error types under the MCA and CIR modes for GEMINI-2.5-PRO.
The error profiles differ dramatically, highlighting how each mode tests different aspects of the
model’s capabilities.

Analysis of errors inherent to the method Our error analysis reveals a clear contrast between
the two execution modes. In the CIR setting, where the model must deliver a full solution in a
single attempt, failures are dominated by Syntax (36.4%) and Implementation (28.0%) errors,
highlighting the brittleness of monolithic planning: a single slip at the coding level derails the entire
solution. This reflects the unrealistic demand that the model simultaneously act as both a precise
mathematician and a flawless programmer. In contrast, the MCA mode, which allows iterative
interaction with an interpreter, almost eliminates syntax-level issues (1.0%) by leveraging feedback
for local corrections. Yet this advantage reveals a deeper limitation: errors shift predominantly
to Reasoning (45.1%) and Understanding (31.4%), showing that even when surface-level coding
problems are resolved, the model often constructs fundamentally flawed plans. Taken together, these
results suggest that CIR exposes fragility in execution, while MCA exposes fragility in reasoning,
offering complementary perspectives on model limitations.

Comparison between Methods When comparing error sources between MCA and CIR, we find
that Understanding is a major failure mode in both settings, with comparable proportions, indi-
cating that misinterpretation of the problem statement almost always invalidates subsequent rea-
soning. A similar pattern holds for Implementation errors. However, the two modes diverge
sharply in coding-related failures: while MCA exhibits almost no code errors, CIR shows a high
incidence of such mistakes (dominated by the Syntax category in Figure 5), reinforcing that in-
teractive agent–environment feedback is critical for reliable task completion and that single-shot
execution remains insufficient. Moreover, the proportion of Reasoning errors is higher in MCA
than in CIR, often because the model over-suspiciously questions correct intermediate code results,
reflecting a lack of training in effectively leveraging program outputs. Taken together, this high-
lights a central dilemma in math-code reasoning: CIR is brittle due to coding failures, while MCA
exposes deeper reasoning flaws. Simply adding tools is insufficient—poor reasoning fails regardless
of coding, and unreliable coding prevents sound reasoning from being executed. Progress therefore
hinges on improving both intrinsic reasoning and reasoning-in-the-loop, aiming to build models that
integrate robust reasoning with reliable coding.

5 CONCLUSION

In this work, we introduced MMRC, a benchmark of 500 curated problems designed to evaluate
the integration of mathematical reasoning and code execution in large language models. By focus-
ing on university-level mathematics and deliberately imposing substantial computational workloads,
MMRC moves beyond text-only benchmarks and enforces the use of executable code for accurate
solutions. Our evaluation of nearly 120 open- and closed-source models under both program-aided
and agent-based paradigms shows that code integration consistently improves performance on com-
plex tasks while reducing token usage. These results establish MMRC as the first systematic bench-
mark for math–code integrated reasoning and highlight its value in advancing LLMs toward real-
world problem solving. Looking ahead, MMRC opens opportunities for developing models that can
more seamlessly combine symbolic reasoning with computational execution, paving the way for
LLMs to tackle increasingly sophisticated tasks in science, engineering, and beyond.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work primarily introduces and analyzes a new dataset for evaluating how large language models
(LLMs), in combination with programmatic tools, can tackle complex mathematical reasoning tasks.
While our emphasis is on dataset design and evaluation protocols rather than human data collection,
we acknowledge the following ethical considerations and limitations:

• Model licensing and usage compliance. Some of the evaluated LLMs are proprietary, with usage
governed by license agreements. We ensure that all API calls and usage adhere to the providers’
terms of service. All prompt templates, wrapper code, and evaluation scripts we release respect
these licenses and do not reverse engineer or redistribute proprietary weights.

• Data provenance and reuse. Our MMRC benchmark is derived from existing mathematical
reasoning sources (e.g. textbooks, problem sets) via human adaptation. We verify that the original
sources allow non-commercial reuse or are in public domain. We also screen for inadvertent
overlaps with model training data (contamination) and remove suspicious items from evaluation.

• Misuse potential. Since our work focuses on releasing a benchmark dataset rather than an in-
teractive solving system, we do not anticipate direct risks of enabling academic dishonesty (e.g.,
homework or exam solving). The dataset and accompanying code are intended strictly for research
purposes, and we encourage responsible use within the scientific community.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To support the verification and
extension of our findings, we provide comprehensive details of our experimental methodology in
the main paper and appendices.

• Experimental Setup: We provide a detailed description of our experimental setup, hyperparam-
eters, and evaluation protocols in Section 4 and Appendix C.

• Model Specifications: Key details of all evaluated models, including their exact versions and
configurations, are thoroughly documented in Appendix D.

• Data and Code Availability: The MMRC benchmark dataset and the source code used to gener-
ate the results in this paper will be made publicly available upon publication.

REFERENCES

American invitational mathematics examination (aime2024), February 2024 URL
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2025.
Product announcement and system card (May 22, 2025).

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, et al. Palm: Scaling language modeling with
pathways. 2022. Google Research / arXiv.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

10

https://www.anthropic.com/news/claude-4

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jingxuan Fan, Sarah Martinson, Erik Y Wang, Kaylie Hausknecht, Jonah Brenner, Danxian Liu, Ni-
anli Peng, Corey Wang, and Michael P Brenner. Hardmath: A benchmark dataset for challenging
problems in applied mathematics. arXiv preprint arXiv:2410.09988, 2024.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint
arXiv:2411.04872, 2024a.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint
arXiv:2411.04872, 2024b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025b.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 523–533, 2014.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hynek Kydlı́ček. Math-Verify: Math Verification Library. URL https://github.com/
huggingface/math-verify.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought?
a token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Saracino, Giorgio Buttazzo, Nicolamaria
Manes, and Fabrizio Giacomelli. Concise thoughts: Impact of output length on llm reasoning and
cost. arXiv preprint arXiv:2407.19825, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning. arXiv preprint arXiv:2409.12183, 2024.

Haoxiang Sun, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu, Zhongyuan
Wang, and Ji-Rong Wen. Challenging the boundaries of reasoning: An olympiad-level math
benchmark for large language models. arXiv preprint arXiv:2503.21380, 2025.

Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. Mm-math: Advancing multimodal math eval-
uation with process evaluation and fine-grained classification. arXiv preprint arXiv:2404.05091,
2024.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024.

12

https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Yibo Yan, Jiamin Su, Jianxiang He, Fangteng Fu, Xu Zheng, Yuanhuiyi Lyu, Kun Wang, Shen Wang,
Qingsong Wen, and Xuming Hu. A survey of mathematical reasoning in the era of multimodal
large language model: Benchmark, method & challenges. arXiv preprint arXiv:2412.11936,
2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shuo Yin, Weihao You, Zhilong Ji, Guoqiang Zhong, and Jinfeng Bai. Mumath-code: Combin-
ing tool-use large language models with multi-perspective data augmentation for mathematical
reasoning. arXiv preprint arXiv:2405.07551, 2024.

Albert S Yue, Lovish Madaan, Ted Moskovitz, DJ Strouse, and Aaditya K Singh. Harp: A challeng-
ing human-annotated math reasoning benchmark. arXiv preprint arXiv:2412.08819, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen. Evalu-
ating and improving tool-augmented computation-intensive math reasoning. Advances in Neural
Information Processing Systems, 36:23570–23589, 2023.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu, Jindong Wang, Derek F Wong, Xiaowei Huang,
Qiufeng Wang, and Kaizhu Huang. Is your model really a good math reasoner? evaluating
mathematical reasoning with checklist. arXiv preprint arXiv:2407.08733, 2024.

Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, and Huan Zhang. Dynamath: A
dynamic visual benchmark for evaluating mathematical reasoning robustness of vision language
models. arXiv preprint arXiv:2411.00836, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large Language Models (LLMs) were utilized in several capacities in this work. Primarily, LLMs
are the subject of our study, as we evaluate their capabilities using the MMRC benchmark. An LLM
was also used as a component in our evaluation methodology to perform an initial triage of answers,
and as an assistant for the linguistic polishing of this manuscript, including tasks like grammar
checking and improving clarity.

The core scientific work, including the ideation and design of the MMRC benchmark, the experi-
mental methodology, and the analysis of results, was conducted entirely by the human authors. The
LLM’s role was strictly limited to the functions described above, with no contribution to the research
ideas or findings. The authors take full responsibility for all content in this paper and have verified
the accuracy of any text assisted by the LLM.

B CODE USAGE DETAILS

Table 3: Taxonomy of Computational Methods in MMRC Problems. This table outlines the
classification system used to analyze Python solutions, categorized by their core computational
paradigm.

Code Category Description Typical Libraries & Functions
Major Category 1: Numerical & Simulation (NS)
Methods employing numerical computation and simulation techniques for approximate solutions.

NS-LA Numerical Linear
Algebra

Solving systems of linear equations, eigenvalue problems,
or other large-scale matrix operations. numpy.linalg.solve, numpy.linalg.eig

NS-OPT Numerical
Optimization

Finding the minimum or maximum of a continuous function, including
non-linear optimization and linear programming. scipy.optimize.minimize, scipy.optimize.linprog

NS-CDE Calculus & Diff.
Equations

Numerically computing integrals, derivatives, roots,
or solving ordinary differential equations (ODEs). scipy.integrate.quad, scipy.integrate.solve ivp

NS-SIM Stochastic
Simulation

Using random sampling to model stochastic processes or to estimate
numerical quantities (e.g., Monte Carlo methods). numpy.random, random, statistics

Major Category 2: Algorithmic & Discrete (AD)
Methods for problems in discrete domains, focusing on exact solutions via structured exploration.

AD-CMB Combinatorics &
Enumeration

Counting or generating permutations, combinations, or subsets by
systematically iterating through discrete solution spaces. itertools, math.comb, math.perm

AD-SDP Search & Dynamic
Programming

Algorithms based on recursion, search (e.g., tree/graph traversal),
or dynamic programming to find solutions. custom recursive functions, functools.lru cache

AD-NT Number Theory
Algorithms

Problems involving prime numbers, modular arithmetic, greatest common
divisors, or other number-theoretic properties. math.gcd, pow(a,b,m)

Major Category 3: Symbolic & Analytical (SA)
Methods that manipulate mathematical expressions to find exact, symbolic solutions.

SA-MAN Expression
Manipulation

Simplifying, expanding, factoring, or transforming mathematical expressions
without numerical evaluation. sympy.simplify, sympy.expand

SA-SLV Analytical
Solving

Finding exact symbolic solutions to equations, systems of equations,
or differential equations. sympy.solve, sympy.dsolve

SA-CAL Symbolic
Calculus

Computing derivatives, integrals, limits, or series expansions
symbolically rather than numerically. sympy.diff, sympy.integrate, sympy.limit

This appendix provides a detailed breakdown of the code usage taxonomy developed for the MMRC
benchmark. As introduced in the main text, a core feature of MMRC is its requirement for models to
master a diverse range of computational tasks using code. To facilitate a systematic and fine-grained
analysis of these requirements, we organized the problems into a three-tiered classification system
based on their core computational paradigm.

The following Table 3 presents this taxonomy in full detail. It expands upon the three major cat-
egories introduced previously—Numerical & Simulation (NS), Algorithmic & Discrete (AD), and
Symbolic & Analytical (SA)—by breaking them down into ten distinct subcategories. For each sub-
category, the table provides its definition, a unique code, and a list of representative Python libraries
and functions typically required for its solution.

C EVALUATION DETAILS

This appendix provides a detailed exposition of the evaluation framework used for the MMRC
benchmark, as introduced in Section 3.3. The overall process, from inference modes to the two-
stage verification protocol, is illustrated in Figure 6.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

To solve this problem I should first ...
Then ...

...
Finally ...

The Final answer is :

xxx

To solve this problem I should write
some python code ...

```python
from xxx import xxx
print(xxx)
```

Std output

The final answer is xxx

Should I use tools?
How can I fix the bug?

Can I answer the questions now?

I need to use tool...

The tool result is: xxx

I can solve it by myself

Something wrong ...

The Final answer is :

xxx

Ok. I can answer now Let me fix the bug ...Reasoner

Planner

Tool

IR CIR

MCA

Evaluation

Ground Truth AnswerAI Answer

Need Help

Figure 6: Illustration of the complete inference and evaluation framework for the MMRC
benchmark. It depicts the three distinct inference modes (IR, CIR, MCA) and the subsequent two-
stage answer verification protocol.

C.1 INFERENCE MODES

To provide a holistic view of model performance, we evaluate each model under three inference
modes, each designed to probe a specific aspect of a model’s reasoning and coding capabilities.

Internal Reasoning (IR). This mode measures a model’s intrinsic mathematical reasoning without
external computational aid. It serves as a baseline for a model’s capacity for internal calculation
and logical deduction. Models are prompted using the Chain-of-Thought paradigm to ”think step
by step” and articulate their intermediate reasoning in natural language (Wei et al., 2022b). For
standardized answer extraction, the model must present its final answer enclosed in a \boxed{}
environment, a common convention in mathematical benchmarks (Hendrycks et al., 2021; Sun et al.,
2024).

Code-Invoked Reasoning (CIR). This mode assesses the model’s ability to structure a complete
programmatic solution and offload computation to an external tool. Inspired by the Program-Aided
Language (PAL) approach (Gao et al., 2023), the model is prompted to translate its entire solution
into a single, self-contained Python script, embedding its reasoning as comments. The generated
script is then executed by a Python interpreter and must print the final answer to standard output in
the format Final Answer: <result>.

Math-Code Agent (MCA). The DE mode evaluates iterative problem-solving and the dynamic use
of coding tools (Yan et al., 2024). In our setup, the model is connected to a Python interpreter and
operates in a loop of reasoning, optional code execution, and observation. It acts as both a reasoner
and a planner (Yan et al., 2024), deciding when to invoke code, which libraries to use, and how
to incorporate execution results into subsequent reasoning steps. The model may perform multiple
cycles of thought, action (code execution), and observation to correct errors and refine its approach,
which is critical for multi-step computational tasks.

To ensure a fair comparison, both PS and DE modes run within an identical, secure Python sandbox.

C.2 TWO-STAGE ANSWER VERIFICATION PROTOCOL

Given the diverse nature of answers in MMRC, which can range from single numerical values to
complex expressions or sets, a simple string match is insufficient for accurate evaluation. We there-
fore employ a robust, two-stage evaluation protocol that combines the efficiency of an LLM judge
with the precision of a formal verifier, as depicted in Figure 6.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Stage 1: LLM Judge for Initial Triage. In the first stage, we utilize a powerful LLM judge (e.g.,
GPT-4o) to perform an initial assessment. The judge is provided with the problem description, the
model’s extracted answer, and the ground-truth answer. Its task is to classify the response into one
of three categories: Correct, Incorrect, or Uncertain. For straightforward cases involving
simple numerical or textual comparisons, the LLM judge can often make a definitive ruling.

Stage 2: Formal Verification for Ambiguous Cases. When the LLM judge outputs Uncertain,
it typically signifies a scenario requiring formal verification. This often occurs when the model’s
output is a complex symbolic expression while the ground truth is a numerical value (or vice-versa).
In such cases, the LLM judge is further prompted to extract the model’s answer as a formal LaTeX
expression. This expression is then passed to a second-stage verification module. This module,
inspired by the methodology of the Math-Verify project (Kydlı́ček), uses a symbolic mathematics
library (e.g., SymPy) to compute the exact value of the expression. The computed value is then
compared against the ground-truth answer with a predefined tolerance to make a final, authoritative
judgment.

C.3 PYTHON SANDBOX ENVIRONMENT

All programmatic computations used by the benchmark (numerical calculations, linear algebra, op-
timization, and symbolic operations) are executed inside a controlled Python sandbox. The sandbox
is exposed via a single programmatic interface.

Python Executor Interface

Function signature:
python_executor(query: str) -> str

The function accepts a Python source string query, executes it in an isolated process, and
returns the captured stdout as a UTF-8 string. To standardize output parsing, user code
is expected to explicitly emit final results using print(). If execution fails, the returned
string contains the full Python traceback (with error type and the failing line number relative
to the supplied query), facilitating automated debugging.

A canonical example call is:
code = "import math\nprint(f’sqrt(25) = {math.sqrt(25)}’)"
out = python_executor(code)
out == "sqrt(25) = 5.0\n"

If an error occurs, the returned string contains the traceback (example format):
Traceback (most recent call last):

File "<string>", line 3, in <module>
ZeroDivisionError: division by zero

Supported / curated libraries. For the automated agents and evaluation harness we restrict and en-
dorse a compact scientific stack. The core approved libraries and their versions used in experiments
are shown in Table 4.

Execution constraints and safety. To ensure deterministic, safe, and reproducible runs we enforce
the following runtime constraints for each independent execution of python executor:

• Wall-clock time limit: 30 seconds per call (hard timeout).
• Memory limit: 512 MB resident memory per call.
• Network access: disabled for sandboxed executions (no external HTTP/DNS/socket access).
• Filesystem: writable ephemeral working directory per execution; persistent write access is disal-

lowed. The ephemeral directory is purged on process termination.
• Process isolation: executions run in short-lived isolated processes (container or restricted inter-

preter) with system-call filtering and limited privileges.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Timeouts, memory overflows, or prohibited operations result in an immediate termination and a
returned error string describing the failure mode.

Table 4: Core libraries available to the sandboxed executor environment. Complete package
specifications are detailed in the supplementary materials.

Library Role Version

Third-Party Libraries

numpy Arrays and numerical computations 2.2.6
scipy Optimization, integration, linear algebra, statistics 1.16.1
pandas Tabular data manipulation and analysis 2.3.2
sympy Symbolic mathematics computation 1.14.0

Standard Libraries

math Basic mathematical functions (real numbers) Standard Library
cmath Mathematical functions for complex numbers Standard Library
random Generate pseudo-random numbers Standard Library
statistics Mathematical statistics functions Standard Library
itertools Functions creating iterators for efficient looping Standard Library
functools Higher-order functions and operations on callable ob-

jects
Standard Library

json JSON encoder and decoder Standard Library
re Regular expression operations Standard Library

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.4 PROMPTS

In this section, we present the prompt templates that orchestrate the three inference modes, along
with the judge prompt that evaluates student answers against references. We also describe the.

Tool: python executor

Description:
Executes Python code in a secure sandboxed environment for mathematical and scientific
computations.
This is your primary tool for any task requiring precise numerical computation or data anal-
ysis. You can use this tool for problems involving:
• Mathematical calculations (calculus, algebra, statistics, number theory)
• Linear algebra (matrices, eigenvalues, determinants, decompositions)
• Optimization problems (linear programming, nonlinear optimization)
• Scientific computing (numerical integration, differential equations)
• Data analysis and manipulation
• Complex symbolic mathematics
• Any multi-step calculation that requires precision
IMPORTANT: Always include print() statements to display results. The tool captures
both successful outputs and detailed error information with line numbers for debugging.

Args:
query: A string of valid Python code to execute. Must include print() statements for
output. The code must be syntactically correct Python and use only the allowed libraries.

Available Libraries:
• Core: math, cmath, random, statistics, itertools, functools, json, re
• Arrays & Matrices: numpy (as np), all numpy functions
• Scientific: scipy (optimize, integrate, linalg, special, stats), all scipy

functions
• Symbolic: sympy, all sympy functions (symbols, solve, integrate, diff, etc.)
• Data: pandas (as pd), collections
• Math constants: math.pi, math.e, numpy constants

Returns:
str: Program output or detailed error information with line numbers for debugging. Errors
include the specific line number and error type to help you fix issues.

Examples:
• Basic math: python executor("import math; print(f’sqrt(25) =
{math.sqrt(25)}’)")

• Linear algebra: python executor("import numpy as np;
A = np.array([[1,2],[3,4]]); print(’det(A) =’,
np.linalg.det(A))")

• Optimization: python executor("from scipy.optimize import
minimize; result = minimize(lambda x: x[0]**2, [1]);
print(’minimum at x =’, result.x[0])")

• Symbolic: python executor("from sympy import symbols,
solve; x = symbols(’x’); sol = solve(x**2 - 4, x);
print(’Solutions:’, sol)")

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Internal Reasoning (IR) Mode

System Prompt:
You are an expert mathematician.
Guidelines:
• Read the problem carefully and identify key mathematical concepts
• Show your work step by step with clear reasoning
• Be precise and accurate in calculations
• End with EXACTLY ONE \boxed{final_answer} on the last line

User Prompt:
Problem:
{question}
Please solve this problem step by step and end with EXACTLY ONE
\boxed{final_answer} on the last line.

Math Code Agent (MCA) Mode

System Prompt:
You are an expert mathematician who can execute Python code via the tool
python executor.
Guidelines:
• Read the problem carefully and identify key mathematical concepts
• Show your work step by step with clear reasoning
• If nontrivial computation is needed (calculus, equation solving, matrix ops, statistics, long

arithmetic), FIRST write Python and call python executor. Do NOT fabricate re-
sults.

• Answer format: end with EXACTLY ONE \boxed{final_answer} on the last line.

User Prompt:
Problem:
{question}
Please solve this problem step by step and end with EXACTLY ONE
\boxed{final_answer} on the last line.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Code-Invoked Reasoning (CIR) Mode

System Prompt:
You are an expert mathematician who solves problems by writing Python code.
Your Task:
Instead of solving the problem directly, write a Python program that will solve the problem
for you. Your program should:
• Read and understand the mathematical problem
• Implement the solution logic in Python
• Compute the answer using mathematical calculations
• Output the final answer in the specified format
Available Libraries:
Core: math, cmath, random, statistics, itertools, functools, json, re
Arrays & Matrices: numpy (as np), all numpy functions
Scientific: scipy (optimize, integrate, linalg, special, stats), all scipy functions
Symbolic: sympy, all sympy functions (symbols, solve, integrate, diff, etc.)
Data: pandas (as pd), collections
Math constants: math.pi, math.e, numpy constants
Code Format:
Write your Python code inside ‘‘‘python and ‘‘‘ blocks.
Important Guidelines:
• Write complete, executable Python code
• Include all necessary imports
• Add comments to explain your approach
• ALWAYS end with: print(‘‘Final Answer:’’, your result)
• Ensure your code is mathematically correct and handles edge cases
• Do NOT write any explanation outside the code block
Output Requirements:
• Write ONLY the Python code block, no additional text
• The code should be self-contained and executable
• The final line must print: “Final Answer: [your calculated result]”

User Prompt:
Problem:
{question}
Write a Python program to solve this problem. Your program must end with:
print(‘‘Final Answer:’’, your result)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Judge / Answer-Matching

System Prompt:
You will receive two strings: predicted answer (student) and correct answer (ref-
erence). Your goal is to decide whether the student’s final answers match the reference.
Guidelines
• Extract only the student’s final answers from predicted answer; ignore intermedi-

ate steps.
• Judge mathematical equivalence only.
Defer-to-verify policy
• Only if a clear decision cannot be made but could be settled by simple symbolic/numeric

checks, set:
– "needs math verify": true
– "is correct": false (decision deferred)
– and provide "verify expressions latex".

• Otherwise (clear match/mismatch), set "needs math verify": false and give
final "is correct" with confidence.

STRICT verify expressions latex (when needs math verify=true)
• Canonicalize every item into valid LaTeX math and wrap with $$...$$ (numbers too).
• Auto-convert: use \sin, \cos, \log, \ln, \exp, constants e, π, i.
• Exponential policy: use exp(x) for exponentials; use e only when the constant stands

alone.
• Non-standard multi-letter identifiers: \operatorname{...}.
• Provide an object with equal-length lists in 1–1 correspondence:
{
"ground truth": ["$$...$$", "$$...$$", ...],
"student": ["$$...$$", "$$...$$", ...]
}
Return format (JSON only)
• "is correct": boolean, "confidence": float in [0,1]
• "reasoning": brief string
• "needs math verify": boolean
• "verify expressions latex": object above (only if
needs math verify=true)

User Prompt:
Problem: {question}
Correct Answer: {correct answer}
Student’s Answer: {predicted answer}
Apply the system rubric: extract final answers, match semantically (order/labels irrelevant),
allow small rounding. Use math verify only for simple symbolic/numeric checks (use 1–1
LaTeX lists). Return only the JSON defined above.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D EVALUATED MODELS AND METADATA

This appendix provides a complete list of the LLMs evaluated in our experiments. For each model,
we specify:

• Provider and exact model name / variant used in evaluation,
• Model type (proprietary, open-source, or math/code-specialized),
• Default prompting style in our experiments (Fast or Slow),
• Whether the model natively or indirectly supports our Python sandbox for code execution,
• Tokenizer used for token counting (to normalize across different families),
• Exact API endpoint or repository commit hash to ensure reproducibility,
• Path to the prompt template file released in our public repository,
• Any additional notes, such as non-default decoding hyperparameters.

This information ensures that all reported accuracy and token statistics can be faithfully reproduced
and verified by independent researchers.

Table 5: Overview of Large Language Models. “Total Parameters” refers to the model’s overall size,
while “Active Parameters” indicates the parameters engaged during inference for MoE models.

Model Name Link Total Params Active Params Architecture Enable Reasoning Organization
DeepSeek R1 Guo et al. (2025b) HF Link 671B 37B MoE + Transformer Yes DeepSeek
DeepSeek V3 Liu et al. (2024) HF Link 671B 37B MoE + Transformer No DeepSeek
DeepSeek V3.1 Liu et al. (2024) HF Link 671B 37B MoE + Transformer No DeepSeek
GLM-4.5 Air Zeng et al. (2025) HF Link 106B 12B MoE + Transformer Yes Zhipu AI
LLaMA 4 Scout Meta (2025) HF Link 109B 17B MoE + Transformer No Meta
Qwen3 8B Yang et al. (2025) HF Link 8B 8B Dense Transformer Yes Alibaba
Qwen3 32B Yang et al. (2025) HF Link 32B 32B Dense Transformer Yes Alibaba
Qwen3 235B Yang et al. (2025) HF Link 235B 22B MoE + Transformer Yes Alibaba
Claude 4 Sonnet Anthropic (2025) API Link Undisclosed Undisclosed Undisclosed No Anthropic
Gemini 2.5 Flash Comanici et al. (2025) API Link Undisclosed Undisclosed Undisclosed Yes Google
Gemini 2.5 Flash Lite Comanici et al. (2025) API Link Undisclosed Undisclosed Undisclosed No Google
Gemini 2.5 Pro Comanici et al. (2025) API Link Undisclosed Undisclosed Undisclosed Yes Google
Mathstral 7B Jiang et al. (2023) HF Link 7B 7B Dense Transformer No Mistral AI
Qwen2.5-Math 7B Yang et al. (2024) HF Link 7B 7B Dense Transformer No Alibaba
Qwen2.5-Math 72B Yang et al. (2024) HF Link 72B 72B Dense Transformer No Alibaba
Qwen3-Coder 30B Yang et al. (2025) HF Link 30B 3B MoE + Transformer No Alibaba

22

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
https://huggingface.co/deepseek-ai/DeepSeek-V3-0324
https://huggingface.co/deepseek-ai/DeepSeek-V3.1
https://huggingface.co/zai-org/GLM-4.5-Air
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-32B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://docs.claude.com/en/api/overview
https://ai.google.dev/api
https://ai.google.dev/api
https://ai.google.dev/api
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/Qwen/Qwen2.5-Math-7B
https://huggingface.co/Qwen/Qwen2.5-Math-72B
https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E MORE EXPERIMENT DETAILS

To complement the main results, we provide additional figures that examine accuracy and token
statistics in greater detail.

Deep
Seek

 V3.1

Gem
ini

 2.5
 Flas

h L
ite

Deep
Seek

 V3.1

Clau
de

4 S
onn

et

Gem
ini

 2.5
 Flas

h L
ite

Clau
de

4 S
onn

et

Clau
de

4 S
onn

et

Qwen3
 23

5B

Gem
ini

 2.5
 Pro

Gem
ini

 2.5
 Flas

h

Qwen3
 23

5B

Deep
Seek

 R1

Gem
ini

 2.5
 Flas

h

Qwen3
 23

5B

Gem
ini

 2.5
 Flas

h

Gem
ini

 2.5
 Flas

h L
ite

Deep
Seek

 R1

Qwen3
 23

5B

Qwen3
 23

5B

Deep
Seek

 V3.1

Gem
ini

 2.5
 Pro

Qwen3
 23

5B

Gem
ini

 2.5
 Pro

Deep
Seek

 R1
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Base Accuracy (Top 10)

Clau
de

4 S
onn

et

Deep
Seek

 V3.1

Gem
ini

 2.5
 Pro

Qwen3
 23

5B

Gem
ini

 2.5
 Flas

h

Clau
de

4 S
onn

et

Gem
ini

 2.5
 Pro

Gem
ini

 2.5
 Pro

Gem
ini

 2.5
 Flas

h

Gem
ini

 2.5
 Flas

h L
ite

Deep
Seek

 V3.1

Qwen3
 23

5B

Qwen3
 23

5B

Deep
Seek

 R1

Qwen3
 23

5B

Gem
ini

 2.5
 Flas

h L
ite

Deep
Seek

 V3.1

Gem
ini

 2.5
 Flas

h L
ite

Qwen3
 23

5B

Gem
ini

 2.5
 Flas

h

Clau
de

4 S
onn

et

Deep
Seek

 R1

Qwen3
 23

5B

Deep
Seek

 R1
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Hard Accuracy (Top 10)

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

Δ Accuracy = Hard − Easy

Claude 4 Sonnet
Qwen3 235B
DeepSeek R1
Gemini 2.5 Flash Lite
Gemini 2.5 Flash
DeepSeek R1
DeepSeek V3.1
Gemini 2.5 Flash Lite
Qwen3 235B
DeepSeek R1
Qwen3 235B
Claude 4 Sonnet
Gemini 2.5 Pro
Gemini 2.5 Flash
Qwen3 235B
Gemini 2.5 Flash Lite
DeepSeek V3.1
Qwen3 235B
Qwen3 235B
Gemini 2.5 Flash
DeepSeek V3.1
Claude 4 Sonnet
Gemini 2.5 Pro
Gemini 2.5 Pro

-66.0%
-63.7%
-63.2%

-61.3%
-61.3%
-60.8%
-60.4%
-59.9%

-53.8%
-51.4%

-50.0%
-49.5%
-49.5%
-49.5%
-49.1%

-48.1%
-47.6%

-46.7%
-44.8%
-44.3%

-42.5%
-41.0%

-38.7%
-34.0%

IR CIR MCA Fast Slow

Figure 7: Accuracy of top-10 models. Left: Easy and Hard accuracies (ranked separately). Right:
∆ = Hard − Easy. All models exhibit accuracy drops on the Hard set, but the decline is less severe
for tool-integrated modes (CIR/MCA).

The first analysis focuses on the top 10 model variants, as shown in Figure 7, ranked by their overall
average accuracy across inference modes (IR, CIR, MCA), speeds (Fast/Slow), and both Base and
Hard subsets, with all speed and reasoning-type configurations included. Accuracy is computed as
the ratio of correct answers to the total, with denominators normalized at the global level, based on
the number of questions in the Base and Hard subsets. As expected, all models exhibit negative
gaps, reflecting the increased difficulty of the Hard set, though the magnitude of this drop varies
across reasoning modes. From the ∆ accuracy plot, it is evident that tool-integrated models show
the smallest performance drop, as indicated by the predominance of blue and pink bars in the upper
portion of the figure. Moreover, the figure shows that on the Base set most models achieve accuracies
above 70%, whereas on the Hard set their performance drops to around 30%.

0% 10% 20% 30% 40% 50% 60%
Accuracy

Mathstral 7B
Qwen2.5-Math 7B

Qwen2.5-Math 72B
LLaMA 4 Scout

Qwen3 8B
Qwen3 32B

DeepSeek R1
Qwen3-Coder 30B

GLM-4.5 Air
Gemini 2.5 Flash Lite

DeepSeek V3
Qwen3 235B

Gemini 2.5 Flash
Gemini 2.5 Pro
DeepSeek V3.1

Claude 4 Sonnet

CIR Fast
CIR Slow
MCA Fast
MCA Slow

Figure 8: Dumbbell plots of within-model contrasts on the Hard subset. Each line connects
Fast and Slow variants of the same model across CIR vs. MCA. CIR generally benefits from Slow
prompting, while MCA often favors Fast prompting.

As shown in Figure 8, dumbbell plots reveal within-model contrasts on the Hard set by connecting
CIR vs. MCA and Fast vs. Slow configurations of the same model. Rows are ordered by mean
accuracy. The results indicate a systematic shift: CIR tends to achieve higher accuracy under Slow
prompting, consistent with the benefits of more structured reasoning, whereas MCA does not follow

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

this trend and frequently yields better performance in the Fast setting (e.g., QWEN3-32B, GLM-4.5
AIR).

Qwen3
 23

5B

Qwen3
 8B

Deep
Seek

 V3

Deep
Seek

 V3.1

GLM-4.
5 A

ir

Gem
ini

 2.5
 Flas

h L
ite

Clau
de

4 S
onn

et

Qwen3
 8B

Deep
Seek

 V3

Deep
Seek

 V3

Qwen3
 23

5B

Clau
de

4 S
onn

et

Deep
Seek

 V3.1

GLM-4.
5 A

ir

Qwen3
 23

5B

Qwen3
 8B

Deep
Seek

 V3.1

GLM-4.
5 A

ir

Gem
ini

 2.5
 Flas

h L
ite

Gem
ini

 2.5
 Flas

h L
ite

Clau
de

4 S
onn

et
0

2000

4000

6000

8000

Ou
tp

ut
 T

ok
en

Gem
ini

 2.5
 Flas

h

Gem
ini

 2.5
 Flas

h

Gem
ini

 2.5
 Flas

h

Gem
ini

 2.5
 Pro

Gem
ini

 2.5
 Pro

Deep
Seek

 R1

Deep
Seek

 R1

Deep
Seek

 R1

Gem
ini

 2.5
 Pro

GLM-4.
5 A

ir

Qwen3
 8B

Qwen3
 23

5B

Qwen3
 8B

Qwen3
 23

5B

Qwen3
 23

5B

Qwen3
 8B

GLM-4.
5 A

ir

GLM-4.
5 A

ir
0

10000

20000

30000

40000

50000

60000

Ou
tp

ut
 T

ok
en

Qwen3
 23

5B

Qwen3
 8B

Deep
Seek

 V3

Deep
Seek

 V3.1

GLM-4.
5 A

ir

Clau
de

4 S
onn

et

Clau
de

4 S
onn

et

Deep
Seek

 V3

Qwen3
 8B

Qwen3
 23

5B

Gem
ini

 2.5
 Flas

h L
ite

Deep
Seek

 V3

Qwen3
 23

5B

Deep
Seek

 V3.1

GLM-4.
5 A

ir

Deep
Seek

 V3.1

Qwen3
 8B

GLM-4.
5 A

ir

Clau
de

4 S
onn

et

Gem
ini

 2.5
 Flas

h L
ite

Gem
ini

 2.5
 Flas

h L
ite

0

10000

20000

30000

40000

50000

60000

70000

Ou
tp

ut
 T

ok
en

Deep
Seek

 R1

Deep
Seek

 R1

Deep
Seek

 R1

Gem
ini

 2.5
 Flas

h

Gem
ini

 2.5
 Pro

Gem
ini

 2.5
 Pro

Gem
ini

 2.5
 Flas

h

Gem
ini

 2.5
 Pro

Gem
ini

 2.5
 Flas

h

Qwen3
 23

5B

Qwen3
 23

5B

Qwen3
 8B

Qwen3
 23

5B

GLM-4.
5 A

ir

GLM-4.
5 A

ir

GLM-4.
5 A

ir

Qwen3
 8B

Qwen3
 8B

0

10000

20000

30000

40000

50000

60000

70000

Ou
tp

ut
 T

ok
en

IR CIR MCA Fast Slow

Figure 9: Boxplots of output token counts by reasoning type and speed. Shown for Base (top)
and Hard (bottom), split into Fast (left) and Slow (right). Slow prompting produces consistently
longer outputs, with token-usage rankings stable across difficulty levels.

The distributions of output tokens across different settings are shown in Figure 9, with Base (top) and
Hard (bottom) subsets, and Fast (left) versus Slow (right) modes. The coincident upper whiskers in
several boxplots arise because multiple generations reached the per-turn output cap of 60k tokens,
or in some cases the overall context budget of 128k tokens; these are artifacts of imposed limits
rather than genuine features of the distribution. As expected, the right-hand panels (Slow) exhibit
higher medians and wider spreads than the left-hand panels (Fast), reflecting greater verbosity under
Slow prompting. Comparing the top and bottom rows, the relative ranking by median token count
is largely stable—especially in the Fast setting—suggesting that token usage is primarily driven by
model style rather than problem difficulty.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F BENCHMARK SAMPLES

In this section, we provide representative examples from our benchmark dataset to illustrate the vari-
ety and complexity of mathematical problems covered, including both the mathematical formulation
and corresponding implementation code.

Sample 1: Nurse Scheduling Optimization (Base Level)

Problem:
A hospital must schedule 4 nurses to cover 3 time blocks: morning, afternoon, and night.
Each block requires [18.5, 20.0, 16.25] total hours respectively.
Constraints:
• No nurse may work more than 20 hours in total
• Any assigned shift must be either 0 or at least 3.0 hours (no short shifts)
• Goal: minimize total scheduled working hours across all nurses

Mathematical Formulation:
Since the objective penalizes working hours, the optimal solution meets each demand ex-
actly. Therefore the minimum equals: 18.5 + 20.0 + 16.25 = 54.75.
Implementation:

from scipy.optimize import linprog
import numpy as np

Problem data
required_hours = [18.5, 20.0, 16.25]
nurse_num, shift_num = 4, 3
max_hours_per_nurse = 20.0

Since objective minimizes total hours and constraints only
provide

lower bounds on coverage, optimal solution meets demands exactly
total_min_hours = sum(required_hours)
print(f"Minimum total working hours: {total_min_hours}")

Final Answer: 54.75

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Sample 2: Meal Planning with Piecewise Pricing (Base Level)

Problem:
Design a daily meal plan using 8 ingredients with nutrition requirements, integer constraints,
and piecewise pricing discounts.
Key Constraints: protein ≥ 65g, fat ≥ 40g, carbs ≥ 70g, vitamins ≥ 100, minerals ≥ 80,
calories ≥ 1200 kcal with ≥ 30% from protein+fat, at least 3 different ingredients, I3 and I6
must be integers.
Mathematical Formulation:
Use binary variables for discount triggers and ingredient selection. Split I3 and I6 into
low/high tiers to model piecewise pricing exactly.
Implementation:

import numpy as np
from scipy.optimize import milp, Bounds, LinearConstraint

Data: cost, protein, fat, carbs, vitamins, minerals per 100g
cost = np.array([4, 6, 5, 7, 3, 9, 5, 6], dtype=float)
protein = np.array([10,12, 6, 8, 4,14, 8, 5], dtype=float)
fat = np.array([2, 8,10, 2, 4, 6, 4, 7], dtype=float)
carb = np.array([8, 2, 4,14,12, 2,10, 7], dtype=float)
vit = np.array([15, 8,10,16, 8,12, 9, 7], dtype=float)
minr = np.array([8,12, 6, 8,14,10,11,13], dtype=float)

Variables: x1,x2,x3_lo,x3_hi,x4,x5,x6_lo,x6_hi,x7,x8,y3,y6,z1-z8
nvar = 20
c = np.zeros(nvar) # objective coefficients
c[:2] = [4.0, 6.0] # x1, x2
c[2:4] = [5.0, 4.5] # x3_lo (normal), x3_hi (discounted)
c[4:6] = [7.0, 3.0] # x4, x5
c[6:8] = [9.0, 7.2] # x6_lo (normal), x6_hi (discounted)
c[8:10] = [5.0, 6.0] # x7, x8

Bounds and integrality
lb = np.zeros(nvar)
ub = np.full(nvar, 1000.0)
ub[2], ub[6] = 7.0, 5.0 # upper bounds for low tiers
ub[10:] = 1.0 # binary variables

integrality = np.array([0,0,1,1,0,0,1,1,0,0,2,2,2,2,2,2,2,2,2,2])

Build constraints systematically
A, lb_con, ub_con = [], [], []

Discount logic for I3: x3_hi >= 8*y3, x3_hi <= 1000*y3, x3_lo <=
7*(1-y3)

row = np.zeros(nvar); row[3] = 1; row[10] = -8
A.append(row); lb_con.append(0.0); ub_con.append(np.inf)
row = np.zeros(nvar); row[3] = 1; row[10] = -1000
A.append(row); lb_con.append(-np.inf); ub_con.append(0.0)
row = np.zeros(nvar); row[2] = 1; row[10] = 7
A.append(row); lb_con.append(-np.inf); ub_con.append(7.0)

Similar discount logic for I6
row = np.zeros(nvar); row[7] = 1; row[11] = -6
A.append(row); lb_con.append(0.0); ub_con.append(np.inf)
row = np.zeros(nvar); row[7] = 1; row[11] = -1000
A.append(row); lb_con.append(-np.inf); ub_con.append(0.0)
row = np.zeros(nvar); row[6] = 1; row[11] = 5
A.append(row); lb_con.append(-np.inf); ub_con.append(5.0)

Selection constraints and nutrition requirements...

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

[Complete constraint matrix construction]

At least 3 ingredients
row = np.zeros(nvar); row[12:20] = 1.0
A.append(row); lb_con.append(3.0); ub_con.append(np.inf)

Solve MILP
A = np.vstack(A)
constraints = LinearConstraint(A, np.array(lb_con), np.array(ub_con

))
bounds = Bounds(lb, ub)

result = milp(c=c, constraints=constraints, integrality=integrality
,

bounds=bounds)
print(f"Optimal cost: ${result.fun:.2f}")

Final Answer: 39.45

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Sample 3: Block Tridiagonal System Solution (Hard Level)

Problem:
Let n = 5000. Matrix A is block tridiagonal: diagonal blocks B = tridiag(−1, 4,−1)
(10×10), off-diagonal blocks are 10×10 identity matrices. Solve Ax = b where b =
(1, 1, . . . , 1)T and report ∥x∥2.
Mathematical Approach:
Use Kronecker sum decomposition: A = Ip ⊗B + Tp ⊗ Im where p = 500, m = 10.
Implementation:

import numpy as np

Problem parameters
p, m = 500, 10

Eigenvalues of tridiagonal matrices
def tridiag_eigenvals(n, a, b, c):

"""Eigenvalues of tridiag(a,b,c) matrix"""
k = np.arange(1, n+1)
return b + 2*a*np.cos(np.pi*k/(n+1))

Eigenvalues
lam_T = tridiag_eigenvals(p, 1, 0, 1) # T_p eigenvalues
lam_B = tridiag_eigenvals(m, -1, 4, -1) # B eigenvalues

Projection coefficients for ones vector
def ones_projection_coeff(n):

"""Coefficients <1, u_k> for sine eigenvectors"""
k = np.arange(1, n+1)
theta = np.pi * k / (n + 1)
S_n = (np.sin(n*theta/2) * np.sin((n+1)*theta/2)

/ np.sin(theta/2))
return np.sqrt(2/(n+1)) * S_n

alpha = ones_projection_coeff(p) # for size p
beta = ones_projection_coeff(m) # for size m

Compute ||x||_2ˆ2 using spectral decomposition
eigenvals = lam_T[:, None] + lam_B[None, :] # p x m matrix
coeffs_sq = (alpha[:, None]**2) * (beta[None, :]**2)
norm_sq = np.sum(coeffs_sq / (eigenvals**2))
norm_2 = np.sqrt(norm_sq)

print(f"||x||_2 = {norm_2:.6f}")

Final Answer: 17.055084

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Sample 4: Nonlinear Integral Equation (Hard Level)

Problem:
Solve for all x ∈ (0, 20) such that f(x) = 0.1 where f(x) =

∫ 1

0
sin(xt)√
1−t4

dt.

Implementation:

import numpy as np
from scipy.integrate import quad
from scipy.optimize import brentq

def integrand(t, x):
"""Integrand function with singularity handling"""
if abs(1 - t**4) < 1e-15:

return 0 # Handle singularity at t=1
return np.sin(x * t) / np.sqrt(1 - t**4)

def f(x):
"""Target function f(x) - 0.1"""
integral, _ = quad(lambda t: integrand(t, x), 0, 1,

limit=100, epsabs=1e-12)
return integral - 0.1

Scan for sign changes to locate roots
x_scan = np.linspace(1e-6, 20.0, 4000)
y_scan = [f(x) for x in x_scan]

roots = []
for i in range(len(x_scan)-1):

if y_scan[i] * y_scan[i+1] < 0:
Found sign change, refine with Brent’s method
try:

root = brentq(f, x_scan[i], x_scan[i+1],
xtol=1e-12, maxiter=100)

roots.append(root)
except:

pass

Remove duplicates and format
unique_roots = []
for r in sorted(roots):

if not unique_roots or abs(r - unique_roots[-1]) > 1e-6:
unique_roots.append(r)

result = [f"{r:.6f}" for r in unique_roots]
print("Solutions:", ", ".join(result))

Final Answer: 0.127544, 4.337245, 6.990414, 10.238756, 13.486897, 16.338351,
19.907142

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G MORE ERRORS DISCUSSION

To further illustrate the failure modes of LLMs, Table 6 contrasts representative incorrect and cor-
rected solutions across five categories: Implementation, Reasoning, Understanding, Syntax, and
Format. These examples highlight how errors can occur at different stages of the reasoning-to-code
pipeline. Implementation errors typically arise when mathematical expressions are mistranslated
into code, while reasoning errors reflect deeper flaws in the formulation of the mathematical ab-
straction itself. Understanding errors stem from misinterpretations of the problem statement. Syn-
tax errors, by contrast, are low-level violations of programming grammar, and format errors capture
failures to adhere to required output structures (e.g., producing invalid JSON).

Table 6: Error contrast with cases: Implementation, Reasoning, Understanding, Syntax and For-
mat.

Error Type Incorrect Correct

Implementation
(Mistakes when turning math into
code)

f double prime = ((6*x*(1 +
atan(x**3))*(1 - 3*x**6)) -
9*x**4)
/ (((1 + x**6)**2) * (1 +
atan(x**3))**2)

f double prime = (6*x*(1 -
2*x**6)*(1 + atan(x**3)) -
9*x**4)
/ (((1 + x**6)**2) * (1 +
atan(x**3))**2)

Reasoning
(Wrong mathematical model or misuse
of definitions)

Chose x = 4 as the solution of x2 = 16

Assumed uniqueness, but both +4 and −4 map
to 16.

Use the integral branch of k(x) since the inverse
is not unique.∫ 16

0
(t1/3 + 2) dt = 24 3

√
2 + 32

Understanding
(Misreading the problem statement)

Misread the axis: rotated
about y-axis (‘‘y=0’’)
V = π

∫ 2

0
[ϕ(f(x))]2 dx but treated as

rotation around y-axis

Correct: rotation is about
x-axis (y = 0)
[ϕ(f(x))]2 = f(x), so V = π

∫ 2

0
f(x) dx

Syntax
(Pure code syntax mistakes) if num boys if num boys <= total boys and

num girls <= total girls:

Format
(Violating required output format) { answer: 42,

"explanation":

"value is doubled"}

{ "answer": 42,

"explanation":

"value is doubled" }

Beyond these localized cases, we also observe systematic error modes tied to specific models. For
CLAUDE, a recurring issue is the recursion-limit failure, which appeared in roughly ∼100 problems.
This behavior seems linked to the model’s optimization for extended context handling: when con-
fronted with difficult integrals, it tends to enter repeated reasoning–execution loops. Eventually, the
controller exhausts its recursion depth, terminating the run before a final answer can be produced.

Claude: Recursion Limit Exceeded

y(x) =
1

5

(√
x4 + 2x2 + 1 + ln(x2 + 1)

)
, x ∈ [0, 3].

Reference value (for verification).
Correct arc-length value: 3.8585.

Model & Mode.
claude sonnet 4 fast (inference mode: MCA).

Observed failure (trace excerpt).
Recursion limit of 10 reached without hitting a stop condition.

Symptom.
Run terminated without a final numeric answer. The controller hit the orchestration recursion cap (10)
due to repeated planning/execution cycles.

In contrast, a different failure mode is characteristic of DEEPSEEK-R1. In approximately 60–70
cases, the model terminated prematurely without producing a final answer, even though token and
time limits were not exceeded. Unlike Claude’s runaway iteration, DeepSeek often halts mid-way

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

under CIR/MCA-style prompting, generating partial reasoning text but failing to produce a complete
code block or final print statement. This suggests instability in closing the reasoning–to–execution
loop, reflecting a model-specific weakness in balancing extended deliberation with structured output
requirements.

DeepSeek-R1: Truncated Response without Final Output

Survey problem involving magazine readership with overlaps up to triplets. Required out-
puts: (a) number of people reading at least one magazine, (b) pair with highest overlap, (c)
number of people reading exactly two magazines.

Reference value (for verification).
(a) 5247 (b) (7, 8), 2050 (c) 30015

Model & Mode.
deepseek r1 slow (inference mode: CIR / MCA).

Observed failure.
No Python code found in response. The model generated partial
reasoning text but never produced an executable code block or a
final printed answer.

Symptom.
Run terminated without producing the required Final Answer: ... line. Neither token us-
age nor time exceeded the configured limits; instead, the model truncated mid-way before yielding
executable output.

31

	Introduction
	Related Work
	The MMRC Benchmark
	Overview
	Data Curation Pipeline
	Evaluation Framework

	Experiments
	Experimental Setup
	Main Results: Accuracy Analysis
	Analysis of Computational Cost
	Error Analysis

	Conclusion
	LLM Usage
	Code Usage Details
	Evaluation Details
	Inference Modes
	Two-Stage Answer Verification Protocol
	Python sandbox environment
	Prompts

	Evaluated Models and Metadata
	More Experiment Details
	Benchmark Samples
	More Errors Discussion

