Under review as a conference paper at ICLR 2026

MMRC: MEASURING MASSIVE-COMPUTATIONAL
MATH REASONING WITH CODE IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce MMRC, a benchmark of 500 curated problems designed to evalu-
ate large language models (LLMs) on their ability to integrate mathematical rea-
soning with code execution. Unlike existing benchmarks that emphasize either
elementary or olympiad-level mathematics, MMRC focuses on university-level
subjects including calculus, discrete mathematics, linear algebra, linear program-
ming, mathematical physics, numerical computation, and scientific computing.
Each problem is deliberately adapted to impose substantial computational work-
loads, making text-only reasoning infeasible and requiring code execution for
accurate solutions. We evaluate 120 model configurations, spanning open- and
closed-source models, on MMRC under two paradigms: Code-Invoked Reason-
ing (CIR), where models generate Python scripts, and Math-Code Agent (MCA),
where models dynamically interact with a Python interpreter. Code integration
consistently improves accuracy on complex tasks while reducing token usage, es-
tablishing MMRC as the first systematic benchmark for math—code integrated rea-
soning and advancing LLMs toward real-world problem solving.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have transitioned them from basic lan-
guage understanding to sophisticated logical reasoning (Wei et al., 2022b; Chowdhery et al., 2022),
achieving significant success in STEM-related tasks (Comanici et al., 2025). Mathematics, as both
a fundamental science and a rigorous benchmark, plays a pivotal role in evaluating the reasoning
capabilities of these models (Hendrycks et al., 2021). However, as mathematical tasks become more
complex, particularly in engineering applications, solutions often require intensive computation or
large-scale simulations (Lewkowycz et al., 2022; Li et al., 2022). Text-based reasoning alone is
insufficient for these tasks. Integrating textual reasoning with code execution allows models to
maintain logical coherence while delegating computational tasks to code, resulting in more efficient
and accurate outcomes compared to purely autoregressive methods(Gao et al., 2023; Schick et al.,
2023; Yao et al., 2023).

Current benchmarks, as showed in Table 1, which cover a range of problems from elementary arith-
metic to olympiad-level challenges, primarily evaluate text-based reasoning and symbolic manipula-
tion. While these benchmarks are important for assessing basic reasoning skills, they fail to capture
the full range of abilities required in real-world applications, where mathematical reasoning often
involves the integration of algorithmic design and code execution. This gap highlights the need
for a benchmark that evaluates a model’s ability to combine reasoning with computational tasks, a
capability that remains largely unaddressed in existing frameworks.

In this paper, we introduce MMRC, a benchmark of 500 problems designed to evaluate a model’s
ability to integrate textual reasoning with code execution. Unlike existing benchmarks that focus
on advanced mathematical domains, MMRC emphasizes generality and progressive capability im-
provement. It covers university-level mathematics, including calculus, discrete mathematics, linear
algebra, linear programming, mathematical physics, numerical computation, and scientific comput-
ing.

Each problem is crafted to impose substantial computational workloads, making purely textual rea-
soning infeasible. A representative sample is shown in Figure 1. As a result, models must invoke
code execution to solve the problems accurately. In addition to increasing numerical complexity,

Under review as a conference paper at ICLR 2026

Sample: First mathematically model complex problems, then solve them with linear programming.

. ### Stage 1: Define Decision Variables
Questlon Identify the core variables to model the problem: Let \(x_{f,c} \) represent the area (in hectares)
of crop \(¢\) (where \(¢ =1, \dots, 7\)) planted in field \(f\) (where \(f=1, 2, 3\)). These 21
non-negative variables (\(x_{f,c} \ge 0\)) capture all possible allocations.

A crop planner needs to allocate 7 types of crops
across 3 fields (with a fixed total area of fields).
Each crop has sp determine the non-negative #### Stage 2: Formulate the Objective
planting area of each crop in each field to
maximize the total profit.

Define the goal to optimi: imize total profit, as the sum of profits from each
crop in each field. Profit for crop \(¢ \) in field \(f\) equals the product of its profit per ton
(\(p_c)), yield per hectare in that field (\(Y_{f,c} \)), and planted area (\(x_{f,c} \)). Thus, the

)

is:
\max \sum_{f=1}*{3} \sum_{c=1}*{7} p_c \edot Y_{f,c} \cdot x_{f,c}

I ### Stage 3: Specify Constraints

\ Outline all constraints that restrict variable values:

1. **Field utilization**: Each field must be fully planted, so \(\sum_c x_{f,c} =

\text{FieldSize}_f\) for \(f=1,2,3\).

Code 1: Data Structure Code 3: Main Function

Non-negativity: All \(x_{f,c} \ge 0).

This forms a linear programming (LP) problem with linear objective and constraints, solvable
via an LP solver. Due to the large computation load of manual solving, we will convert the
apove objective and constraints into a mathematical model recognizable by programming tools.

Code 2: Lincar Programming
z Ngw we start programming.
aner

d nplinalg.solve(J xz, -F.x1)
print(f"\nUpdate vector: deltax = {delta_x}")

Figure 1: A sample from the MMRC benchmark. In this case, textual reasoning is indispensable
for determining the exact quantity to be solved. However, once the target equation is identified, our
tailored adaptation renders it extremely difficult, even impossible, for the model to solve purely in
natural language. Thus, we guide the model to employ code for formal modeling and numerical
computation, as illustrated by the use of dynamic programming in this example.

the problems introduce algorithmic challenges, such as recursive calls and numerical simulations.
Authored by doctoral-level and master-level mathematics students, the problems were selected from
an initial pool of 1,200, with each requiring at least three hours of adaptation, code integration, and
cross-verification.

We evaluate 120 distinct model configurations, spanning open-source, closed-source, and
math/code-specialized models, using the MMRC benchmark across two reasoning and code
paradigms. In CIR mode, models generate and execute a Python script with reasoning embedded
as comments. In MCA mode, the model interacts with a Python interpreter, dynamically decid-
ing when to invoke code. Our analysis shows that models achieve substantially higher accuracy on
the base set than on the hard set, confirming that the partition effectively captures varying levels
of computational reliance. At the same time, code execution serves as a double-edged sword. On
analytically tractable base problems, forcing models to invoke code can disrupt otherwise viable
reasoning trajectories and could lead to accuracy drops. By contrast, on code-dependent hard prob-
lems, code becomes indispensable, consistently improving overall accuracy. In addition, on the hard
set, code execution often reduces token costs by compressing lengthy textual derivations into con-
cise scripts. Finally, error analysis reveals complementary weaknesses across inference modes: CIR
highlights the brittleness of one-shot program generation due to syntax and implementation errors,
whereas MCA suppresses low-level coding mistakes but exposes deeper flaws in abstract reasoning
and problem understanding.

Overall, this work introduces the MMRC benchmark as a novel tool for evaluating LLMs, offering
a more comprehensive evaluation that aligns closely with real-world problem-solving tasks.

2 RELATED WORK

Mathematics Benchmarks. Early math benchmarks like AddSub (Hosseini et al., 2014) and
SingleEq (Koncel-Kedziorski et al., 2015) focused on basic arithmetic and algebra. Later,
datasets such as GSMS8K (Cobbe et al., 2021), SVAMP (Patel et al.,, 2021), and Multi-
Arith (Roy & Roth, 2016) increased difficulty, followed by more challenging benchmarks like
MATH (Hendrycks et al., 2021) and MMLU-Pro (Wang et al., 2024). Recently, even harder
benchmarks like AIME (aim, 2024 URL https://maa.org/math-competitions/american-invitational-
mathematics-examination-aime), Omni-Math (Gao et al., 2024), and FrontierMath (Glazer et al.,

Under review as a conference paper at ICLR 2026

Table 1: Comparison of MMRC with existing mathematical reasoning benchmarks. MMRC
is designed at the university level with expert-authored, computation-intensive, and code-integrated
problems.

Design Characteristics Eval

Benchmark Expert Comp.- Code- Level Size Metrics
Original Intensive Integrated

GSMB8K (Cobbe et al., 2021) X X X Grade School 8.5k Acc
MATH (Hendrycks et al., 2021) X X X High School 12.5k Acc
CARP (Zhang et al., 2023) X X v Middle School 4.9k Acc
DynaMath (Zou et al., 2024) X X X Mixed 5010 Acc+Rob
MathCheck (Zhou et al., 2024) X X X Mixed 4.5k Acc+Rob
Omni-Math (Gao et al., 2024) X X X Competition 4.4k Acc
FrontierMath (Glazer et al., 2024b) v v X Research Hundreds Acc
HARP (Yue et al., 2024) X X X Competition 5.4k Acc
OlympMATH (Sun et al., 2025) X X X Competition 200 Acc
HARDMATH (Fan et al., 2024) X X X Graduate 1.5k Acc
OlympiadBench (He et al., 2024) X X X Competition 8.5k Acc
MMRC (Ours) | v v v | University | 500 | Acc+Eff

2024a) have been introduced to test advanced mathematical reasoning. In contrast, MMRC uniquely
targets the integration of natural language and code execution, addressing tasks that require signif-
icant computational power. As illustrated in Table 1, MMRC offers several key advantages over
existing benchmarks.

Reasoning with Large Language Models. The introduction of chain-of-thought (CoT) prompt-
ing (Wei et al., 2022a) marked a key advance in LLM reasoning by breaking down complex prob-
lems into intermediate steps (Sprague et al., 2024). Models like OpenAl-ol (Jaech et al., 2024) and
Deepseek-R1 (Guo et al., 2025a), along with reinforcement learning-based fine-tuning, have further
enhanced large-scale reasoning. Ongoing research explores more efficient reasoning paradigms (Ag-
garwal & Welleck, 2025; Nayab et al., 2024; Lee et al., 2025) and self-evolving models (Shinn et al.,
2023; Zelikman et al., 2022; Yang et al., 2023).

Code-Integrated Mathematical Reasoning. While LLMs show strong reasoning skills, they strug-
gle with complex numerical computations, leading to inaccuracies and high computational costs. To
address this, integrating code execution has become a key strategy. Initial approaches like Program
of Thoughts (Chen et al., 2022) and MathCoder (Wang et al., 2023) focused on generating code for
calculations. Later methods, including PAL (Gao et al., 2023), Tora (Gou et al., 2023), and Mumath-
Code (Yin et al., 2024), combined natural language reasoning with code execution. However, these
approaches have been primarily evaluated on easier datasets like GSM8K, where natural language
is often sufficient. Our work builds on these agent-based methods and demonstrates that integrating
code execution can significantly improve accuracy on more complex problems that truly require it.

3 THE MMRC BENCHMARK

3.1 OVERVIEW

The core objective of the MMRC dataset is to evaluate a model’s ability to integrate mathematics
with code in reasoning. It contains 500 carefully curated and adapted problems, each combining
nontrivial logical structures with demanding computational requirements. To capture performance
across different levels of difficulty, MMRC is divided into two subsets: MMRC-Base and MMRC-
Hard.

Both subsets scale the computational component to challenging levels, involving combinatorial
search spaces, deep recursion, or advanced numerical methods. The key distinction lies in their
dependence on programmatic execution. Problems in MMRC-Base can, in principle, be solved
manually but only through extremely tedious calculation, serving as a baseline for computational
reasoning. In contrast, MMRC-Hard problems are effectively unsolvable without code, often re-
quiring large-scale numerical simulation or recursive procedures. This two-tiered design enforces
code-assisted reasoning while preserving the logical structure of mathematical derivations, requiring

Under review as a conference paper at ICLR 2026

Number Theory Statistics Number
& Caleulus Algorithms 8% ~_ " Search & Dynamic -
b\“° 22% Programming 39% @3 Total Subjects 7
S :
é\,}}bq,& N % aq. Code Usage Catogories 3
Math, Physics %, Code Usage Subcatogories 10
iz Number of MMRC-Base 200
Number of MMRC-Hard 300
1 _Scientific — Stochastie, Calculus 129
Comp. 6% imulation 4%
Numerical Comp I omp b —— Disctete Mathematics 123
" inear Prog. i il . .
8% : &é é\, 7% 9 TR N‘T‘Zg;g:]ng" L¥near Programming 93
Linear Algebra /@ Os, < é‘é" Linear Algebra 54
2% e 7 N ® Scientific Computation 40
925 Moy, | Caleul v i
% g Expression Colculu 8 Difre Mathematical Physics
o Manipulation 2" Equations S1% Numerical compl)x/tati(m ;A;
(a) Distribution of subjects (b) Taxonomy of Computational Tasks in MMRC (c¢) Benchmark statistics

Figure 2: Statistical overview of the MMRC dataset. (a) Distribution of mathematical subjects
across the MMRC-Base (N=200) and MMRC-Hard (N=300) subsets. (b) Distribution of problems
among the three major code usage categories. (c) Detailed statistics of the benchmark, including
problem counts by subset and subject.

models to alternate between natural language reasoning and computational execution, an ability we
consider essential for solving complex tasks.

Subjects Coverage. Unlike other benchmarks for complex mathematical problems that emphasize
increasingly advanced knowledge beyond the practical scope of many models, MMRC is designed to
evaluate general mathematical-code reasoning ability. Its coverage focuses on standard university-
level mathematics while maintaining broad disciplinary diversity. As shown in Figure 2(a) and
Figure 2(c), the dataset spans a wide range of subjects, including calculus, discrete mathematics,
linear algebra, linear programming, mathematical physics, numerical computation, and scientific
computing.

Code Usage Coverage Code execution enables LLMs to reduce reliance on natural language rea-
soning, lowering computational overhead while improving accuracy. For instance, computing the
eigenvalues of a five-dimensional matrix is far more efficient than predicting them through token
generation. MMRC tasks are therefore designed to test a hybrid reasoning-execution paradigm: rea-
soning and modeling are expressed in text, while final results are obtained through code execution.
As shown in Figure 2(b), the code spans three major categories: (1) Numerical and Simulation,
such as large-scale matrix operations and differential equation solving; (2) Algorithmic and Discrete
Methods, including recursive search and dynamic programming; and (3) Symbolic and Analytical
Computation, covering expression manipulation and equation solving. Detailed definitions and rep-
resentative examples are provided in Appendix B.

3.2 DATA CURATION PIPELINE

Data Collection and Rewriting. To build a high-quality dataset, we collaborated with mathematics
students from leading universities worldwide, primarily at the PhD and Master’s level. They con-
tributed to both problem creation and verification, covering domains such as calculus, linear algebra,
probability theory, and operations research. To broaden coverage, experts from the natural sciences
also provided domain-specific problems. Although MMRC does not aim to require highly advanced
knowledge, strict accuracy and methodological rigor were enforced. Each contributor was assigned
only to areas they had studied or applied within the past year, and all followed a structured workflow
to organize and refine their problems.

Collection.The effectiveness of MMRC depends on the quality of its problems, each of which must
satisfy two requirements. Scalable Computational Complexity: Problems should extend to large-
scale tasks, not only by increasing numerical size but also by enriching computational logic through
deeper recursion or more complex iterative structures. Robust Reasoning Demand: Problems must
preserve substantial reasoning complexity, ensuring they challenge both natural language reasoning
and computational procedures. This dual focus provides a rigorous test of a model’s ability to
perform code-assisted reasoning.

Under review as a conference paper at ICLR 2026

(YO
1
This forms a linear programming (LP): Text Text g
g problem with linear objective and 4% Stage 1 Define D cinally, based on the cod! 9
= ! ; age 1: Define Decision inally, based on the code
g, constraints, solvable via an LP solver. Variables Identify the core - a results, we obtain 2.3 x 10 =
< Due to the large computation load variables to model the problem: %2 as a calculation result. Next,)
i i Let\(x_{fc}\) represent the . - []%n we will conduct verification =+
of manual solving, we vill convert. en nhetireg ovwnena o nmoars || | &
O el Here, we correct Firsty, 3
Into a mathematical
]
— = = N N = = ©
~Logic Checking g Final Checking 3
: 3
B E e gl Please conductarigorous 2181l &l 8] s — |Results a 1 I3 0 H
L o logical review of its validity, focusing? © = n g H T <
closely o (1) whether cach step flows. ... ¢ . Given Output /&= -
©-0 (=l >
; AEEE] = S @ L = ’@‘ Q
Hdz|d4z|4! A (@) _, g ' T o= fp\ (T
AR & & =2 — [Feua}p [i g
U LLM | U Test Platform Output -
\ »,)3
[
s N = = N - \ ©
h High-Frequency Error Review Random Screening g
o
" o
Experiments =
: 3
H 7 7~ H o
H @) (@) ... (@ -
®) . (@)
= | Daaltem N i = = = : " Choosing 0
& @ (0 0 0 . o (o g || Lt
: AN)

Figure 3: Verification pipeline of the MMRC dataset. The process consists of two stages: Al-
based preliminary checking during data construction and human post-review after compilation. The
preliminary stage includes three steps: logic consistency validation, code execution with result com-
parison, and a final acceptance decision made by a large language model. The post-review stage
further ensures quality through cross-validation among contributors, re-examination of high-error
problems, and random expert screening, where only subsets with all sampled problems passing are
approved for release.

Rewriting. The original problems, though complex, did not fully meet our requirement that
language-only reasoning should fail. We therefore adapted intermediate steps by replacing numeri-
cal data and computational logic with much larger values, substantially increasing complexity.

Code Generation and Result Computation. The expanded logic was intended to encourage solutions
through executable code rather than long-form natural language reasoning. Contributors worked in
a standardized Python environment with basic computational libraries. They generated executable
code, embedded it into the problems, and computed the final solutions.

Review and Submission. Each problem underwent verification through code execution. Contributors
submitted a complete package consisting of the original problem and solution, the adapted version, a
description of the adaptation process, all code snippets, execution results, and source documentation.

Data Verification. Since MMRC problems are extensively adapted from their original sources, both
reasoning logic and computational steps may diverge considerably. Ensuring correctness therefore
requires a rigorous verification pipeline that goes beyond simple numerical checks. As illustrated in
Figure 3, the process consists of two stages: a preliminary Al-based review during data construction
and a comprehensive human review after dataset compilation.

Preliminary AI Checking. Each finalized problem undergoes a three-step automated check: (1) Logic
check: Code outputs are substituted into the reasoning chain to confirm consistency. (2) Code check:
Programs are executed in a standardized environment, and results are compared with the logic check
while monitoring for errors. (3) Final check: A large model integrates these results to produce the
acceptance decision.

Post Human Review. After compilation, problems are reviewed through three complementary mech-
anisms: (/) Cross-validation: Contributors in the same domain review each other’s problems using
the original solutions. (2) High-error review: Problems with high error rates in preliminary experi-
ments are re-examined. (3) Random Screening: Senior experts review ten problems per domain, and
only datasets where all sampled problems pass are approved for release.

Under review as a conference paper at ICLR 2026

3.3 EVALUATION FRAMEWORK

To rigorously evaluate model capabilities on the MMRC dataset, we designed a comprehensive
evaluation framework. It assesses models across three distinct inference modes designed to probe
different facets of their reasoning and tool-use abilities, coupled with a robust, two-stage verification
protocol for accurate assessment.

Our framework probes model capabilities via three distinct modes: Internal Reasoning (IR), for
baseline tool-free problem-solving; Code-Invoked Reasoning (CIR), for generating a complete
solution as a single program; and Math-Code Agent (MCA), for iterative problem-solving with
a code interpreter. The critical difference between the two tool-assisted modes is that CIR tests a
model’s ability for comprehensive, “one-shot” programmatic planning, whereas MCA evaluates its
capacity for interactive reasoning and step-by-step refinement based on execution feedback.

To handle the diverse answer formats in MMRC, our two-stage verification protocol first uses a
powerful LLM judge for efficient initial triage. Cases marked as Uncertain are then passed to a
second-stage formal verifier, which uses a symbolic mathematics library for a definitive and precise
judgment. A detailed exposition of this framework, including the evaluation modes, verification
protocol, prompts, and environment setup, is provided in Appendix C.

4 EXPERIMENTS

To systematically evaluate the ability of modern LLMs to integrate reasoning with code, we con-
ducted a comprehensive set of experiments on the MMRC benchmark. These experiments address
three central questions: how accuracy varies across models and reasoning paradigms when compar-
ing analytically tractable problems in the base set with code-dependent problems in the hard set;
what computational costs, measured in token consumption, are associated with different solution
strategies and how these costs relate to performance; and what predominant failure modes arise
when models attempt to solve complex problems, revealing the key bottlenecks in current reasoning
and coding abilities.

4.1 EXPERIMENTAL SETUP

Evaluation Protocol. Our evaluation spans the base and hard subsets, testing models under three
inference modes (IR, CIR, and MCA) and two prompting styles inspired by cognitive frame-
works (Kahneman, 2011; Wei et al., 2022b). Fast models directly generate answers in a single
pass (e.g., DEEPSEEK V3), while slow models produce explicit reasoning or plans before giving
final solutions (e.g., DEEPSEEK R1). We evaluate 20 representative LLMs, including proprietary,
open-source, and math/code-specialized models. The full model list with versions, API endpoints,
and other information is provided in Appendix D.

Execution and Decoding. All experiments used greedy decoding (temperature 0) with a maximum
context of 128k tokens and a per-turn output limit of 60k tokens. MCA mode was capped at 10
iterations. For coding-augmented modes (CIR and MCA), code was executed in a secure Python
sandbox with a 30-second timeout and 512MB memory limit. Additional details on the environment
and prompts are provided in Appendix C.3 and Appendix C.4.

Overview of Analysis. Table 2 summarizes the overall evaluation results. The following sections
examine these findings in relation to our research questions: §4.2 analyzes accuracy trends, §4.3
evaluates efficiency, and §4.4 provides an error analysis.

4.2 MAIN RESULTS: ACCURACY ANALYSIS

The accuracy results in Table 2 and Figure 4 highlight three main findings on integrated mathemati-
cal reasoning.

MMRC validates the necessity of code execution. A sharp performance drop from the base to
the hard set confirms the benchmark design. For example, DEEPSEEK V3.1-FAST falls from 84.4%
(IR, base) to 24.1% (IR, hard). Even the best hard-set accuracy, 43.4% by CLAUDE 4 SONNET-FAST
with CIR, remains modest, underscoring the challenge of robustly combining reasoning with code.

Under review as a conference paper at ICLR 2026

Table 2: Main Results on Base and Hard Questions. Bold numbers indicate the best performance
within each column

IR | CIR | MCA

Metric ‘
Model ‘ Base Hard ‘ Base Hard ‘ Base Hard
|

ACC Tok ACC Tok ‘ ACC Tok ACC Tok ‘ ACC Tok ACC Tok

DeepSeek R1-slow 61.3% 3.8k 05% 04k | 81.1% 5.1k 29.7% 6.0k | 76.9% 4.7k 13.7% 53k

= = = = +198% +1.2k +292% +5.6k | +15.6% +09k +132% +5.0k

DeepSeek V3-fast 73.6% 1.1k 15.6% 2.1k | 703% 03k 259% 05k | 75.5% 1.0k 29.7% 1.9k

= = = = -3.3% -0.8k +10.4% -1.5k +1.9% -0.1k +14.2% -0.1k

DeepSeek V3.1-fast 84.4% 13k 24.1% 29k | 726% 04k 302% 0.7k | 87.7% 1.6k 40.1% 3.6k

= = = = -11.8% -0.9k +6.1% -2.2k +3.3% +0.3k +16.0% +0.7k

GLM-4.5 Air-fast 74.1% 1.7k 10.8% 10.6k | 63.7% 0.4k 189% 1.0k | 75.5% 29k 269% 6.4k

= = = = -10.4% -1.3k +8.0% -9.5k +1.4% +1.2k +16.0% -4.1k

.. GLM-4.5 Air-slow 76.9% 13.0k 22.6% 408k | 81.1% 33.7k 269% 418k | 783% 37.7k 18.4% 50.3k
:: = = = = +4.2% +20.6k +4.2% +1.0k +1.4% +24.7k -4.2% +9.5k
_'% LLaMA 4 Scout-fast 61.3% 1.0k 6.6% 1.2k | 66.5% 03k 15.6% 0.5k | 708% 1.1k 16.0% 1.8k
S = = = = +5.2% -0.6k +9.0% -0.7k +9.4% +0.1k +9.4% +0.6k
E Qwen3 235B-fast 745% 1.5k 10.8% 25k | 71.2% 03k 222% 0.5k | 76.4% 1.1k 29.7% 2.5k
f = = = = -3.3% -1.2k +11.3% -2.0k +1.9% -0.4k +18.9% -0.0k
;21 Qwen3 235B-slow 83.0% 145k 292% 28.0k | 81.6% 147k 36.8% 20.7k | 79.7% 148k 29.7% 26.2k
=~ = = = = -1.4% +0.2k +7.5% -7.4k -3.3% +0.3k +0.5% -1.9k
Qwen3 32B-fast 73.1% 29 85% 129k | 26.9% 17.0k 9.0% 104k | 73.6% 1.3k 245% 3.8k

= = = = -46.2% +14.2k +0.5% -2.5k +0.5% -1.6k +16.0% -9.1k

Qwen3 32B-slow 80.7% 16.8k 222% 458k | 354% 239k 23.1% 29.0k | 75.9% 16.1k 22.6% 41.6k

= = = = -45.3% +7.0k +0.9% -16.8k -4.7% -0.8k +0.5% -4.1k

Qwen3 8B-fast 64.6% 1.8k 6.6% 89k | 547% 0.6k 12.7% 1.6k | 68.4% 10k 151% 3.5k

= = = = -9.9% =12k +6.1% -71.3k +3.8% -0.8k +8.5% -5.4k

Qwen3 8B-slow 80.2% 229k 189% 49.0k | 76.9% 147k 292% 299k | 78.8% 17.6k 19.8% 45.8k

- - - - -3.3% -8.2k +10.4% -19.1k -1.4% -5.3k +0.9% -3.1k

» Claude 4 Sonnet-fast 83.0% 1.1k 17.0% 13k | 844% 08k 434% 12k | 83.5% 3.7k 34.0% 3.7k
§ = = = = +1.4% -0.3k +26.4% -0.1k +0.5% +2.6k +17.0% +2.4k
§ Gemini 2.5 Flash-slow 81.6% 5.5k 203% 197k | 792% 3.6k 349% 143k | 80.7% 6.5k 31.1% 20.8k
= = = = = -2.4% -1.9k +14.6% -5.4k -0.9% +1.0k +10.8% +1.1k
g Gemini 2.5 Flash Lite-fast | 84.4% 69k 245% 319k | 788% 6.3k 30.7% 16.6k | 854% 5.7k 24.1% 24.5k
i = = = = -5.7% -0.6k +6.1% -15.4k +0.9% -1.3k -0.5% -7.4k
= Gemini 2.5 Pro-slow 82.5% 57k 330% 149k | 71.2% 55k 32.5% 11.8k | 70.8% 6.2k 36.8% 12.1k
- = = = = -11.3% -0.2k -0.5% -3.1k -11.8% +0.6k +3.8% -2.8k
Mathstral 7B-fast 274% 09 0.5% 1.2k | 292% 0.3k 1.4% 0.5k | 32.5% 1.5k 5.7% 1.9k

§ = = = = +1.9% -0.6k +0.9% -0.7k +5.2% +0.5k +5.2% +0.7k
E Qwen2.5-Math 72B-fast 56.6% 1.0k 4.7% 1.1k | 627% 0.8k 11.8% 0.9k | 59.0% 0.9k 3.3% 1.1k
: = = = = +6.1% -0.2k +7.1% -0.2k +2.4% -0.0k -1.4% -0.0k
i: Qwen2.5-Math 7B-fast 49.1% 0.8k 2.4% 1.0k | 57.1% 0.6k 8.5% 0.8k | 47.6% 0.9k 2.4% 1.1k
% = = = = +8.0% -0.2k +6.1% -0.3k -1.4% +0.1k +0.0% +0.1k
\f\. Qwen3-Coder 30B-fast 557% 22k 7.5% 42k | 73.6% 0.7k 22.6% 3.6k | 63.7% 3.0k 212% 4.7k
= = = = +17.9% -1.5k +15.1% -0.6k +8.0% +0.8k +13.7% +0.4k

Code augmentation is not universally beneficial. On the base set, where problems remain an-
alytically tractable, forcing code often reduces accuracy. QWEN3-32B-SLOW drops from 80.7%
(IR) to 35.4% (CIR). MCA mode is more stable, as its flexibility helps avoid unnecessary tool calls,
showing that code should be used selectively.

On hard problems, coding is indispensable. For the hard set, both CIR and MCA consistently
outperform IR. CIR often provides reliable gains (e.g., QWEN3-235B-SLOwW: 29.2% IR — 36.8%
CIR). The best overall result is also achieved under the CIR mode, with CLAUDE 4 SONNET-FAST
reaching 43.4%. Further analysis of CIR and MCA modes, as well as the impact of the fast vs. slow
setting, is provided in Appendix E.

4.3 ANALYSIS OF COMPUTATIONAL COST

Beyond accuracy, computational cost measured by token consumption is a critical factor for assess-
ing the practical viability of different problem-solving strategies. Our analysis based on the Tok
data in Table 2 shows that the relationship between cost and performance is nuanced, revealing both
opportunities for efficiency and risks of inefficiency.

Under review as a conference paper at ICLR 2026

-I-ACIR —A— MCA [IR [Base [Hard [Fast [Z3 Slow

- —_—

Accuracy

°
=

s
&

0.0

Tokens

Figure 4: Overall accuracy on the MMRC base and hard subsets. This figure provides a high-
level comparison of model performance across different settings, highlighting the stark difficulty
increase on the hard set.

Code as a reasoning compressor on the base set. Tool-augmented modes often consume fewer
tokens than pure IR because analytically tractable problems still require lengthy step-by-step deriva-
tions in text. Code provides a compact representation. This effect is most evident in slow models
with high IR costs. For example, QWEN3-32B-SLOW reduces its usage from 45.8k (IR) to 29.0k
(CIR), saving more than 15k tokens.

Efficiency of MCA vs. CIR depends on model style. Neither tool-augmented mode is consis-
tently more efficient. Fast models often benefit from MCA due to concise tool calls, while slow
models gain more from CIR, which replaces long reasoning traces with a single script. For instance,
DEEPSEEK V3.1-FAST saves 2.2k tokens in CIR compared to IR, whereas MCA slightly increases
cost.

The efficiency trap. Higher token consumption does not guarantee higher accuracy, particularly
on the hard set. MCA is prone to unproductive iterative loops. For example, GLM-4.5 AIR-SLOW
achieves 26.9% accuracy with 41.8k tokens in CIR, but only 28.4% with 50.3k tokens in MCA. This
shows that efficient and well-structured strategies outperform verbose ones prone to reasoning drift.

4.4 ERROR ANALYSIS

The distribution of errors is highly model-dependent, reflecting differences in architecture and train-
ing. Some models perform well in CIR by generating correct programs in one pass but struggle
with iterative MCA refinement, while others adapt better interactively yet fail at producing com-
plex monolithic scripts. In the main analysis, we focus on GEMINI-2.5-PRO, whose strong overall
accuracy makes its failure modes particularly informative. To diagnose errors systematically, we
map them onto a reasoning-to-code pipeline: (1) Understanding—grasping the problem and con-
straints; (2) Reasoning—formulating the correct abstract plan and mathematical model; (3) Imple-
mentation—translating the plan into correct code logic; (4) Syntax—producing syntactically valid
programs; and (5) Format—adhering to output specifications. This framework enables us to locate
failures within specific cognitive stages rather than merely counting them, with detailed examples
provided in Appendix G.

Under review as a conference paper at ICLR 2026

Understanding

22.0% (\\(\0)
00(’0 ';\o Format
X' o5%
(a) Distribution of error types in MCA (b) Distribution of error types in CIR

Figure 5: Distribution of error types under the MCA and CIR modes for GEMINI-2.5-PRO.
The error profiles differ dramatically, highlighting how each mode tests different aspects of the
model’s capabilities.

Analysis of errors inherent to the method Our error analysis reveals a clear contrast between
the two execution modes. In the CIR setting, where the model must deliver a full solution in a
single attempt, failures are dominated by Syntax (36.4%) and Implementation (28.0%) errors,
highlighting the brittleness of monolithic planning: a single slip at the coding level derails the entire
solution. This reflects the unrealistic demand that the model simultaneously act as both a precise
mathematician and a flawless programmer. In contrast, the MCA mode, which allows iterative
interaction with an interpreter, almost eliminates syntax-level issues (1.0%) by leveraging feedback
for local corrections. Yet this advantage reveals a deeper limitation: errors shift predominantly
to Reasoning (45.1%) and Understanding (31.4%), showing that even when surface-level coding
problems are resolved, the model often constructs fundamentally flawed plans. Taken together, these
results suggest that CIR exposes fragility in execution, while MCA exposes fragility in reasoning,
offering complementary perspectives on model limitations.

Comparison between Methods When comparing error sources between MCA and CIR, we find
that Understanding is a major failure mode in both settings, with comparable proportions, indi-
cating that misinterpretation of the problem statement almost always invalidates subsequent rea-
soning. A similar pattern holds for Implementation errors. However, the two modes diverge
sharply in coding-related failures: while MCA exhibits almost no code errors, CIR shows a high
incidence of such mistakes (dominated by the Syntax category in Figure 5), reinforcing that in-
teractive agent—environment feedback is critical for reliable task completion and that single-shot
execution remains insufficient. Moreover, the proportion of Reasoning errors is higher in MCA
than in CIR, often because the model over-suspiciously questions correct intermediate code results,
reflecting a lack of training in effectively leveraging program outputs. Taken together, this high-
lights a central dilemma in math-code reasoning: CIR is brittle due to coding failures, while MCA
exposes deeper reasoning flaws. Simply adding tools is insufficient—poor reasoning fails regardless
of coding, and unreliable coding prevents sound reasoning from being executed. Progress therefore
hinges on improving both intrinsic reasoning and reasoning-in-the-loop, aiming to build models that
integrate robust reasoning with reliable coding.

5 CONCLUSION

In this work, we introduced MMRC, a benchmark of 500 curated problems designed to evaluate
the integration of mathematical reasoning and code execution in large language models. By focus-
ing on university-level mathematics and deliberately imposing substantial computational workloads,
MMRC moves beyond text-only benchmarks and enforces the use of executable code for accurate
solutions. Our evaluation of nearly 120 open- and closed-source models under both program-aided
and agent-based paradigms shows that code integration consistently improves performance on com-
plex tasks while reducing token usage. These results establish MMRC as the first systematic bench-
mark for math—code integrated reasoning and highlight its value in advancing LLMs toward real-
world problem solving. Looking ahead, MMRC opens opportunities for developing models that can
more seamlessly combine symbolic reasoning with computational execution, paving the way for
LLMs to tackle increasingly sophisticated tasks in science, engineering, and beyond.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work primarily introduces and analyzes a new dataset for evaluating how large language models
(LLMs), in combination with programmatic tools, can tackle complex mathematical reasoning tasks.
While our emphasis is on dataset design and evaluation protocols rather than human data collection,
we acknowledge the following ethical considerations and limitations:

* Model licensing and usage compliance. Some of the evaluated LLMs are proprietary, with usage
governed by license agreements. We ensure that all API calls and usage adhere to the providers’
terms of service. All prompt templates, wrapper code, and evaluation scripts we release respect
these licenses and do not reverse engineer or redistribute proprietary weights.

* Data provenance and reuse. Our MMRC benchmark is derived from existing mathematical
reasoning sources (e.g. textbooks, problem sets) via human adaptation. We verify that the original
sources allow non-commercial reuse or are in public domain. We also screen for inadvertent
overlaps with model training data (contamination) and remove suspicious items from evaluation.

* Misuse potential. Since our work focuses on releasing a benchmark dataset rather than an in-
teractive solving system, we do not anticipate direct risks of enabling academic dishonesty (e.g.,
homework or exam solving). The dataset and accompanying code are intended strictly for research
purposes, and we encourage responsible use within the scientific community.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To support the verification and
extension of our findings, we provide comprehensive details of our experimental methodology in
the main paper and appendices.

* Experimental Setup: We provide a detailed description of our experimental setup, hyperparam-
eters, and evaluation protocols in Section 4 and Appendix C.

* Model Specifications: Key details of all evaluated models, including their exact versions and
configurations, are thoroughly documented in Appendix D.

* Data and Code Availability: The MMRC benchmark dataset and the source code used to gener-
ate the results in this paper will be made publicly available upon publication.

REFERENCES

American invitational ~mathematics examination (aime2024), February 2024 URL
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2025.
Product announcement and system card (May 22, 2025).

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, et al. Palm: Scaling language modeling with
pathways. 2022. Google Research / arXiv.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

10

https://www.anthropic.com/news/claude-4

Under review as a conference paper at ICLR 2026

Jingxuan Fan, Sarah Martinson, Erik Y Wang, Kaylie Hausknecht, Jonah Brenner, Danxian Liu, Ni-
anli Peng, Corey Wang, and Michael P Brenner. Hardmath: A benchmark dataset for challenging
problems in applied mathematics. arXiv preprint arXiv:2410.09988, 2024.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint
arXiv:2411.04872, 2024a.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint
arXiv:2411.04872, 2024b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025b.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 523-533, 2014.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585-597, 2015.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

Under review as a conference paper at ICLR 2026

Hynek Kydli¢ek. Math-Verify: Math Verification Library. URL https://github.com/
huggingface/math-verify.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought?
a token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843-3857, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437,2024.

Al Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Saracino, Giorgio Buttazzo, Nicolamaria
Manes, and Fabrizio Giacomelli. Concise thoughts: Impact of output length on llm reasoning and
cost. arXiv preprint arXiv:2407.19825, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—
68551, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning. arXiv preprint arXiv:2409.12183, 2024.

Haoxiang Sun, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng Liu, Zhongyuan
Wang, and Ji-Rong Wen. Challenging the boundaries of reasoning: An olympiad-level math
benchmark for large language models. arXiv preprint arXiv:2503.21380, 2025.

Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. Mm-math: Advancing multimodal math eval-
uation with process evaluation and fine-grained classification. arXiv preprint arXiv:2404.05091,
2024.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266-95290, 2024.

12

https://github.com/huggingface/math-verify
https://github.com/huggingface/math-verify

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022b.

Yibo Yan, Jiamin Su, Jianxiang He, Fangteng Fu, Xu Zheng, Yuanhuiyi Lyu, Kun Wang, Shen Wang,
Qingsong Wen, and Xuming Hu. A survey of mathematical reasoning in the era of multimodal
large language model: Benchmark, method & challenges. arXiv preprint arXiv:2412.11936,
2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shuo Yin, Weihao You, Zhilong Ji, Guoqiang Zhong, and Jinfeng Bai. Mumath-code: Combin-
ing tool-use large language models with multi-perspective data augmentation for mathematical
reasoning. arXiv preprint arXiv:2405.07551, 2024.

Albert S Yue, Lovish Madaan, Ted Moskovitz, DJ Strouse, and Aaditya K Singh. Harp: A challeng-
ing human-annotated math reasoning benchmark. arXiv preprint arXiv:2412.08819, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476-15488, 2022.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen. Evalu-
ating and improving tool-augmented computation-intensive math reasoning. Advances in Neural
Information Processing Systems, 36:23570-23589, 2023.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu, Jindong Wang, Derek F Wong, Xiaowei Huang,
Qiufeng Wang, and Kaizhu Huang. Is your model really a good math reasoner? evaluating
mathematical reasoning with checklist. arXiv preprint arXiv:2407.08733, 2024.

Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, and Huan Zhang. Dynamath: A
dynamic visual benchmark for evaluating mathematical reasoning robustness of vision language
models. arXiv preprint arXiv:2411.00836, 2024.

13

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large Language Models (LLMs) were utilized in several capacities in this work. Primarily, LLMs
are the subject of our study, as we evaluate their capabilities using the MMRC benchmark. An LLM
was also used as a component in our evaluation methodology to perform an initial triage of answers,
and as an assistant for the linguistic polishing of this manuscript, including tasks like grammar
checking and improving clarity.

The core scientific work, including the ideation and design of the MMRC benchmark, the experi-
mental methodology, and the analysis of results, was conducted entirely by the human authors. The
LLM’s role was strictly limited to the functions described above, with no contribution to the research
ideas or findings. The authors take full responsibility for all content in this paper and have verified
the accuracy of any text assisted by the LLM.

B CoODE USAGE DETAILS

Table 3: Taxonomy of Computational Methods in MMRC Problems. This table outlines the
classification system used to analyze Python solutions, categorized by their core computational
paradigm.

Code Category Description Typical Libraries & Functions
Major Category 1: Numerical & Simulation (NS)
Methods employing numerical computation and si hniques for approximate solutions.
Numerical Linear Solving systems of linear equations, eigenvalue problems, . . .
NS-LA Algebra or other large-scale matrix operations. numpy . linalg.solve, numpy.linalg.eig
Numerical Finding the minimum or maximum of a continuous function, including - R
NS-OPT L N Lo . . scipy.optimize.minimize, scipy.optimize.linprog
Optimization non-linear optimization and linear programming.
Calculus & Diff. Numerically computing integrals, derivatives, roots, . .
NS-CDE Equations or solving ordinary differential equations (ODEs). scipy.integrate.quad, scipy.integrate.solveivp
Stochastic Using random sampling to model stochastic processes or to estimate g
Ns-SIM Simulation numerical quantities (e.g., Monte Carlo methods). numpy . random, random, statistics

Major Category 2: Algorithmic & Discrete (AD)
Methods for problems in discrete domains, focusing on exact solutions via structured exploration.

Combinatorics & Counting or generating permutations, combinations, or subsets by

AD-CMB itertools,math.comb, math.perm

Enumeration systematically iterating through discrete solution spaces.
AD-SDP Search &]_)ynamlc Algon[hn}s based on recursion, seal‘ch‘ (e.g., tree/graph traversal), custom recursive functions, funct 0ols.lru_cache
Programming or dynamic programming to find solutions.
AD-NT Numb_er Theory Pvro_bvlerhs involving prime numbe_rs, modul_arvarilhmelic, greatest common math.ged, pow (2, b, m)
Algorithms divisors, or other number-theoretic properties.
Major Category 3: Symbolic & Analytical (SA)
Methods that i h ical sions to find exact, symbolic solutions.
Expression Simplifying, expanding, factoring, or transforming mathematical expressions . .
SA-MAN Manipulation without numerical evaluation. sympy . simplify, sympy.expand
Analytical Finding exact symbolic solutions to equations, systems of equations,
SA-SLV Solving or differential equations. sympy .solve, sympy.dsolve
Symbolic Computing derivatives, integrals, limits, or series expansions .
SA-CAL Calculus symbolically rather than numerically. sympy.diff, sympy.integrate, sympy.limit

This appendix provides a detailed breakdown of the code usage taxonomy developed for the MMRC
benchmark. As introduced in the main text, a core feature of MMRC is its requirement for models to
master a diverse range of computational tasks using code. To facilitate a systematic and fine-grained
analysis of these requirements, we organized the problems into a three-tiered classification system
based on their core computational paradigm.

The following Table 3 presents this taxonomy in full detail. It expands upon the three major cat-
egories introduced previously—Numerical & Simulation (NS), Algorithmic & Discrete (AD), and
Symbolic & Analytical (SA)—by breaking them down into ten distinct subcategories. For each sub-
category, the table provides its definition, a unique code, and a list of representative Python libraries
and functions typically required for its solution.

C EVALUATION DETAILS

This appendix provides a detailed exposition of the evaluation framework used for the MMRC
benchmark, as introduced in Section 3.3. The overall process, from inference modes to the two-
stage verification protocol, is illustrated in Figure 6.

14

Under review as a conference paper at ICLR 2026

IR CIR | [~ python IS

_ _
2 . std output

from xxx import xxx 7

print(xxx) The final answer is xxx AT Answer Ground Truth Answer

2,

o

8%

2, & A

%0

[8)]
To solve this problem I should write
some python code ... %
P

The Final answer is :

To solve this problem I should first ...
Then ...

Finally ...
4 Need Hel

MCA

W] ‘, :(LPIanner Jijl(I need fo use tool... J lI can solve it by myself Jax| 63
S; ;? LN 2 — |
O Tool {}
g\; Z Jy 6k71 Z L fix the by 7 o +
o0 3 { | Reasoner U Ok. T can answer now et me fix the bug 7)/} il

Should T use tools? The Final answer is :
How can I fix the bug?

Can T answer the questions now?

&
XXX L=
L=
R[=

Figure 6: Illustration of the complete inference and evaluation framework for the MMRC
benchmark. It depicts the three distinct inference modes (IR, CIR, MCA) and the subsequent two-
stage answer verification protocol.

C.1 INFERENCE MODES

To provide a holistic view of model performance, we evaluate each model under three inference
modes, each designed to probe a specific aspect of a model’s reasoning and coding capabilities.

Internal Reasoning (IR). This mode measures a model’s intrinsic mathematical reasoning without
external computational aid. It serves as a baseline for a model’s capacity for internal calculation
and logical deduction. Models are prompted using the Chain-of-Thought paradigm to “think step
by step” and articulate their intermediate reasoning in natural language (Wei et al., 2022b). For
standardized answer extraction, the model must present its final answer enclosed in a \boxed{}
environment, a common convention in mathematical benchmarks (Hendrycks et al., 2021; Sun et al.,
2024).

Code-Invoked Reasoning (CIR). This mode assesses the model’s ability to structure a complete
programmatic solution and offload computation to an external tool. Inspired by the Program-Aided
Language (PAL) approach (Gao et al., 2023), the model is prompted to translate its entire solution
into a single, self-contained Python script, embedding its reasoning as comments. The generated
script is then executed by a Python interpreter and must print the final answer to standard output in
the format Final Answer: <result>.

Math-Code Agent (MCA). The DE mode evaluates iterative problem-solving and the dynamic use
of coding tools (Yan et al., 2024). In our setup, the model is connected to a Python interpreter and
operates in a loop of reasoning, optional code execution, and observation. It acts as both a reasoner
and a planner (Yan et al., 2024), deciding when to invoke code, which libraries to use, and how
to incorporate execution results into subsequent reasoning steps. The model may perform multiple
cycles of thought, action (code execution), and observation to correct errors and refine its approach,
which is critical for multi-step computational tasks.

To ensure a fair comparison, both PS and DE modes run within an identical, secure Python sandbox.
C.2 TWO-STAGE ANSWER VERIFICATION PROTOCOL

Given the diverse nature of answers in MMRC, which can range from single numerical values to
complex expressions or sets, a simple string match is insufficient for accurate evaluation. We there-

fore employ a robust, two-stage evaluation protocol that combines the efficiency of an LLM judge
with the precision of a formal verifier, as depicted in Figure 6.

15

Under review as a conference paper at ICLR 2026

Stage 1: LLM Judge for Initial Triage. In the first stage, we utilize a powerful LLM judge (e.g.,
GPT-40) to perform an initial assessment. The judge is provided with the problem description, the
model’s extracted answer, and the ground-truth answer. Its task is to classify the response into one
of three categories: Correct, Incorrect, or Uncertain. For straightforward cases involving
simple numerical or textual comparisons, the LLM judge can often make a definitive ruling.

Stage 2: Formal Verification for Ambiguous Cases. When the LLM judge outputs Uncertain,
it typically signifies a scenario requiring formal verification. This often occurs when the model’s
output is a complex symbolic expression while the ground truth is a numerical value (or vice-versa).
In such cases, the LLM judge is further prompted to extract the model’s answer as a formal LaTeX
expression. This expression is then passed to a second-stage verification module. This module,
inspired by the methodology of the Math-Verify project (Kydlicek), uses a symbolic mathematics
library (e.g., SymPy) to compute the exact value of the expression. The computed value is then
compared against the ground-truth answer with a predefined tolerance to make a final, authoritative
judgment.

C.3 PYTHON SANDBOX ENVIRONMENT

All programmatic computations used by the benchmark (numerical calculations, linear algebra, op-
timization, and symbolic operations) are executed inside a controlled Python sandbox. The sandbox
is exposed via a single programmatic interface.

Python Executor Interface

Function signature:

python_executor (query: str) -> str

The function accepts a Python source string query, executes it in an isolated process, and
returns the captured stdout as a UTF-8 string. To standardize output parsing, user code
is expected to explicitly emit final results using print (). If execution fails, the returned
string contains the full Python traceback (with error type and the failing line number relative
to the supplied query), facilitating automated debugging.

A canonical example call is:

code = "import math\nprint (f’sqgrt (25) = {math.sqrt (25)}")"
out = python_executor (code)
out == "sqgrt (25) = 5.0\n"

If an error occurs, the returned string contains the traceback (example format):

Traceback (most recent call last):
File "<string>", line 3, in <module>
ZeroDivisionError: division by zero

\ J

Supported / curated libraries. For the automated agents and evaluation harness we restrict and en-
dorse a compact scientific stack. The core approved libraries and their versions used in experiments
are shown in Table 4.

Execution constraints and safety. To ensure deterministic, safe, and reproducible runs we enforce
the following runtime constraints for each independent execution of python_executor:

» Wall-clock time limit: 30 seconds per call (hard timeout).

* Memory limit: 512 MB resident memory per call.

* Network access: disabled for sandboxed executions (no external HTTP/DNS/socket access).

* Filesystem: writable ephemeral working directory per execution; persistent write access is disal-
lowed. The ephemeral directory is purged on process termination.

* Process isolation: executions run in short-lived isolated processes (container or restricted inter-
preter) with system-call filtering and limited privileges.

16

Under review as a conference paper at ICLR 2026

Timeouts, memory overflows, or prohibited operations result in an immediate termination and a
returned error string describing the failure mode.

Table 4: Core libraries available to the sandboxed executor environment. Complete package
specifications are detailed in the supplementary materials.

Library Role Version
Third-Party Libraries

numpy Arrays and numerical computations 2.2.6

scipy Optimization, integration, linear algebra, statistics 1.16.1

pandas Tabular data manipulation and analysis 232

sympy Symbolic mathematics computation 1.14.0

Standard Libraries

math Basic mathematical functions (real numbers) Standard Library
cmath Mathematical functions for complex numbers Standard Library
random Generate pseudo-random numbers Standard Library
statistics Mathematical statistics functions Standard Library
itertools Functions creating iterators for efficient looping Standard Library
functools Higher-order functions and operations on callable ob- Standard Library
jects
json JSON encoder and decoder Standard Library
re Regular expression operations Standard Library

17

Under review as a conference paper at ICLR 2026

C.4 PROMPTS

In this section, we present the prompt templates that orchestrate the three inference modes, along
with the judge prompt that evaluates student answers against references. We also describe the.

Tool: python_executor

Description:

Executes Python code in a secure sandboxed environment for mathematical and scientific
computations.

This is your primary tool for any task requiring precise numerical computation or data anal-
ysis. You can use this tool for problems involving:

* Mathematical calculations (calculus, algebra, statistics, number theory)

 Linear algebra (matrices, eigenvalues, determinants, decompositions)

* Optimization problems (linear programming, nonlinear optimization)

* Scientific computing (numerical integration, differential equations)

* Data analysis and manipulation

* Complex symbolic mathematics

e Any multi-step calculation that requires precision

IMPORTANT: Always include print () statements to display results. The tool captures
both successful outputs and detailed error information with line numbers for debugging.
Args:

query: A string of valid Python code to execute. Must include print () statements for
output. The code must be syntactically correct Python and use only the allowed libraries.
Available Libraries:

e Core: math, cmath, random, statistics, itertools, functools, json, re

e Arrays & Matrices: numpy (as np), all numpy functions

* Scientific: scipy (optimize, integrate, l1inalg, special, stats), all scipy
functions

e Symbolic: sympy, all sympy functions (symbols, solve, integrate, diff, etc.)

* Data: pandas (as pd), collections

* Math constants: math.pi, math.e, numpy constants

Returns:
str: Program output or detailed error information with line numbers for debugging. Errors
include the specific line number and error type to help you fix issues.

Examples:

e Basic math: python_executor ("import math; print (f’sqrt (25) =
{math.sgrt (25)}")")

* Linear algebra: python_executor ("import numpy as np;
A = np.array([[1,2],[3,4]1]); print(’det(npn) =',
np.linalg.det (A))")

¢ Optimization: python_executor ("from scipy.optimize import
minimize; result = minimize (lambda x: x[0]x*2, [1]);
print ('minimum at x =’, result.x[0])")

e Symbolic: python_executor ("from sympy import symbols,
solve; x = symbols(’x’); sol = solve(x**x2 - 4, Xx);
print (' Solutions:’, sol)")

18

Under review as a conference paper at ICLR 2026

Internal Reasoning (IR) Mode

System Prompt:
You are an expert mathematician.
Guidelines:

* Read the problem carefully and identify key mathematical concepts

» Show your work step by step with clear reasoning

* Be precise and accurate in calculations

* End with EXACTLY ONE \boxed{final_answer} on the last line

User Prompt:

Problem:

{question}

Please solve this problem step by step and end with EXACTLY ONE
\boxed{final_answer} on the last line.

Math Code Agent (MCA) Mode

System Prompt:

You are an expert mathematician who can execute Python code via the tool
python_executor.

Guidelines:

* Read the problem carefully and identify key mathematical concepts
» Show your work step by step with clear reasoning
* If nontrivial computation is needed (calculus, equation solving, matrix ops, statistics, long

arithmetic), FIRST write Python and call python_executor. Do NOT fabricate re-
sults.

* Answer format: end with EXACTLY ONE \boxed{final_answer} on the last line.

User Prompt:

Problem:

{question}

Please solve this problem step by step and end with EXACTLY ONE
\boxed{final_answer} on the last line.

Under review as a conference paper at ICLR 2026

Code-Invoked Reasoning (CIR) Mode

System Prompt:

You are an expert mathematician who solves problems by writing Python code.
Your Task:

Instead of solving the problem directly, write a Python program that will solve the problem
for you. Your program should:

* Read and understand the mathematical problem

* Implement the solution logic in Python

* Compute the answer using mathematical calculations

* Output the final answer in the specified format

Available Libraries:

Core: math, cmath, random, statistics, itertools, functools, json, re

Arrays & Matrices: numpy (as np), all numpy functions

Scientific: scipy (optimize, integrate, linalg, special, stats), all scipy functions
Symbolic: sympy, all sympy functions (symbols, solve, integrate, diff, etc.)
Data: pandas (as pd), collections

Math constants: math.pi, math.e, numpy constants

Code Format:

Write your Python code inside * * ‘python and ** " blocks.

Important Guidelines:

* Write complete, executable Python code

* Include all necessary imports

¢ Add comments to explain your approach

¢ ALWAYS end with: print (*‘Final Answer:’’, your_result)
* Ensure your code is mathematically correct and handles edge cases

* Do NOT write any explanation outside the code block

QOutput Requirements:

* Write ONLY the Python code block, no additional text

* The code should be self-contained and executable

* The final line must print: “Final Answer: [your calculated result]”

User Prompt:

Problem:

{question}

Write a Python program to solve this problem. Your program must end with:
print (Y ‘Final Answer:’’, your_result)

20

Under review as a conference paper at ICLR 2026

System Prompt:

You will receive two strings: predicted_answer (student) and correct _answer (ref-
erence). Your goal is to decide whether the student’s final answers match the reference.
Guidelines

» Extract only the student’s final answers from predicted_answer; ignore intermedi-
ate steps.

* Judge mathematical equivalence only.
Defer-to-verify policy

* Only if a clear decision cannot be made but could be settled by simple symbolic/numeric

checks, set:
— "needs.math verify": true
— "is_correct": false (decision deferred)

— and provide "verify_expressions_latex".

e Otherwise (clear match/mismatch), set "needs_ math verify": false and give
final "is_correct" with confidence.

STRICT verify expressions_latex (when needs math verify=true)

* Canonicalize every item into valid LaTeX math and wrap with 5. . . $$ (numbers too).
* Auto-convert: use \sin, \cos, \log, \1n, \exp, constants e, 7, i.

* Exponential policy: use exp(z) for exponentials; use e only when the constant stands
alone.

* Non-standard multi-letter identifiers: \operatorname{. . .}.
* Provide an object with equal-length lists in 1-1 correspondence:

{

"ground_truth": ["$S...88", "s$sS...S$S8", ...1,
"student": ["S$s...88", "$s...88", ...]

}

Return format (JSON only)

e "is_correct": boolean, "confidence": floatin [0,1]

* "reasoning": brief string
* "needs_math_verify": boolean

e "verify_ expressions_latex": object above (only if
needs math_verify=true)

User Prompt:
Problem: {question}

Correct Answer: {correct_answer}
Student’s Answer: {predicted_answer}
Apply the system rubric: extract final answers, match semantically (order/labels irrelevant),

allow small rounding. Use math_verify only for simple symbolic/numeric checks (use 1-1
LaTeX lists). Return only the JSON defined above.

21

Under review as a conference paper at ICLR 2026

D EVALUATED MODELS AND METADATA

This appendix provides a complete list of the LLMs evaluated in our experiments. For each model,

we specify:

e Provider and exact model name / variant used in evaluation,

* Model type (proprietary, open-source, or math/code-specialized),
* Default prompting style in our experiments (Fast or Slow),

* Whether the model natively or indirectly supports our Python sandbox for code execution,
» Tokenizer used for token counting (to normalize across different families),
» Exact API endpoint or repository commit hash to ensure reproducibility,
* Path to the prompt template file released in our public repository,

* Any additional notes, such as non-default decoding hyperparameters.

This information ensures that all reported accuracy and token statistics can be faithfully reproduced
and verified by independent researchers.

Table 5: Overview of Large Language Models. “Total Parameters” refers to the model’s overall size,
while “Active Parameters” indicates the parameters engaged during inference for MoE models.

Model Name Link Total Params Active Params Architecture Enable Reasoning Organization
DeepSeek R1 Guo et al. (2025b) HF Link 671B 37B MOoE + Transformer Yes DeepSeek
DeepSeek V3 Liu et al. (2024) HF Link 671B 37B MOoE + Transformer No DeepSeek
DeepSeek V3.1 Liu et al. (2024) HF Link 671B 37B MOoE + Transformer No DeepSeek
GLM-4.5 Air Zeng et al. (2025) HF Link 106B 12B MOoE + Transformer Yes Zhipu Al
LLaMA 4 Scout Meta (2025) HF Link 109B 17B MOoE + Transformer No Meta
Qwen3 8B Yang et al. (2025) HF Link 8B 8B Dense Transformer Yes Alibaba
Qwen3 32B Yang et al. (2025) HF Link 32B 32B Dense Transformer Yes Alibaba
Qwen3 235B Yang et al. (2025) HF Link 235B 22B MOoE + Transformer Yes Alibaba
Claude 4 Sonnet Anthropic (2025) API Link Undisclosed Undisclosed Undisclosed No Anthropic
Gemini 2.5 Flash Comanici et al. (2025) API Link Undisclosed Undisclosed Undisclosed Yes Google
Gemini 2.5 Flash Lite Comanici et al. (2025) APILink Undisclosed Undisclosed Undisclosed No Google
Gemini 2.5 Pro Comanici et al. (2025) API Link Undisclosed Undisclosed Undisclosed Yes Google
Mathstral 7B Jiang et al. (2023) HF Link B 7B Dense Transformer No Mistral Al
Qwen2.5-Math 7B Yang et al. (2024) HF Link 7B 7B Dense Transformer No Alibaba
Qwen2.5-Math 72B Yang et al. (2024) HF Link 72B 72B Dense Transformer No Alibaba
Qwen3-Coder 30B Yang et al. (2025) HF Link 30B 3B MOoE + Transformer No Alibaba

22

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
https://huggingface.co/deepseek-ai/DeepSeek-V3-0324
https://huggingface.co/deepseek-ai/DeepSeek-V3.1
https://huggingface.co/zai-org/GLM-4.5-Air
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-32B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://docs.claude.com/en/api/overview
https://ai.google.dev/api
https://ai.google.dev/api
https://ai.google.dev/api
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/Qwen/Qwen2.5-Math-7B
https://huggingface.co/Qwen/Qwen2.5-Math-72B
https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct

Under review as a conference paper at ICLR 2026

E MORE EXPERIMENT DETAILS

To complement the main results, we provide additional figures that examine accuracy and token
statistics in greater detail.

Base Accuracy (Top 10)

-38.7% I Gemini 2.5 Pro

06 410% [| Claude 4 Sonnet
[b DeepSeek V3.1
t Gemini 2.5 Flash

-+ t Qwen3 235B
- Qwen3 235B
- DeepSeek V3.1
5 Gemini 2.5 Flash Lite

Qwen3 235B
Gemini 2.5 Flash
Gemini 2.5 Pro
Claude 4 Sonnet
Qwen3 235B
DeepSeek R1

RS
o

Hard Accuracy (Top 10) Qwen3 235B

50.9% Gemini 2.5 Flash Lite
o “604% DeepSeck V3.1
-60.5% DeepSeek R1

=
S oe -613% Genmini 2.5 Flash

§ -61.3% Gemini 2.5 Flash Lite
8 o4 -63.2% DeepSeck R1

< 63.7% Qwen3 235B

02 -66.0% Claude 4 Sonnet

0% 07 06 05 04 03 02 o1 00

A Accuracy = Hard — Easy

I R [J CR W MCA [Fast [ZZ Slow

Figure 7: Accuracy of top-10 models. Left: Easy and Hard accuracies (ranked separately). Right:
A = Hard — Easy. All models exhibit accuracy drops on the Hard set, but the decline is less severe
for tool-integrated modes (CIR/MCA).

The first analysis focuses on the top 10 model variants, as shown in Figure 7, ranked by their overall
average accuracy across inference modes (IR, CIR, MCA), speeds (Fast/Slow), and both Base and
Hard subsets, with all speed and reasoning-type configurations included. Accuracy is computed as
the ratio of correct answers to the total, with denominators normalized at the global level, based on
the number of questions in the Base and Hard subsets. As expected, all models exhibit negative
gaps, reflecting the increased difficulty of the Hard set, though the magnitude of this drop varies
across reasoning modes. From the A accuracy plot, it is evident that tool-integrated models show
the smallest performance drop, as indicated by the predominance of blue and pink bars in the upper
portion of the figure. Moreover, the figure shows that on the Base set most models achieve accuracies
above 70%, whereas on the Hard set their performance drops to around 30%.

Claude 4 Sonnet 1 <) o
DeepSeek V3.1 A o)]
Gemini 2.5 Pro o
Gemini 2.5 Flash [e]
Qwen3 235B ° (3
DeepSeek V3 - o) o
Gemini 2.5 Flash Lite - &) o
GLM-4.5 Air - o— —@
Qwen3-Coder 30B 1 ® o
DeepSeek R1 1 o
Qwen3 32B [0} Q@
Qwen3 8B o &—O
LLaMA 4 Scout P CIR Fast
Qwen2.5-Math 72B o Q CIR Slow
Qwen2.5-Math7B{ @ o —8— MCA Fast
Mathstral 7B { @ ° O MCA Slow

T T
0% 10% 20% 30% 40% 50% 60%
Accuracy

Figure 8: Dumbbell plots of within-model contrasts on the Hard subset. Each line connects
Fast and Slow variants of the same model across CIR vs. MCA. CIR generally benefits from Slow
prompting, while MCA often favors Fast prompting.

As shown in Figure 8, dumbbell plots reveal within-model contrasts on the Hard set by connecting
CIR vs. MCA and Fast vs. Slow configurations of the same model. Rows are ordered by mean
accuracy. The results indicate a systematic shift: CIR tends to achieve higher accuracy under Slow
prompting, consistent with the benefits of more structured reasoning, whereas MCA does not follow

23

Under review as a conference paper at ICLR 2026

this trend and frequently yields better performance in the Fast setting (e.g., QWEN3-32B, GLM-4.5
AIR).

o
°
°
@

® o ang

@ o

o
o® 0 00 ©

o
8
8 o
8

2
c}
5
E}
3

®© 0 ®o0

oo

NS
& 2 '-’vv‘m‘% & Q“’% 0@ & 0&%
> & & S S &

S T T T Y

BN R [CIR Bl MCA [J Fast £ Slow

Figure 9: Boxplots of output token counts by reasoning type and speed. Shown for Base (top)
and Hard (bottom), split into Fast (left) and Slow (right). Slow prompting produces consistently
longer outputs, with token-usage rankings stable across difficulty levels.

The distributions of output tokens across different settings are shown in Figure 9, with Base (top) and
Hard (bottom) subsets, and Fast (left) versus Slow (right) modes. The coincident upper whiskers in
several boxplots arise because multiple generations reached the per-turn output cap of 60k tokens,
or in some cases the overall context budget of 128k tokens; these are artifacts of imposed limits
rather than genuine features of the distribution. As expected, the right-hand panels (Slow) exhibit
higher medians and wider spreads than the left-hand panels (Fast), reflecting greater verbosity under
Slow prompting. Comparing the top and bottom rows, the relative ranking by median token count
is largely stable—especially in the Fast setting—suggesting that token usage is primarily driven by
model style rather than problem difficulty.

24

Under review as a conference paper at ICLR 2026

F BENCHMARK SAMPLES

In this section, we provide representative examples from our benchmark dataset to illustrate the vari-
ety and complexity of mathematical problems covered, including both the mathematical formulation
and corresponding implementation code.

Sample 1: Nurse Scheduling Optimization (Base Level)

Problem:

A hospital must schedule 4 nurses to cover 3 time blocks: morning, afternoon, and night.
Each block requires [18.5, 20.0, 16.25] total hours respectively.

Constraints:

* No nurse may work more than 20 hours in total

* Any assigned shift must be either 0 or at least 3.0 hours (no short shifts)

* Goal: minimize total scheduled working hours across all nurses

Mathematical Formulation:
Since the objective penalizes working hours, the optimal solution meets each demand ex-
actly. Therefore the minimum equals: 18.5 4 20.0 4+ 16.25 = 54.75.

Implementation:

from scipy.optimize import linprog
import numpy as np

Problem data

required_hours = [18.5, 20.0, 16.25]
nurse_num, shift_num = 4, 3
max_hours_per_nurse = 20.0

Since objective minimizes total hours and constraints only

provide
lower bounds on coverage, optimal solution meets demands exactly
total_min_hours = sum(required_hours)

print (f"Minimum_total_working_hours:_{total_min_hours}")

Final Answer: 54.75

25

Under review as a conference paper at ICLR 2026

Sample 2: Meal Planning with Piecewise Pricing (Base Level)

Problem:

Design a daily meal plan using 8 ingredients with nutrition requirements, integer constraints,
and piecewise pricing discounts.

Key Constraints: protein > 65g, fat > 40g, carbs > 70g, vitamins > 100, minerals > 80,
calories > 1200 kcal with > 30% from protein+fat, at least 3 different ingredients, I3 and 16
must be integers.

Mathematical Formulation:
Use binary variables for discount triggers and ingredient selection. Split I3 and I6 into
low/high tiers to model piecewise pricing exactly.

Implementation:

import numpy as np
from scipy.optimize import milp, Bounds, LinearConstraint

Data: cost, protein, fat, carbs, vitamins, minerals per 100g
cost = np.array([4, 6, 5, 7, 3, 9, 5, 6], dtype=float)

protein = np.array([10,12, 6, 8, 4,14, 8, 5], dtype=float)

fat = np.array([2, 8,10, 2, 4, 6, 4, 7], dtype=float)

carb = np.array([8, 2, 4,14,12, 2,10, 7], dtype=float)

vit = np.array([1l5, 8,10,16, 8,12, 9, 7], dtype=float)

minr = np.array([8,12, 6, 8,14,10,11,13], dtype=£float)

Variables: x1,x2,x3_lo,x3 hi,x4,x5,x6_lo,x6_hi,x7,x8,y3,y6,z1-z8

nvar = 20

c = np.zeros (nvar) # objective coefficients

cl[:2] = [4.0, 6.0] # x1, x2

cl[2:4] = [5.0, 4.5] # x3 lo (normal), x3_hi (discounted)
cl[4:6] = [7.0, 3.0] # x4, x5

cl[6:8] = [9.0, 7.2] # x6_1lo (normal), x6_hi (discounted)
c[8:10] = [5.0, 6.0] # x7, x8

Bounds and integrality

1lb = np.zeros (nvar)

ub = np.full (nvar, 1000.0)

ub[2], ub[6] = 7.0, 5.0 # upper bounds for low tiers
ub[10:] = 1.0 # binary variables

integrality = np.array([0,0,1,1,0,0,1,1,0,0,2,2,2,2,2,2,2,2,2,21)

Build constraints systematically
A, lb_con, ub_con = [], [], []

Discount logic for I3: x3 _hi >= 8#y3, x3_hi <= 1000+y3, x3_lo <=

7% (1-y3)
row = np.zeros(nvar); row[3] = 1; row[l0] = -8
A.append(row); lb_con.append(0.0); ub_con.append(np.inf)
row = np.zeros(nvar); row[3] = 1; row[1l0] = -1000
A.append(row); lb_con.append(-np.inf); ub_con.append(0.0)
row = np.zeros(nvar); row[2] = 1; row[l0] = 7

A.append(row); lb_con.append(-np.inf); ub_con.append(7.0)

Similar discount logic for I6

row = np.zeros(nvar); row[7] = 1; row[ll] = -6
A.append(row); lb_con.append(0.0); ub_con.append(np.inf)
row = np.zeros(nvar); row[7] = 1; row[ll] = -1000
A.append(row); lb_con.append(-np.inf); ub_con.append(0.0)
row = np.zeros(nvar); row[6] = 1; row[ll] = 5

A.append(row); lb_con.append(-np.inf); ub_con.append(5.0)

Selection constraints and nutrition requirements...

26

Under review as a conference paper at ICLR 2026

[Complete constraint matrix construction]

At least 3 ingredients
row = np.zeros(nvar); row[l2:20] = 1.0
A.append(row); lb_con.append(3.0); ub_con.append(np.inf)

Solve MILP
A = np.vstack (A)
constraints = LinearConstraint (A, np.array(lb_con), np.array (ub_con

))
bounds = Bounds (1lb, ub)

result = milp(c=c, constraints=constraints, integrality=integrality
4
bounds=bounds)
print (f"Optimal_cost:_S${result.fun:.2f}")

Final Answer: 39.45

27

Under review as a conference paper at ICLR 2026

Sample 3: Block Tridiagonal System Solution (Hard Level)

Problem:

Let n = 5000. Matrix A is block tridiagonal: diagonal blocks B = tridiag(—1,4, —1)
(10x10), off-diagonal blocks are 10x10 identity matrices. Solve Ax = b where b =
(1,1,...,1)T and report ||z]|o.

Mathematical Approach:

Use Kronecker sum decomposition: A = I, ® B + 1T}, ® I,, where p = 500, m = 10.

Implementation:

import numpy as np

Problem parameters
p, m = 500, 10

Eigenvalues of tridiagonal matrices

def tridiag_eigenvals(n, a, b, c):
"""Eigenvalues of tridiag(a,b,c) matrix"""
k = np.arange(l, n+l)
return b + 2*axnp.cos (np.pi*k/ (n+l))

Eigenvalues
lam_T = tridiag_eigenvals(p, 1, 0, 1) # T_p eigenvalues
lam_B = tridiag_eigenvals(m, -1, 4, -1) # B eigenvalues

Projection coefficients for ones vector
def ones_projection_coeff (n):
"""Coefficients <1, u_k> for sine eigenvectors"""
k = np.arange(l, n+l)
theta = np.pi * k / (n + 1)
S_n = (np.sin(n*xtheta/2) * np.sin((n+l)*theta/2)
/ np.sin(theta/2))
return np.sqrt(2/(n+l)) * S_n

alpha = ones_projection_coeff(p) # for size p
beta = ones_projection_coeff (m) # for size m

Compute |[|x[[_2°2 using spectral decomposition

eigenvals = lam_T[:, None] + lam_B[None, :] # p x m matrix
coeffs_sqg = (alphal[:, Nonelxx2) x (beta[None, :]x*x%2)
norm_sq = np.sum(coeffs_sqg / (eigenvalsx*x2))

norm_2 = np.sqrt (norm_sq)

print (f"| x| |_2 {norm_2:.6£f}")

—C

Final Answer: 17.055084

28

Under review as a conference paper at ICLR 2026

Sample 4: Nonlinear Integral Equation (Hard Level)

Problem: 9
Solve for all z € (0, 20) such that f(x) = 0.1 where f(x) = [; f}% dt.
Implementation:

import numpy as np
from scipy.integrate import quad
from scipy.optimize import brentg

def integrand(t, x):
"""Integrand function with singularity handling"""
if abs (1l — tx*x4) < le-15:
return 0 # Handle singularity at t=1
return np.sin(x * t) / np.sqrt(l — txx4)

def f(x):
"""Target function f(x) - 0.1"""
integral, = gquad(lambda t: integrand(t, x), 0, 1,
1limit=100, epsabs=le-12)
return integral - 0.1

Scan for sign changes to locate roots
X_scan = np.linspace(le-6, 20.0, 4000)
y_scan = [f(x) for x in x_scan]

roots = []
for i in range(len(x_scan)-1):
if y_scan[i] * y_scan[i+1l] < O:
Found sign change, refine with Brent’s method
try:
root = brentqg(f, x_scan([i], x_scan[i+l1],
xtol=1le-12, maxiter=100)
roots.append(root)
except:
pass

Remove duplicates and format
unique_roots = []
for r in sorted(roots) :
if not unique_roots or abs(r - unique_roots[-1]) > le-6:
unique_roots.append(r)

result = [f"{r:.6f}" for r in unique_roots]
print ("Solutions:", ",_".Jjoin(result))

Final Answer: 0.127544, 4.337245, 6.990414, 10.238756, 13.486897, 16.338351,
19.907142

29

Under review as a conference paper at ICLR 2026

G MORE ERRORS DISCUSSION

To further illustrate the failure modes of LLMs, Table 6 contrasts representative incorrect and cor-
rected solutions across five categories: Implementation, Reasoning, Understanding, Syntax, and
Format. These examples highlight how errors can occur at different stages of the reasoning-to-code
pipeline. Implementation errors typically arise when mathematical expressions are mistranslated
into code, while reasoning errors reflect deeper flaws in the formulation of the mathematical ab-
straction itself. Understanding errors stem from misinterpretations of the problem statement. Syn-
tax errors, by contrast, are low-level violations of programming grammar, and format errors capture
failures to adhere to required output structures (e.g., producing invalid JSON).

Table 6: Error contrast with cases: Implementation, Reasoning, Understanding, Syntax and For-
mat.

Error Type Incorrect Correct
Implementation f_double prime = ((6%x* (1 + f_double prime = (6*x* (1 -
(Mistakes when turning math into gtan (x**3)) * (1 — 3+x+%6)) — 2+%x%x%x6)* (1 4+ atan(x*x3)) -
code) 9wxxxd) Ixx*x*4)
/ (((1 4+ x*x6)*%2) * (1 + / (1 4+ x*x6)*%2) * (1 +
atan (xxx3)) x*2) atan (xxx3)) x*2)
Reasoning) o
(Wrong mathematical model or misuse Chose = = 4 as the solution of z* = 16 Use the integral branch of k(x) since the inverse
f definitions : .
of definitions) Assumed uniqueness, but both +4 and —4 map 18 not unique
0 16. [0 +2)dt = 24 9/2 + 32
Understanding # Misread the axis: rotated # Correct: rotation is about
(Misreading the problem statement) about y-axis (‘‘y=0’") x-axis (y=0)

v = wf[)Q[qb(f(z))]de but treated as [¢(f(z))]> = f(z), so V:7Tf02 f(z)d=z

rotation around y-axis

Syntax ‘ .
(Pure code syntax mistakes) if num.boys if numboys <= total_boys and
num_girls <= total_girls:
Format
(Violating required output format) { answer: 42, { "answer": 42,
"explanation": "explanation":
"value is doubled"} "value is doubled" }

Beyond these localized cases, we also observe systematic error modes tied to specific models. For
CLAUDE, arecurring issue is the recursion-limit failure, which appeared in roughly ~100 problems.
This behavior seems linked to the model’s optimization for extended context handling: when con-
fronted with difficult integrals, it tends to enter repeated reasoning—execution loops. Eventually, the
controller exhausts its recursion depth, terminating the run before a final answer can be produced.

Claude: Recursion Limit Exceeded
1 2
y@) = (Ve 2+ 1+ n@? + 1)), @€ 0,3)

Reference value (for verification).
Correct arc-length value: 3.8585.

Model & Mode.
claude_sonnet_4_fast (inference mode: MCA).

Observed failure (trace excerpt).
Recursion limit of 10 reached without hitting a stop condition.

Symptom.
Run terminated without a final numeric answer. The controller hit the orchestration recursion cap (10)
due to repeated planning/execution cycles.

In contrast, a different failure mode is characteristic of DEEPSEEK-R1. In approximately 60-70
cases, the model terminated prematurely without producing a final answer, even though token and
time limits were not exceeded. Unlike Claude’s runaway iteration, DeepSeek often halts mid-way

30

Under review as a conference paper at ICLR 2026

under CIR/MCA-style prompting, generating partial reasoning text but failing to produce a complete
code block or final print statement. This suggests instability in closing the reasoning—to—execution
loop, reflecting a model-specific weakness in balancing extended deliberation with structured output
requirements.

DeepSeek-R1: Truncated Response without Final Output

Survey problem involving magazine readership with overlaps up to triplets. Required out-
puts: (a) number of people reading at least one magazine, (b) pair with highest overlap, (c)
number of people reading exactly two magazines.

Reference value (for verification).
(a) 5247 (b) (7, 8),2050 (c) 30015

Model & Mode.
deepseek_rl_slow (inference mode: CIR / MCA).

Observed failure.

No Python code found in response. The model generated partial
reasoning text but never produced an executable code block or a
final printed answer.

Symptom.

Run terminated without producing the required Final Answer: ... line. Neither token us-
age nor time exceeded the configured limits; instead, the model truncated mid-way before yielding
executable output.

31

	Introduction
	Related Work
	The MMRC Benchmark
	Overview
	Data Curation Pipeline
	Evaluation Framework

	Experiments
	Experimental Setup
	Main Results: Accuracy Analysis
	Analysis of Computational Cost
	Error Analysis

	Conclusion
	LLM Usage
	Code Usage Details
	Evaluation Details
	Inference Modes
	Two-Stage Answer Verification Protocol
	Python sandbox environment
	Prompts

	Evaluated Models and Metadata
	More Experiment Details
	Benchmark Samples
	More Errors Discussion

