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ABSTRACT

Graph Neural Networks (GNNs) and Transformer have been increasingly adopted
to learn the complex vector representations of spatio-temporal graphs, captur-
ing intricate spatio-temporal dependencies crucial for applications such as traffic
datasets. Although many existing methods utilize multi-head attention mecha-
nisms and message-passing neural networks (MPNNs) to capture both spatial and
temporal relations, these approaches encode temporal and spatial relations inde-
pendently, and reflect the graph’s topological characteristics in a limited manner.
In this work, we introduce the Cycle to Mixer (Cy2Mixer), a novel spatio-temporal
GNN based on topological non-trivial invariants of spatio-temporal graphs with
gated multi-layer perceptrons (gMLP). The Cy2Mixer is composed of three blocks
based on MLPs: A message-passing block for encapsulating spatial information, a
cycle message-passing block for enriching topological information through cyclic
subgraphs, and a temporal block for capturing temporal properties. We bolster
the effectiveness of Cy2Mixer with mathematical evidence emphasizing that our
cycle message-passing block is capable of offering differentiated information to
the deep learning model compared to the message-passing block. Furthermore,
empirical evaluations substantiate the efficacy of the Cy2Mixer, demonstrating
state-of-the-art performances across various traffic benchmark datasets.

1 INTRODUCTION

Traffic forecasting aims to predict future traffic in road networks based on preceding traffic data (Li
et al., 2017; Deng et al., 2021; Shao et al., 2022a;b; Zhu et al., 2023). In Intelligent Transportation
Systems (ITS), traffic forecasting has a pivotal role in effective urban management (Vlahogianni
et al., 2004; Yin et al., 2015) due to its potential to benefit a wide range of applications related
to road networks, including route planning, vehicle dispatching, and congestion mitigation (Wang
et al., 2021). Traffic data is frequently conceptualized as a spatio-temporal graph, where road con-
nections and traffic flows gleaned from sensors are represented as edges and nodes (Diao et al., 2019;
Wang et al., 2020b). Given this, many turn to Graph Neural Networks (GNNs), especially those us-
ing Message Passing Neural Networks (MPNNs), to study this data. GNNs based on MPNNs have
been increasingly adopted to learn the complex vector representations of spatio-temporal graphs,
capturing intricate dependencies in traffic datasets (Yu et al., 2017; Li & Zhu, 2021; Choi et al.,
2022a). However, traditional message passing-based methodologies have exhibited limitations, in-
cluding the inability to adequately account for temporal variations in traffic data and over-smoothing
problems (Jiang et al., 2023). Following the success of Transformers in various domains, they have
been employed either independently or synergetically with MPNNs to address these challenges in
traffic forecasting (Zheng et al., 2020; Xu et al., 2020; Jiang et al., 2023). In some cutting-edge
implementations, they are even coupled with preprocessing techniques like Dynamic Time Warp-
ing (DTW) (Berndt & Clifford, 1994), showcasing competitive performance outcomes (Jiang et al.,
2023).

Previous research efforts have predominantly focused on employing additional algorithms or incor-
porating intricate structures to capture the complex patterns inherent in spatio-temporal graphs. This
often results in heuristics that inflate the complexity of structure and computational costs. Addition-
ally, many of these studies have leaned heavily on experimental results to justify their performance
improvements, lacking comprehensive explanations or theoretical grounding. To address these chal-
lenges, we start with a mathematical hypothesis that leverages the topological non-trivial invariants
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of a spatio-temporal graph to enhance the predictive performances of GNNs. This hypothesis aims
to discern the spatio-temporal relationships among nodes within the graph. We demonstrate that
topological features shed light on facets of temporal traffic data that might be overlooked when
focusing solely on the pre-existing edges connecting nodes in a traffic network.

Building on this mathematical foundation, we propose a simple yet unique model, Cycle to Mixer
(Cy2Mixer), that integrates gated Multi-Layer Perceptron (gMLP) Liu et al. (2021) and MPNNs,
supplemented with topological non-trivial invariants in graphs, to enhance predictive accuracy. Our
Cy2Mixer layer comprises three key components: (a) Message-passing block: Encompasses spatial
relationships along with local neighborhoods. (b) Cycle message-passing block: Captures supple-
mentary information among nodes in cyclic subgraphs. (c) Temporal block: Seizes the temporal
characteristics of all nodes. Notably, our cycle message-passing block aims to encapsulate topologi-
cal features, enabling a finer comprehension of the intricate connectivity patterns within the network
inspired by Cy2C-GNNs (Choi et al., 2022b). We validate our methodology using real-world public
traffic datasets, showcasing the competitive edge of our proposed models. Furthermore, a qualitative
assessment elucidates the efficacy of topological invariants in enhancing the Cy2Mixer’s predictive
performance. Our work also presents an evaluation of the efficiency in preprocessing and training
time of our model relative to recent state-of-the-art techniques.

The contributions of this work are as follows: (1) We use homotopy invariance of fundamental
groups and homology groups to deduce that topological non-trivial invariants of a traffic network
become a contributing factor for influencing the traffic forecast. (2) We propose a simple yet novel
network, Cy2CMixer, based on the gMLP and Cy2C-GNNs inspired by the theory of universal cov-
ering spaces. (3) The proposed model not only exhibits minimal computational cost but also proves
to be highly efficient, consistently delivering superior performance across a variety of datasets, in-
cluding traffic forecasting.

2 PRELIMINARIES

In this section, we provide explanations for some notations and proceed to define the traffic predic-
tion problem.

2.1 MESSAGE PASSING NEURAL NETWORKS (MPNNS)

Each m-th layer H(m) of the MPNNs and hidden node attributes h
(m)
v with dimension km are

defined as :{
h
(m)
v := COMBINE(m)

(
h
(m−1)
v ,AGGREGATE(m)

v

({{
h
(m−1)
u | u ∈ N(v)

}}))
h
(0)
v := Xv

where Xv is the initial node attribute at v and N(v) is the set of neighborhood nodes. Note that
AGGREGATE(m)

v is a function that aggregates features of nodes adjacency to v, and COMBINE(m)

is a function which combines features of the node v with those of nodes adjacent to v.

2.2 GATED MULTI-LAYER PERCEPTRON (GMLP)

gMLP has been shown to achieve comparable performance to Transformer models across diverse
domains, including computer vision and natural language processing, with improved efficiency (Liu
et al., 2021). With the given input X ∈ Rn×d, where n denotes sequence length and d denotes
dimension, it can be defined as:

Z = σ(XU), Z̃ = s(Z), Y = Z̃V,

where σ represents the activation function, which is GeLU (Hendrycks & Gimpel, 2023) in this
context, whereas U and V correspond to linear projections based on the channel (feature) dimen-
sions, serving roles similar to the feed-forward network in Transformer. It is important to note that
the layer s(·) corresponds to the Spatial Gating Unit, which is responsible for capturing cross-token
interactions. We construct the aforementioned layer as follows:

s(Z) = Z1 ⊙ fW,b(Z2),
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where fW,b denotes a linear projection fW,b(Z) = WZ + b. Here, W and b refer to the weight
matrix and bias, respectively. Z1 and Z2 denote two independent components split from Z along
the channel dimension, and ⊙ denotes element-wise multiplication.

2.3 TRAFFIC PREDICTION PROBLEM

Traffic sensor Traffic sensors are deployed within the traffic system to record essential informa-
tion, such as the flow of vehicles on roads and the speeds of these vehicles.

Traffic network Traffic network can be represented as G = (V, E , A,AC), where V =
{v1, · · · , vN} denotes the set of N nodes representing sensors within the traffic network (|V | = N ).
Next, E ⊆ V × V represents the set of edges, and the adjacency matrix A of the network G can
be obtained based on the distances between nodes. Additionally, AC is the clique adjacency matrix
of the network, which is incorporated into the GNN architecture. Note that the clique adjacency
matrix is obtained by using the identical procedure as in the prior study (Choi et al., 2022b). It is
paramount to underscore that A ∈ RN×N and AC ∈ RN×N are time-independent input variables
since the structure remains unchanged over time.

Traffic signal The traffic signal Xt ∈ RN×C represents the data measured at time t across N
nodes in the network. In this context, C denotes the number of features being recorded by the
sensors, and in this study, it represents the flow of the road network.

Problem formalization In traffic forecasting, our objective is to train a mapping function f to
predict future traffic signals by utilizing the data observed in the previous T steps, which can be
illustrated as follows: [

X(t−T+1), · · · , Xt;G
] f−→

[
X(t+1), · · · , X(t+T ′)

]
.

3 MATHEMATICAL BACKGROUNDS

One of the prominent ways to mathematically quantify the effectiveness and discerning capabili-
ties of GNNs is to interpret the graph dataset as a collection of 1-dimensional topological spaces
G := {Gi}i, and identify the given GNNs as a function GNN : G → Rk which represents graphs
in a given dataset as real k-dimensional vectors. These approaches were carefully executed in pre-
vious literature, which focused on pinpointing the discernability of various architectural designs for
improving GNNs, as seen in Choi et al. (2022b); Bodnar et al. (2021); Horn et al. (2021); Park
et al. (2022). Throughout these references, the characterizations of topological invariants of such 1-
dimensional topological spaces provided grounds for verifying whether such GNNs can effectively
capture geometric non-trivial properties of graph datasets, such as cyclic substructures or connected
components of graphs. In light of these previous studies, it is hence of paramount interest to reinter-
pret temporal graph datasets as a collection of higher dimensional topological spaces and understand
what non-trivial properties of such topological spaces the novel deep learning techniques processing
temporal graph datasets should encapsulate.

Topological Space In this work, we interpret the traffic dataset as a 2-dimensional topological
space constructed from the traffic network G, and traffic signals as a function defined over the 2-
dimensional topological space. To elaborate, the previous section indicates that we can identify a
traffic network with a graph G = (V, E , A,AC), and a traffic signal at time t, denoted by Xt ∈
RN×C , as a collection of functions {ft : G → RN×C}t, each of which represents measurements
taken over the graph G at time t. But notice that the continuous time variable t parametrizes a
closed interval I := [ts, te], where ts and te denote the start and end time of the traffic dataset.
This observation allows us to identify a temporal traffic network as a topological space G × I , and
the collection of traffic signals varying with respect to a time variable t as a function over G × I
satisfying the following condition:

X :G × I → RN×C

X(g, t) = Xt(g) for all t ∈ I.
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Figure 1: An illustration of lifting a cyclic subgraph of the traffic network G to a temporal cyclic
subgraph of the topological space G × I representing the traffic dataset.

Temporal cyclic structures One of the prominent topological properties of a graph is the con-
figuration of its cyclic subgraphs. The existence of such cyclic subgraphs indicates that there exists
a pair of nodes v, w ∈ V which are connected by at least two distinct paths, each of which is com-
prised of moving along the edges of the graph G. In terms of traffic dataset, the existence of a cyclic
subgraph indicates that there are at least two paths that a flow of traffic can move along from one
point to another. This observation hints that it is of great importance to understand how such cyclic
subgraphs of a given traffic network G affect predicting future traffic signals. One of the natural
questions we may ask is to understand all possible cyclic substructures inherent in a traffic signal
X : G × I → RN×C one needs to analyze. The following result shows that cyclic substructures of
a traffic signal can be fully understood by understanding the cycle bases of a traffic network G.
Theorem 3.1. Given any choice of t0 ∈ I , let πt0 : G × I → G × {t0} ∼= G be the projection map
which sends the interval I to a singleton set {t0}. Let CG×I := {C1, C2, · · · , Cn} be a cycle basis
of the topological space G × I . Then the set

πt0 (CG×I) := {πt0(C1), · · · , πt0(Cn)}
is a cycle basis of the traffic network G.

Proof. The theorem is a corollary of Hatcher (2002)[Proposition 1.18, Corollary 2.11]. To elabo-
rate, the map πt0 : G × I → G is a homotopy equivalence between the space G × I representing the
temporal traffic data and the space G representing the traffic network. The map induces an isomor-
phism between the fundamental groups and the homology groups of two topological spaces with
rational coefficients. That is, these two maps are isomorphisms of groups for all indices i ≥ 0:

(πt0)∗ : π1(G × I) → π1(G)
(πt0)∗ : Hi(G × I,Q) → Hi(G,Q)

The isomorphisms between the fundamental groups π1 and the first homology groups H1 indicate
that the set πt0(CG×I) has to be a cycle basis of G.

The above theorem shows in particular that any cyclic subgraph of the traffic signal G × I is com-
prised of nodes of form (c1, t1), (c2, t2), · · · , (cn, tn) ∈ G×I , where the nodes c1, c2, · · · , cn are on
a common cyclic subgraph of G, and the coordinates ti correspond to different temporal instances.
Theorem 3.1 mathematically demonstrates that the topological non-trivial invariants of a traffic net-
work G can become a contributing factor for influencing the temporal variations measured among
the nodes of traffic dataset, a potential aspect of temporal traffic data that may not be fully addressed
from solely analyzing the set of pre-existing edges connecting the nodes of a traffic network. To
elaborate, topological non-trivial invariants of G elucidate restrictions associated to constructing a
global traffic signal X : G×I → RN×C from coherently gluing a series of local temporal traffic sig-
nals {Xt} measured at each time t. This originates from previously studied mathematical insights
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that obstructions in gluing continuous functions fα : Uα → Rk defined over collections of open
covers Uα ⊂ Y of a topological space (such that ∪αUα = Y ) to a continuous function f : Y → Rk

can be detected from topological (or cohomological) invariants of the topological space Y (see for
example Chapter 2 or 3 of Hartshorne (1977)). Given that traffic forecasting beyond time t = te re-
quires a thorough understanding of traffic signals X : G × [0, te] → RN×C , we can hence conclude
that a potential candidate to boost performances of traffic forecasting algorithms is to effectively
incorporate topological invariants of traffic networks G.

Temporal cliques Theorem 3.1 demonstrates that every cyclic structure of temporal graph
datasets G × I originating from lifting the cyclic structures of the baseline traffic network G to
any time period using the projection map πt0 . In fact, the lifting procedure does not require that the
cyclic structure over G × I has to be defined over a fixed time t. Rather, the cyclic subgraph of G
can be lifted to a cyclic subgraph of G × I in a manner that the nodes on the subgraph express traffic
signals measured at different moments of time.

One of the topological invariants that conventional GNNs fail to incorporate effectively is the cyclic
substructures of graphs Xu et al. (2019); Bodnar et al. (2021). These unsuccessful attempts originate
from the capability of GNNs to distinguish any pairs of two graphs G and H up to isomorphism of
their universal covers or unfolding trees. One effective method to overcome these limitations is by
substituting cyclic subgraphs into cliques. An approach inspired by the theory of covering spaces,
the strategy alters the geometry of universal covers to allow GNNs to encapsulate cyclic structures
effectively (Choi et al., 2022b). We implement the application of the analogous operation to tempo-
ral traffic data by utilizing the clique adjacency matrix AC , the incorporation of which is equivalent
to connecting nodes representing traffic at different instances of time with edges. In other words,
the clique adjacency matrix AC allows room for GNNs to determine whether additional interactions
among nodes of G, whose measurements are taken at varying moments of time, are relevant compo-
nents for forecasting traffic signals. By doing so, we are able to effectively encapsulate the potential
effects of topological invariants of traffic networks on temporal traffic measurements, observation
of which was inferred from Theorem 3.1. Figure 1 illustrates how lifting a cyclic subgraph of G to a
new cyclic subgraph of G×I of varying temporal instances can enrich our prediction of future traffic
signals. The two cycles are subgraphs colored in red. Note that in this example, the temporal cyclic
subgraph spans over time t = t0 and the end time t = te of the dataset. By changing the colored
cyclic subgraph into cliques, we add edges to nodes on the cyclic subgraph lying in two different
instances of time. These edges establish relations among measurements taken at different nodes and
time periods.

4 METHODOLOGY

In this section, we present the architecture of Cy2Mixer and elaborate on how it distinguishes itself
from other models. Figure 2 provides a comprehensive visualization of our model’s framework.
This architecture is primarily composed of three main components: the embedding layer, a stack of
L Cy2Mixer encoder layers, and the output layer. Further details on these components are elaborated
upon subsequently.

4.1 EMBEDDING LAYER

Our model follows the structure of the embedding layer from Liu et al. (2023). Given the time-series
data Xt−T+1:t, the feature embedding is defined as Xfeat = FC(Xt−T+1:t), where FC represents a
fully connected layer and Xfeat ∈ RT×N×df . Additionally, to account for both weekly and daily pe-
riodicities, the temporal embedding Xtemp ∈ RT×N×dt is produced. This is achieved by referencing
the day-of-week and timestamp-of-day data to extract two distinct embeddings, which are subse-
quently concatenated and broadcasted to generate the final temporal embedding with dimension dt.
Furthermore, to address diverse temporal patterns specific to each node, an adaptive embedding of
dimension da, represented as Xast ∈ RT×N×da , is introduced to capture diverse temporal patterns
for each node. These three embeddings are concatenated, forming the output H ∈ RT×N×dh of the
embedding layer:

H = Xfeat||Xtemp||Xast,

where the dimension dh is equal to df + dt + da.
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Figure 2: The overall framework of Cy2Mixer. Layers within the green box indicate the Cy2Mixer
encoder layer, which comprises a temporal block, spatial message-passing block, and cycle message-
passing block to ensure a comprehensive understanding of both temporal and spatial aspects.

4.2 CY2MIXER ENCODER LAYER

The core architecture of the Cy2Mixer encoder layer consists of three distinct blocks, with each
calculating the projection values of Z based on the output H from the embedding layer. Upon
splitting Z∈ RT×N×2dh into Z1∈ RT×N×dh and Z2∈ RT×N×dh , each block adopts its unique
methodology within the Gating Unit.

Temporal Block This block employs a 3 × 3 convolution network to get the projection values of
Z2. This is subsequently element-wise multiplied with Z1, generating the output of the Gating Unit:

Z̃temporal = Ztemporal,1 ⊙ Conv(Ztemporal,2), Z̃temporal ∈ RT×N×dh ,

where Ztemporal,1 and Ztemporal,2 represents Z1 and Z2 for the Temporal block, respectively.

Spatial Message-Passing & Cycle Message-Passing Blocks These blocks employ the MPNN for
their projection function in the Gating Unit. Notably, the Spatial Message-Passing block uses the
standard adjacency matrix, A, whereas the Cycle Message-Passing block operates with the clique
adjacency matrix, AC . The clique adjacency matrix, proposed by Choi et al. (2022b), represents
the bases of cycles (or the first homological invariants of the graph in a graph (Paton, 1969)) in a
suitable form that enables GNNs to effectively process the desired topological features. Following
a process similar to the Temporal block, the Z̃ values for both blocks are expressed as:

Z̃spatial = Zspatial,1 ⊙ MPNN(Zspatial,2, A), Z̃temporal ∈ RT×N×dh

Z̃cycle = Zcycle,1 ⊙ MPNN(Zcycle,2, AC), Z̃temporal ∈ RT×N×dh .

The final output of each block, denoted as Y , is calculated using the output of the Gating Unit,
Z̃. Considering the effective performance outcomes of incorporating tiny attention into each block
in prior research (Liu et al., 2021), we have adopted the same structure in our model. Then we
concatenate all of three outputs, namely, Ytemporal, Ycycle, and Yspatial, using a feed-forward network
as:

Yout = FC (Ytemporal||Ycycle||Yspatial) , Yout ∈ RT×N×dh
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4.3 OUTPUT LAYER

After progressing through the stacked sequence of L Cy2Mixer encoder layers, the output layer
extracts the final predictions from the hidden state Yout.

Ŷ = FC(Yout), Y ∈ RT ′×N×do .

Here, T ′ represents the number of time steps to be predicted, and do signifies the dimension of the
output features.

5 EXPERIMENTS

Dataset We evaluate Cy2Mixer’s performance using five real-world public traffic datasets. These
datasets contain three datasets including only the traffic data, namely PEMS04, PEMS07, and
PEMS08 (Song et al., 2020), and three datasets including inflow and outflow data, namely NY-
Taxi Liu et al. (2020), CHBike Wang et al. (2021), and TDrive Pan et al. (2019). The first three
datasets (PEMS04, PEMS07, PEMS08) follow a predictive modeling scheme where the data from
the previous one hour (12-time steps) is utilized to forecast the data for the subsequent one hour
(12-time steps), while the remaining three datasets (NYTaxi, CHBike, TDrive) use the previous six
steps to predict the next one step. Further details are provided in the Appendix.

Baseline models In this study, we evaluate our proposed approach against various established
baseline methods in traffic forecasting. We include GNN-based methods such as DCRNN (Li
et al., 2017), STGCN (Yu et al., 2017), GWNet (Wu et al., 2019), MTGNN (Wu et al., 2020),
STFGNN Pan et al. (2019) and STGNCDE Choi et al. (2022a). We also include STTN Xu et al.
(2020), GMAN (Zheng et al., 2020), ASTGNN Guo et al. (2021), PDFormer (Jiang et al., 2023) and
STAEFormer (Liu et al., 2023), all of which are self-attention-based models designed for the same
task as ours.

Experimental settings We configured our experiments using settings consistent with existing
approaches to ensure fair comparisons. The data split ratios for training, validation, and testing
were set to 6:2:2 for PEMS04, PEMS07, and PEMS08, and 7:1:2 for METR-LA and PEMS-BAY.
All experiments were conducted on an NVIDIA A100 GPU and 80GB memory and implemented
using Python version 3.10.4 with PyTorch. We performed a hyperparameter search to select the
optimal model based on its performance on the validation set. Detailed information about these
hyperparameters is available in the Appendix.

For evaluating our model’s performance, we utilized three widely recognized metrics for traffic fore-
casting tasks: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute
Percentage Error (MAPE). Similar to prior research, we assessed the average performance across all
12 forecasted time steps for the PEMS04, PEMS07, and PEMS08 datasets.

Results from benchmark datasets The comparison results between our proposed method and var-
ious baselines on traffic datasets can be found in Table 1. Based on the results presented in the
table, Cy2Mixer outperforms the baseline models across the majority of datasets. Comparing the
results in PEMS04, it can be observed that Cy2Mixer demonstrates notable improvements, with
MAE decreasing from 18.22 to 18.14, RMSE improving from 30.18 to 30.02, and MAPE showing
an enhancement from 11.98% to 11.93%. In the case of the PEMS07 dataset, the proposed model
shows lower performance than STAEFormer compared to other datasets. This is because there are
no cyclic subgraphs for the PEMS07 dataset, as observed in the Appendix. This outcome under-
scores the substantial impact of the cycle message-passing block on the model while demonstrating
that the proposed model can compete favorably with other models even without utilizing AC to cy-
cle message-passing block. The robust performance observed in the results of other datasets also
demonstrates that Cy2Mixer performs well regardless of the number of predicted time steps or the
number of features.

6 ABLATION STUDY

Effectiveness of cycle message-passing block
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Table 1: Traffic flow prediction results for PEMS04, PEMS07, and PEMS08. All prediction results
other than the bold method are cited from available results obtained from pre-existing publications.
Highlighted are the top first, second, and third results.

Datasets Metric DCRNN STGCN GWNET MTGNN STFGNN STGNCDE STTN GMAN ASTGNN PDFormer STAEFormer Cy2Mixer w/o Cycle block Cy2Mixer

PEMS04
MAE 22.74 21.76 19.36 19.08 19.83 19.21 19.48 19.14 18.60 18.36 18.22 18.81 18.14

RMSE 36.58 34.77 31.72 31.56 31.87 31.09 31.91 31.60 31.03 30.03 30.18 30.65 30.02
MAPE 14.75% 13.87% 13.30% 12.96% 13.02% 12.77% 13.63% 13.19% 12.63 12.00% 11.98% 12.86% 11.93%

PEMS07
MAE 23.63 22.90 21.22 20.82 22.07 20.62 21.34 20.97 20.62 19.97 19.14 19.51 19.45

RMSE 36.51 35.44 34.12 34.09 35.81 34.04 34.59 34.10 34.02 32.95 32.60 33.02 32.89
MAPE 12.28% 11.98% 9.08% 9.03% 9.21% 8.86% 9.93% 9.05% 8.86% 8.55% 8.01% 8.16% 8.11%

PEMS08
MAE 18.19 17.84 15.06 15.40 16.64 15.46 15.48 15.31 14.97 13.58 13.46 13.71 13.53

RMSE 28.18 27.12 24.86 24.93 26.21 24.81 24.97 24.92 24.71 23.41 23.25 23.63 23.22
MAPE 11.23% 11.21% 9.51% 10.17% 10.55% 9.92% 10.34% 10.13% 9.49 9.05% 8.88% 9.01% 8.86%

NYTaxi
MAE 13.63 13.46 13.30 13.23 14.26 13.28 13.37 13.27 12.98 12.36 12.61 12.61 12.59

RMSE 21..97 21.91 21.71 21.61 23.87 21.68 21.84 21.66 21.19 20.18 20.91 20.53 20.45
MAPE 14.35% 14.16% 13.94% 13.82% 14.73% 13.93% 13.98% 13.89% 13.65% 12.79% 12.96% 13.06% 13.03%

TDrive
MAE 21.94 21.14 19.55 18.96 22.51 19.29 20.51 19.10 18.79 17.79 16.97 17.48 16.99

RMSE 38.41 37.84 36.18 35.69 40.55 36.12 37.14 36.05 33.93 31.55 31.02 31.31 30.82
MAPE 17.57% 17.26% 16.56% 16.41% 18.54% 16.50% 16.66% 16.45% 15.84% 14.68% 13.81% 13.95% 13.56%

CHBike
MAE 4.22 4.18 4.13 4.10 4.25 4.11 4.14 4.10 4.02 3.89 4.03 3.89 3.80

RMSE 5.91 5.87 5.81 5.74 5.90 5.80 5.83 5.79 5.71 5.48 5.70 5.46 5.37
MAPE 31.04% 31.00% 30.92% 30.86% 32.27% 30.87% 31.00% 30.91% 30.91% 30.06% 31.49% 30.10% 29,20%

The design of the cycle message passing block is crucial since it needs to provide additional topo-
logical information within the network. We performed an ablation study to evaluate the influence of
the cycle message-passing block more comprehensively. Three models were compared: the results
of Cy2Mixer’s cycle message-passing block using the clique adjacency matrix AC , the results when
employing the DTW matrix previously utilized in PDFormer (Jiang et al., 2023) instead of AC to
capture long-range relationships (w/ DTW), and the results where the cycle message-passing block
is not used (w/o Cycle block), as presented in Table 2. PEMS04, PEMS07, and PEMS08 were
chosen as the datasets for the ablation study due to their varying numbers of nodes and time steps.

Table 2: Ablation study on effect of cycle message-passing block for PEMS04, PEMS07, and
PEMS08. Note that w/ stands for with and w/o stands for without.

Dataset PEMS04 PEMS07 PEMS08

Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o Cycle block 18.81 30.65 12.86% 19.74 33.46 8.19% 13.56 23.45 8.97%
w/ DTW 18.44 30.66 12.16% 19.72 33.35 8.31% 13.65 23.50 8.94%

Cy2Mixer 18.14 30.02 11.93% 19.50 33.28 8.19% 13.53 23.22 8.86%

These results indicate that even when both the DTW matrix and AC are not utilized, the proposed
model demonstrates relatively respectable performance when compared to existing models. How-
ever, it is evident that the highest performance is achieved when AC is employed in the cycle
message-passing block. Notably, under the same conditions, generating the DTW matrix for 307
nodes took over 3 hours, while creating the clique adjacency matrix took less than a minute. This
significant difference in computation time can be attributed to the fact that the DTW method relies
on time-dependent similarity calculations for each node, whereas the clique adjacency matrix con-
struction does not necessitate considering all time steps. Based on this result, we can observe that
the mathematical proofs we presented indeed have a significant impact on the model.

Case study We conducted a case study to analyze the influence of each component of Cy2Mixer by
comparing it to variants of the proposed model for PEMS04. First, to demonstrate the effectiveness
of our proposed Cy2Mixer block, we compared cases where only the temporal block was used and
cases where only the spatial message-passing block was used. In this comparison, the self-attention
layer, designed based on the STAEFormer model Liu et al. (2023), replaced the omitted block.
Additionally, for the spatial message-passing block and cycle message-passing block, we compared
models that either do not use adjacency matrix A and clique adjacency matrix AC or use them.
Next, we conducted experiments by comparing models in which either the spatial message-passing
block or the cycle message-passing block was excluded from the structure of Cy2Mixer. Finally, to
demonstrate the effectiveness of tiny attention, we compared results with models that did not use
tiny attention. The results of these experiments are summarized in the Table 3.

Not only did each component significantly impact the model’s performance, but there was also a
substantial performance improvement when topological information was incorporated into both the
spatial message-passing block and the cycle message-passing block through the adjacency matrix

8
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Table 3: Case study on the structure of Cy2Mixer for PeMS04. Spatial block and Cycle block
refer to the spatial message-passing block and cycle message-passing block, respectively, while w/o
stands for without.

PEMS04 MAE RMSE MAPE
only Temporal block 18.55 30.31 12.20%

only Spatial block (not using A and AC) 22.53 36.33 15.36%
only Spatial and Cycle block (using A and AC) 18.56 30.33 12.32%

w/o Spatial block 18.85 30.68 12.72%
w/o Cycle block 18.81 30.65 12.86%

w/o Tiny attention 18.36 30.15 12.05%
Cy2Mixer 18.14 30.02 11.93%

and the clique adjacency matrix. This is evident from the significant reduction in MAE, RMSE,
and MAPE when A and AC were omitted in the spatial message-passing block (the second result)
compared to when they were included (the third result). This indicates that in Cy2Mixer, these two
matrices exert significant influence on the model’s performance.

Additional experiments for different spatio-temporal learning tasks.

We conducted additional experiments to validate the proposed Cy2Mixer not only for traffic fore-
casting but also for various other spatio-temporal tasks. Among these tasks, we specifically verified
its performance in the context of air pollution prediction. A whole 4-year dataset KnowAir was used
for predicting particles smaller than 2.5µm (PM2.5) concentrations (Wang et al., 2020a). Dataset
covers in total 184 cities, which can be expressed as nodes, and the dataset is split into 3 sub-
datasets based on dates. Since the compared models in this context differ from the models used in
the main text, Cy2Mixer was compared with models designed for air pollution prediction; GRU,
GC-LSTM (Qi et al., 2019), and PM2.5-GNN (Wang et al., 2020a). The results of this comparison
were evaluated using root mean squre error (RMSE) and critical success index (CSI), which are
commonly used meteorological metrics, and the results are presented in Table 4 .

Table 4: Air pollution prediction results for KnowAir datasets. All prediction results other than the
bold method are cited from available results obtained from pre-existing publications. Highlited are
the top first, second, and third results.

Dataset Sub-dataset 1 Sub-dataset 2 Sub-dataset 3

Metric RMSE CSI(%) RMSE CSI(%) RMSE CSI(%)

GRU 21.00 ± 0.17 45.38 ± 0.52 32.59 ± 0.16 51.07 ± 0.81 45.25 ± 0.85 59.40 ± 0.01
GC-LSTM 20.84 ± 0.11 45.83 ± 0.43 32.10 ± 0.29 51.24 ± 0.13 45.01 ± 0.81 60.58 ± 0.14

PM2.5-GNN 19.93 ± 0.11 48.52 ± 0.48 31.37 ± 0.34 52.33 ± 1.06 43.29 ± 0.79 61.91 ± 0.78
PM2.5-GNN no PBL 20.46 ± 0.18 47.43 ± 0.37 32.44 ± 0.36 51.05 ± 1.15 44.71 ± 1.02 60.64 ± 0.84

PM2.5-GNN no export 20.54 ± 0.16 45.73 ± 0.58 31.91 ± 0.32 51.54 ± 1.27 43.72 ± 1.03 61.52 ± 0.95
Cy2Mixer no Cycle block 19.76 ± 0.13 47.95 ± 0.33 31.31 ± 0.20 52.03 ± 0.95 43.27 ± 0.41 61.65 ± 0.52

Cy2Mixer 19.34 ± 0.13 48.58 ± 0.56 31.29 ± 0.19 51.64 ± 0.90 43.19 ± 0.98 62.06 ± 0.69

Cy2Mixer consistently demonstrated the highest predictive performance across most datasets. No-
tably, it achieved this without relying on specific domain knowledge, distinguishing it from the
previous PM2.5-GNN model. This versatility suggests that the proposed Cy2Mixer can be applied
to various spatio-temporal tasks beyond traffic prediction with ease.

7 CONCLUSION

In this paper, we have mathematically investigated the effects of topological non-trivial invariants
on capturing the complex dependencies of spatio-temporal graphs. Through our investigation, we
gained insight into how the homotopy invariance of fundamental groups and homology groups
can be a contributing factor in influencing the predictive performance of spatio-temporal graphs.
We then introduce a simple yet novel model, Cy2Mixer, based on the mathematical background
and inspired by gMLP. Cy2Mixer comprises three major components: a temporal block, a spa-
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tial message-passing block, and a cycle message-passing block. Notably, the cycle message-passing
block enriches topological information in each of the Cy2Mixer encoder layers, drawing from cyclic
subgraphs. Indeed, Cy2Mixer achieves state-of-the-art or second-best performance on traffic fore-
cast benchmark datasets. We further investigate the effects of the cycle message-passing block on
benchmark datasets to compare the DTW method, which makes a new adjacency based on the time-
dependent similarity for each node. Compared to the DTW method, the cycle message-passing block
captures the spatio-temporal dependency more effectively with a significantly lower computational
cost. For future work, we plan to extend our study to other spatio-temporal tasks and additional
GNN tasks, such as link prediction, by integrating self-supervised techniques to enhance predictive
performance compared to other state-of-the-art studies.
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A APPENDIX

Dataset description

A detail of statistical information of six traffic datasets is outlined in Table 5. The first three datasets
are graph-based datasets, each with a single feature, while the latter three are grid-based datasets
with two features. The node counts for the grid-based datasets are 75 (15×5), 270 (15×18), and
1,024 (32×32), respectively. The term “# Cycles” indicates the number of the cycle bases of graphs,
and the term “Average Magnitude # Cycles” denotes the average number of nodes present in a cycle
subgraph of a graph.

Table 5: Description of statistical information of six traffic datasets.

Datasets # Nodes # Edges # Timesteps # Time Interval Time range # Features # Cycles Average Magnitude # Cycles

PEMS04 307 340 16,992 5 min 01/01/2018-02/28/2018 1 45 4.9111
PEMS07 883 866 28,224 5 min 05/01/2017-08/31/2017 1 0 0
PEMS08 170 295 17,856 5 min 07/01/2016-08/31/2016 1 105 7.8571

NYCTaxi 75 484 17,520 30 min 01/01/2014-12/31/2014 2 168 4.8810
TDrive 270 1,966 4,416 30 min 07/01/2020-09/30/2020 2 2883 14.4707
CHBike 1,024 7,812 3,600 60 min 02/01/2015-06/30/2015 2 714 7.9174

Hyperparameter search

We conducted a hyperparameter search to find the model, and hyperparameters for each dataset are
listed in Table 6. Note that the embedding dimensions, df , dt, and da, followed the settings of
previous research Liu et al. (2023). The search ranges were {16, 32, 64, 128} for hidden dimen-
sion dh, {2, 3, 4, 5, 6} for number of layers, and {0, 0.2, 0.4, 0.6, 0.8} for dropout rate, respectively.
Considering previous research has demonstrated the effectiveness of incorporating tiny attention, we
conducted experiments in our study to compare the performance when tiny attention is added and
when it is not. The selection of the optimal model was based on its performance on the validation
set. We perform the experiments on STAEFormer (Liu et al., 2023) framework.

Table 6: Hyperparameters for six traffic datasets.

Datasets # Layers df dt da dh Batch size Dropout Weight decay Learning rate Learning rate decay Tiny attention

PEMS04 3 24 24 80 152 16 0.4 0.0005 0.001 0.1 O
PEMS07 4 24 24 80 152 16 0.4 0.001 0.001 0.1 X
PEMS08 3 24 24 80 152 16 0.1 0.0015 0.001 0.1 O

NYCTaxi 5 24 24 80 256 16 0.4 0.05 0.001 0.1 X
TDrive 6 24 24 80 256 16 0.4 0.05 0.001 0.1 X
CHBike 3 24 24 80 256 16 0.4 0.05 0.001 0.1 O

Comparison of the adjacency matrix, clique adjacency matrix, and DTW matrix.

In this section, a detailed comparison is conducted between the adjacency matrix and clique adja-
cency matrix used in Cy2Mixer and the DTW matrix employed in PDFormer Jiang et al. (2023).
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Three matrices that can be constructed from the traffic network, namely the adjacency matrix A,
the clique adjacency matrix AC , and the matrix derived from DTW, can be found in Fig. 3. DTW
algorithm is a similarity measure between two time-series that allows for non-linear alignment of
the time series. In the context of PDFormer, DTW is used to compute the similarity of the historical
traffic flow between nodes to identify the semantic neighbors of each node by calculating a pairwise
distance matrix encompassing all combinations of historical traffic flow sequences. This distance
matrix aids in the computation of a cumulative distance matrix, representing the minimum distance
between two time-series up to a specific point. Finally, the cumulative distance matrix facilitates the
determination of the optimal warping path, signifying the most favorable alignment between two
time-series. DTW algorithm allows the model to capture complex traffic patterns that are not easily
captured by linear alignment methods, but it has a significant drawback: it is computationally time-
consuming to compute and often relies on heuristic thresholds and parameters. To overcome these
limitations and capture the desired spatio-temporal dependencies, we employ the use of the clique
adjacency matrix. The clique adjacency matrix can be computed more efficiently than DTW since
it is not dependent on time. Furthermore, it provides the model with richer topological information
within the graph.
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(a) Adjacency matrix
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(b) Clique adjacency matrix
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(c) Matrix constructed by DTW algorithm

Figure 3: Three matrices of PEMS04: (a) Adjacency matrix A, (b) Clique adjacency matrix AC ,
and (c) Matrix constructed by DTW algorithm, respectively.
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