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Abstract

Tiny machine learning (TinyML) aims to run ML models on small devices and
is increasingly favored for its enhanced privacy, reduced latency, and low cost.
Recently, the advent of tiny AI accelerators has revolutionized the TinyML field by
significantly enhancing hardware processing power. These accelerators, equipped
with multiple parallel processors and dedicated per-processor memory instances,
offer substantial performance improvements over traditional microcontroller units
(MCUs). However, their limited data memory often necessitates downsampling
input images, resulting in accuracy degradation. To address this challenge, we
propose Data channel EXtension (DEX), a novel approach for efficient CNN
execution on tiny AI accelerators. DEX incorporates additional spatial informa-
tion from original images into input images through patch-wise even sampling
and channel-wise stacking, effectively extending data across input channels. By
leveraging underutilized processors and data memory for channel extension, DEX
facilitates parallel execution without increasing inference latency. Our evalua-
tion with four models and four datasets on tiny AI accelerators demonstrates that
this simple idea improves accuracy on average by 3.5%p while keeping the in-
ference latency the same on the AI accelerator. The source code is available at
https://github.com/Nokia-Bell-Labs/data-channel-extension.

1 Introduction

Tiny machine learning (TinyML) is an active research field focused on developing and deploying
machine learning models on extremely resource-constrained devices, such as microcontroller units
(MCUs) and small IoT sensors. Compared to cloud-based AI, TinyML on devices offers benefits in
privacy preservation, low latency, and low cost. While research efforts in TinyML, such as model
compression techniques [15, 17, 25, 27, 31, 32], have successfully reduced the size of AI models to
fit into memory-constrained MCUs, the fundamental limitation in the processing capability of MCUs
leads to long inference latency. This limitation hinders the widespread adoption of on-device AI,
especially for real-time applications.

Recently, the advent of tiny AI accelerators like the Analog Devices MAX78000 [34] and Google
Coral Micro [8] has revolutionized the TinyML field by dramatically boosting the model inference
speed and leading a new phase of on-device AI. For instance, the MAX78000 AI accelerator [34]
achieves 170× faster inference latency compared to an MCU processor (MAX32650 [33]).

To enable such acceleration, these tiny AI accelerators introduce several hardware optimization tech-
niques. They often feature multiple convolutional processors (e.g., 64 processors in MAX78000 [34])
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Figure 1: The architecture of a tiny AI
accelerator (MAX78000 [34]).
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Figure 2: Comparison between an AI accelerator
(MAX78000) and MCUs (MAX32650 and STM32F7).

and parallelize per-channel CNN operations across these processors. For further optimization, the
memory architecture allows each processor to have a dedicated memory instance, i.e., per-processor
memory instance. This design enables simultaneous memory access to multiple channels from
different processors. While these hardware-level optimizations bring significant performance im-
provements, we found that they also have several constraints at the expense of the optimizations.
First, the per-processor memory architecture highly restricts the supported input image size because
the data memory each processor can use for its input/output channels is limited to the capacity of its
dedicated memory instance, which is a fraction of the total data memory divided by the number of
processors. Consequently, most vision models for these accelerators are designed to support very
small images, such as 32×32 pixels. Given that images captured by cameras are often generated with
higher resolutions, downsampling is inevitable, leading to accuracy degradation due to information
loss from the original image. Second, we found that processors and data memory are underutilized for
the input layer due to the per-processor memory architecture; since input images typically have a low
number of channels (e.g., RGB three channels), only a limited number of processors tied to memory
instances are utilized while the remaining processors remain idle. For instance, on the MAX78000,
61 of 64 processors and per-processor memory instances remain unused in the first layer.

In this work, we propose a novel approach, Data channel EXtension (DEX), to overcome these
constraints while still benefiting from the acceleration power of tiny AI accelerators. The core idea
is to boost accuracy by extending the data channels to incorporate additional image information
into unused data memory instances and processors, instead of simple downsampling. Owing to the
parallel processing and memory access capabilities of tiny AI accelerators, our method can achieve
this accuracy improvement without compromising inference latency. Specifically, DEX involves two
procedures: (1) pair-wise even sampling, where pixels from the original image are evenly sampled,
and (2) channel-wise stacking, which arranges these samples across multiple channels.

To measure the impact of DEX on accuracy and resource utilization, we conducted experiments on
the MAX78000 [34] and MAX78002 [37] tiny AI accelerator platforms. DEX was evaluated on four
models, SimpleNet [16], WideNet [16], EfficientNetV2 [48], and MobileNetV2 [45], using four vision
datasets: ImageNette [18], Caltech101 [11], Caltech256 [14], and Food101 [2]. Our results show
that DEX improves average accuracy by 3.5%p compared to the original model with downsampling
and 3.6%p compared to the existing coordinate augmentation approach (CoordConv [29]), without
increasing inference latency. Additionally, DEX maximizes data memory and processor utilization,
demonstrating its effectiveness in enhancing model performance on resource-constrained devices. In
summary, DEX can significantly enhance the performance of neural networks on tiny AI accelerators,
leading to more efficient and effective deployment of AI on resource-constrained devices.

2 Preliminary: tiny AI accelerators

The advent of tiny AI accelerators marks a pivotal shift towards on-device AI, greatly enhancing
privacy and reducing latency. While a number of tiny-scale AI accelerators have emerged recently,
such as Analog Devices MAX78000/MAX78002 [34, 37], Google Coral Micro [8], and GreenWaves
GAP-8/GAP-9 [12], only a few are commercially available with access and control over their
operations. In this paper, we focus on the MAX78000 [34] and MAX78002 [37] as our primary
platforms since they are the most widely used tiny AI accelerator research platforms [1, 6, 13, 39, 40,
43] owing to the disclosed hardware details and open-source tools, enabling in-depth analysis and
modification of their operations.
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Figure 3: Processor utilization with vary-
ing input channels on the AI accelerator.

Architecture of tiny AI accelerators. The distinctive
characteristic of tiny AI accelerators compared to conven-
tional microcontroller units (MCUs) is parallel processors
that parallelize per-channel CNN operations across these
processors. Figure 1 depicts an abstracted architecture
of the MAX78000; MAX78002 has a similar architec-
ture to MAX78000 with increased memory (1.3 MB data
and 2 MB weight memory). Further details are in Ap-
pendix A.1. It has 64 parallel convolutional processors,
each capable of performing specific operations indepen-
dently. To maximize performance, each processor has a
dedicated memory instance, i.e., per-processor memory
instance that optimizes data transfer with parallel access.
For each CNN layer, operations on individual channels are
assigned to separate convolutional processors and executed
simultaneously, significantly reducing latency typically associated with convolutional algorithms.
Each processor has a pooling engine, an input cache, and a convolution engine that can handle 3 by
3 kernels. The CNN accelerator includes 512 KB of data memory and 432 KB of weight storage
memory. Within the 512 KB of data memory, an 8 KB per-processor memory instance is allocated to
each of the 64 processors. Figure 3 shows the utilization of the processors (Pri) for executing CNNs
with varying sizes of the input channels. Each processor communicates with a dedicated memory
instance for each data channel. For example, given a three-channel image, three parallel processors
are utilized in the first layer.

Performance gain over MCUs. A recent benchmark study [35] demonstrates the remarkable
performance gain of the MAX78000 in terms of latency and energy consumption. Figure 2 shows that
the MAX78000 significantly outperforms widely-used MCUs (MAX32650 with a Cortex-M4 at 120
MHz [33], and a high-performance MCU, the STM32F7 with a Cortex-M7 at 216 MHz [47]) for face
detection (FaceID) and keyword spotting (KWS). For KWS, latency is drastically reduced to only
2.0 ms, compared to 350 ms for the MAX32650 and 123 ms for the STM32F7. Accordingly, energy
efficiency of the MAX78000 is also significant; it consumes only 0.40 mJ for FaceID, dramatically
less than the 42.1 mJ and 464 mJ required by the MAX32650 and STM32F7, respectively.

3 DEX: Data channel extension for efficient CNN inference on AI accelerators

3.1 Constraints of per-processor memory instances in tiny AI accelerators for images

As mentioned in §2, tiny AI accelerators leverage per-processor memory instances for faster data
transfer with parallel access. However, we disclose that this causes several constraints at the expense
of rapid data access: (1) low image resolution and (2) underutilized processors and data memory.

Low image resolution due to limited per-processor memory size. MAX78000 [34] has 512
KB data memory which is divided into 64 segments of 8 KB memory instances per processor, each
storing the data of each input channel. This memory architecture highly restricts the supported
input resolution. For instance, an input image with a shape 3 × 224 × 224 (channel, height, and
weight), which is a typical size of ImageNet [9], does not fit the MAX78000 even with Q7 format
(one byte for each value), as memory limit for each channel is 8 KB (224 × 224 ∼ 50 KB > 8
KB). Thus, the current practice on tiny AI accelerators is to shrink the resolution of input images
by downsampling and accordingly, to design small models to process lower-resolution images, e.g.,
3× 32× 32. However, with this, it loses most of the information of the original image, which might
lead to sub-optimal performance.

Underutilized processors and data memory for the input layer. Although per-processor memory
instances allow simultaneous memory access from different processors, it also brings inefficiency
in data memory and processor utilization, especially in the input layer. Specifically, given an input
image I with the number of channels CI , height HI , and width WI (e.g., 3× 224× 224) as shown
in Figure 4(a), Figure 4(b) illustrates the downsampled image with the number of channels CI ,
height HO, and width WO (e.g., 3 × 32 × 32), and its data memory usage in the AI accelerator.
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Figure 5: Overview of DEX. DEX divides the original image I into multiple patches. DEX then
evenly samples pixels from each patch Pij and constructs an output pixel Oij by stacking samples
across channels.

With three RGB channels, channel data are separately stored for each data memory instances for
parallel execution. As there is N processors and corresponding data memory instances, it leaves the
remaining N − 3 processors and data memory instances idle. This provides an opportunity to utilize
these idle data memory instances and parallel processors, which we detail in the following section.

3.2 DEX procedure

As aforementioned, we note two key observations: (1) the input image needs to be downsampled due
to the limited memory of tiny AI accelerators, which means most of the pixel information cannot
be utilized, and (2) there exist idle data memory instances and processors that could process up to
N channels in parallel. Although several recent studies have found efficient model architectures on
tiny AI accelerators [39, 43], existing studies lack considerations on this inefficiency for input image
processing in CNNs (further discussion on related work is in Appendix 5).

Based on our observations, we propose Data channel EXtension (DEX) for efficient CNN execution
on tiny AI accelerators. The key intuition behind DEX is that we can utilize the remaining data
memory to incorporate additional information from the original image into neural networks by
extending the input data across channels. By utilizing this additional memory and processors, we
can incorporate extra sample information for feature learning without sacrificing latency. Figure 4(c)
shows the input data reshaped via DEX, where each channel contains different pixel information from
the original image. With DEX extending data across channels (from CI to CO), it can fully utilize
the data memory and associated parallel processors. Figure 5 shows an overview of the procedure
of DEX. Given an input image I with a number of channels CI , height HI , and width WI , DEX
generates an output image O with an extended number of channels CO, height HO, and width WO

(e.g., 64× 32× 32) via patch-wise even sampling and channel-wise stacking.

Patch-wise even sampling. The purpose of patch-wise even sampling is to select samples evenly
spaced across the original image while keeping the spatial relationship among pixels. We first define
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a patch from the original image in which a corresponding output pixel is generated. We denote i-th
row and j-th column of patch Pij in I as:

Pij = I

[⌊
i · HI

HO

⌋
:

⌊
(i+ 1) · HI

HO

⌋
,

⌊
j · WI

WO

⌋
:

⌊
(j + 1) · WI

WO

⌋]
, (1)

where [:, :] refers to a 2-D array slicing operation, specifying the selection of rows and columns
sequentially. The number of patches is determined by the resolution of the output image, i.e.,
HO ×WO. For each patch Pij , we generate the corresponding output data Oij . This ensures that the
spatial relationships among pixels in the input image are preserved in the output, maintaining spatial
consistency throughout the process.

The next step is to sample pixels within the patch considering the memory budget. Specifically, we
define K = ⌈CO

CI
⌉ as the number of samples to be selected in each patch. Given the height and width

of patch HPij
=

⌊
(i+ 1) · HI

HO

⌋
−

⌊
i · HI

HO

⌋
and WPij

=
⌊
(i+ 1) · WI

WO

⌋
−

⌊
i · WI

WO

⌋
, the i-th row

and j-th column of output Oij can be represented by:

Oij =

{
Pij

[⌊
lk

WPij

⌋
, lk mod WPij

]
| lk = k ·

⌊
HPij

·WPij
− 1

K − 1

⌋
, for k = 0, 1, . . . ,K − 1

}
,

(2)
which means a collection of evenly distributed samples within each patch to encourage diverse
information while minimizing the use of localized pixel information. With patch-wise even sampling,
selected samples are evenly distributed both across patches and within each patch.

Channel-wise stacking. Channel-wise stacking arranges sampled data across multiple channels
and keeps this procedure for all pixels to maintain data integrity. Channel-wise stacking is beneficial
as it maintains consistency within each channel, preserving the spatial and contextual relationships of
the sampled data. Specifically, after patch-wise even sampling, the samples are stacked across the
channel axis in ascending order of the index k, and this is repeated for each Oij . Note that lk = 0

when K = 1, and this is identical to traditional downsampling. If K > CO

CI
, it fills up the target

channel with P ’s data until the limit and discards the remaining channels. For instance, when using
RGB channels (CI = 3) and if CO = 64 and K = 22, it takes only the red channel for i = 21 and
discards the remaining green and blue channels that exceed the channel limit of 64. Algorithm 1
provides the pseudo-code that describes the procedure of DEX’s channel extension algorithm.

Algorithm 1 DEX Channel Extension Algorithm

Input: Source image I in a shape (CI , HI ,WI)
Output: Reshaped image O in a shape (CO, HO,WO)

1: O ← zeros(CO, HO,WO)
2: for i← 0 to HO − 1 do
3: for j ← 0 to WO − 1 do
4: start_row, end_row← floor(i · HI

HO
),floor((i+ 1) · HI

HO
)

5: start_col, end_col← floor(j · WI

WO
),floor((j + 1) · WI

WO
)

6: Pij ← I[:, start_row : end_row, start_col : end_col] ▷ Patch Pij of I
7: K ← ceil(CO

CI
) ▷ Number of samples to be selected in Pij

8: for k ← 0 to K − 1 do ▷ Get channels of Oij from Pij

9: HPij
← end_row− start_row

10: WPij
← end_col− start_col

11: lk = k · floor(
HPij

·WPij
−1

K−1 )

12: O[k · CI : (k + 1) · CI , i, j] = Pij [:,floor( lk
WPij

), lk mod WPij ]

13: return O

3.3 Further analysis on DEX
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Figure 6: The initial CNN layer’s operation with DEX.

Understanding how DEX leads to per-
formance improvement. DEX’s ability
to incorporate additional pixel information
from the original image can improve the
accuracy of CNNs. The extended chan-
nels provide further samples of adjacent
areas in the original image, significantly
broadening the receptive fields of features
in the initial CNN layer. This expansion
allows the model to detect more complex
and subtle features early in the processing
pipeline, which is critical for the nuanced
understanding and interpretation of visual
data. Specifically, Figure 6 visualizes how
the first CNN layer operates with DEX,
where L1

kernel_size and L1
c_out refer to the

kernel size and the output channel size of
the first layer, respectively. It illustrates the application of the convolution operation across each
enhanced channel (CO as opposed to CI ), where distinct kernel weights are applied to each channel.
This ensures that the additional information is integrated into the output feature maps, thereby en-
riching the model’s feature extraction capabilities. The convolutional layer processes the increased
channel input, which is reflected in weight sums that construct output channels.

Impact of channel extension on the number of parameters. Given the first CNN layer’s kernel
size L1

kernel_size and the first layer’s channel output size L1
c_out, the number of parameters required

for the input layer can be calculated as OC · L1
kernel_size · L1

c_out. If OC is 3, it is the same as the
traditional downsampling without our channel extension. Note that this channel extension does
not incur additional inference latency on the AI accelerator. We found that the channel extension
increases ∼ 3% of the total parameters as we show in our experiment §4.2. The rest of the layers
remain the same. In addition to its simplicity, we have several reasons to change the first layer only,
which we discuss further in §6.

Utilization of the original image information. With traditional downsampling, the utilization of
the original input is HO·WO

HI ·WI
, but with DEX, this is extended to CO

CI
· HO·WO

HI ·WI
. For instance, given a

3 × 256 × 256 input image, a downsampled image 3 × 32 × 32 utilizes only 1.6% of the original
information, while with DEX and an output channel size CO = 64, it can utilize 33.3% of the original
information. DEX can accommodate all the information when CO = CI · HI ·WI

HO·WO

Maximum number of output channels. Increasing the number of output channels allows DEX
to accommodate the original image information. The number of output channels denoted as OC ,
that can be extended without increasing latency on AI accelerators is limited by the number of data
memory instances DN , i.e., OC < DN . For example, the MAX78000 has 64 data memory instances,
allowing it to support up to OC = 64 output channels without affecting inference latency.

4 Evaluation

4.1 Experimental settings

Here we explain experimental settings. Further details are in Appendix A.

On-device testbed. We evaluated DEX on the off-the-shelf MAX78000 feather board [36] and
MAX78002 Evaluation Kit [38], which are a development platform for the MAX78000 [34] and
MAX78002 [37], respectively, as shown in Figure 9. In this paper, we select these accelerators because
they provide open-source tools for thorough analysis and modification of their internal processes,
making them the most widely used tiny AI accelerator research platforms [1, 6, 13, 39, 40, 43].

Model training and deployment. In our experiment, we use four models officially supported in
the Analog Devices MAX78000/78002 Training framework [20]: SimpleNet [16], WideNet [16],
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Table 1: Average classification accuracy (%) and corresponding standard deviations over three runs
for each dataset and method. Bold type indicates those of the highest classification accuracy.

Dataset Method SimpleNet WideNet EfficientNetV2 MobileNetV2 AVG (%)

ImageNette

Downsampling 57.8 ± 1.2 61.8 ± 0.2 51.3 ± 0.5 62.0 ± 0.7 58.2
CoordConv 58.0 ± 1.1 61.7 ± 0.2 51.9 ± 0.1 61.6 ± 0.3 58.3
CoordConv (r) 55.4 ± 1.5 61.4 ± 0.2 51.7 ± 1.0 61.2 ± 1.1 57.4
DEX (ours) 61.4 ± 0.6 65.6 ± 0.6 56.8 ± 0.5 64.4 ± 0.6 62.0

Caltech101

Downsampling 54.6 ± 2.1 55.8 ± 1.2 38.6 ± 0.9 51.4 ± 1.6 50.1
CoordConv 53.8 ± 1.6 56.5 ± 0.1 38.7 ± 0.2 49.8 ± 0.5 49.7
CoordConv (r) 52.7 ± 0.5 56.0 ± 1.7 38.2 ± 1.0 49.7 ± 1.2 49.1
DEX (ours) 56.9 ± 1.3 61.1 ± 1.4 45.9 ± 1.9 53.3 ± 1.7 54.3

Caltech256

Downsampling 19.8 ± 0.6 20.8 ± 0.5 14.7 ± 0.4 22.4 ± 1.0 19.4
CoordConv 19.8 ± 0.5 21.3 ± 0.8 14.8 ± 0.8 22.7 ± 0.8 19.6
CoordConv (r) 20.0 ± 1.6 20.9 ± 0.6 14.5 ± 0.3 22.7 ± 0.4 19.5
DEX (ours) 22.8 ± 0.5 22.9 ± 0.9 18.3 ± 0.9 26.3 ± 0.5 22.6

Food101

Downsampling 16.0 ± 0.4 17.7 ± 0.7 12.1 ± 0.2 22.4 ± 0.6 17.1
CoordConv 16.1 ± 0.8 17.7 ± 0.3 12.0 ± 0.1 21.7 ± 0.3 16.9
CoordConv (r) 16.3 ± 0.4 17.3 ± 0.6 12.0 ± 0.6 20.9 ± 0.3 16.6
DEX (ours) 18.4 ± 0.4 20.9 ± 0.4 16.4 ± 0.1 23.3 ± 1.1 19.8

EfficientNetV2 [48], and MobileNetV2 [45]. The supported models from the framework were trained
via quantization-aware training with 8-bit integers in PyTorch [41]. We follow the official training
configuration (details in Appendix A.2). The checkpoints are synthesized as embedded C codes for
via the Analog Devices MAX78000/70002 Synthesis framework [19]. SimpleNet and WideNet are
developed for MAX78000 while EfficientNetV2 and MobileNetV2 are for MAX78002 considering
the size of the models. All models are originally designed to take 3 × 32 × 32 inputs, and DEX
increases the number of the channels in the first layer to 64.

Datasets. We evaluated on four common vision datasets: (1) ImageNette [18], a ten-class subset
of ImageNet [9] with 9469/3925 train/test samples with the original image shape of 3× 350× 350,
(2) Caltech101 [11] with 101 objects classes having 6941/1736 train/test samples with the original
image shape of 3 × 300 × 300, (3) Caltech256 [14] with 256 objects classes having 23824/5956
train/test samples with the original image shape of 3× 300× 300, and (4) Food101 [2] with 101 food
categories with 75750/25250 train/test samples with the original image shape of 3× 512× 512.

Baselines. For baselines, we compare with the Downsampling method which is a straightforward
way to reduce the size of the input under memory-constrained devices. It downsamples the input
image to 3× 32× 32. In addition, we compare DEX with CoordConv [29] which pointed out the
limitation of traditional CNNs that relied on RGB images for the coordinate transformation problem
and introduced the augmentation of i and j coordinates, which improved object detection efficiency
by using two extra channels. The authors of CoordConv also introduced the third channel for an r

coordinate, where r =
√
(i− h/2)2 + (j − w/2)2, which they found effective in some experiments.

4.2 Result

Overall accuracy. Table 1 shows the overall accuracy for four different datasets with the baselines
and DEX. As shown, extending data channels to utilize additional input information improves
accuracy in DEX. Specifically, DEX achieved 3.5%p higher accuracy compared to downsampling and
3.6% higher accuracy compared to CoordConv across datasets. CoordConv shows lower accuracy
compared with downsampling (0.1%p degradation on average), showing they are not very effective
solutions. This finding aligns with previous results indicating that CoordConv is useful for specific
tasks such as object detection, where coordinate information is important [29]. We found CoordConv
(r) has a similar pattern to CoordConv. Overall, DEX’s accuracy improvement shows the effectiveness
of using extra information from the original image for feature learning.

Resource usage. Table 2 compares the resource usage of the baseline and DEX. First, we found
that, although DEX extends the number of channels in the first CNN layer to 64, its impact on the
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Table 2: Model size (Size), utilization of the original image information (InfoRatio), accelerator’s
processor utilization for the first layer (ProcUtil), and inference latency on the accelerator (Latency)
for different models and methods averaged over three runs.

Model Method InputChan Size (KB) InfoRatio (×) ProcUtil (%) Latency (µs)

SimpleNet

Downsampling 3 162.6 1.0 4.7 2592 ± 1
CoordConv 5 162.9 1.0 7.8 2592 ± 2
CoordConv (r) 6 163.0 1.0 9.4 2592 ± 2
DEX (ours) 64 171.2 21.3 100.0 2591 ± 1

WideNet

Downsampling 3 306.4 1.0 4.7 3820 ± 1
CoordConv 5 306.9 1.0 7.8 3820 ± 0
CoordConv (r) 6 307.1 1.0 9.4 3819 ± 1
DEX (ours) 64 319.3 21.3 100.0 3818 ± 1

EfficientNetV2

Downsampling 3 742.4 1.0 4.7 11688 ± 2
CoordConv 5 743.0 1.0 7.8 11685 ± 3
CoordConv (r) 6 743.2 1.0 9.4 11689 ± 1
DEX (ours) 64 759.6 21.3 100.0 11690 ± 2

MobileNetV2

Downsampling 3 1317.8 1.0 4.7 3553 ± 4
CoordConv 5 1318.2 1.0 7.8 3554 ± 1
CoordConv (r) 6 1318.4 1.0 9.4 3554 ± 2
DEX (ours) 64 1330.7 21.3 100.0 3552 ± 3
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Figure 7: Accuracy of DEX varying the channel size. The shaded areas are standard deviations.

model size is negligible (an average increment of 3.2% compared to no channel extension). DEX
utilizes 21.3× more image information compared to downsampling, which is the primary reason for
the accuracy improvement. As expected, DEX does not increase on-device inference latency, even
though it maximally utilizes the processors on the AI accelerators for information processing. This
result is consistent across the four datasets, as all the models are designed to take the same input size
in MAX78000 and MAX78002.

Accuracy according to the channel size. We varied the size of the channels from 3 (downsampling)
to 6, 18, 36, and 64 with DEX to understand the impact of the channel size in terms of accuracy.
Figure 7 shows the accuracy variation according to the channel size across the four datasets. As
shown, it seems that a higher number of channels increases accuracy in general. This means that
selecting the highest channel size supported in AI accelerators might be an effective strategy in
practice, considering that it does not incur the latency increase. Still, there are some cases where the
accuracy of the highest channel size (64) is not the best among them. This means there might be an
optimal number of channels tailored to a specific dataset and model architecture, which might be
found in the model development process.

Resource usage according to the channel size. We also measure resource usage varying the
channel size. First, we measured the model size and inference latency as shown in Table 3. The
model size increment is negligible and inference latency remains the same across different numbers of
channels. The model size and inference latency are the same for the four datasets as all the models are
designed to take the same input size in MAX78000 and MAX78002. Second, we measure the infor-
mation utilization from the original image and processor utilization in the AI accelerators (Figure 8).
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Table 3: Model size (Size) with relative increment (%) compared to the three channels and average
inference latency on the accelerator (Latency) with standard deviations over three runs, varying the
channel size.

Model Chan = 3 Chan = 6 Chan = 18 Chan = 36 Chan = 64
SimpleNet 162.6 163.0 (+0.3%) 164.7 (+1.3%) 167.3 (+2.9%) 171.2 (+5.3%)
WideNet 306.4 307.1 (+0.2%) 309.6 (+1.0%) 313.4 (+2.3%) 319.3 (+4.2%)

EfficientNetV2 742.4 743.2 (+0.1%) 746.6 (+0.6%) 751.7 (+1.3%) 759.6 (+2.3%)
Size (KB)

MobileNetV2 1317.8 1318.4 (+0.0%) 1321.0 (+0.2%) 1324.8 (+0.5%) 1330.7 (+1.0%)

SimpleNet 2592 ± 1 2592 ± 2 2591 ± 1 2590 ± 1 2591 ± 1
WideNet 3820 ± 1 3820 ± 2 3825 ± 1 3819 ± 3 3818 ± 1

EfficientNetV2 11688 ± 2 11691 ± 2 11692 ± 3 11691 ± 0 11690 ± 2Latency (µs)

MobileNetV2 3553 ± 4 3553 ± 1 3552 ± 1 3554 ± 0 3552 ± 3
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Figure 8: Resource usage varying the channel size.

The utilization of the original image infor-
mation depends on the size of the orig-
inal data size, which grows linearly ac-
cording to the channel size. We found a
correlation between information utilization
rate and accuracy improvement. For ex-
ample, Caltech101 and Caltech256 had uti-
lization rates of 24.3%, improving accuracy
by 4.2%p and 3.2%p, respectively, while
Food101 had an 8.3% utilization rate with a
2.7%p accuracy improvement. The proces-
sor utilization linearly increases until 100%
with 64 channels size, which is the number of parallel processing units in the evaluated platforms.

Table 4: Comparison of data extension strategies.

Method InputChan InfoRatio (×) Accuracy
Downsampling 3 1.0 57.8 ± 1.2
Repetition 64 1.0 56.3 ± 0.8
Rotation 64 1.0 55.4 ± 0.7
Tile per channel 64 21.3 39.4 ± 0.7
Patch-wise seq. 64 21.3 61.0 ± 1.5
Patch-wise rand. 64 21.3 60.4 ± 1.0
DEX 64 21.3 61.4 ± 0.6

Comparison of alternative data extension
strategies in DEX. To understand the effec-
tiveness of our patch-wise even sampling and
channel-wise stacking, we compared DEX with
other possible data channel extension strategies.
We compared with four strategies: repeating
the same downsampled image across the chan-
nels (Repetition), generating slightly different
images through rotation (Rotation), dividing the
original image into multiple tiles and stacking
those tiles across channels (Tile), patch-wise sequential sampling (Patch-wise seq.) that samples
pixels sequentially within a patch, and patch-wise random sampling (Patch-wise rand.) that randomly
samples within a patch. Further implementation details are in Appendix A.5. In this experiment,
we used SimpleNet and evaluated it on ImageNette. Table 4 shows the results. Repetition does not
improve accuracy over downsampling, indicating that merely increasing the number of kernels does
not lead to performance gains. Rotation shows a slight decrease in accuracy compared to Repetition,
which suggests that slight changes through rotation do not enhance performance. Interestingly, Tile
shows low accuracy, demonstrating the importance of having a complete view of the original image
in each channel, rather than focusing on specific regions. Both Patch-wise sequential and Patch-wise
random samplings show lower accuracy than DEX’s patch-wise even sampling, highlighting the
importance of even sampling for better performance.

5 Related work

TinyML. Tiny Machine Learning (TinyML) is an emerging field that focuses on adapting machine
learning techniques for highly resource-constrained devices, such as microcontroller units (MCUs).
These devices often come with limited memory, typically hundreds of kilobytes of SRAM. Research
in this area has mostly concentrated on reducing model size through various compression techniques,
such as model pruning [15, 17, 25, 27, 31, 32], model quantization [7, 15, 42, 44, 49, 53, 54],
and neural architecture search (NAS) [4, 5, 10, 24]. In addition, several studies have explored the
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efficient utilization of memory resources (e.g., SRAM). Examples include optimizing on-device
training processes [23, 28] and designing memory-efficient neural architectures [26, 52]. Unlike
these approaches that primarily target MCUs, our research utilizes the distinctive architecture of tiny
AI accelerators to enhance both memory efficiency and overall performance.

Tiny AI accelerators. Several studies have leveraged tiny AI accelerators for small-scale on-device
AI applications. For instance, TinyissimoYOLO [39] offers a quantized, memory-efficient, and
ultra-lightweight object detection network, showcasing its effectiveness on the MAX78000 plat-
form. Additionally, KP2DTiny [43] introduces a quantized neural keypoint detector and descriptor
specifically optimized for MAX78000 and Coral AI accelerators. Moreover, Synergy represents
a multi-device collaborative inference platform across wearables equipped with tiny AI accelera-
tors [13]. Another line of studies utilized tiny AI accelerators in battery-free or intermittent computing
scenarios [1, 6]. Traditionally, hardware accelerators on low-power AI platforms were capable of
only one-shot atomic executions of a neural network inference without intermediate result backups.
A study proposed a toolchain to address this that allows neural networks to execute intermittently on
the MAX78000 platform [6]. To the best of our knowledge, there has been no work that manipulates
data and models to efficiently utilize computing resources considering the unique architecture of tiny
AI accelerators.

Image channel extension in CNNs. Several studies have explored augmenting images with ad-
ditional information to construct multi-channel inputs for Convolutional Neural Networks (CNNs).
Liu et al. proposed a multi-modality image fusion approach, combining visible, mid-wave infrared,
and motion images for enhanced object detection [30], while Wang et al. presented depth-aware
CNN for image segmentation [50]. These approaches require extra sensing channels to acquire data,
such as infrared cameras and depth cameras. Similarly, other research has incorporated location
data to improve performance for segmentation [51] and object detection tasks [29]. For instance,
CoordConv [29] pointed out the limitation of traditional CNNs that relied solely on RGB images for
the coordinate transformation problem and introduced the augmentation of i and j coordinates, which
improved object detection efficiency. However, these methodologies often necessitate additional
sensor modalities or are tailored for specific applications such as object detection, which restricts their
general use. Nevertheless, adapting findings from those studies within DEX could be an interesting
future direction.

6 Discussion and conclusion

We introduced DEX, a novel method to enhance CNN efficiency on tiny AI accelerators by augmenting
input data across unused memory. Evaluations on four image datasets and models showed that DEX
improves accuracy without increasing inference latency. This method maximizes the processing and
memory capabilities of tiny AI accelerators, making it a promising solution for efficient AI model
execution on resource-constrained devices.

Limitations and potential societal impacts. We modified only the initial CNN layer due to
simplicity, effectiveness, and memory constraints. The first layer, representing image data in three
channels (RGB), has the most unused processors after initial data assignment. Extending channels
at the first layer significantly increases data utilization with minimal impact on model size. This
approach aligns with the design of weight memory in tiny AI accelerators, which maximizes model
capacity by collective use across processors. We think DEX might be less effective in certain
tasks where incorporating more pixel information is not beneficial. In those cases, alternative data
extension strategies might be used instead of patch-wise even sampling to utilize the additional channel
budget. While our focus was on small models supported by the MAX78000/MAX78002 platforms,
evaluating larger models could be valuable, given rapid AI hardware advancements. Regarding
societal impact, leveraging additional processors and memory to improve accuracy might increase
carbon emissions [46], highlighting the need to balance accuracy improvements with environmental
sustainability.
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A Experimental details

For all experiments conducted in the paper, we used three different random seeds (0, 1, 2) and
reported the average accuracy with standard deviations.

A.1 Tiny AI accelerator platforms

MAX78000 (8mm × 8mm)

MAX78000
Feather Board

(a) MAX78000 Feather Board [36].

MAX78002
(12mm × 12mm)

MAX78002
EV Kit

(b) MAX78002 Evaluation (EV) Kit [38].

Figure 9: Two tiny AI accelerator development platforms used in our work. Note that although
the development platform is bulky, the actual size of the accelerators is tiny (e.g., 8mm×8mm
for MAX78000). All data storing and model inference is done only in the AI Accelerator part
(MAX78000 and MAX78002).

Table 5: Comparison of MAX78000 and MAX78002.
Component MAX78000 [34] MAX78002 [37]

MCU Processor Arm Cortex-M4 (100 MHz), RISC-V Arm Cortex-M4 (120 MHz), RISC-V
Flash Memory 512 KB 2.5 MB

SRAM 128 KB 384 KB
CNN Processor 64 parallel CNN processors 64 parallel CNN processors
Data Memory 512 KB 1.3 MB

Weight Memory 432 KB 2 MB
Bias Memory 2 KB 8 KB

In this paper, we focus on the MAX78000 [34] and MAX78002 [37] as our primary platforms since
they are the most popular research platforms [1, 6, 13, 39, 40, 43] owing to the disclosed hard-
ware details and open-source tools, enabling in-depth analysis and modification of their operations.
Figure 9 shows our testbed. Note that all operations required for the model inference are done
under the AI accelerator part (highlighted with the red boxes), while the entire boards are bigger
for development purposes. For on-device deployment and measurement, we used MAX78000 for
SimpleNet and WideNet and MAX78002 [37] for EfficientNetV2 and MobileNetV2, following the
memory requirement. For the sake of explanation, we assumed each processor is mapped to one
memory instance in this paper, although MAX78000/MAX78002 group four data memory instances
together to communicate with four processors in reality. Our experiments were conducted on the
actual implementations. Table 5 compares MAX78000 and MAX78002.

A.2 Model training
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We followed the official model training code for MAX78000 and MAX78002 platforms [20]. Here,
we detail the hyperparameters used in the official training code. We trained models with NVIDIA
A40 GPUs.

For all models, quantization-aware training is conducted with support for batch normalization after
convolutional layers through batch normalization fusing [21]. This fusing operation integrates the
effects of batch normalization directly into the parameters of the preceding convolutional layer by
adjusting the weights and bias values. Consequently, after the fusing/folding process, the network
no longer contains any batch normalization layers. Instead, the effects of batch normalization are
reflected in the modified weights and biases of the preceding convolutional layers.

SimpleNet. SimpleNet [16] was trained for 300 epochs using the Adam optimizer [22] with an
initial learning rate of 0.001 and a batch size of 32. A multi-step learning rate scheduler was used
with milestones set at epochs 100, 150, and 200, and a multiplicative factor of learning rate decay
value of 0.25. Quantization-aware training (QAT) was introduced starting at epoch 240. During QAT,
a shift quantile of 0.985 was applied to manage activation ranges. The weight precision was primarily
set to 2 bits. However, exceptions were made for certain layers: the 1st convolutional layer utilized
8-bit weights, while the 2nd, 11th, 12th, 13th, and 14th convolutional layers used 4-bit weights.

WideNet. WideNet [16] was trained for 300 epochs using the Adam optimizer [22] with an initial
learning rate of 0.001 and a batch size of 100. A multi-step learning rate scheduler was used with
milestones set at epochs 100, 150, and 200, and a multiplicative factor of learning rate decay value of
0.25. Quantization-aware training (QAT) was introduced starting at epoch 240. During QAT, a shift
quantile of 0.985 was applied to manage activation ranges. The weight precision was primarily set to
2 bits. However, exceptions were made for certain layers: the 1st convolutional layer utilized 8-bit
weights, while the 2nd, 11th, 12th, 13th, and 14th convolutional layers used 4-bit weights.

EfficientNetV2. EfficientNetV2 [48] was trained for 300 epochs using the Adam optimizer [22]
with an initial learning rate of 0.001 and a batch size of 100. A multi-step learning rate scheduler was
used with milestones set at epochs 50, 100, 150, 200, and 250 and a multiplicative factor of learning
rate decay value of 0.5. Quantization-aware training (QAT) was introduced starting at epoch 210.
During QAT, a shift quantile of 0.995 was applied to manage activation ranges. The weight precision
was primarily set to 8 bits.

MobileNetV2. MobileNetV2 [45] was trained for 300 epochs using the stochastic gradient descent
optimizer (SGD) [3] with an initial learning rate of 0.1 and a batch size of 128. A multi-step learning
rate scheduler was used with milestones set at epochs 100, 150, 175, and 250 and a multiplicative
factor of learning rate decay value of 0.235. Quantization-aware training (QAT) was introduced
starting at epoch 200. During QAT, a shift quantile of 1.0 was applied to manage activation ranges.
The weight precision was primarily set to 8 bits.

A.3 Datasets

ImageNette. Imagenette [18] is a smaller, more manageable subset of ImageNet [9], containing
10 classes. These classes include tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, and parachute. ImageNette has 9469/3925 train/test samples
with the original image shape of 3 × 350 × 350. All images were normalized with the ImageNet
mean (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225), and then converted to
Q7 format (one byte per data) to support on-device inference with the tiny AI accelerator platforms
(MAX78000 and MAX78002).

Caltech101. Caltech101 [11] is a dataset composed of images representing objects from 101
different categories, in addition to a background clutter category. Each image features a single object
and is labeled accordingly. The number of images per category ranges from approximately 40 to
800, resulting in a total of around 8677 images. Caltech101 has 6941/1736 train/test samples and the
original image shape of 3× 300× 300. All images were normalized with the ImageNet mean (0.485,
0.456, 0.406) and standard deviations (0.229, 0.224, 0.225), and then converted to Q7 format (one
byte per data) to support on-device inference with the tiny AI accelerator platforms (MAX78000 and
MAX78002).
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Caltech256. Caltech256 [14] built upon its previous version, Caltech101, offering enhancements
such as larger category sizes, additional and more extensive clutter categories, and increased overall
difficulty. The dataset contains 29780 images across 256 classes after removing the clutter class.
Caltech256 has 23824/5956 train/test samples with the original image shape of 3× 300× 300. All
images were normalized with the ImageNet mean (0.485, 0.456, 0.406) and standard deviations
(0.229, 0.224, 0.225), and then converted to Q7 format (one byte per data) to support on-device
inference with the tiny AI accelerator platforms (MAX78000 and MAX78002).

Food101. Food101 [2] includes 101 food categories, each with 750 images for training and 250
images for testing, which is a total of 101000 images. The original images were rescaled to have a
maximum side length of 512 pixels. This dataset has 75750/25250 train/test samples and the original
image with the shape of 3× 512× 512. All images were normalized with the ImageNet mean (0.485,
0.456, 0.406) and standard deviations (0.229, 0.224, 0.225), and then converted to Q7 format (one
byte per data) to support on-device inference with the tiny AI accelerator platforms (MAX78000 and
MAX78002).

A.4 Baseline details

Downsampling. Downsampling is a straightforward method that collects samples evenly distributed
across the original image. This approach is equivalent to the case when the number of channels is
equal to three in DEX.

CoordConv. CoordConv [29] pointed out the limitation of traditional CNNs that relied solely on
RGB images for the coordinate transformation problem and introduced the augmentation of i and j
coordinates, which improved object detection efficiency. We referred to the Pytorch implementation
of CoordConv2 for implementing this baseline.

CoordConv (with r). The authors of CoordConv also introduced the third channel for an r co-
ordinate, where r =

√
(i− h/2)2 + (j − w/2)2, which they found effective in some experiments.

Similar to CoordConv, we referred to the Pytorch implementation of CoordConv for implementing
this baseline.

A.5 Alternative data channel extension methods’ details

(a) Repetition (b) Rotation

−30°~30°

(c) Tile

𝑃𝑖𝑗
𝑘 = 0 𝑘 = 1𝑘 = 2𝑘 = 3Same 

samples

(d) Patch-wise 
sequential sampling

𝑃𝑖𝑗
𝑘 = 0 𝑘 = 1

𝑘 = 2

𝑘 = 3

(e) Patch-wise 
random sampling

Figure 10: Visulaization of four alternative data extension methods.

Repetition. Repetition (Figure 10(a)) repeats the same downsampled image across the channels
until it reaches the maximum possible number of input channels, which is the same as the number of
data memory instances (64).

Rotation. Rotation (Figure 10(b)) generates slightly different images through rotating images from
the downsampled image. It makes rotated images until it reaches the maximum possible number
of input channels. The angle of rotation ranges from -30 to 30 degrees. For instance, given a
downsampled three-channel image input and target channel size of 64, it generates rotated images
with an angle linearly spaced between -30 to 30 degrees.

Tile. Tile (Figure 10(c)) divides the original image into multiple tiles and stacks those tiles across
channels. Specifically, given the number of images take K = ⌈CO

CI
⌉, it finds the nearest square

2https://github.com/walsvid/CoordConv
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number S that is higher than or equal to K, (e.g., S = 52 > 22 when K = 22). The original image
is then divided into equal-sized patches. Each patch is subsequently downsampled to the target size.
The downsampled patches are collected and concatenated along the channel dimension, forming a
new image with the desired number of channels. If the total number of patches exceeds the target
number of channels, the excess patches are discarded.

Patch-wise sequential sampling. Patch-wise sequential sampling (Figure 10(d)) is similar to DEX
but it involves sequential sampling within a patch instead of even sampling. Specifically, it samples
the first K samples for each patch and follows the same channel-wise stacking procedure in DEX.

Patch-wise random sampling. Patch-wise random sampling (Figure 10(e)) is similar to DEX
but it involves random sampling within a patch instead of even sampling. Specifically, it samples
randomly-selected K samples for each patch and follows the same channel-wise stacking procedure
in DEX.

B Additional Experiments

B.1 Overhead of the channel expansion on devices

Channel expansion latency. The latency of the channel expansion process depends on the pro-
cessor’s computational capability. During our evaluation, we pre-processed data on a powerful
server, and thus data processing was negligible. We additionally conducted data processing on the
ultra-low-power MCU processor on the board (Arm Cortex-M4) to understand the data processing
overhead on less-capable devices. We measured the overhead of applying DEX to expand channels
from a 3 × 224 × 224 image (a typical size for ImageNet) to 64 × 32 × 32 (the highest channel
expansion used in our accelerators) on the MAX78002’s Arm Cortex-M4 (120MHz).

This process took 2.2 ms on the Arm Cortex-M4. In terms of memory, this addition took the SRAM
memory of 62KB (64× 32× 32 Bytes - 3× 32× 32 Bytes) on the processor. However, since DEX
extends data to a size that the data memory in the AI accelerator can accommodate, this additional
memory will not be an issue from the AI accelerator’s perspective.

Impact on end-to-end inference performance. Note that the MCU processor and the AI accel-
erator are independent processing components that run in parallel. This means that if the inference
latency on the accelerator is higher than the data processing latency, data can be pre-processed for
the next inference during the current inference (and thus data processing latency can be hidden). For
inference, the inference latency of EfficientNet (11.7ms) is higher than the data processing latency of
2.2ms, and thus the inference throughput remains the same under continuous inference.

However, this depends on the scenario. The end-to-end impact of data processing latency depends on
the processor’s computational capability, the dimension of the data, and the size of channel expansion.
For instance, in scenarios where data processing is done and transferred in more capable machines
(e.g., cloud servers, smartphones, etc.) than the MCU processor on the tiny AI accelerator, the impact
of data processing can be even more negligible.

B.2 Power consumption

We measured the power consumption of the inference on MAX78000 by varying the size of the
channel extension with a Monsoon Power Monitor. The result is shown in Table 6. As the number of
channels increased, power consumption increased accordingly. This is because a higher number of
channels uses more processors in the AI accelerator, leading to increased power consumption.

Table 6: The power consumption of inference measured by varying the size of the channel extension
with a Monsoon Power Monitor. All numbers are in milliwatts (mW).

Model Chan = 3 Chan = 6 Chan = 18 Chan = 36 Chan = 64
SimpleNet 53.82 53.85 58.21 61.42 68.9
WideNet 60.74 61.37 63.76 67.92 77.14
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C Example images generated from DEX

Original image $ Downsampled (. = 0) Downsampled (. = 1) Downsampled (. = 2)

Downsampled (. = 6)Downsampled (. = 5)Downsampled (. = 4)Downsampled (. = 3)

Figure 11: Examples images generated from an original 3 × 350 × 350 image (ImageNette) to
3× 32× 32 downsampled image via DEX. k = 0 to k = 6 cases are shown only. Each generated
image contains different pixel information, which collectively enhances feature learning in CNNs.

Original image $ Downsampled (. = 0) Downsampled (. = 1) Downsampled (. = 2)

Downsampled (. = 6)Downsampled (. = 5)Downsampled (. = 4)Downsampled (. = 3)

Figure 12: Examples images generated from an original 3 × 350 × 350 image (ImageNette) to
3× 32× 32 downsampled image via DEX. k = 0 to k = 6 cases are shown only. Each generated
image contains different pixel information, which collectively enhances feature learning in CNNs.

D License of assets

Datasets. ImageNette dataset (Apache-2.0 license), Caltech101 (CC BY 4.0), Caltech256 (CC BY
4.0), and Food101 dataset (MIT license).
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Original image $ Downsampled (. = 0) Downsampled (. = 1) Downsampled (. = 2)

Downsampled (. = 6)Downsampled (. = 5)Downsampled (. = 4)Downsampled (. = 3)

Figure 13: Examples images generated from an original 3 × 350 × 350 image (ImageNette) to
3× 32× 32 downsampled image via DEX. k = 0 to k = 6 cases are shown only. Each generated
image contains different pixel information, which collectively enhances feature learning in CNNs.

Codes. AI8X-training for MAX78000 and MAX78002 (Apache-2.0 license), AI8X-synthesis for
MAX78000 and MAX78002 (Apache-2.0 license), and PyTorch implementation of CoordConv (MIT
license).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: See §6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are in §4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the source code is available at https://github.com/
Nokia-Bell-Labs/data-channel-extension.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details are in §4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See 4.2. We ran the experiments with three random seems (0,1,2) and reported
the standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See §2, §4, and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See §6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such components.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See §4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing conducted.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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