Under review as a conference paper at ICLR 2025

EXERCAKT: A KNOWLEDGE TRACING MODEL
BASED ON GRU CAPTURING CONTEXTUAL FEA-
TURES OF EXERCISES

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge tracing aims to predict students’ future performance based on their
past interactions, helping online learning platforms and teachers assess learners’
knowledge levels. This technology plays a critical role in achieving large-scale
cognitive diagnosis. Recently, deep learning-based knowledge tracing models
have demonstrated impressive results, with most research focusing on designing
customized network architectures and novel optimization objectives. However,
redundant parameters and overly complex loss functions can complicate model
training and make it harder to maintain prediction accuracy.To further investigate
the effectiveness of simple recurrent neural networks in this field, and to lever-
age their advantages in handling sequential exercise representation, this paper
introduces a GRU-based knowledge tracing model named ExerCAKT (Exercise
Context-Aware Knowledge Tracing). This model effectively captures contextual
features of exercises and achieves robust knowledge state modeling through the
use of a GRU-based knowledge state feature extractor and a GRU-based exer-
cise feature extractor—without relying on additional optimization objectives.The
model’s superior performance is validated through comparisons with baseline
models, such as AKT and SIMPLEKT, on three public datasets in the knowledge
tracing domain. Evaluations are conducted using AUC and ACC metrics at both
the Knowledge Concept level and the question level. We validated that relying
solely on simple recurrent neural networks, combined with appropriate represen-
tation methods, can still achieve excellent performance in this field. Our code will
be available at xxx (Anonymous URL).

1 INTRODUCTION

Knowledge tracing is a foundational technology for achieving large-scale personalized education,
helping educators diagnose learners’ cognitive levels to provide more targeted teaching. In recent
years, knowledge tracing has seen widespread application in online learning platforms (Abdelrah-
man et al.l 2023;|Song et al., 2022a; Kiser et al.,|2017). The task of knowledge tracing is illustrated
in Figure 1. Students complete exercises in an online learning system, and each student’s responses
to these exercises are referred to as interactions in knowledge tracing. Each interaction generates at
least the following data: exercise ID, knowledge concept ID, and whether the student answered the
question correctly. All exercises are associated with knowledge concepts, and an exercise may be
linked to multiple knowledge concepts, as shown with Q4, Q5, and QS in the figure. To predict a
student’s performance in the next interaction, the input to the knowledge tracing algorithm typically
includes the student’s historical interaction information and the information of the exercise to be
predicted. Therefore, better modeling of interaction information and representation of the exercises
to be predicted are crucial strategies for achieving good performance.

Recently, [Liu et al.| (2022) introduced a tool for standardized experiments in the knowledge tracing
field called pyKT, which implemented multiple advanced knowledge tracing models under various
experimental conditions and published the optimal results. The benchmark provided by pyKT holds
significant reference value. We meticulously reviewed this work and the publicly available code,
and replicated their experiments. Based on these results, we obtained the same and surprising con-
clusion: the first model to apply deep learning to the knowledge tracing field, DKT (Piech et al.,

Under review as a conference paper at ICLR 2025

KG1 KEC2 KC3

~—

\

clelElElElc el
o g O 0 0 o o
S00000BBG 7

History of Interaction

History
)) Knowledge Trcing Model)) or
X

Figure 1: The form of the knowledge tracing task and the model’s input and output.

2015)), still achieves excellent performance under standard experimental conditions.We are excited
to see DKT achieve outstanding results, as it is an extremely simple model, suggesting that we may
not need overly complex models to achieve excellent performance in knowledge tracing tasks.

The success of ChatGPT has generated significant attention [2023), and its underlying
Transformer (Vaswani et al.} 2017) had already demonstrated excellent performance in the field of
natural language processing with the advent of language models like BERT (Devlin et al, 2019)
and T5 (Raffel et al] [2020). Subsequently, Transformer models have been applied in computer
vision and recommendation systems, with representative works such as ViT (Dosovitskiy et al.,

, which has cross-modal modeling capabilities for multimodal learning, and SASRec (Kang &
McAuleyl, [2018), a Transformer-based model that effectively improves the accuracy of recommen-
dation algorithms.

However, Transformer models have not achieved breakthrough success in the field of knowledge
tracing. The representative method, SAINT 2020), uses a Transformer-based encoder
and decoder to capture features of student interaction sequences, but the improvements have been
limited. In the comparative experiments of pyKT 2022), evaluations on seven different
datasets under the KC Level evaluation mode showed poor performance in more than half of the
datasets. This somewhat supports our view that in the field of knowledge tracing, the complex-
ity of model structures does not necessarily lead to better results. By analyzing the similarities and
differences between the field of knowledge tracing and other fields such as natural language process-
ing, computer vision, and recommendation systems, we believe that the reasons Transformer-based
knowledge tracing models fail to achieve good results may include: (1) The knowledge tracing
field is more sensitive to sequence positions, and the “token embedding + positional encoding”
method disrupts the underlying semantic information of interaction encoding and reduces the ben-
efits brought by sequence information. (2) The classic knowledge tracing datasets generally have
fewer interactions, and too many parameters may lead to overfitting issues. Therefore, we believe
that using recurrent neural models, which can naturally capture temporal relationships, along with
appropriate knowledge state and exercise representations, are two ways to achieve better results in
the field of knowledge tracing.

In this paper, we move away from the current obsession with ”Attention is all you need” and design
our model ExerCAKT based on gated recurrent networks (Chung et al., 2014). The model includes
an embedding layer, a knowledge state feature extractor, an exercise feature extractor, and a pre-
diction layer used to predict the student’s performance in the next exercise. The contributions of
this paper are as follows: (1)Design of a GRU-based Exercise Feature Extractor: We have designed

Under review as a conference paper at ICLR 2025

a GRU-based exercise feature extractor and experimentally validated its effectiveness and superior
performance. (2)Proposal of a Recurrent Neural Network-Based Knowledge Tracing Model: We
propose a knowledge tracing model based on a recurrent neural network architecture. By utilizing
the designed GRU feature extractor, the model captures contextual features of exercises, achieving
modeling of knowledge states and high-quality representation of exercises. ExerCAKT explores the
potential of a simple recurrent neural network architecture in knowledge tracing tasks and maximizes
the advantages of recurrent neural networks in representing sequential data. (3)Significant Improve-
ment Over Baseline Models: Compared to baseline models, ExerCAKT shows substantial improve-
ments. Experiments on the ASSISTments2009, Algebra2005, and ASSISTments2015 datasets at
both the KC-level and Question-Level outperform strong baseline models like AKT (Ghosh et al.|
2020) and SIMPLEKT (Liu et al., 2023b)). The results demonstrate that our model has competitive
predictive performance compared to attention-based methods. We confirm that methods based on
recurrent neural network architectures still have significant potential and exploration space in the
field of knowledge tracing.

2 RELATED WORK

2.1 PROBLEM DEFINITION

The goal of knowledge tracing is to predict a student’s performance in future interactions based
on their interaction sequence, which can be viewed as a sequence modeling task. In this task, the
student’s learning history is considered as an interaction sequence, typically representing the history
of the student’s responses to exercises. The model’s objective is to predict whether the student will
answer the next question correctly based on the data in this sequence. Formally, let the interaction
sequence be denoted as .S, and the interactions that have occurred up to time ¢t be represented as
S = [Ro,R1,..., Ry = [(g0,¢0,70),(q1,¢1,71), -, (q, ct,)], where each interaction records
the exercise ID ¢, the concept c;, and whether the response was correct a; (i.e., 0 or 1). The goal of
knowledge tracing is to predict the student’s response 7, given the exercise e;; and concept ¢,
at the next time step.

2.2 DEEP LEARNING-BASED KNOWLEDGE TRACING

Currently, deep learning has been widely applied in the field of knowledge tracing. The work in this
area can be roughly categorized into methods based on recurrent neural networks, memory networks,
self-attention mechanisms, and other neural network methods. Subsequent work based on these four
categories primarily focuses on improving methods through three aspects: optimizing the network
architecture, adding additional features, and simulating the real learning processes of humans.

2.2.1 METHODS BASED ON RECURRENT NEURAL NETWORKS

DKT (Piech et al., 2015) is the first model to use deep learning techniques in the field of knowledge
tracing. It directly employs Long Short-Term Memory (LSTM) networks to model students’ inter-
action sequences and predict their performance in subsequent interactions. Subsequent work such
as DKT+ (Yeung & Yeung, 2018) and KQN (Lee & Yeung| [2019) builds on DKT by improving the
training objectives and network architecture for methods based on recurrent neural networks.

2.2.2 METHODS BASED ON MEMORY NETWORKS

Methods based on memory networks still use a recurrent structure. Compared to LSTM, mem-
ory networks use matrices to store historical information, which provides better long-term memory
capabilities. A representative work in this category is the Dynamic Key-Value Memory Network
(DKVMN) (Zhang et al.l 2017).

2.2.3 METHODS BASED ON SELF-ATTENTION MECHANISMS

Self-attention mechanisms involve calculating the importance of each input element relative to other
elements, thereby assigning different weights to each element. This allows the model to dynam-
ically adjust attention based on the internal relationships of the data when processing sequence

Under review as a conference paper at ICLR 2025

data, thereby focusing on information from different positions with strong expressive capability.
SAKT (Pandey & Karypis, |2019) is the first knowledge tracing framework based on self-attention
mechanisms. Other notable works in this area include SAINT (Choi et al., [2020) and AKT (Ghosh
et al.l [2020).

2.2.4 METHODS BASED ON OTHER NEURAL NETWORKS

In addition to the three basic methods mentioned above, some works have introduced other network
structures or training methods. For example, GKT (Nakagawa et al 2019)and Bi-CLKT (Song
et al., 2022b) use graph neural networks to model the dependencies between knowledge concepts,
ATKT (Guo et al., 2021) employs adversarial learning to enhance generalization capabilities, and
CL4KT (Lee et al., [2022) utilizes contrastive learning. Currently, these four types of methods have
established stable research communities, with relatively mature research directions. Introducing
other networks or training methods is an important avenue for future exploration in the field of
knowledge tracing.

3 MODEL
Ye+1
1
Multilayer
Perceptron
[—— \ Prediction layer
(——}‘ h, qe+1 ’f_‘\
| T
1/ ey Tan Ugeia \\‘
Multilayer Perceptron ! !
| A-m+ PRI Y|
Gate Recurrent Unit ! . !
M _T ___________ /‘
. . E.i Multilayer Perceptron
€(qer) [| H L :
I '
. _ Jf _ : Gate Recurrent Unit
t-1 ¢t !
maxseq)
,,,,, — 1 e] I
g > g > ' EEE ErE = e
e | H W

tot4l - maxseq

Knowledge Characterizer Specific Exercise Characterizer

Figure 2: ExerCAKT model.

Our proposed method is illustrated in Figure 2 and includes the Embedding layer, Knowledge State
Feature Extractor(Knowledge Characterizer), Exercise Feature Extractor(Specific Exercise Char-
acterizer), and Prediction layer. The Knowledge State Feature Extractor is used to represent the
learner’s knowledge state, while the Exercise Feature Extractor extracts contextual information of
the exercises to reflect the specificity of the exercises in different interaction sequences.

3.1 EMBEDDING LAYER

Similar to other KT models, each interaction of the learner includes the following information: (1)g;,
the exercise answered by the learner at time t; (2) r;, whether the learner answered correctly; (3)
ct, the knowledge concept corresponding to the answered exercise. First, embeddings are created
for all knowledge concepts and exercises, resulting in embedding matrices E. € R“* and E, €
RP*4 where C and () denote the number of knowledge concepts and exercises, respectively, and
d represents the embedding dimension, which is consistent across all embedding matrices. For
example, at time ¢, the representations of ¢; and ¢; are ¢,, and e,. Next, the learner’s response

Under review as a conference paper at ICLR 2025

to interactions is embedded; since the response can only be “correct” or “incorrect”, E,. is set to
E, € R?*?_ Additionally, the parameter matrix £, € R?*! is used to represent the specificity
sensitivity of the exercises, with details on specificity provided in subsequent section.

3.2 KNOWLEDGE STATE FEATURE EXTRACTOR

The purpose of the knowledge state feature extractor is to determine the student’s knowledge mastery
at different time steps based on the student’s interaction sequence. To represent the learner’s learning
process, the interaction at time ¢ is denoted as:

C(qg,cery) — Co +e, € Rd (1)

This means that modeling the learner’s knowledge state is independent of the exercises q; answered
at a given time step ¢. From a cognitive perspective, the reason for not using the exercise is that
a learner’s knowledge is primarily constructed around knowledge concepts. During the learning
process, the learner mainly acquires and understands knowledge concepts rather than memorizing
specific exercises. From a data perspective, the number of exercises is typically greater than the
number of knowledge concepts, i.e., @ > C'. The same knowledge concept often appears multiple
times in the sequence, while an exercise typically does not reappear after being completed by the
student. Therefore, the sparsity of sequence [qo, ¢1,- - -, ¢:] is much higher than that of sequence
[co, €1, ..., ¢). Incorporating e,, into €(gs,ci,r) could increase the learning difficulty due to high
sparsity and affect the representation effectiveness.

ExerCAKT uses standard Gated Recurrent Units (GRU) (Chung et al.;, 2014) as the sequence feature
extractor. The reason for this choice is that the structure of GRU is similar to human memory. After
each interaction occurs, GRU updates the knowledge state and reorganizes the knowledge structure.
Additionally, GRU is simpler than LSTM. it combines the forget gate and input gate in LSTM into
a single update gate.” This makes GRU have fewer parameters than LSTM, which generally results
in faster training and inference. When dealing with shorter sequences, fewer parameters mean the
network can learn important features more quickly, potentially leading to better performance. The
formal description of GRU is as follows:

Zy =0 Wy - [hi_1,2]))
re =0 (W [hi_1,2)) 3)
hy = tanh (W - [ry % hy_1, x4)) (4)
hy = (1 — Z) % hy_y + Zy % by 5)

In GRU,Z; and r; are the update gate and reset gate weights, respectively, used for the update and
reset operations. ExerCAKT uses e, c,,r,) as the input z; for GRU and then applies a multi-layer
perceptron for feature transformation to enhance the model’s non-linear processing capability, that
is:

ht = Wl (U (W2 GRU (["'76(¢Zt76t,Tt)]))) € Rd (6)

In this context,W; and W5 represent neural network parameters, and o represent the GELU non-
linearity (Hendrycks & Gimpel, |2016). Ultimately, the output h; at each time step contains infor-
mation from the sequence over time [0, ¢], which is used to represent the knowledge state features.

3.3 EXERCISE FEATURE EXTRACTOR

Although exercises are not used to describe the learning interaction sequence, learners interact based
on the exercises they answer, so the representation of exercises is also important. The exercise fea-
ture extractor is used to generate the representation for the exercise at time ¢t + 1. ExerCAKT
does not directly use e, ,, as the representation for the exercise at ¢ + 1 for the following rea-
sons:(1)When modeling knowledge states, only knowledge concept c¢; and answer correctness 7
are used without specific exercises. This inconsistency might affect the model’s performance.(2)As
mentioned earlier, Q > C, and the high sparsity and long-tail distribution of exercises will lead
to poor model performance when predicting exercises with lower frequency.(3)Directly using e, ,

Under review as a conference paper at ICLR 2025

as the question representation does not consider the contextual relationships of exercises, thus ne-
glecting non-knowledge factors such as related exercises and changes in difficulty when students are
answering.

Through a review of the literature (Wright, [1977), the Rasch method treats exercises as “’specific
manifestations of knowledge concepts.” Therefore, some studies (Ghosh et al.l [2020; [Liu et al.,
2023b)) represent exercises as a product of the exercise difficulty scalar u,, and the knowledge con-
cept difficulty vector d.,, plus the knowledge concept embeddinge,,, i.e., e, = e, + dc, * Ug,.
In contrast to the aforementioned approaches, we use a combination of another GRU unit and a
multi-layer perceptron to extract features from the exercise sequence [qo, q1, - - - , ¢¢, Gt+1]. This fea-
ture is used as the specificity vector of the exercise concerning the knowledge concept (this vector
represents the offset of the exercise with respect to the knowledge concept, indicating the exercise’s
specificity). This approach captures the contextual relationships of exercises to reflect the specificity
of the exercises. Specifically,

gy = W3 (0 (WaGRU ([...,€q,,]))) € R?)

At the same time, we set hyperparameters - to control the proportion between the specificity vector
and the knowledge concept embedding vector, i.e.,

qt+1

€<It+1 = (1 - ’Y) ect+1 + v * d%+1 * ulh+1 (8)

where u,, € RP*1 represents the sensitivity of the exercise to specificity; a larger value indicates
greater consideration of the contextual relationship. Additionally, w,, is initialized as a zero matrix
to ensure high-quality representation of low-frequency exercises, thereby improving the model’s
robustness.

3.4 PREDICTION AND TRAINING

The prediction layer concatenates the knowledge state with the next time step’s exercise to be pre-
dicted and uses a multi-layer perceptron and sigmoid function for the result prediction, i.e.,

Yerr =0 (Ws [he @ g,]) ©)
where @ represents the vector concatenation operation.

ExerCAKT uses predicting the performance of the next time step interaction as the sole training
objective, without introducing additional training objectives or regularization terms. It employs
binary cross-entropy loss as the loss function, specifically:

T
Loss = _Z(Yt -log ¥t + (1 — i) log (1 —¥t) (10)
t=1
where y, represents the true label of the student’s interaction, and the Adam optimizer is used for
optimization. The training objective is to minimize the loss.

4 EXPERIMENT

This paper first introduces the experimental setting, datasets, evaluation metrics, and baseline models
used for comparison.In the main body, we report comparative analysis, ablation analysis and key
hyperparameter analysis. Discussions on other hyperparameters and computing performance are
included in the appendix, as are more details of the baseline model and datasets.

4.1 EXPERIMENTAL SETTING

The paper uses PyTorch version 1.10 and conducts experiments on four NVIDIA A100 Tensor
Core GPUs. The general hyperparameters are selected as follows: batch sizes are {64,128},
learning rates are {le — 3,1e — 4}, embedding dimensions are {64,128,256}, and dropout are
{0.1,0.2,0.3,0.4,0.5}. Data preprocessing follows the standard procedure provided by pyKT (Liu
et al.,|2022): first, sequences with missing data or interaction lengths less than 3 are filtered out; then,

Under review as a conference paper at ICLR 2025

Table 1: datasets information

Datasets interactions sequences questions KCs avg KCs
ASSISTments2009 337,415 4,661 17,737 123 1.1970
Algebra2005 884,098 4,712 173,113 112 1.3634
ASSISTments2015 682,789 19,292 - 100 -

interactions are truncated to a maximum sequence length of 200; finally, interactions are evenly di-
vided into 5 parts, with 4 parts used as the training set and 1 part used as the test set. In line with the
pyKT experiment, we examine the AUC and ACC metrics for both KC-level and Question-Level
(detailed explanations of KC-level and Question-Level can be found in reference (Liu et al.,|[2022)).
For datasets without KC-Level data, we assume that KC and Question are the same, meaning one
Question corresponds to one KC.

4.2 DATASETS AND BASELINE SETTINGS

We conduct experiments using the standard datasets processed by pyKT (Liu et al.| 2022). For
datasets that contain both exercises and the corresponding knowledge concepts, such as ASSIST-
mentsZOO and Algebra2005 [} we evaluate the AUC and ACC metrics at both KC-level and
Question-Level. For datasets that contain only questions or knowledge concepts, such as AS-
SISTmentsZOlSﬂ we only evaluate the corresponding level. Table 1 summarizes the basic infor-
mation of the datasets.We use 13 KT models for performance comparison, including DKT (Piech
et al., 2015), DKT+ (Yeung & Yeung, [2018)), DKT-F (Nagatani et al., [2019), KQN (Lee & Ye-
ung, [2019), DKVMN (Zhang et al., [2017), ATKT (Guo et al. 2021), GKT (Nakagawa et al.,
2019), SAKT (Pandey & Karypis| 2019), SAINT (Chot et al., [2020), AKT (Ghosh et al.| [2020),
LPKT (Shen et al.,|2021)), SimpleKT (Liu et al.,|2023b), and AT-DKT (Liu et al., 2023a).

4.3 EXPERIMENTAL RESULT

4.3.1 COMPARATIVE ANALYSIS

We implemented the PyTorch model using the described method on the PYKT platform. After
tuning the hyperparameters with wandlﬂ we conducted experiments following the standard five-
fold cross-validation procedure. The experimental results are shown in Tables 2 and 3, where Table
2 presents the AUC results at the Question Level and KC Level, and Table 3 presents the ACC results.
The experimental results for DKT, DKT+, DKT-F, KQN, DKVMN, ATKT, GKT, SAKT, SAINT,
and AKT are from the literature (Liu et al., 2022), while the results for LPKT and SIMPLEKT are
from the literature (Liu et al., [2023b). The ”-” indicates that the results were not reported in the
original literature.

The data in Tables 2 and 3 show that compared to all baseline models, ExerCAKT achieved the best
performance on the AS2009, AL2005, and AS2015 datasets. Specifically, in the Question Level
evaluation, ExerCAKT achieved AUC scores of 0.7874 and 0.8312 on the AS2009 and AL2005
datasets, respectively, which are improvements of 4.41% and 2.00% compared to the DKT model.
In the KC Level evaluation, ExerCAKT achieved excellent AUC scores of 0.7704 and 0.8249 on the
AS2009 and AL2005 datasets, respectively, which are improvements of 0.70% and 1.95% compared
to the AKT model. On the AS2015 datasets, which contain only knowledge concepts, the AUC score
is 0.7287, respectively, outperforming most baseline models. Regarding the ACC metrics, the overall
situation is similar to that of the AUC metrics, with ExerCAKT outperforming all baseline models
on the AS2009, AL2005 and AS2015 datasets. The experimental results indicate that in both the
Question Level and KC Level evaluations, all the datasets show that ExerCAKT achieved the best
performance and outperformed the strong baseline model AKT, fully demonstrating the feasibility
and excellent performance of ExerCAKT.

Thttps://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-
2010

Zhttps://pslcdatashop.web.cmu.edu/KDDCup/

3https://sites.google.com/site/assistmentsdata/datasets/2015-assistments-skill-builder-data

*https://wandb.ai/

Under review as a conference paper at ICLR 2025

Table 2: AUC index performance of ExerCAKT and other baseline models under 3 different datasets
KC Level(ALL-in-One) Question Level(ALL-in-One) AS2015 ExerCAKT

Model AS2009 AL2005 AS2009 AL2005 #win/#tie/#loss
DKT 0.7419 0.8146 0.7541 0.8149 0.7271 5/0/0
DKT+ 0.7424 0.8144 0.7547 0.8156 0.7285 5/0/0
DKT-F - 0.8163 - 0.8147 - 2/0/0
KQN 0.7361 0.8005 0.7477 0.8027 0.7254 5/0/0
DKVMN 0.7330 0.7891 0.7473 0.8054 0.7227 5/0/0
ATKT 0.7337 0.7964 0.7470 0.7995 0.7245 5/0/0
GKT 0.7227 0.8025 0.7424 0.8110 0.7258 5/0/0
SAKT 0.7085 0.7682 0.7246 0.7880 0.7114 5/0/0
SAINT 0.6865 0.6662 0.6958 0.7775 0.7026 5/0/0
AKT 0.7650 0.8091 0.7853 0.8306 0.7281 5/0/0
LPKT - - 0.7814 0.8274 - 2/0/0
AT-DKT - - - 0.8246 - 1/0/0
SIMPLEKT - - 0.7744 0.8254 0.7248 3/0/0
ExerCAKT 0.7704 0.8249 0.7874 0.8312 0.7287 -
ADKT 0.0285 0.0103 0.0333 0.0163 0.0016 -

Table 3: ACC index performance of ExerCAKT and other baseline models under 3 different datasets
KC Level(ALL-in-One) Question Level(All-in-One) AS2015 ExerCAKT

Model AS2009 AL2005 AS2009 AL2005 #win/#tie/#loss
DKT 0.7181 0.7882 0.7244 0.8097 0.7503 5/0/0
DKT+ 0.7191 0.7889 0.7248 0.8097 0.7510 5/0/0
DKT-F - 0.7891 - 0.8090 - 5/0/0
KQN 0.7179 0.7850 0.7228 0.8025 0.7500 5/0/0
DKVMN 0.7144 0.7778 0.7199 0.8027 0.7508 5/0/0
ATKT 0.7158 0.7774 0.7208 0.7998 0.7494 5/0/0
GKT 0.7077 0.7825 0.7153 0.8088 0.7504 5/0/0
SAKT 0.7017 0.7729 0.7063 0.7954 0.7474 5/0/0
SAINT 0.6885 0.7538 0.6936 0.7791 0.7438 5/0/0
AKT 0.7323 0.7939 0.7392 0.8124 0.7521 5/0/0
LPKT - - 0.7355 0.8145 - 2/0/0
AT-DKT - - - 0.8144 - 1/0/0
SIMPLEKT - - 0.7320 0.8083 0.7508 3/0/0
ExerCAKT 0.7350 0.7995 0.7405 0.8155 0.7525 -
ADKT 0.0169 0.0113 0.0161 0.0058 0.0022 -

4.3.2 ABLATION ANALYSIS

To verify the effectiveness of the context-aware + Rasch exercise representation method used in the
ExerCAKT framework, we conducted ablation experiments in AS2009 dataset. The experimental
results are shown in Table 4. Under the optimal hyperparameters, we set four experimental condi-
tions and reported the results using five-fold cross-validation. The experimental conditions were set
as follows:(I) Do not use context-aware and Rasch, i.e., use ¢4, directly as the exercise representa-
tion. (II) Do not use context-aware, i.e., do not use GRU to learn the contextual representation of
exercises, use e, for Rasch embedding. (III) Do not use Rasch embedding, i.e., use d, as the exer-
cise representation. (IV) Use both context-aware and Rasch, i.e., the complete method described in
this paper.

The experimental results indicate that (1) Condition IV outperforms all other conditions. When
both context-aware and Rasch are used simultaneously, the model achieves optimal performance,
demonstrating the effectiveness of this combination. (2) Condition I is superior to Condition II, sug-
gesting that using Rasch embedding alone not only fails to improve performance but also leads to a
performance decline. This might be due to the fact that Rasch embedding linearly adds the knowl-
edge concept features and the exercise variation vector, and exercises that appear less frequently or
involve multiple knowledge concepts may face difficulties in learning the embedding parameters,

Under review as a conference paper at ICLR 2025

Table 4: Ablation Study
Question Level(All-in-One) KC Level(ALL-in-One)

Model AUC ACC AUC ACC
I.w/o Context-aware and Rasch 0.7695 0.7289 0.7620 0.7246
II.w/o Context-aware 0.7586 0.7277 0.7454 0.7231
III.ExerCAKT w/o Rasch 0.7698 0.7299 0.7623 0.7259
IV.ExerCAKT 0.7874 0.7405 0.7704 0.7350

thereby affecting overall performance. (3) Condition III outperforms Condition I, indicating that the
model shows a slight improvement when using context-aware alone. (4) Condition IV outperforms
both Conditions II and III, suggesting that the combination of context-aware and Rasch is neces-
sary for beneficial effects. The context-aware exercise sequence features should be considered as
variations of exercises around the knowledge concepts. In Condition III, this sequence feature is
directly used as the exercise feature, resulting in no performance improvement. The beneficial effect
of the context-aware Rasch embedding is that, when encountering low-frequency or multi-concept
exercises, the exercise variation vector comprehensively considers the entire sequence, allowing the
model to still make effective predictions.

4.3.3 KEY HYPERPARAMETER ANALYSIS

The ExerCAKT framework introduces a hyperparameter -y to control the proportion of specific vec-
tors in exercise representation. To explore the impact of « on the model, we examined the perfor-
mance changes in the [0, 1] interval with a step size of 0.1 under different embedding dimensions
and GRU layers settings. Due to the large number of hyperparameter combinations and limited com-
putational hardware, we used one training set, validation set, and test set from the AS2009 dataset’s
five-fold cross-validation. The overall experimental visualization results are shown in Figure 3.
(with ratio indicating the hyperparameter ~). This result shows the Question Level AUC perfor-
mance under different hyperparameter settings. The way the hyperparameters v are set determines
the way the lines are connected, and the color of the lines indicates the model’s performance. The
yellower the line, the higher the model’s AUC, and the bluer the line, the lower the performance.
The result shows that the lines are darker at v = 0.0,0.1, 0.9, 1.0, indicating poorer performance. It
is important to note that a ratio of 0.0 means not considering the specificity of the exercises, while a
ratio of 1.0 means using context-aware exercise sequence features as exercise embedding. To further
analyze the impact of this hyperparameter v on the model’s performance, we plotted a box plot of
all the experimental data, as shown in Figure 4. The horizontal axis represents different parameter
settings, and the vertical axis represents the achieved performance. The maximum, median, and
minimum performance values are labeled in red, black, and blue fonts, respectively.

Embedding size Layer ratio Question Level's AUC

260 e P—r 0.790
240
220
200
180
160

140

120

100

80

60

Figure 3: The model’s Question Level AUC performance under different embedding dimensions,
GRU layers, and ratio parameters.

Under review as a conference paper at ICLR 2025

0.79 q

0.78 4

e
9
3

Question Level'AUC

=
x|
E

Boxplot of Question Level' AUC for Different Ratios (Embedding dimensions = 256)

l).7‘u}

0.7876

0.7824

0.7590
0.7572

0.7517.

1

P 2
Z
g

0.7900

0.7887 ‘

oo
1I,7g 18

0.7883 [

-

0.7746

0.7’]7

3

0.7589

0.7847

I
018

0.7742

07712

047310

0.75 4

0.7482

0.7435

Ratio

Figure 4: Box plot of the model’s Question Level AUC performance under different ratio parameters.

The results in Figure 4 show that as the v increases, the model’s performance first improves and then
declines. In all experimental results, the difference between the maximum and minimum values of
the Question Level AUC exceeds 4%, indicating that this parameter significantly affects the model’s
performance. Within the [0.3,0.6] interval, the AUC achieves a maximum value of 0.7900 with
a median exceeding 0.7830, indicating that the model performs best in this parameter range with
fewer outliers, demonstrating stable performance. For ratios of v = 0.0,0.1,0.9, 1.0, the median is
below 0.7800, and the model’s performance is poorer. Specifically, when v = 0.1 or v = 0.2, the
model has more outliers and a larger range of anomalies, indicating that with a smaller proportion
of specific vectors, the model’s performance becomes unstable. The model’s performance in KC
Level AUC metrics, which is similar to the Question Level AUC metrics but with more outliers in
the [0.6,0.9] interval. Based on the analysis, the model performs better and is more stable in the
[0.3,0.5] interval.

5 CONCLUSION

This paper presents the ExerCAKT model, which effectively models knowledge states and provides
high-quality representations of exercises through GRU-based knowledge state and exercise feature
extractors. The paper demonstrates the competitive performance of ExerCAKT through comparative
experiments on three datasets, two evaluation methods, and two evaluation metrics. Additionally,
ablation and hyperparameter experiments validate the effectiveness of the module design and the
framework’s scalability. Future research could focus on optimizing knowledge state modeling and
exercise representation in ExerCAKT, such as: (1) proposing new RNN structures to replace GRU
units; (2) optimizing exercise representation by considering characteristics such as exercise difficulty
and multi-knowledge-concept associations based on historical data; (3) incorporating additional op-
timization objectives to improve model accuracy and generalization.

REPRODUCIBILITY STATEMENT

Our code is available in the URL (now it is anonymous, and we submitted the anonymous code in the
supplementary materials during review). All experiments are conducted through pyKT, and baseline
models and data sets can be obtained through it. The code provided by us includes the configuration
of ablation experiments, and provides a super parameter search function to maximize the replication
of the experiments involved in this paper.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ghodai Abdelrahman, Qing Wang, and Bernardo Nunes. Knowledge tracing: A survey. Acm Com-
puting Surveys, 55(11), February 2023. ISSN 0360-0300. doi: 10.1145/3569576.

Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha,
Dongmin Shin, Chan Bae, and Jaewe Heo. Towards an appropriate query, key, and value com-
putation for knowledge tracing. In Proceedings of the Seventh ACM Conference on Learning @
Scale, L@S 20, pp. 341-344, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 978-1-4503-7951-9. doi: 10.1145/3386527.3405945.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Aritra Ghosh, Neil Heffernan, and Andrew S. Lan. Context-aware attentive knowledge tracing. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, Kdd *20, pp. 2330-2339, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 978-1-4503-7998-4. doi: 10.1145/3394486.3403282.

Xiaopeng Guo, Zhijie Huang, Jie Gao, Mingyu Shang, Maojing Shu, and Jun Sun. Enhancing
knowledge tracing via adversarial training. In Proceedings of the 29th ACM International Con-
ference on Multimedia, Mm ’21, pp. 367-375, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 978-1-4503-8651-7. doi: 10.1145/3474085.3475554.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
International Conference on Data Mining (ICDM), pp. 197-206, 2018. doi: 10.1109/ICDM.
2018.00035.

Tanja Kiser, Severin Klingler, Alexander G. Schwing, and Markus Gross. Dynamic bayesian net-
works for student modeling. IEEE Transactions on Learning Technologies, 10(4):450-462, 2017.
doi: 10.1109/TLT.2017.2689017.

Jinseok Lee and Dit-Yan Yeung. Knowledge query network for knowledge tracing: How knowledge
interacts with skills. In Proceedings of the 9th International Conference on Learning Analytics
& Knowledge, LAK19, pp. 491-500, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 978-1-4503-6256-6. doi: 10.1145/3303772.3303786.

Wonsung Lee, Jaeyoon Chun, Youngmin Lee, Kyoungsoo Park, and Sungrae Park. Contrastive
learning for knowledge tracing. In Proceedings of the ACM Web Conference 2022, Www 22,
pp- 2330-2338, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 978-
1-4503-9096-5. doi: 10.1145/3485447.3512105.

Zitao Liu, Qionggiong Liu, Jiahao Chen, Shuyan Huang, Jiliang Tang, and Weiqi Luo. pyKT:
A python library to benchmark deep learning based knowledge tracing models. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 18542—-18555. Curran Associates, Inc., 2022.

11

Under review as a conference paper at ICLR 2025

Zitao Liu, Qiongqgiong Liu, Jiahao Chen, Shuyan Huang, Boyu Gao, Weiqi Luo, and Jian Weng.
Enhancing deep knowledge tracing with auxiliary tasks. In Proceedings of the ACM Web Confer-
ence 2023, Www ’23, pp. 4178-4187, New York, NY, USA, 2023a. Association for Computing
Machinery. ISBN 978-1-4503-9416-1. doi: 10.1145/3543507.3583866.

Zitao Liu, Qionggiong Liu, Jiahao Chen, Shuyan Huang, and Weiqi Luo. simpleKT: A simple but
tough-to-beat baseline for knowledge tracing. arXiv preprint arXiv:2302.06881, 2023b.

Koki Nagatani, Qian Zhang, Masahiro Sato, Yan-Ying Chen, Francine Chen, and Tomoko Ohkuma.
Augmenting knowledge tracing by considering forgetting behavior. In The World Wide Web Con-
ference, Www *19, pp. 3101-3107, New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 978-1-4503-6674-8. doi: 10.1145/3308558.3313565.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: Model-
ing student proficiency using graph neural network. In IEEE/WIC/ACM International Conference
on Web Intelligence, Wi’ 19, pp. 156—163, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 978-1-4503-6934-3. doi: 10.1145/3350546.3352513.

Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. arXiv preprint
arXiv:1907.06837, 2019.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas,
and Jascha Sohl-Dickstein. Deep knowledge tracing. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc., 2015.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Shuanghong Shen, Qi Liu, Enhong Chen, Zhenya Huang, Wei Huang, Yu Yin, Yu Su, and Shijin
Wang. Learning process-consistent knowledge tracing. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, Kdd *21, pp. 1452-1460, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 978-1-4503-8332-5. doi: 10.1145/
3447548.3467237.

Xiangyu Song, Jianxin Li, Taotao Cai, Shuigiao Yang, Tingting Yang, and Chengfei Liu. A survey
on deep learning based knowledge tracing. Knowledge-Based Systems, 258:110036, 2022a. ISSN
0950-7051. doi: 10.1016/j.knosys.2022.110036.

Xiangyu Song, Jianxin Li, Qi Lei, Wei Zhao, Yunliang Chen, and Ajmal Mian. Bi-CLKT: Bi-graph
contrastive learning based knowledge tracing. Knowledge-Based Systems, 241:108274, 2022b.
ISSN 0950-7051. doi: 10.1016/j.knosys.2022.108274.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Benjamin D Wright. Solving measurement problems with the Rasch model. Journal of educational
measurement, pp. 97-116, 1977.

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and Yang Tang. A
brief overview of ChatGPT: The history, status quo and potential future development. I[EEE/CAA
Journal of Automatica Sinica, 10(5):1122-1136, 2023. doi: 10.1109/JAS.2023.123618.

Chun-Kit Yeung and Dit-Yan Yeung. Addressing two problems in deep knowledge tracing via
prediction-consistent regularization. In Proceedings of the Fifth Annual ACM Conference on
Learning at Scale, L@S 18, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 978-1-4503-5886-6. doi: 10.1145/3231644.3231647.

12

Under review as a conference paper at ICLR 2025

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory net-
works for knowledge tracing. In Proceedings of the 26th International Conference on World
Wide Web, Www 17, pp. 765-774, Republic and Canton of Geneva, CHE, 2017. Interna-
tional World Wide Web Conferences Steering Committee. ISBN 978-1-4503-4913-0. doi:
10.1145/3038912.3052580.

A APPENDIX

The appendix includes details of the dataset and baseline models and further experiments. In addi-
tion to the contrast experiment, ablation experiment and super parameter experiment in the text, we
also further discussed three issues.

Q1: The ExerCAKT framework uses two GRUs as the Knowledge State Feature Extractor and Ex-
ercise Feature Extractor. Would replacing GRUs with RNNs or LSTMs yield similar performance?

Q2: What is the impact of other hyperparameters on model performance?

Q3: What are the inference speed and computational overhead of ExerCAKT?

A.1 DATASET INFORMATION

A.1.1 ASSISTMENTS2009

The ASSISTments2009 dataset (hereafter referred to as AS2009) is used for student modeling and
knowledge tracing research. It collects data from exercises on the online tutoring platform ASSIST-
ments during the 2009-2010 academic year. The dataset includes student interaction records during
problem-solving, sequence data, exercise data, and the knowledge concepts (KCs) involved. It pro-
vides real-world scenario data for evaluating student modeling and knowledge tracing algorithms,
and is widely used to assess and compare the performance and effectiveness of various knowledge
tracing methods. In the processed dataset, there are on average 1.1970 knowledge concepts associ-
ated with each exercise, totaling 337,415 interactions, 4,661 sequences, 17,737 exercises, and 123
different knowledge concepts.

A.1.2 ALGEBRA2005

The Algebra2005 dataset (hereafter referred to as AL2005) is a dataset from the KDD Cup 2010
EDM Challenge, containing responses from 13-14 year-old students to algebra exercises. The pro-
cessed Algebra2005 dataset includes 884,098 interactions, involving 4,712 sequences, 173,113 exer-
cises, and 112 knowledge concepts (KCs), with an average of 1.3634 knowledge concepts associated
with each exercise.

A.1.3 ASSISTMENTS2015

The ASSISTments2015 dataset is similar to the ASSISTments2009 dataset, as both come from the
online tutoring platform ASSISTments. The difference is that the ASSISTments2015 dataset is
derived from platform records from the year 2015. The processed dataset includes 682,789 inter-
actions, involving 19,292 sequences, and does not include specific exercise information, only 100
knowledge concepts.

A.2 BASELINE MODELS INFORMATION

A.2.1 DKT (PIECH ET AL.,[2015)

The DKT model is a model that predicts students’ knowledge states using Long Short-Term Mem-
ory (LSTM) networks. It inputs students’ historical response sequences into the LSTM to capture
changes and patterns in students’ knowledge states. These knowledge states can be used to predict
students’ performance on new exercises.

13

Under review as a conference paper at ICLR 2025

A.2.2 DKT+ (YEUNG & YEUNG, |2018))

The DKT+ model is an improvement upon the DKT model, aiming to address two issues in deep
knowledge tracing. The model introduces regularization to improve the accuracy and stability of
predictions regarding students’ performance. The DKT+ model shows better performance and ro-
bustness in knowledge tracing tasks, providing more precise personalized teaching support in the
educational field.

A.2.3 DKT-F (NAGATANI ET AL.,[{2019)

The DKT-F model improves upon the DKT model by considering that knowledge acquired early by
learners may be forgotten as interactions continue to occur.

A.2.4 KQN (LEE & YEUNG,[2019)

The KQN model explores the interaction between knowledge and skills. It introduces a Knowledge
Query Network to better capture the relationship between students’ knowledge mastery and skill
development.

A.2.5 DKVMN (ZHANG ET AL.,[2017)

The DKVMN model is a Dynamic Key-Value Memory Network. It uses memory storage to track
students’ knowledge mastery. By inputting problems and students’ response sequences, the model
can dynamically retrieve and update the knowledge information stored in memory. The model pre-
dicts students’ responses to new exercises based on previous answers, the current problem, and the
stored knowledge state.

A.2.6 ATKT (GUO ET AL.,[2021)

The ATKT model enhances knowledge tracing through adversarial training. It uses adversarial learn-
ing principles to improve the KT model’s generalization ability by jointly training on the original
inputs and corresponding adversarial examples.

A.2.7 GKT (NAKAGAWA ET AL.,12019)

The GKT model is a knowledge tracing model based on Graph Neural Networks. It represents
students’ knowledge states and the relevance of exercises using graph structures. Through message
passing and node updating in the graph, the GKT model dynamically captures changes in students’
knowledge and predicts future learning outcomes.

A.2.8 SAKT (PANDEY & KARYPIS,[2019))

The SAKT model is a knowledge tracing model based on self-attention mechanisms. It uses a self-
attention mechanism that automatically focuses on key information in students’ response sequences
to accurately predict students’ performance on future exercises.

A.2.9 SAINT (CHOIET AL.,|{2020)

The SAINT model predicts students’ knowledge levels by calculating queries, keys, and values. It
uses an Encoder-Decoder structure to accurately capture key information for each exercise when
processing students’ response sequences, thereby improving the prediction of students’ future per-
formance.

A.2.10 AKT (GHOSH ET AL.,[{2020)
AKT (Context-Aware Attentive Knowledge Tracing) is a context-aware attention mechanism knowl-

edge tracing model. It uses Rasch models and interaction-distance-based attention mechanisms to
model learners’ current states, better capturing individual differences and changes in knowledge.

14

Under review as a conference paper at ICLR 2025

Question level's AUC in assist2009 for different encoder network

0.787
GRU A 0.7795 0.786
0.785
”
3
5 0.784
8
g
& LSTM 1 0.7811 0753
2
§
5 - 0.782
r0.781
RNN - 0.7789
I 0.780
L+ 0.779
RNN LSTM GRU

Knowledge Characterizer

Figure 5: The impact of different feature encoders on the Question Level AUC performance on the
AS2009 dataset.

A.2.11 LPKT (SHEN ET AL/, [2021)

The LPKT model simulates the student learning process. It replicates learning and forgetting pro-
cesses similar to those in LSTM and GRU, and uses a Q-matrix to describe the relationship between
exercises and knowledge concepts.

A.2.12 SIMPLEKT (LIU ET AL.,[2023B)

The SIMPLEKT model is a simple yet effective knowledge tracing baseline model. It uses improved
Rasch embeddings and ordinary dot-product attention to achieve knowledge tracing, providing good
scalability.

A.2.13 AT-DKT (LIU ET AL.,[2023)

AT-DKT enhances model prediction performance by introducing auxiliary tasks related to exercise
labeling and personalized prior knowledge prediction. It proposes two auxiliary tasks, demonstrating
improved model performance and showing that incorporating multi-task objectives is effective in the
knowledge tracing field.

A3 RQI

Q1:The ExerCAKT framework uses two GRUs as the Knowledge State Feature Extractor and Exer-
cise Feature Extractor. Would replacing GRUs with RNNs or LSTMs yield similar performance?

ExerCAKT can easily replace GRU units with RNN or LSTM units. We explored the impact of
different recurrent neural units on the model by replacing the GRU units in both feature extractors,
to uncover potential avenues for future improvements.

Figure 5 and Figure 6 display heatmaps showing the results of Question Level AUC and KC Level
AUC under different combinations of RNN, LSTM, and GRU. The results indicate that: (1) The
difference between the maximum and minimum values for both Question Level AUC and KC Level
AUC is 0.85% and 0.71%, respectively. This difference suggests that there may be significant vari-
ations depending on the combination used, with the maximum values observed in the [GRU, GRU]
combination, confirming the effectiveness of using dual GRU units in ExerCAKT. (2) The minimum
values for both metrics are 0.7789 and 0.7633, which are higher than most baseline models, demon-
strating that various recurrent neural network units perform well under this framework. (3) When

15

Under review as a conference paper at ICLR 2025

KC level's AUC in assist2009 for different encoder network

0.770
GRU ~
0.769
0.768
LSTM 4

0.767

- 0.766

Exercise Characterizer

r 0.765

F0.764

RNN LST™M GRU
Knowledge Characterizer

Figure 6: The impact of different feature encoders on the KC Level AUC performance on the
AS2009 dataset.

Embedding Layer ratio KC Levels AUC
280 40 1.0 0.775

8
240 a5 084 0.770
220 34| 0.8 0.768
3z

200 0.7 o 07
304

180 4 28 0.6 0’755
160 4 26 0.5 0.750
24 _|
140 | 22 04} 0.745
240

18

03 0.740
0z 0.735

0.1 0.730

Broeo

0.0 0.725

Figure 7: Schematic of the 15 experimental results when the number of GRU layers is 2.

the knowledge state feature encoder uses GRU, the model performs better compared to the other two
configurations. In contrast, when the exercise feature extractor uses GRU, the model performance
varies more significantly, and tends to increase with the choice of knowledge state feature encoder.
This indicates that the choice of the knowledge state feature extractor is more critical, although the
choice of exercise feature extractor can also improve model performance. Overall, we found that
different recurrent neural network units yield different results. In fact, LSTM is an enhanced version
of RNN, and GRU is a simplified version of LSTM. Given the variety of network structures, we
believe that GRU might not be the optimal choice. Similar to the work of LPKT 2021),
designing more efficient and interpretable units could further enhance the model, with ExerCAKT
providing a foundational framework.

A.4 RQ2

Q2:What is the impact of other hyperparameters on model performance?

In addition to the selection of hyperparameters and feature extractors, we believe that embedding
dimensions and the number of GRU layers might be important hyperparameters affecting model per-
formance. Therefore, we conducted multiple experiments under different embedding dimensions,
GRU layer counts, and hyperparameters . To exclude the interference from other hyperparameter
settings, we selected experimental data within the hyperparameter range v € [0.3,0.7] , and com-
puted the average performance for all GRU layer counts when exploring embedding dimensions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

080 Performance Metrics Comparison Across Embedding Dimensions

Embedding Dimension
B Dimension 64
W Dimension 128
= Dimension 256

0.7856
0.781

0.7709

0.78 0.7766
0762605022
0.76
0.74 07371873
07344 0731507334
0.729
0.72 II
0.70

Question Level's AUC Question Level's ACC KC Level's AUC KC Level's ACC
Score Type

Scores

Figure 8: The model’s performance under different embedding dimensions.

050 Performance Metrics Comparison Across GRU Layers

GRU's Number of Layers
e Layers 1
L 2
0.7828 07818 (o Ayers
0.78 e 0.7796 s Layers 3
W Layers 4
0.7676 , 7659 0.7652 0.7665
0.76
@
S
k=]
Q
A
074 07377 07371 0.7367 0736
0.7324 (7317 07311 (7304
) IIII
0.70
luestion Level's estion VEL'S cvels evels
Question Level's AUC Question Level's ACC KC Level's AUC KC Level's ACC
Score Type

Figure 9: The model’s performance under different GRU layer counts.

For example, when investigating the impact of different GRU layer counts on performance, we have
three embedding dimensions: [64, 128, 256], and four GRU layer counts: [1,2,3,4]. Therefore,
the performance for each GRU layer count is averaged over 15 results. Figure 7 shows the 15 ex-
perimental results when the number of GRU layers is 2, calculates their average, and reports the
results.

Figure 8 and Figure 9 display the performance of AUC and ACC metrics for Question Level and KC
Level under different embedding dimensions and GRU layer counts, respectively. It can be observed
that embedding dimensions have a significant impact on model performance, with the AUC metric
improving by 0.0090 as the embedding dimension increases. Regarding the number of GRU layers,
the model achieves the best performance in multiple metrics with just one layer, indicating that the
model does not require excessive stacking of layers.

17

Under review as a conference paper at ICLR 2025

Table 5: cost

Model Inference time cost (ms) GPU memory usage (MB)
LPKT 171.46 ms 3367 MB
SIMPLEKT 19.55 ms 2139 MB
AKT 81.87 ms 9567 MB
ExerCAKT 27.99 ms 1981 MB

A5 RQ3

Q3:What are the inference speed and computational overhead of ExerCAKT?

To evaluate model inference speed and GPU memory usage, we compared ExerCAKT, AKT, SIM-
PLEKT, and LPKT on the Assistment2009 dataset. The hyperparameters were set to the optimal
results obtained from the respective model searches, but the embedding dimension was fixed at 128
to ensure a fair comparison of GPU memory usage. Experiments were conducted individually on a
workstation equipped with an 19-12900k CPU, RTX 3090 (24G) GPU, and 64G RAM.

The experimental results indicate that ExerCAKT has lower inference time costs compared to AKT,
LPKT, and other models, though it is slightly inferior to SimpleKT. However, the difference is
minimal. In terms of GPU memory usage, ExerCAKT outperforms the three comparison models.
Although the datasets commonly used in knowledge tracing are still relatively small and the demand
for high-concurrency knowledge tracing model inference has not yet emerged, the time cost during
training is not as perceptible. However, GPU memory usage determines whether the algorithm can
run on some consumer-grade GPUs (e.g., Nvidia RTX 3060 Ti 8G). As envisioned, future intelli-
gent education algorithms may be widely deployed on edge computing nodes held by teachers and
schools, which will protect data privacy. Consequently, the speed and hardware costs of algorithms
will receive increased attention.

18

	Introduction
	Related work
	Problem Definition
	Deep Learning-Based Knowledge Tracing
	Methods Based on Recurrent Neural Networks
	Methods Based on Memory Networks
	Methods Based on Self-Attention Mechanisms
	Methods Based on Other Neural Networks

	Model
	Embedding Layer
	Knowledge State Feature Extractor
	Exercise Feature Extractor
	Prediction and training

	experiment
	Experimental setting
	Datasets and Baseline Settings
	Experimental result
	Comparative Analysis
	Ablation Analysis
	Key Hyperparameter Analysis

	conclusion
	Appendix
	dataset information
	ASSISTments2009
	Algebra2005
	ASSISTments2015

	baseline models information
	DKT DKT
	DKT+ DKTPlus
	DKT-F DKT-F
	KQN KQN
	DKVMN DKVMN
	ATKT ATKT
	GKT GKT
	SAKT SAKT
	SAINT SAINT
	AKT AKT
	LPKT LPKT
	SimpleKT SIMPLEKT
	AT-DKT AT-DKT

	RQ1
	RQ2
	RQ3

