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Abstract

Muscle coordination is fundamental when humans interact with the world. Re-
liable estimation of hand muscle engagement can serve as a source of internal
feedback, supporting the development of embodied intelligence and the acquisition
of dexterous skills. However, contemporary electromyography (EMG) sensing
techniques either require prohibitively expensive devices or are constrained to gross
motor movements, which inherently involve large muscles. On the other hand,
EMGs exhibit dependency on individual anatomical variability and task-specific
contexts, resulting in limited generalization. In this work, we preliminarily investi-
gate the latent pose-EMG correspondence using a general EMG gesture dataset.
We further introduce a multimodal dataset, PianoKPM Dataset, and a hand muscle
estimation framework, PianoKPM Net, to facilitate high-fidelity EMG inference.
Subsequently, our approach is compared against reproducible competitive baselines.
The generalization and adaptation across unseen users and tasks are evaluated by
quantifying the training set scale and the included data amount.

1 Introduction

Human-world interaction is an interdependent loop involving explicit visual, auditory, haptic cues,
and implicit physiological signals. Among these, internal information, such as hand muscle elec-
tromyography (EMG), is critical for embodied interaction [1, 2], assistive technology [3, 4], and skill
acquisition [5, 6], yet remains difficult to access in real-world ubiquitous scenarios due to the cost,
obtrusiveness, and expertise required by conventional sensing systems [7].

On the other hand, the emergence of large-scale datasets and deep learning networks increasingly
facilitates cross-modal synthesis, which enables transformation between different modalities. For
instance, text to image [8], audio to motion [9], or text to music [10]. These developments offer new
insights into inferring internal physiological signals like EMG from readily accessible modalities.
Also, the invisible yet informative muscle activations are highly correlated with body postures, which
is validated in several recently released large-scale datasets containing EMG and motion data. The
public datasets, like EMGBench [11] and emg2pose [12], demonstrate the feasibility of classifying
and estimating gestures from EMG. However, the inverse task to infer EMG from postures or other
modalities, remains substantially challenging and underexplored. The difficulty stems from the richer
semantic information embedded in EMG compared to posture alone, as there is no strict one-to-one
mapping and the same postures may correspond to different muscle recruitment patterns.

To pioneer this promising yet insufficiently studied field, this work begins by leveraging emg2pose
[12], currently the largest and most diverse paired dataset of EMG and hand poses. We pretrain
a foundational model capable to learn latent relationships between muscular activations and hand
postures, which serves as a preliminary step toward assessing the feasibility of pose-to-EMG inference.
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We further focus on a specific domain of piano performance, a representative scenario that involves
intricate and dexterous hand motions. Expert-level pianists rely heavily on precise internal muscle
synergies for advanced and technical performances. However, prior research highlights that muscle
recruitment patterns can vary significantly across different domains [13], which is also confirmed
when we evaluate the pretrained model on PianoMotion10M [14], a hand motion dataset specifically
built for piano but without muscle dynamics.

To enhance the model’s performance and generalization during piano playing, we introduce the Piano
Keystroke-Pose-Muscle Dataset (PianoKPM Dataset) that contains synchronized, high-fidelity data
of hand muscle EMG sampled at 2000 Hz, keystroke motions at 1000 Hz, audio, and multi-view
RGB videos at 60 FPS. The dataset also includes 3D hand motion data estimated using the MANO
model [15] and state-of-the-art (SOTA) method HaMeR [16]. To the best of our knowledge, this is
the largest publicly available EMG dataset of professional piano performance, comprising data from
20 expert pianists performing 7 distinct musical tasks, with 12.64 hours of high-quality recordings.

Leveraging this dataset, we propose the Piano Keystroke-Pose-Muscle Network (PianoKPM Net) to
infer high-frequency EMG from pose data. Additionally, we explore the benefits of incorporating other
modalities, such as key-pressing events, to improve model performance. A comparative evaluation
of several baselines and our method is provided to demonstrate the applicability. Moreover, various
electrode placement [17, 18], subject anatomy [19, 20], and kinematics may introduce substantial
discrepancies in EMG data distribution, posing challenges for generalization. We subsequently
investigate the model’s performance on held-out users and tasks based on the training set scale and
quantify the amount of data required from an unseen distribution to recover high accuracy.

In summary, this paper makes three contributions:

• A hand muscle EMG estimation framework, PianoKPM Net, leverages human-centric
hand motion data and tool-centric piano keystroke data.

• A multimodal piano performance dataset, PianoKPM Dataset, contains simultaneous
hand postures, keystroke motions, audio, and miniature hand muscle EMG.

• A comprehensive evaluation compares our EMG inference approach with several baselines
in piano playing and analyzes its generalization and adaptation across users and tasks.

Instructions regarding accessing and using our PianoKPM dataset and network are provided at
https://github.com/ruofanliu0129/PianoKPMNet.git.

2 Related Work

2.1 Muscular Dynamics Estimation

Muscular dynamics have shown great potential in augmenting various domains like control interfaces
[21, 22], sign recognition [23, 24], motor optimization [25, 26], and recently mixed reality [27, 28].
However, conventional sensor-based muscle measurements demand scarce and resource-intensive
instrumentation [29]. Prior research explores computer-assistive algorithms to estimate myoelectrical
signals to avoid the high cost, encompassing simulation-based and learning-based methods [30].
Musculoskeletal simulations emerge as promising approaches, while most rely on inverse dynamics
and hence are constrained to pre-selected distributions and entail substantial computational overhead
[31–38]. On the other hand, data-driven models enhance generalization and lower required resource
[39–43], albeit at the inevitable cost of accuracy [44]. All the aforementioned principally focus on
the gross motors of large muscles. Several prior studies [45, 46] target muscles involved in non-posed
facial expressions and hand movements, yet these early efforts suffer from limited accuracy or small
participant validation. Consequently, the intricate and critical small hand muscles in dexterous
activities remain largely underexplored [47].

2.2 Relevant Datasets

EMG Datasets. Existing hand-EMG datasets can be categorized into those only involving coarse
gesture labels for classification [11, 48–50] and those involving precise hand postural information
for regression. Representative datasets of the latter are summarized in Row 1-3 of Table 1. Ninapro
[51–54], one of the most established EMG datasets, comprises multiple subsets collected using 10
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Table 1: Dataset comparisons. The first three rows list publicly available EMG-hand datasets, the
following three correspond to piano performance datasets, and ours is presented in the final row.

Dataset Year Public Size Subject Pose Audio MIDI EMG
Ninapro 2014 ✓ - 67 ✓ - - ✓

emg2pose 2024 ✓ 80M 193 ✓ - - ✓
PiMForce 2024 ✓ 83.2M 21 ✓ - - ✓

PianoHand2.5M 2023 ✗ 2.5M 21 ✓ ✓ ✓ -
FürElise 2024 ✓ 2.2M 15 ✓ ✓ ✓ -

PianoMotion10M 2024 ✓ 10M 14 ✓ ✓ ✓ -

PianoKPM (Ours) 2025 ✓ 5M 20 ✓ ✓ ✓ ✓

Otto Bock electrodes, or 12 Delsys Trigno sensors, or dual Myo armbands, and a 22-sensor dataglove
to record hand postures. emg2pose [12] employs a 16-channel sEMG-RD wristband and a 26-camera
motion capture system, while PiMForce [55] utilizes an 8-channel sEMG armband with a magnetic
sensing-based tracking module, to acquire hand kinematics and muscle dynamics. Some additional
EMG datasets on specific skills, such as alpine skiing [56], capture only large muscle activations.

Piano Datasets. Various piano datasets are curated to support different research objectives, such
as music generation [57], fingering extraction [58], and gesture recognition [59–61]. Rows 4-6 of
Table 1 display datasets providing more accurate hand movement annotations. PianoHand2.5M [62]
offers precise ground-truth (GT) labels with a large-scale 3D hand pose dataset from professional
pianists. FürElise [63] captures synchronized MIDI key-press data and multi-view videos using a
five-camera setup. PianoMotion10M [14] aggregates in-the-wild piano performance videos from
the internet, including reconstructed motion, audio, and MIDI data. However, to date, no piano
performance dataset simultaneously provides high-quality pose, audio, and MIDI data, along with
hand muscle EMG, which is crucial for underlying fine-grained dynamics.

3 Preliminary Exploration: Contrastive Pretraining

emg2pose PianoMotion10M PianoKPM (Ours)

Wrist EMG (Ew ∈ ℝTx16)

Hand Poses (P ∈ ℝTx16x3)

(1) General EMG Dataset Pretraining (2) Domain Transferability Evaluating

Decoder

(3) Piano Specific Modeling

Multi-Feature
Encoder

Hand EMG (Eh ∈ ℝTx6)

Joint Angles
(θ ∈ ℝTx20)

Hand Poses
(P ∈ ℝTx16x3)

Hand Poses
(P ∈ ℝTx2x21x2)

Keystrokes (K ∈ ℝTx88)

Synthetic Wrist EMG (Êw ∈ ℝTx16)

Pose-to-EMG Correspondence Prior

Figure 1: Overall research pipeline. We (1) use a public general EMG dataset to pre-learn latent
relationships between hand kinematics and EMG, (2) evaluate this prior on a piano motion dataset but
the synthetic EMG fails to yield satisfactory performance, (3) construct our specialized pose-EMG
paired dataset which is subsequently used to estimate the precise EMG.

To implement cross-modal EMG estimation and mitigate the cost of large-scale paired EMG-pose
collection, we exploit knowledge from public datasets. This section elaborates on the methods we
use and questions we encounter in the preliminary study, including pretraining on a general EMG
dataset, evaluating in a task-specific domain, and articulating the research motivations. As Figure 1
reveals, the whole pipeline from general pretraining to piano-specific modeling is the cornerstone of
our EMG inference framework.

General EMG Dataset Pretraining. In Figure 1 (1), to preliminarily investigate the feasibility of
estimating EMG from other modalities, we employ the public emg2pose dataset [12] to pretrain a
deep learning framework capable of capturing semantic correlation between hand poses and EMG.
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The dataset contains 2000 Hz, 16-channel EMG from a bipolar sEMG-RD wrist band [13], and pose
annotations from a 26-camera motion capture system, spanning 193 participants, 370 hours, and 29
stages. A competitive EMG-to-pose baseline is also provided. We then modify its architecture by
inverting and adapting the input-output channels to encode inductive biases, which can understand
pose-to-EMG correspondence prior and facilitate downstream adaptation through fine-tuning.

Domain Transferability Evaluating. Given that EMG may exhibit distributional shifts across unseen
domains, we focus on advanced piano performance with diverse dexterous finger movements to
assess the generalization of the pretrained framework. To this end, we utilize the PianoMotion10M
dataset [14], which comprises 116 hours of bird’s-eye view piano performance videos with 10 million
annotated hand poses. The pose-to-EMG correspondence prior is evaluated on this dataset, yet it fails
to yield satisfactory results. Although the absence of paired EMG precludes quantitative evaluation,
qualitative visualizations of the synthetic wrist EMG in Figure 1 (2) suggest that the predictions are
suboptimal.

Research Questions Articulating. The above observations motivate and sharpen the focus of our
research. We underscore three reasons for the degraded performance: (1) The piano hand postures
differ substantially from generic datasets, undermining the generalization of learned pose-to-EMG
correspondence in the target domain. (2) Surface EMG acquired from the wrist aggregates multiple
underlying muscle activities, offering limited localization to isolate individual hand muscles. (3) Pose
representations are inherently sparse, lacking sufficient contextual and dynamic cues essential for
reliable EMG inference.

4 Methodology

To address the three research questions mentioned in Section 3, we respectively (1) construct a
piano-centric dataset encompassing diverse hand postures; (2) employ EMG sensors to individually
monitor six major hand muscles; (3) incorporate high-frequency keystrokes as an auxiliary modality.
Leveraging this multimodal dataset, we further propose a neural network for EMG inference that
achieves reliable and accurate results across general benchmarks and our piano-specific dataset.

4.1 PianoKPM Dataset

Audio

Multi-view
Videos

EMG

Hand
Poses

...

...

Piano Key

Keystroke
Motions

ADM

PB

1DI

2DI

3DI

4DI

(b)(a)

Figure 2: Dataset composition. (a) The studio, apparatus, and six hand muscles. (b) PianoKPM
Dataset consists of 60 FPS videos captured from three different views, hand pose annotations, and
2000 Hz 6-channel EMG, 1000 Hz 88-channel keystrokes, and audio collected by specific equipment.

As shown in Figure 2 (a), all data are collected in a studio equipped with a grand piano, three RGB
cameras, two EMG sensors, a fixed microphone, and a keystroke sensing system [64]. From a
professional pianist and neuromuscular science researcher’s advice, EMG signals are recorded from
six hand muscles: Abductor Digiti Minimi (ADM), Pollicis Brevis (PB), First to Fourth Dorsal
Interosseous (1DI - 4DI). The annotated hand postures are extracted using the SOTA pose estimation
method HaMeR [16]. Appendix B provides more dataset details based on standardized datasheet [65].

4.1.1 Data Preprocessing

Inter-Frame Discrepancy-based Motion Refinement. Vision-based pose reconstruction achieves
promising results, while inferior outcomes may still arise due to inevitable occlusion and rapid
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movement. To clean and refine hand motions, we detect and remove the abnormal frames, then
interpolate and smooth the remaining valid data. Given that outlier frames always exhibit variations
from their adjacency, we compute the inter-frame differences di = ∥xi − xi+1∥2 to find the error
frames. We then clean the data using time-informed linear interpolation, given the smooth and
consistent nature of the hand motion over short durations. For an anomalous frame f , an interpolation
coefficient α is computed with its temporally adjacent valid frames, then the current pose values
are interpolated via p = (1− α) · pprev + α · pnext. Once all frames contain valid poses, a moving
average filter [66, 67] is applied to enhance temporal smoothness and reject motion artifacts. We
further commission a professional data annotation service to verify the final dataset quality.

EMG Preprocessing. To ensure quality, computability, and alignment with other modalities, EMG
is preprocessed through filtering, normalizing, downsampling, and task-based cropping. To reduce
the noise of raw EMG signals sampled at 2000 Hz, we apply a low-pass Butterworth filter (the
5th-order, cutoff frequency: 12 Hz) [68]. Considering inter-muscle and inter-subject variability in
EMG amplitude, we normalize each muscle’s EMG by its maximum voluntary contraction (MVC)
[69, 70], which is empirically recorded through an MVC test session before data collection trials.
This procedure transforms EMG into relative values between -1 and 1, enabling more informative
within- and across-subject comparisons of muscle engagement. Subsequently, the 2000 Hz EMG is
downsampled to 1000 Hz to synchronize with other modalities. All data are cropped based on the
onset and offset of keystroke events, and only those periods when dedicated muscle activities relate
to piano playing are included. See Appendix B.1.4 for more EMG preprocessing details.

4.1.2 Data Analysis

Data Statistics. PianoKPM Dataset consists of 20 highly-skilled pianists, 7 tasks, 7,000 performances,
and 21,000 videos with a total length of approximately 12.64 hours. Figure 2 (b) illustrates an example
performance that includes synchronized 720p 60 FPS RGB videos from three views, corresponding 3D
hand pose annotations, 1000 Hz EMG, 1000 Hz keystroke motions, and audio. After preprocessing,
our dataset has valid data for 5,026,566 frames of videos and hand postures, along with 28,706,987
frames of EMGs and keystrokes. The scale and variability can ensure diversity and consistency across
modalities, serving as the basis for downstream multimodal modeling to accurately predict EMG.
Appendix B.1.2 includes more details about the dataset composition.

Data Quality. Following prior work [71], we adopt precision, recall, and F1 metrics, to evaluate the
quality of the reconstructed hand motions. Our evaluation protocol defines TP as a frame where the
model’s prediction validly matches the ground truth. FP refers to a frame that is flagged as invalid by
the outlier detection algorithm in Section 4.1.1, while FN denotes a missing frame with the ground
truth presence of a hand. Across all reconstructed hand sequences from the three camera views, we
obtain 4.83M TPs, 0.14M FPs, and 0.06M FNs. Based on these counts, our model achieves 97.22
precision, 98.74 recall, and 97.97 F1 over the full dataset. See Appendix B.2 for dataset insights [72].

4.2 PianoKPM Net
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Figure 3: Network architecture. A multimodal hand muscle EMG estimation network enhances
human-centric hand pose data by integrating tool-centric keystroke motions.

The potential of estimating EMG from human-centric videos is grounded in the observation that
muscle activities are inherently linked to the executed motor actions [54,73]. Different movement
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patterns lead to distinct muscle coordination dynamics, hence producing discriminative EMG signals
[48, 74]. However, postural data alone cannot fully decode muscle activity complexity, due to
its sparsity and the absence of external force information during human-object interactions. For
instance, the same poses performed with or without extrinsic resistance may elicit different muscle
engagement, which highlights the need to incorporate tool-centric information for context-aware
EMG estimation. Consequently, we augment hand movements with precise keystroke motions. As
Figure 3 shows, we devise a multi-branch encoding architecture to utilize the complementary inputs:
(1) Input-specific encoders, Epose and Ekey , to extract shallow features from postures and keystrokes,
(2) Latent-prior encoder, Elatent, to integrate prior correlations between pose dynamics and EMG
latent space, (3) Time-channel-wise encoder, Efea, to disentangle temporal and feature dependencies.
An auto-regressive decoder, Dfea, is subsequently introduced to reconstruct EMG aligned with the
ground-truth channels from the encoded feature representations. Appendix C.1 provides further details
on the structure and parameters of each layer and the design of the loss function, and Appendix C.2
describes the implementation, including hyperparameter settings, computational resources, and
possible latency.

4.2.1 Multi-Branch Feature Encoder

Input-Specific Encoder. We first extract shallow features independently from the hand and keystroke
motions using input-specific encoders. Due to the inaccuracy of 3D pose depth information mentioned
in Appendix B.1.4, the pose encoder uses concatenated projected 2D keypoints P ∈ RT×V×J×2 (T :
time length, V : views, J : joints) of each frame to perform cross-view fusion, which reshapes, aligns
and aggregates the input vector to produce 3D postural features through: Fp = Epose(P) ∈ RT×Dp .
In parallel, the keystroke encoder takes the 1D keystroke sequence K ∈ RT×N (N : keys) as input
and outputs keystroke features by: Fk = Ekey(K) ∈ RT×Dk .

Latent-Prior Encoder. To exploit pre-trained priors capturing the statistical heuristics between
hand motion and EMG, a latent encoder is introduced to align pose representations with the latent
prior module’s inputs, which is useful for injecting inductive bias into the model [75]. Formally,
the latent encoder maps the input pose features into a physiologically meaningful space by: Zl =
Elatent(Fp) ∈ RT×Dl , capturing compositional rules of muscular activations in response to hand
motion. It is then integrated into the main time-channel encoder, guiding its feature construction with
relational biases to facilitate learning about entities, relations, and rules for composing them.

Time-Channel-Wise Encoder. We revise the TDS block in previous research [76] as the core
component of our time-channel-wise encoder, which is designed to decouple temporal dynamics
from channel-wise feature interactions. All intermediate features are first combined by addition along
the feature dimension: F ∈ RT×C = [Fp + Fk + Zl], and then mapped to a higher-dimensional
space by: C = channels × feature_width. Subsequently, the reshaped pseudo-image tensor
F′ ∈ RT×c×w allows us to treat the feature space as a 2D spatial domain and align the input shape
with the following blocks. This vector is further passed through a module consisting of two sequential
blocks, each comprising a 2D convolutional layer. The final embedded feature is computed as:
Ĥ = Efea(F′) ∈ RT×Df . Compared to other convolutional encoders [77, 78], this decomposition
facilitates temporal-channel separability, allowing the network to learn across time and channels
independently.

Dp, Dk, Dl, and Df refer to the output dimensions of the pose, keystroke, latent prior, and fused
embedded features after their respective encoders. More details are introduced in Appendix C.1.

4.2.2 Auto-Regressive Decoder

Given that the target EMG is sequential, our decoder is designed as an auto-regressive structure. At
each timestep t, the model predicts the hand muscle EMG êh

t ∈ RM (M : muscles) based on the
encoded features ĥt and the prediction êh

t−1 from the last timestep, which is thereby computed as:
Êh = Dfea({[ĥt∥êht−1]}Tt=1). Teacher forcing is not employed during training and the model relies
solely on its previous predictions. A multilayer perceptron (MLP) is opted as the decoder backbone.
Compared to long short-term memory (LSTM) architectures chosen in previous work [79], the MLP
achieves competitive accuracy while offering faster convergence and lower computational overhead,
making it preferable in the training and inference phases.
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4.2.3 Precision-Structure Hybrid Loss

In addition to the standard Mean Squared Error (MSE) loss, we incorporate Optimal Transport (OT)
loss to balance local accuracy with global structure preservation. MSE is widely used due to its
effectiveness in penalizing numerical precision. However, training with it alone leads the model
to converge to an over-smoothed solution that suppresses peaks, valleys, and muscle activation
transitions. On the other hand, previous studies have demonstrated the effectiveness of OT distance in
assessing muscle synergy similarity [80]. Therefore, Sinkhorn-based OT loss [81, 82] is specifically
tailored for our training, which measures the transport cost required to morph the predicted sequence
into the ground truth as a distributional matching problem. OT loss can jointly consider amplitude,
temporal progression, and inter-muscle coordination as: Lot = Wϵ(Êh,Eh), where Wϵ denotes the
entropic-regularized Wasserstein distance between two point clouds in RM over T time steps. Finally,
we combine them as: L = λmse · Lmse + λot · Lot, to encourage low-level numerical precision and
preserve higher-level physiological structures of EMG sequences.

5 Experiments

To evaluate the methodology rigorously, we conduct experiments along two axes. (1) Architectural
evaluation: We benchmark our method against several baselines on the public emg2pose dataset
[12] and the proposed PianoKPM Dataset using quantitative and qualitative metrics. (2) Held-out
evaluation: We investigate the model’s generalization to held-out-distribution scenarios, including
exploring the effect of training dataset scale and quantifying the amount of unseen data required to
sustain satisfying performance. To ensure fair comparisons and align with our hybrid loss design,
we report results using Root Mean Squared Error (RMSE) and Optimal Transport Distance (OTD),
which can evaluate the similarity between synergistic muscle activation patterns.

5.1 Architectural Evaluation

On the emg2pose and PianoKPM datasets, in-distribution experiments across all users and tasks
are conducted to compare the proposed network architecture against several baselines. To further
validate the usability of multiple modalities, we perform ablation studies, isolating the effect of each
input on overall estimation accuracy. Given the absence of existing work on estimating small hand
muscle EMG from poses in piano performance, we revise NeuroPose [83], originally designed for
EMG-to-pose regression, to support multiple input modalities. Moreover, we modify CodeTalker [84],
a widely-used cross-modal synthesis model, to better suit our task and serve as a reference to our
method. See Appendix D.1 for baseline implementation details.

Table 2: Results for architectural evaluations. We report the mean and standard deviation across
performances. Bold indicates the best method and lowest loss with different input settings.

Dataset Input Methods RMSE OTD

emg2pose [12] Pose
NeuroPose [83] .067 ± .032 .039 ± .036
CodeTalker [84] .096 ± .027 .075± .043

PianoKPM (Ours) .055 ± .034 .030 ± .037

PianoKPM

Pose
NeuroPose .166 ± .066 .070 ± .081
CodeTalker .171 ± .063 .064 ± .071

PianoKPM (Ours) .136 ± .062 .033 ± .060

Keystroke
NeuroPose .196 ± .096 .118 ± .172

CodeTalker .152 ± .075 .055 ± .092
PianoKPM (Ours) .191 ± .090 .106 ± .144

Pose, Keystroke
NeuroPose (multi-input) .155 ± .068 .061 ± .077

CodeTalker (cross-attention) .143 ± .071 .040 ± .082
PianoKPM (Ours) .134 ± .061 .031 ± .058

Quantitative Results. The method comparison and modality ablation results are exhibited in Table 2.
In general, PianoKPM Net achieves competitive accuracy when using human-centric video input
alone (RMSE: 0.136, OTD: 0.033), and improves more when incorporated with tool-centric keystroke
input (RMSE: 0.134, OTD: 0.031). While PianoKPM Net consistently outperforms other baselines
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with either video alone or the fused two inputs, CodeTalker obtains the best performance with only
keystroke input. This is because the transformer-based structure and self-attention mechanism capture
long-sequence temporal dependencies. Our model integrates spatial postural semantics with temporal
keypressing features to improve the accuracy of EMG prediction.

GT EMG

PianoKPM Net
Prediction

(Ours)

Baseline
Prediction

(CodeTalker)

Hand Pose
(engaged finger)

1DI

2DI

3DI

4DI

Muscle

Figure 4: Qualitative results. Color gradients ranging from green (low activation) to red (high) are
used to intuitively convey EMG magnitudes. See Figure 2 for the muscle localization diagram.

Qualitative Results. Since the EMG is normalized to a small range, the quantitative improvements in
RMSE appear marginal. Qualitative visualizations are provided in Figure 4 to compare the intuitive
results of the best-performing baseline and ours. We choose a task involving alternating little, ring,
and middle finger movements. The line plots of 1DI-4DI muscle activities are displayed to compare
the GT EMG, CodeTalker’s, and PianoKPM Net’s predictions. Our method yields amplitude and
dynamics more closely aligned with GT EMG, highlighting its superior capability in modeling
dexterous muscle activation patterns. See Appendix D.3 for more qualitative visualizations.

5.2 Held-Out Evaluation

Table 3: Dataset split and results for held-out evaluations. We separate two test sets to measure
generalization to new users (Cross-User) and different performance tasks (Cross-Task).

Train, Val Test RMSE OTDUsers Tasks Hours Users Tasks Hours
Cross-User 18 6 9.54 2 6 1.18 .209 ± .071 .095 ± .097
Cross-Task 18 1 1.72 .264 ± .094 .152 ± .188

Configurations and Overall Results. Robust and effective muscle EMG inference requires models
that generalize across different individuals and tasks. Inspired by prior work [12], we similarly
construct two held-out test sets intended to evaluate across these axes independently. Table 3 reports
detailed statistics and results for each held-out setting. Specifically, Cross-User denotes unseen users
during training but in-distribution performing tasks, while Cross-Task is the vice versa, involving
unseen tasks but in-distribution users. More detailed held-out settings can be found in Appendix D.2.
In the held-out evaluation, Cross-User (RMSE: 0.209, OTD: 0.095) and Cross-Task (RMSE: 0.264,
OTD: 0.152) perform worse compared to the architectural evaluation (RMSE: 0.134, OTD: 0.031).
Notably, the model exhibits lower generalization performance on unseen tasks compared to unseen
users. It stems from the lower diversity of tasks (6) relative to users (18) in the training set, and
the higher semantic complexity in the task space, particularly in structured domains like musical
performance. Novel tasks often engage different muscles, activation timings, and fine-grained motor
control variations that the model has not learned during training. We analyze the specific reasons in
Appendix B.2 and visualize some held-out results in Appendix D.3.

Generalization Across Dataset Scale. Several experiments are conducted to investigate the effect
of the training set scale on generalization Figure 5 (a) exhibits that adding more training users or
tasks contributes to a reduction in out-of-distribution estimation error since the model is exposed to a
broader range of individual anatomies and hand kinematics, mitigating overfitting. But Cross-Task
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Figure 5: Held-out evaluation results. (a) Model generalization ability concerning the number of
users or tasks included in training. (b) Model adaptation ability with different amounts of data from
a new user or task. Distributions are across performance segments. The average EMG estimation
errors (the sum of MSE and OTD) are indicated for reference, and error bars are standard deviations.

generalization is less pronounced than Cross-User, perhaps due to the lower feature overlap between
the held-out task and in-distribution tasks. We include an additional held-out test in Appendix D.2.

Adaptation to Unseen Data. We further explore whether folding a small amount of unseen data
into training can facilitate few-shot learning. Figure 5 (b) proves that including 30% of the new
user data can reduce EMG estimation error by 55.6%, while 30% of new task data yields a greater
reduction of 63.1%. Notably, including just 10% data from the unseen task domain already improves
accuracy by approximately 50%, underscoring the critical role of kinematic diversity in enhancing
EMG prediction generalization.

6 Limitations and Future Work

PianoKPM Dataset: The PianoKPM Dataset is the first large-scale, high-fidelity piano EMG
dataset consisting of expert-level pianists’ hand muscle activities. However, the lack of novices’
and intermediates’ performances restricts the dataset’s generalization to a broader population, and
synergistic wrist-forearm muscles remain unexplored in hand control. In addition, the current seven
tasks are insufficient to capture the complexity of bimanual coordination required in advanced
repertoires such as sonatas and fugues. Future investigations include more demographic diversity,
muscular variations, and musical tasks. See Appendix B.3 for other dataset limitations.

PianoKPM Net: We propose PianoKPM Net, a promising approach for pose-to-EMG inference
that outperforms several comparative baselines. However, Table 2 shows that using only keystrokes
as input, CodeTalker achieves the best predictions, which may be attributed to the transformer’s
effectiveness at encoding long temporal dependencies, while PianoKPM is superior for multimodal
learning. Future work may incorporate a transformer-based encoder or other sequence modeling
frameworks to extract features from temporal keystroke sequences, for example, advanced diffusion-
based techniques [85, 86], perception models [87, 88], and other multimodal networks [89]. On the
other hand, our findings also highlight the persistent challenge of generalization across users and tasks.
Future work could explore few-shot finetuning and transfer learning techniques, such as correlation
alignment (CORAL) [90] for unsupervised domain adaptation and invariant risk minimization
(IRM) [91] for domain generalization, to facilitate universally robust models capable of handling
distributional variation. Other aspects for network limitations are introduced in Appendix C.3.

7 Conclusions

This paper presents PianoKPM Net, a framework for inferring dexterous hand muscle EMG during
piano performance from accessible modalities. We conduct preliminary studies on a general EMG-
to-pose dataset. Due to its unsatisfactory transfer results in piano-playing contexts, we introduce
PianoKPM Dataset, a large-scale, high-fidelity, open-source multimodal EMG dataset, collected
from expert pianists. Trained on this dataset, PianoKPM Net achieves promising estimation from
pose input alone and further improves with keystroke integration. Comprehensive evaluations assess
the model architectures and generalization capabilities. Together, PianoKPM Net and PianoKPM
Dataset establish a foundation for low-cost access to internal physiological and myoelectric signals,
advancing human augmentation and high-dimensional human-machine interaction.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 1 introduces three main claims, which are respectively achieved
through (1) the code published in an anonymous GitHub repository https://github.
com/ruofanliu0129/PianoKPMNet.git, allowing others to reproduce PianoKPM Net
for EMG inference, (2) the multimodal piano performance dataset PianoKPM Dataset also
linked on the same repo, and (3) the comprehensive evaluations of the model architecture
and generalization articulated in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Some of the limitations are discussed in Section 6. Respectively, Appendix B.3
and Appendix C.3 further supplement and analyze the dataset-related and network-related
limitations, along with their underlying causes.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4.2 and Appendix C fully describe the architecture of PianoKPM Net.
Check https://github.com/ruofanliu0129/PianoKPMNet.git for more reproduc-
tion details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an anonymous Github repo at https://github.com/
ruofanliu0129/PianoKPMNet.git, containing available code and example dataset.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Dataset splits and reasons are specified in Table 3 and Appendix D.2, also
included in configuration JSON files on Github repo. Implementation details are quantified
in Appendix C.2, including hyperparameters and computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Mean and standard deviation across performance segments are reported in
Table 2 and Table 3. Error bars regarding the standard deviations are displayed in Figure 5
and Figure 9.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix C.2 includes the compute resources information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and all data and code were
anonymized.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Appendix B.3 and Appendix E discuss potential negative and positive ethical,
societal, and privacy impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We expect that the piano EMG inference framework and the corresponding
dataset have a low risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We check all asset licenses and cite the original papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

19



• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new PianoKPM Dataset is collected and used with participants’ consent
and the code is created by the authors. Details of the data collection process are mentioned
in Appendix B.1.3.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Appendix B.1.3, Figure 6, and Figure 7 introduce the collection protocol,
compensation, instruction slides, and sheet music given to participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
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Justification: As mentioned in Appendix B.1.3, the study protocol is approved by a local
IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


A Overall Appendix Structure

This appendix offers extended details to support and complement the main manuscript. Section B
elaborates on the specifics of the PianoKPM Dataset, including a datasheet, dataset insights, and
limitations. Section C describes the proposed PianoKPM Net, completing the architecture, training
and inference details, and limitations. Section D outlines the experimental implementation for archi-
tectural and held-out evaluations and includes additional visualization results that further substantiate
the main findings. Finally, we discuss the broader implications in Section E, offering perspectives on
potential impacts and future applications.

B PianoKPM Dataset Details

B.1 Datasheet

A standardized datasheet is provided following the methodology proposed by Gebru et al. [65].

B.1.1 Motivation

PianoKPM Dataset aims to construct the first multimodal dataset capturing professional pianists’
muscle activities (EMG), hand postures, audio, and keystroke motions during piano performances.
Since EMG can provide non-invasive access to internal neuromuscular signals, this dataset enables
research on the pose-to-EMG correspondence understanding and data-driven modeling of dexterous
motor control. Our primary objective is EMG inference, a task that offers significant potential to
enhance embodied interaction, skill acquisition, healthcare, and rehabilitation.

B.1.2 Composition

The dataset consists of 35,000 PKL files, including 7,000 sample sets, and each contains EMG,
keystrokes, and hand pose data captured from three camera views. All data have been temporally
synchronized and undergone standard preprocessing procedures, including filtering, normalizing,
downsampling, and cleaning. In total, the dataset comprises performance data collected from
20 professional pianists across 7 designed tasks, each repeated 50 times per participant. The
release also includes two dataset configuration JSON files, specifying the training, validation, and
test splits used in architectural and held-out evaluations in Section 5. All data have been fully
anonymized to remove personally identifiable information. The dataset can be found in: https:
//github.com/ruofanliu0129/PianoKPMNet.git. We plan to release the raw dataset in the
future, additionally including 3-view videos (720p 60FPS), raw EMG signals (2000 Hz), audio, and
raw keystroke signals (1000 Hz).

B.1.3 Collection Process

ADM

PB

1DI

2DI

3DI

4DI

Data Collection for Muscle Activity Estimation Using Deep Learning

After each performance, please relax your hand and keep it horizontal, 
making sure not to touch the keyboard.
We will give a signal before each performance, so please begin only 
after the signal is given.
If you would like to take a break, feel free to let us know at any time.

like this

Aim: Estimate hand muscle activity in a piano 
performance using deep learning techniques.
Main Task: Participants will wear 6 sensors on their left 
hand and repeatedly perform 7 musical piece. The 
following four types of data will be collected:
Collected Data: Electromyography (EMG) data, 
hand motion videos, keystroke data, performance audio.
Duration: Approximately 2 hours
Compensation: 6,000 JPY

Figure 6: The introduction slide presented to participants before the study. The upper-right corner
illustrates the six specified hand muscles and the two types of EMG sensor setups.
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Apparatus Setup. Figure 2 (a) demonstrates that all modality data is collected in a standardized
piano studio equipped with a Shigeru Kawai SK2L grand piano (L: 180 cm, W: 152 cm, H: 102 cm,
324 kg). As Figure 6 upper-right corner shows, two types of wireless EMG sensors (Delsys, Natick,
MT, USA) are employed to record GT EMG at 2000 Hz with wireless transmission latency ≤ 40
ms. A Trigno Quattro sensor (4-channel, 25 g) records signals from Muscle 1DI to 4DI on the dorsal
side of the hand, while two Trigno Mini sensors (1-channel, 19 g) captured Muscle ADM and PB on
the palmar side. All sensor heads (25 x 12 x 7 mm) are placed on target muscles, with sensor bodies
(27 x 46 x 13 mm) affixed to the forearm in non-obstructive positions. The skin is prepped with
alcohol to reduce the impedance. To minimize interference with performing, we employ a markerless
multiview motion capture system comprising three synchronized RGB cameras (1280 x 720, 60 FPS)
with audio. Cameras are mounted above the keyboard center, far left, and far right around the piano.
Keystroke motions are recorded using a contactless optical sensor system from prior work [64], which
measures the vertical displacement of all 88 keys at 1 ms temporal and 0.01 mm spatial resolution.

Participants Recruitment. We recruit twenty highly skilled professional pianists (16 identified as
females, 4 as males), aged 20-42 (M: 26.1, SD: 5.1), with 10-38 years (M: 20.9, SD: 6.0) of formal
piano training. All participants have previously received top awards in piano competitions and are
actively engaged in piano-related education and research, indicating their professional-level expertise.
Twelve participants (60%) have prior experience performing with EMG sensors, suggesting a high
degree of familiarity and comfort with the equipment. This indicates that over half of the participants
can minimize potential interference from the sensors, supporting the reliability of the recorded EMG
data. Ethical review processes are done by a local Institutional Review Board (IRB). Before the
study, all participants are informed about the research using an introduction slide in Figure 6 and
are asked to review and sign an IRB-reviewed consent form. They can ask questions and are free
to withdraw from the study at any time. A retraction of consent form is also provided in advance
to allow them to revoke consent if desired. All collected data are fully anonymized to remove any
personally identifiable information. Each pianist is compensated at a rate of 3,000 JPY per hour (in
total 120,000 JPY across all participants).
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ID Name Sheet Music

T1       Ascending scale

T2       Descending scale

T3       Third Dyad 1

T4       Arpeggio

T5       Third Dyad 2

T6       Third Dyad Trill

T7       All Finger Trill

Figure 7: Task descriptions. The name, sheet music, and fingering patterns are provided.

Task Design. The performance tasks are designed to capture a wide range of kinematics. In
consultation with a professional pianist and neuromuscular researcher, we design seven left-hand
tasks of comparable difficulty: two Scales in opposite directions, one Arpeggio, two Third Dyads,
one Third Dyad Trill, and one All-finger Trill. All tasks are exclusively restricted to the left hand,
as pianists typically exhibit less accurate strength control over the left hand compared to the right.
Descriptions of the detailed sheet music and fingering patterns in each task can be found in Figure 7.
In Appendix D.2, we follow the recommendation of an expert piano instructor to select the T4,
Arpeggio, as the held-out task, which typically involves wider finger spans and faster positional
transitions, encompassing distinct and challenging muscle activation patterns compared to other tasks.
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Performance Styles. Each participant repeats each task fifty times, covering several distinct
performance styles to induce varied muscle activations. For each task, trials 1 to 20 involve a
progressive increase in intensity and volume, gradually from pianississimo (ppp) to fortississimo (fff ).
Trials 21 to 30 are performed in a Legato style, emphasizing smooth transitions with relaxed arm
movement and equal finger descent and ascent. Trials 31 to 40 follow a Staccato style, characterized
by short, crisp sounds, impulsive breaths, and rapid finger release. Finally, trials 41 to 50 are executed
as fast as possible to capture high-speed muscular dynamics. These diverse performing styles provide
a rich range of muscle recruitment patterns, laying a solid foundation for the collected data diversity
and subsequent estimation algorithm’s robustness.

B.1.4 Preprocessing/cleaning/labeling

EMG and Keystroke Preprocessing. As detailed in Section 4.1.1, EMG signals undergo a series
of preprocessing steps, including filtering, normalization, downsampling, and temporal alignment.
Keystroke motions are first normalized to the range -1 to 1 based on the individual key’s specific
minimum and maximum heights recorded before the collection, followed by synchronization with
the corresponding EMG and pose data.

Hand Pose Extracting and Preprocessing. To accurately capture the hand postures, we adopt the
differentiable parametric MANO model [15] as the basis representation for hand annotation. The 3D
joint positions P3D ∈ R21×3 and mesh vertices V3D ∈ R778×3 are computed with pose θ and shape
β, through functions V3D = M(θ, β) and P3D = Preg(M(θ, β)). To reduce setup complexity and
better align with real-world general scenarios, we deliberately avoid multi-camera calibration. Instead,
we first apply ViTPose [92] to detect 2D pose keypoints and bounding boxes of the hand region, based
on which each frame is cropped to solve inhomogeneity across hand spatial locations. Subsequently,
HaMeR [16], a SOTA transformer-based hand pose estimation model, is employed to reconstruct 3D
hand postures with improved accuracy and robustness. The PianoKPM Dataset comprises 5.0 million
images from three-viewpoint cameras, and each frame is annotated with 3D hand postures generated
by HaMeR. However, in preliminary experiments, we observe the depth (Z-axis) estimation is not
sufficiently accurate to meet the requirements for precise pose inference. As such, in the subsequent
network training stage, we instead use the projected 2D keypoints from the right-view to replace the
depth cues from the top-view as P2D ∈ RV×J×2 (V : views, J : joints) and customize a fusion pose
encoder to extract semantically meaningful 3D pose representations. To address the limitations of
single-frame posture estimation algorithms based on visual input, we briefly describe the pipeline for
refining and post-processing the extracted hand pose data in Section 4.1.1. Specifically, abnormal
frames containing artifacts can be categorized into missing frames, where ViTPose [92] fails to detect
human body key points, and invalid frames, where HaMeR [16] does not capture the hand joint
positions. During error detection, we first compute the inter-frame differences, their global mean µ,
and standard deviation σ , based on which a threshold is predefined as TS = µ + 2.5 · σ. During
traversal, the current frame and the adjacent valid frame are compared to obtain the corresponding
z-score zi = (dvalidi − µ)/σ. Notably, when abnormal frames occur consecutively, the growing
temporal gap ∆t from the last valid frame can inflate the z-score. Therefore, we apply a dynamic
threshold that adapts to the length of this gap by tsi = TS · (1 + 0.1∆t), and a frame is flagged as
abnormal when zi > tsi. In addition, we traverse the sequence in forward and backward directions,
and only frames identified as abnormal in their strict intersection are considered anomalous and
subsequently corrected via interpolation.

B.1.5 Uses

The dataset, associated code, and dataset split configurations are released to advance academic
research in EMG-based learning and modeling for purely non-commercial purposes. The provided
codebase, implemented on the popular framework PyTorch, is modular and adaptable to alternative
application scenarios. We welcome and encourage its use as a reference for related research on
biosignal inference and multimodal learning.

B.1.6 Distribution and Maintenance

An example subset of the PianoKPM Dataset and the code for reproducing experimental results are
available at https://github.com/ruofanliu0129/PianoKPMNet.git. The full dataset and raw
data will be also hosted on a public cloud storage platform in the future. Contributions are welcome
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from the broader research community, and ongoing maintenance, updates, and issue tracking will be
managed and distributed through the GitHub repository.

B.2 Dataset Insights
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Figure 8: Visualization for EMG features after t-SNE dimensionality reduction. Different colors
distinguish different tasks, and dashed circles highlight some example users’ EMG data.

The collection of the PianoKPM dataset enables the analysis of correlations between EMG and other
modalities. Figure 8 illustrates the visual distribution of EMG features across different tasks and
users. We align the EMG of each performance to a fixed length then reduce the feature dimensionality
into a two-dimensional map using t-SNE [72], and the results reveal clear and distinct clustering
by task. For instance, T7 (brown) is predominantly located in the lower-left region, while T5 (light
green) is in the lower-right, indicating EMGs in different tasks have different characteristics. On the
other hand, different users’ EMG features of the same task may appear nearby. For example, P9 and
P10 performing T5 (light green, lower-right) exhibit similar EMG patterns. This suggests that the
model has the potential to learn cross-user invariant features. Such capacity may partly explain the
observation in Section 5.2 that the model generalizes more effectively across users than across tasks.
However, the left region of the plot shows overlap among different tasks, indicating that the EMGs
for certain tasks are less distinguishable. To address this issue, we design the PianoKPM Net, with an
advanced feature extraction module, novel network architecture, and specialized loss function.

B.3 Dataset Limitations

Data Fidelity. While we leverage the SOTA algorithm for 3D hand annotations, the single-frame-
based inference still suffers from temporal jitter and error estimations. Since vision-based approaches
rely on camera inputs, these limitations are often difficult to overcome due to occlusion and low
lighting. Moreover, our system only captures the 3D positions of 21 hand joints, without estimating
the hand mesh, elbow, shoulder, or other upper-body parts, which are nevertheless closely related
to muscle activation patterns. On the other hand, during data collection, we occasionally encounter
sensor detachment issues caused by hand perspiration during piano performance. Although immediate
measures are taken, for example, cooling the hands, re-sanitizing the skin, and repositioning the
sensors, minor variations in sensor placement may inevitably occur and affect the fidelity of the
recorded EMG. While this variability, rather than being a limitation, may contribute positively to the
model’s robustness by exposing it to intra-subject domain shifts. In real-world applications, even
EMG signals from the same user may vary across sessions due to subtle changes in sensor placement
or physiological conditions, making this type of noise a meaningful aspect of the learning process.
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Ethics and Privacy. The combination of hand muscle EMG, hand motions, and keystrokes in the
PianoKPM Dataset can serve as a unique biometric signature of a pianist’s neuromotor behavior. Such
data may potentially be used to identify individuals or infer sensitive information, physical conditions,
or even health status. Appropriate anonymization, encrypted storage, and controlled safeguards are
essential to protect participant privacy. Moreover, EMG and motion data recorded during the piano
performance may unintentionally capture a pianist’s style interpretation. Clear consent procedures
should be established to ensure that participants understand how their data may be analyzed, used, or
shared. Despite these concerns, there are societal benefits from the development of the dexterous
skill EMG-motion dataset, supporting internal muscle state feedback, motor supervision, fatigue
monitoring, and even embodied interaction applications. See Appendix E for more potential impacts.

C PianoKPM Net Details

C.1 Network Architecture

Multi-Branch Feature Encoder. To extract meaningful representations from input sequences,
we utilize a stack of two 1D convolutional blocks. Each block consists of a 1D convolution layer
followed by a ReLU activation and dropout with a rate of 0.1. Layer normalization is subsequently
applied to stabilize training and improve generalization. Specifically, the two blocks expand the
input dimension (postures for 84, keystrokes for 88) to 256 channels with kernel sizes of 11 and
5, strides of 1 and 1, and padding of 5 and 2, to preserve the input size. For layer normalization,
we apply it across the channel dimension after transposing the temporal axis, ensuring consistency
with the input-output shape requirements. This design allows the network to jointly model global
and local temporal patterns hierarchically. Subsequently, all features are combined via element-wise
addition and fed into the Time-Channel-Wise Encoder in Section 4.2.1. To capture temporal-channel
dependencies in the feature sequences, we adopt a hierarchical time-channel-wise encoder, inspired
by a time-depth separable (TDS) structure [76]. The encoder consists of sequential modules, each
comprising three main components, a 1D convolution, a stack of TDS blocks, and a linear projection.
Conv1DBlocks apply over the time dimension with kernel sizes of 17 and 9, strides of 1 and 1, and
padding of 8 and 4. They map the input channels to a higher-dimensional space, which increases
representational capacity and aligns the input shape with the expected configuration of the following
TDS blocks. TDS blocks include a special module to perform a 2D convolution with a fixed kernel
size along the time axis and a channel-wise depth separation along the feature axis. The reshaped
vectors enable grouped convolution over temporal windows. The output is then fused back to the
original shape and combined via a residual connection. A layer normalization follows to stabilize
training. Specifically, the kernel size of the Conv2DBlocks layers is (1, 9) and (1, 5), with a stride of
(1, 1). The input and output channels are 256 and 64 respectively.

Auto-Regressive Decoder. In Section 4.2.2, for the backbone of the decoder, we utilize a
lightweight fully connected Multi-Layer Perceptron (MLP) module to map the high-dimensional
fused feature vector into a low-dimensional target space. The MLP is designed to support optional
layer normalization and output scaling to enhance training stability and numerical conditioning. The
overall architecture of the decoder is straightforward. At each time step, the model concatenates the
64-dimensional embedded encoder features of the current frame with the 6-dimensional predicted
EMG from the previous frame. This combined vector is fed into two fully connected layers of size
512 for each, followed by LeakyReLU activation applied. Layer Normalization is applied after
hidden layers to mitigate internal covariate shifts and facilitate faster convergence. The decoder
finally outputs a 6-dimensional predicted EMG vector. Additionally, a final multiplicative scaling
factor of 0.01 is applied to the output to regularize the prediction, which preserves sufficient capacity
to capture the nonlinear mapping between high-level features and target signals.

Precision-Structure Hybrid Loss. In the preliminary exploration of EMG inference networks,
we found that using only MSE loss causes the network to output "safe" stable EMG values, likely
since the GT EMG may exhibit subtle fluctuations. To encourage the network to better learn the
EMG structural variations driven by pose and keystroke inputs, we introduce an additional loss based
on optimal transport, OT loss, mentioned in Section 4.2.3. The original optimal transport problem
between two discrete probability distributions µ =

∑
i aiδxi

and ν =
∑

j bjδyj
is formulated

as: Loriginal_ot(a, b) = minγ∈Π(a,b)

∑
i,j γijCij . But it is a linear programming (LP) problem
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without gradient hence not possible for backprop. Thus, referring to prior work [81], we add entropy
regularization H(γ) to use the Sinkhorn-based optimal transport loss from the Python Geomloss
library and compute a soft alignment between the predicted and ground-truth distributions as:

Lot = Wϵ(a, b) = min
γ∈Π(a,b)

∑
i,j

γijCij − ϵH(γ) (1)

Here, H(γ) = −
∑

i,j γij log γij is the entropy of the transport plan and ϵ controls the regularization
strength. Our subsequent experiments validate that the combination of MSE and OT losses facilitates
EMG inference in high local accuracy and faithful global pattern preservation.

C.2 Implementation Details

Hyperparameters. We train the model for 200 epochs to ensure sufficient convergence. The batch
size is set to 64 to balance computational efficiency and training stability. EMG and keystroke signals
sampled at 1000 Hz use a window length of 1024 for both training and inference. During training, a
sliding window with an overlap of 256 is applied for data augmentation. For the 60 FPS pose data,
the window length is 60 with an overlap of 15. The number of workers and threads is specified as 0
to ensure reproducibility. The model employs an AdamW optimizer with a learning rate of 0.0001,
and a StepLR scheduler with a step size of 20 and a decay factor (gamma) of 0.5. The loss function is
a weighted combination of MSE and OT losses, where the weights λmse and λot are both set to 1.

Compute Resources. Model training is performed on a high-performance computing system with
an AMD EPYC 9654 96-core/192-thread processor, 768 GiB DDR5-4800 RAM, and NVIDIA H100
SXM5 GPUs, and the entire process takes approximately 14 hours. Notably, neither multi-GPU
parallelism nor mixed-precision training is employed. Model inferring is conducted on a more
accessible setup with an Intel Core i9-10900X CPU, 128 GB RAM, and an NVIDIA GeForce RTX
4090 with 24 GB GPU memory. The model contains 3.7 million parameters and achieves batch
inference within 170 ms (latency ≈ 170ms). Therefore, the inference is lightweight enough to run
on desktop-grade hardware without delay or out-of-memory issues, which confirms its suitability for
interactive applications requiring timely feedback.

C.3 Network Limitations

Generalization. Generalization remains challenging across nearly all EMG-based research, and
our work is no exception. Prior studies have primarily approached this issue through two strategies:
(1) expanding dataset scale to capture a wider range of intra- and inter-subject variability [12, 13],
or (2) adopting domain generalization methods to enable robust cross-domain transfer [11]. Our
future work will extend in both directions. (1) Addressing dataset and network bias: The current
dataset may overrepresent certain demographics (e.g., professional pianists), potentially introducing
bias and limiting the model’s applicability to broader populations. Future models should be trained
on more demographically and behaviorally diverse datasets and incorporate explicit evaluations of
generalization across ages, expertise levels, and physical conditions. (2) Improving distributional
generalization: Our current experiments focus on the relationship between training set coverage
and generalization to unseen users or tasks. A promising direction is to employ transfer learning or
few-shot learning to better adapt models across different distributions. Alternatively, future work
may leverage large-scale multimodal foundation models to encode stronger muscle-pose priors that
facilitate generalization in low-data or domain-shift scenarios.

Other Modalities. Recently, multimodal learning frameworks have been a new rising research
hotspot, demonstrating the benefits of incorporating diverse inputs into model training [89]. While
the present study focuses on hand motions and keystrokes containing direct physiological and
kinematic associations with EMG signals, we retain audio, a post-execution modality, to enable future
investigations into multimodal fusion strategies. This choice lays the groundwork for extensible
research on richer sensory integration. Looking forward, we plan to incorporate additional modalities
such as audio, touch pressure, and visual sheet music, to improve the accuracy, robustness, and
semantic interpretability of EMG inference. These efforts are expected to support the development of
more comprehensive models for high-level EMG reasoning and nuanced performance understanding.
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D Experiment Details

D.1 Baselines Implementation in Architectural Evaluation

NeuroPose [83]: While NeuroPose infers 3D hand poses from EMG, our objective reverses to
estimate EMG from motions, optionally enhanced with auxiliary modalities like keystrokes. To this
end, we modify the original NeuroPose U-Net architecture to accommodate differences in input
structures and prediction goals. Specifically, NeuroPose utilizes a single-modality input, but our
framework incorporates multimodal inputs. Inspired by diffusion-step embeddings in DiffWave [85],
we encode keystroke information as constraints and add it to the input of residual layers. The encoder
is composed of three sequential Conv-BN-ReLU-MaxPool layers, progressively downsampling the
feature sizes by (4×4), (2×4), and (2×2) over temporal and spatial domains. This is followed by
five residual blocks with a consistent kernel size of 3×2, while between the first and second residual
blocks, we inject the encoded keystroke features into the pose representation. As well, the decoder
consists of three similar Conv-BN-ReLU-UpSample modules, upsampling the feature sizes by (4×4),
(8×4), and (8×4). A final linear projection maps the output to a 6-channel EMG signal, aligning with
our target muscles.

CodeTalker [84]: While the original CodeTalker targets speech-driven 3D facial animation, we
build upon its Transformer-based architecture and extend it to our pose-to-EMG inference task.
Concretely, pose data and keystroke sequences are first processed by their modality-specific encoders,
to temporally align with distinct frequency. The encoded pose representations are subsequently fused
via addition, yielding a unified pose embedding. The core component is a transformer block that
takes the fused pose embedding as the query (Q) and the encoded keystroke embedding as the key
(K/V). This block consists of three sub-modules, each containing an LN-XATTN-ResNet layer and an
LN-MLP-ResNet feedforward layer, which enable the model to inject keystroke-informed dynamics
into the pose features, facilitating more physiologically plausible EMG prediction. A final FC layer
maps the 512-dimension hidden features to the 6-channel EMG output.

D.2 Held-Out Evaluation

Detailed Configurations. Here, we provide a more detailed elaboration of the held-out protocols
described in Section 5.2 as well as an additional held-out test set. For Cross-User, the held-out
users are randomly sampled and for Cross-Task, the held-out task (T4 in Figure 7) is chosen by
a professional piano teacher, which should be visually out-of-distribution concerning the training
stages. In Figure 9 (a), besides Cross-User and Cross-Task, a most challenging but practically
significant scenario, Cross-User-Task, is conducted to involve both unseen users and tasks. We
partition the dataset into training, validation, and test sets with an approximate ratio of 70% : 10%
: 20%. Validation sets are sampled from the same distribution as training sets, while each test set
corresponds to a specific condition as described above.
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Figure 9: Cross-User-Task configuration and results. (a) The test set is split to include both unseen
users and task. (b) Model generalization ability across training dataset scale. The bar charts take the
same format as in Figure 5.
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Cross-User-Task. From Figure 9 (b), we can draw similar conclusions as those discussed in Sec-
tion 5.2. In Cross-User-Task, increasing the number of training users and tasks both contribute to
improved performance. Notably, enhancing task diversity leads to a more rapid reduction in EMG
estimation error, underscoring the critical role of kinematic and postural variability in facilitating
generalization. Moreover, compared to Cross-User and Cross-Task, the model exhibits inferior
generalization performance under Cross-User-Task. This highlights the greater complexity of simulta-
neously adapting to both unseen users and novel tasks, suggesting the need for further methodological
optimization in this scenario.

D.3 More Qualitative Results
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Figure 10: Visualization results for tasks T2 to T7 from several users. Six hand muscle EMGs are
represented as line plots. For each task, the first row shows the GT EMG as a reference, while the
second row presents the predictions given by PianoKPM Net.

Architectural Evaluation. Figure 4 presents comparative results for a representative task (T1). In
this section, we further show visualization results for the remaining six tasks (T2-T7) across some
users. As shown in Figure 10, aside from minor fluctuations in some predicted values, PianoKPM
Net successfully captures the general trends of muscle activation and the amplitude-level proximity
to the GT EMG. This performance can be attributed to the precision-structure hybrid loss and the
designed network architecture of the PianoKPM Net. Consequently, the network consistently delivers
accurate and interpretable EMG predictions across all tasks and users.

Held-Out Evaluation. As shown in Figure 11, the predictions in the left half (Cross-User setting)
are relatively more accurate. While the predicted EMG signals may not perfectly align with the GT in
magnitude, the structures and activation trends of muscles are partially preserved, indicating that the
model can capture user-invariant neuromuscular dynamics to some extent. In contrast, the right half
(Cross-Task setting) shows more discrepancies. For example, in the top-right example, PianoKPM
erroneously outputs additional activation for Muscle ADM (red); similarly, in the bottom-right
example, Muscle PB (orange) activation is missing. These errors may be due to out-of-distribution
tasks exhibiting kinematic patterns not included during training, which leads to incorrect model
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Figure 11: Visualization results under Cross-User (Left) and Cross-Task (Right) settings.

fitting. On the other hand, variations across users appear to be partially captured or characterized by
our advanced network architecture.

E Broader Impacts

The PianoKPM framework is proposed for estimating piano hand muscle EMG during dexterous
motor tasks by leveraging multiple modalities, such as human-centric pose data and tool-centric
keystroke data, which have potential applications across various domains. In embodied interaction,
this technology enables muscle-aware user interfaces by recognizing intent and effort to enhance
adaptive feedback. In healthcare and rehabilitation, our low-cost and non-invasive EMG estimation
can support remote muscle monitoring during therapy. In digital twins and biomechanical modeling,
the predicted EMG can complement kinematics to construct more realistic, individualized, and
physiologically grounded digital human models.

To further clarify the broader impact and prospects of our work, here we enumerate additional
downstream applications. In the domain of piano performance, prior research reveals the neuro-
muscular control and coarticulation of muscle activity patterns in professional pianists with the use
of EMG [93, 94]. Nevertheless, placing numerous sensors on the hand impedes skillful manual
movements by expert pianists, which emphasizes the importance of estimating hand muscular activi-
ties in a non-contact manner. On the other hand, EMG-based visualization systems are proven to
support motor learning in piano training, helping users perceive subtle muscle activations [45]. EMG
feedback can boost users’ improvisational ability by enhancing their motor control strategies [5].
EMG-based analyses of the finger muscular activities identify aberrant neuromuscular control of
patients with neurological disorders such as focal hand dystonia [95]. In general domains, EMG
signals serve as key input for prosthesis control, with recent works calling for the further integration
of EMG-based input into ubiquitous interactions [1]. EMG is increasingly used in classifying neuro-
muscular disorders and predicting disease severity [96]. Prior work leverages EMG for analyzing and
enhancing motor tasks, such as gait retraining [25].

Despite its promising utility, the development of EMG estimation models introduces novel ethical
and privacy concerns, such as the risk of biometric identification, unintended inference of health
conditions, and non-consensual bodily monitoring. Consequently, this study prioritizes informed
consent, data security, and transparency to ensure responsible use. We make sure that all participants
understand the nature of data collection, provide written consent, and retain the right to withdraw at
any time. All data are anonymized to protect privacy, ensuring the study’s compliance with ethical
research standards.
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