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ABSTRACT

Image-to-image translation plays a central role in computer vision, enabling appli-
cations such as style transfer, domain adaptation, and image enhancement. While
recent advances have achieved strong paired translation results, learning map-
pings in unpaired settings remains challenging. In this work, we present a sys-
tematic comparison of autoencoder and variational autoencoder (VAE) variants
for unpaired image-to-image translation, using paired data solely as a reference
baseline. To capture distributional uncertainty, we introduce VAE-CycleGAN,
a unified probabilistic framework that integrates variational inference into the
CycleGAN architecture. Our method combines adversarial training and cycle-
consistency with a VAE’s probabilistic latent space, allowing the model to ap-
proximate the true posterior distribution. Further, the architecture achieves a 256 x
spatial compression, efficiently compressing the input into a compact latent repre-
sentation. Empirical results across the satellite-to-map benchmark dataset demon-
strate that VAE-CycleGAN generates high-quality translated images (FID: 69.25,
KID: 0.0378) and achieves superior reconstruction fidelity (MSE: 0.0011, PSNR:
29.67 dB, SSIM: 0.7804) comparable to state-of-the-art deterministic approaches
without hyperparameter tuning.

1 INTRODUCTION

Deep generative models learn underlying probability distributions of real data to synthesize novel,
realistic samples, though current methodologies still face significant limitations. Variational Au-
toencoders (VAEs) often yield oversimplified approximations of complex latent space data priors.
Energy based models such as Restricted or Deep Boltzmann Machines (RBMs and DBMs), rely on
intractable posterior computations and slow Markov Chain Monte Carlo (MCMC) sampling (Fischer
& Igel, 2012), (Zhang et al 2018)). Finally, Generative Adversarial Networks (GANs) (Goodfellow
et al., [2014) avoid explicit likelihoods but suffer from mode collapse, instability, and a reliance on
paired data for conditional tasks.

Although unsupervised models like CycleGAN (Zhu et al., |2017a)) overcome the need for paired
data, their deterministic nature prohibits ill-posed, multimodal translation. To address the above is-
sues, we propose VAE-CycleGAN, a unified framework that integrates the probabilistic latent space
of a Variational Autoencoder (VAE) into the CycleGAN architecture. Our model combines adversar-
ial and cycle-consistent training with a structured latent distribution, enabling diverse, controllable,
and high-fidelity unpaired image-to-image translation.

2 RELATED WORK

Generative Adversarial Networks (GANs) (Goodfellow et al.l 2014) introduce a transformative
adversarial framework where a generator (G) and discriminator (D) are trained simultaneously
through a minimax game. This approach produces high-fidelity samples efficiently via backprop-
agation, bypassing the need for Markov chains or explicit likelihoods. Subsequent developments
improve training stability and sample quality (Radford et al.| 2016} |Arjovsky et al., |2017). Ad-
vancements on conditional GANs (cGANSs) by [Isola et al.[(2017) enable directed generation but
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require paired data (z,y). For high-resolution image generation, [Wang et al|(2018)) incorporates
segmentation information, while |Park et al.[| (2019) advances semantic manipulation capabilities.
The challenge of multimodality in paired settings is addressed by [Zhu et al.|(2017b) with Bicycle-
GAN, which combines cGANs with variational objectives to generate diverse outputs from single
1nputs.

However, paired data requirements render cGANs unsuitable for ill-posed inverse problems such
as tomographic reconstruction or image colorization, where single inputs correspond to multiple
valid outputs, as well as for distribution-level translation between unpaired domains like artistic
style transfer. To address paired data limitations, unsupervised methods emerge. CycleGAN (Zhu
et al., [2017a) and DualGAN (Y1 et al.| 2017)) pioneer cycle-consistency loss with adversarial train-
ing for unpaired bi-directional mapping. UNIT (Liu et al., |2017) introduces shared-latent space
assumptions, while StarGAN (Choi et al., 2018}, [2020) enables multi-domain translation within a
unified framework. Subsequent efforts addressing deterministic limitations include MUNIT (Huang
et al.| [2018)) and DRIT (Lee et al., 2018), which explicitly disentangle style and content codes for
multimodal translation, albeit with increased architectural complexity.

Alternatively, Augmented CycleGAN (Almabhairi et al., 2018)) approaches multimodality through
auxiliary latent variables, enabling many-to-many mappings by cycling through augmented spaces.
Contrastive learning approaches (Park et al.| [2020) further advance unpaired translation by leverag-
ing patch-wise contrastive losses.

Recently, flow-based models, including normalizing flows and diffusion models provide an alterna-
tive generative modeling paradigm through quasi-invertible transformations (Rezende & Mohamed,
2015; [Kingma & Dhariwall 2018), enabling both precise likelihood estimation and bi-directional
latent space manipulation. Diffusion models (Ho et al.,[2020;|Song et al., [2021} Saharia et al.| [2022)
utilize iterative denoising processes to achieve state-of-the-art performance in high-resolution image
synthesis. Diffusion-4K (Zhang et al., [2023)) specifically addresses ultra-high-resolution generation
through efficient architectural designs that overcome memory constraints while maintaining sample
quality.

Additionally, modern VAE architectures have substantially advanced beyond the original formula-
tion (Kingma et al.| [2013). Hierarchical VAEs (Vahdat & Kautz| [2020) employ multi-scale latent
representations to capture complex data distributions. Vector-quantized VAEs (VQ-VAE) (Van den
Oord et al., 2017) introduce discrete latent representations through a codebook mechanism, effec-
tively circumventing the posterior collapse problem common in continuous VAEs when paired with
powerful decoders. This approach replaces the continuous latent space with discrete codes learned
via vector quantization, creating a robust framework for high-quality image, video, and speech gen-
eration. The subsequent VQ-VAE-2 (Razavi et al.,|2019) enhances this foundation through a multi-
scale hierarchical architecture, employing powerful autoregressive priors over the latent codes to
generate high-fidelity, diverse samples that rival state-of-the-art GANs, while maintaining the train-
ing stability and diversity advantages of VAE-based approaches.The NVAE architecture (Vahdat &
Kautzl 2020) uses depth-wise separable convolutions to also demonstrate that hierarchical VAEs
can compete with other state-of-the-art generative models; the Very Deep VAE (Child, 2021)) shows
that extremely deep hierarchical variational models can rival autoregressive approaches in sample
quality.

Finally, the VAE-GAN paradigm (Larsen et al., 2016) combines variational autoencoders’ latent
space learning with GANs’ adversarial training, using the discriminator for perceptually-aware re-
construction losses rather than pixel-wise metrics. This hybrid approach demonstrates enhanced
generalization and output fidelity (Yan et al.l 2025} Denton & Fergus, |2019), with the VAE learning
meaningful latent representations while the adversarial component ensures distributional alignment.

Our proposed VAE-CycleGAN builds upon these advances, incorporating cycle-consistent adver-
sarial training for bi-directional unpaired translation while leveraging VAE-based generators to
introduce multimodality and structured latent spaces. This distinguishes our work from standard
VAE-GANSs (Larsen et al., 2016; Yan et al.;|2025) and addresses CycleGAN’s determinism through
intrinsic stochasticity rather than external auxiliary variables (Almahairi et al., 2018)). While we do
not explicitly include diffusion models, the VAE-based model allows for easy integration with latent
diffusion models as in Zhang et al.[ (2023).
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Concurrent research by Sharma et al.|(2025)) explored medical image translation with unpaired data
using a similar combination of a VAE and a CycleGAN. Their architecture employs two GANs
where the generator module of only one GAN incorporates a VAE neural network. In contrast, our
network integrates a VAE into each of the two GANS, fully leveraging the potential for variability in
the translated images. Furthermore, our paper provides a comprehensive comparison of different AE
(autoencoder) and VAE variants in terms of reconstruction, translation, and diversity of the translated
samples, with both perception (visual quality) and distortion (pointwise accuracy) metrics.

3 PROBLEM FORMULATION

In consistent image translation, we expect a canonical isomorphism between two visual domains
X,Y. In practice, all possible such mappings are lossy and thus non-invertible; we thus seek the
maximally structure-preserving map (or pair of homomorphisms with minimal kernel). These maps
are not unique; given an image z; € X, we can define the possible outcomes § ~ Pyix with a

posterior distribution, as in classical ill-posed inverse problems.

As in CycleGAN (Zhu et al., [2017a)), we indirectly enforce maximal structure preservation through
a cycle consistency loss, for generators G : X - Y, F:Y — X.

Leyete = o (|2 — F(G(2)) 1] + Ey [ly — G(F(y))]1] ey
Since this is a distortion metric, our model follows the perception-distortion tradeoff (Blau &
Michaeli, |2018)): an estimator cannot simultaneously achieve optimal accuracy (minimal distor-
tion) and optimal perception (distributional or visual quality). For an allowable distortion level D,
perception metric (f-divergence, e.g. Kullback-Leibler (KL)) d, and distortion metric (e.g. L1 loss)
A, the optimal model satisfies Eqn.
Pyle = argmin d(py, pg) st EpympuEgmp, ., [A(y,9)] <D (2)
Pglz
Low distortion estimators (e.g., standard VAEs, autoencoders) minimize E[A(y, §)] but ignore the
distribution py, resulting in blurry, perceptually unrealistic outputs (converging to the pixel-wise
maximum a-posteriori solution). In contrast, high perception estimators (e.g., GANs) learn and
minimize d(p,, p;) and produce sharp, realistic samples but provide no guarantee that a generated
sample ¢ is a faithful reconstruction of a specific input . An optimal inversion requires sampling
from the full posterior p(y | x), which defines the Pareto frontier in Eqn. VAE-CycleGAN
is designed to learn this posterior distribution, enabling both perceptually realistic and distortion-
faithful reconstructions. To this end, we use for perception metric d(py,p;) an adversarial X2
divergence between generated images and target domains, with discriminators Dy : X — Px, Dy :
Y — ]Py.
LI =Ey[Dy(y)’] + Eo[(1 — Dy (G(2)))?] 3)
LEK = Ea[Dx (2)’] + Ey[(1 - Dx (F(y)))*] O]
Interestingly, at no point have we required paired data; by quantifying both perception and distortion
the model is now fully specified, even in the unpaired setting (where we have datasets: {(z; € X) ~
Paaa() g and {(y; € Y) ~ paaa(y)}IL)). Please see Appendixfor a proof sketch of model
convergence to a natural map, though not necessarily a human-preferred, canonical map.

We finish the training objectives with a couple of regularizers. For fast posterior sampling, a 3-
VAE loss regularizes the latent space to a normal distribution with a traditional KL divergence dx .
(Higgins et al.,[2017),(Weng, |2018). For latent variable z, ¢ and 6 parameterize the encoder ¢4 (z|)
and decoder py(-|z) respectively. For stability when the input is already in the target domain, we
add an identity loss regularizer to preserve content.

Lopg = Eangy (1) Ak (g0(212) || p(2) £ N(0,1)) (5)
CEI/AE = E2~q¢(2|y) dgL (Q¢(z|y) H p(z) £ N(Ovﬂ)) (6)
Ligenity = Ez [|G(2) — 1] + Ey [[F(y) — yl1] (M

The complete training objectives are then as in Eqns. E], where A\gan, Acyeles Aid>, A << 1 are
weighting coefficients.

AE-CYCICGANI ACTotal = )\GANACGAN + )\cycleﬁcycle + Aidﬁidentity (8)
VAE-CYCICGAN: Lotal = MaLvag + AcanLcan + /\cycleﬁcycle + )\id‘cidentity 9
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3.1 NETWORKS

We train the following variants in Table [T]to fully ablate these objectives, on an asymmetric trans-
lation benchmark between high-resolution satellite (aerial) photos X and simplified map-like rep-
resentations Y, with comprehensive architecture as in Figure [I] Please see Appendix [8.2] [8.3] for
implementation details, respectively.

Table 1: Architecture variants

Model Type Objectives
‘g AE Deterministic  Translation
& Cycle AE Deterministic ~ Translation, Cycle consistency
S AE-GAN Deterministic  Translation, Adversarial, Identity
3 VAE Stochastic Translation, KL-Divergence
.E Cycle-VAE Stochastic Translation, Cycle consistency, KL-Divergence
A& VAE-GAN Stochastic Translation, Adversarial, Identity, KL-Divergence
g Cycle AE Deterministic  Cycle consistency
.E AE-CycleGAN Deterministic ~ Adversarial, Identity, Cycle consistency
= Cycle-VAE Stochastic Cycle consistency, KL-Divergence
= VAE-CycleGAN Stochastic Adpversarial, Identity, Cycle consistency, KL-Divergence

real
Discriminator
D;
X fake
X - -
z=p+o0€ z=p+o0¢€
fo|
Encoder H Decoder Encoder H Decoder
4 Z
4p(z]%) i R EE) GlF) Y qp(2]) o poxl2) F
Generator G:X->Y —Jr» Generator F:Y->X
J

real
Discriminator
Dy
fake

F(G(X)

G(X)

Figure 1: VAE-CycleGAN

4 RESULTS

We first compare the performance of paired dataset AE and VAE variants, then extend to unpaired
settings. We then return to the role of adversarial loss and cycle-consistency in the stochastic
(inverse-problem) case, by introducing a Gaussian prior in the latent space.

To evaluate performance, we use distortion-based metrics MSE, PSNR, the perception-oriented
Structural Similarity Index (SSIM), and perception-based metrics including the common Fréchet
Inception Distance (FID) and more flexible Kernel Inception Distance (KID). FID measures distri-
butional distance between real and generated images, through Gaussian-fitted latent distributions.
Since our dataset is relatively small with only 1096 training and testing samples each, we also report
a KID score. KID uses a polynomial kernel to compute maximum mean discrepancy, relaxing the
Gaussian assumption, and may provide an more unbiased estimate.

For brevity, we present VAE-CycleGAN (in an unpaired setting) as an example of translation and
reconstruction in Figure 2] Examples of all AE and VAE variants as listed in Table [I] are presented

in Appendix
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Tables [2 and 3] display the average translation and reconstruction errors.

Input x

Input y

Ground Truth y

Ground Truth x

Translation G(x)

Translation F(y)

Reconstruction F(G(x))

Reconstruction G(F(y))

Figure 2: VAE-CycleGAN translated and reconstructed outputs.

Table 2: Model ablation across translation tasks.

G : X — Y (aerial—map)

F :Y — X (map—aerial)

Model
MSE| PSNRT SSIMT FID| KIDu+ol |[MSE| PSNRT SSIMT FID| KIDuzol

AE 0.0018 27.37 0.7636  325.56 0.3530 % 0.0374 | 0.0256 14.08 0.2489  253.05 0.2331 £ 0.0196

Cycle AE 0.0018  27.46 0.7650 273.17 0.2729 + 0.0241 | 0.0251 14.13 0.2553 241.77 0.2175 + 0.0189
E AE-GAN 0.0031 25.10 0.6684 63.83 0.0316 + 0.0066 | 0.0349  14.29 0.2079 52.33 0.0175 + 0.0055
'E VAE 0.0024  26.03 0.6753 358.70 0.3547 + 0.0310 | 0.0261 13.50 0.1894 304.34 0.2858 + 0.0209

Cycle VAE 0.0022  26.58 0.7117 325.89 0.3369 + 0.0236 | 0.0255 13.25 0.2080 259.83 0.2403 + 0.0189

VAE-GAN 0.0033  24.85 0.6272  83.18 0.0510 % 0.0091 | 0.0354 14.17 0.1705 64.45 0.0301 % 0.0052
2 Cycle AE 0.0872 10.59 0.0318 409.27 0.5077 £ 0.0163 | 0.0410  13.69 0.0924 329.51 0.3552 + 0.0175
.‘Ej Cycle VAE 0.0113 19.47 0.3128 419.51 0.5393 + 0.0194 | 0.0614 7.90 0.0885 475.98 0.5931 + 0.0274
) AE-CycleGAN  0.0050  22.97 0.6737 70.08 0.0460 + 0.0131 | 0.0389 13.62 0.1641 52.53 0.0170 & 0.0048
= VAE-CycleGAN 0.0056  22.50 0.5793  90.87 0.0594 + 0.0092 | 0.0443 13.36 0.0965 69.25 0.0378 + 0.0063

Table 3: Model ablation across reconstruction tasks.
Model G(F(y)): Map Reconstruction F(G(x)): Aerial Reconstruction
MSE| PSNRT SSIMT FID| KIDu+ol |[MSE.L PSNRT SSIMT FID| KIDu+ol

AE 0.0017  27.77 0.7718 315.15 0.3347 + 0.0324 | 0.0287 13.95 0.1992 288.35 0.2807 % 0.0208

Cycle AE 0.0003  35.91 0.9242 83.08 0.0604 + 0.0066 | 0.0059  21.53 0.6661 17529 0.1621 + 0.0164
E AE-GAN 0.0050  22.99 0.6969 74.76 0.0425 + 0.0082 | 0.0392 13.90 0.1481 70.75 0.0347 + 0.0067
E VAE 0.0049  22.63 0.6717 367.13 0.3895 % 0.0250 | 0.0340 11.13 0.1344  347.17 0.3642 + 0.0188

Cycle VAE 0.0007  31.81 0.8450 170.27 0.1546 + 0.0154 | 0.0145 17.03 0.3330 266.76 0.2587 + 0.0173

VAE-GAN 0.0060 22.22 0.6172  104.49 0.0800 % 0.0107 | 0.0430 13.35 0.0954 84.63 0.0496 + 0.0101
2 Cycle AE 0.0002  36.59 0.9317 80.05 0.0608 + 0.0075 | 0.0063  21.12 0.6451 180.12 0.1662 + 0.0188
.E Cycle VAE 0.0006 32.44 0.8468 219.37 0.2130 & 0.0282 | 0.0146 17.31 0.3151 281.64 0.2761 + 0.0168
= AE-CycleGAN  0.0005 3299 0.8760 106.63 0.0844 £ 0.0092 | 0.0096  19.01 0.5069 200.11 0.1833 £+ 0.0181
= VAE-CycleGAN 0.0011 29.67 0.7804 241.78 0.2409 + 0.0259 | 0.0175 16.10 0.2779 271.72 0.2703 £+ 0.0200

The asymmetric difficulty of the aerial and map datasets is immediately obvious, with any aerial
task generally worse in distortion metrics (high MSE, low PSNR, SSIM) but easier to capture in-
distribution (low FID, KID). Regardless, optimal translation and reconstruction models closely fol-
low the perception-distortion trade-off (Blau & Michaelil |2018)). In both paired translation and re-
construction, Cycle-AE minimizes distortion via a cycle-consistency loss (lowest MSE, high PSNR,
SSIM), while AE-GAN optimizes for perception with the adversarial loss (lowest FID, KID). Inter-
estingly, in unpaired translation, the adversarial loss becomes crucial for domain alignment. Con-
sequently, AE-CycleGAN achieves the best overall performance, superior in both distortion and
perception metrics. Similarly, Cycle AE (with only cycle-consistency) performs best in all recon-
struction metrics, as cycle-consistency is crucial for information preservation.
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We find AE-CycleGAN the best overall performing (deterministic) model. No metric in Table [2]
directly quantifies the conditional posterior (distribution of possible cycle-consistent translations),
since that is intractable over the large 256x256x3 image space, so stochastic models are expected
to perform worse on this benchmark. FID and KID only quantify the marginal posterior (any con-
ditioned translation regardless of consistency). Nevertheless, unlike the other stochastic models,
VAE-CycleGAN performs closely behind AE-CycleGAN in translation. We expand on this with
qualitative measurements in section 3]

We now visualize translations from aerial photos to maps, # — G(x) in Figure [3| and the aerial
image reconstructions, z ~ F/(G(x)) in Figure | for additional qualitative comparison.

Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair) Cycle-VAE(un-pair)  VAE-GAN VAE-CycleGAN

Figure 3: Left to right: input z, target y, map translations G(x). Top to bottom: AE/VAE variants.

Input AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input VAE Cycle-VAE(pair) Cycle-VAE(un-pair)  VAE-GAN VAE-CycleGAN

Figure 4: Left to right: input x, aerial reconstructions F'(G(z)). Top to bottom: AE/VAE variants.

Per Figure [3] maps translated by the Cycle-AE and Cycle-VAE models in an unpaired data setting
show no structural similarity to the map domain, as there is neither an adversarial constraint nor a
paired dataset to ensure domain alignment. However, spatial information is preserved and allows for
the complete reconstruction of the original aerial input, as shown in Figure[d] We notice a similar
pattern for aerial photos translation, y — F'(y) in Figure [5|and map reconstruction, y ~ G(F(y))
in Figure[6]

Visually, VAE-CycleGAN and AE-CycleGAN both produce the highest quality translations, with
the VAE-CycleGAN enabling distributional sampling at a moderate hit to reconstruction quality, as
expected from the perception-distortion tradeoff Blau & Michaeli (2018).
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Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair) Cycle-VAE(un-pair) ~ VAE-GAN VAE-CycleGAN
Figure 5: Left to right: input y, target x, aerial translations F'(y). Top to bottom: AE/VAE variants.

Input AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input VAE Cycle-VAE(pair) Cycle-VAE(un-pair)  VAE-GAN VAE-CycleGAN

Figure 6: Left to right: input y and map reconstructions G(F(y)). Top to bottom: AE/VAE variants.

5 REALIZATIONS

Realizations, ensemble mean, standard deviation, and ensemble error together form a qualitative
measure of the intractable conditional performance mentioned in section 4 For brevity, we now
visualize VAE-CycleGAN realizations and ensemble statistics in Figures[7] [8] Please find expanded

figures and metrics in Appendix [8.5]and

Figure 7: VAE-CycleGAN sample realizations. Row 1: aerial - maps, row 2: maps — aerial

We note a tradeoff in feature sharpness. In aerial output from Figure[7, we find homogeneous, low-
information areas (such as roads and open fields) lose sharpness, while sharp edges and textured
areas (such as buildings) gain sharpness. Similarly, in map output the low-information features
can drift or distort in shape. Similar behavior is visible in the ensemble mean (Figure [§). Cycle-
consistency is satisfied on the low-information areas (even if the translation is missing information,
the details are trivially reconstructed), so it follows that the adversarial loss is poorly aligned with
human perception. In particular, the choice of x? divergence induces a scoring rule on feature
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information (just like how L2-norms penalize outliers more than L1-norms) which determines the
spectral accuracy profile. So a-priori, the dataset’s power spectra must be known, so the f-divergence
can be chosen accordingly.

Figure 8: Mean, scaled STD (aerial 3 x, maps 20x), and MSE across 30 realizations.

The standard deviation and MSE are reported in true color, with purple color in standard deviation
demonstrating that the generator is confident in green value but highly variable in red and blue. Such
behavior is especially prominent in heavily treed or grassy areas (green areas) in satellite images;
as expected, the generators learn green value well due to the imbalanced dataset (trees and grass
dominate the satellite images).

We find the model is good at uncertainty quantification. The standard deviation across realizations
is well correlated with (so a good estimator of) the ensemble MSE. In satellite to map translation,
uncertainty is highest when translating low-detail ground features (like grass or empty fields) as there
is simply not enough information for accurate translation. In map to satellite translation, high-detail
textures (like buildings) naturally have highest uncertainty (as an ill-posed inverse problem). Across
an ensemble of 30 samples, the map translation MSE is ~ 6.4 x 10~2 while the aerial translation
MSE is = 35.1 x 103 for VAE-CycleGAN, due to the greater ill-posedness of the latter.

For all VAE models, Figures [9] and [I0] display ensemble summaries. For visibility, map standard
deviation images for all networks were scaled by a factor of 20 (excepting VAE-CycleGAN at 25x)
and then clamped to the 0-1 range for display. Similarly, aerial standard deviation images were
scaled by 10x for VAE and Cycle VAE variants, by 3x for GAN based VAEs, and also clamped.

VAE Cycle-VAE(pair) Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 9: Rows: mean, STD (scaled for visibility), and MSE of 30 aerial realizations (VAE variants).

In Figures[9]and[I0} we observe that the ensemble means for the GAN-based VAEs are much sharper
than the VAE and paired Cycle-VAE, despite the paired data. Conversely, the unpaired Cycle-VAE
completely lacks domain alignment, without the adversarial loss or paired data. For nearly all models
except VAE and the unpaired Cycle-VAE, standard deviation is again a good estimator of ensemble
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VAE Cycle-VAE(pair) Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 10: Rows: mean, STD (scaled for visibility), and MSE of 30 map realizations (VAE variants).

MSE. Lastly, note VAE-CycleGAN shows some positional distortion in the map due to the limited
domain alignment possible in the unpaired setting; it is the only performant unpaired stochastic
model.

6 DISCUSSION

The VAE-CycleGAN model performs competitively on distortion and perception metrics during
satellite to map translations, at acceptable reconstruction tradeoff, while maintaining output diver-
sity. We have presented a competitive framework for unpaired image-to-image translation, with
multiple avenues for improvement.

First, integrating a Wasserstein GAN (WGAN) or a two-stage training strategy would improve train-
ing stability. Natural integration with latent diffusion models could help enhance output sharp-
ness (Zhang et al., 2023). Next, compression and latent-space regularization can also be improved.
The 256 spatial compression ratio can become a true total compression with advanced tokeniza-
tion approaches (Yu et al., 2024). High KL divergence during training indicates that the latent
space is poorly regularized, which could be improved by vector quantization (VQ-VAE) (Razavi
et al.,[2019). For tasks involving significant geometric transformations, replacing pixel-level cycle-
consistency with an attention mechanism could yield more realistic results. Semantic conditioning
or a StyleGAN-like modulation architecture (Karras et al.,|2018) can enable precise attribute editing.

Finally, the versatility of our framework suggests strong potential for application beyond natural
images, such as in molecular design and medical image synthesis (CT-to-MRI synthesis, PET-to-CT
conversion, etc.).

7 CONCLUSION

We demonstrate a VAE-CycleGAN framework that allows for bidirectional posterior sampling in
unpaired image-to-image translation by unifying variational inference with the CycleGAN architec-
ture. VAE-CycleGAN achieves competitive performance with deterministic counterparts, and can
be easily extended to a general class of bidirectional ill-posed inverse problems with only unpaired
data. Further, the variational latent space allows future adaptation with other state-of-the-art methods
such as diffusion models, enabling fine-grained or prompt-based control.
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8 APPENDIX

8.1 CONVERGENCE AND OPTIMALITY

To our knowledge, [Zhu et al.| (2017a) do not provide a proof of convergence for a cycle-consistent
framework. We provide a quick sketch below.

We begin by defining the spaces and mappings relevant to the cycle-consistent neural network frame-
work. Let X denote the input domain, where each element z € X represents one of n distinct items
(e.g., images), as determined by the dimensionality of the input data. Let Y be the target output
domain, where each y € Y likewise corresponds to one of n distinct items, consistent with the
output data dimension. Let f : X — Z denote the forward mapping implemented by the neural
network, where Z is an intermediate representation space. Let g : Z — X be the inverse mapping
used to reconstruct the original input from the network’s output. In the context of a model trained
with cycle-consistency loss, we assume the following two properties:

Va € X,3 g suchthat g(f(z)) =« (10)
Z=Y (1)
Equation [I0] ensures the existence of a cycle-consistent mapping. Equation [TT]states that the inter-

mediate representation space Z is equivalent to the target output domain Y, thereby implying that
the network effectively learns a mapping from X to Y.

Given that f is bijective (by Equation [I0) and that |X| = |Y| = n (by Equation [11)), it follows
that there exist n! possible one-to-one mappings (i.e., permutations) between elements of X and
Y. Although many such bijective mappings exist in theory, the cycle-consistency loss biases the
network toward converging on a single, consistent, and invertible transformation that minimizes the
reconstruction error.

Let fp denote the forward neural network (parameterized by weights ) which maps inputs from
domain X to outputs in domain Y. Let gy denote the inverse neural network, also parameterized
by 6, that attempts to reconstruct the original input from the output of fy. By Equation and
|X| = |Y| = n, note that g = f~*. The cycle-consistency loss £() is then defined as the expected
reconstruction error between the original input x and its reconstruction gy (fp(z)), measured using
the squared L? norm:

£(0) = Earox [llg0(fo(x)) - a3 (12)
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The optimal parameters 0* are obtained by minimizing the cycle-consistency loss: 6* =
argming £(6).

In general, we assume the following about the solution (6*) landscape:

1. No local minima exist (i.e., network optimizer will never be stuck at a local minima)

2. There exists a unique 6* such that £(0*) < ¢ for some ¢ € RT

Solution uniqueness is enforced by the neural network’s inherent incompleteness: the neural network
cannot perfectly reconstruct z, i.e., £(f) > 0 V6. Since exact recovery is impossible, the model
cannot satisfy cycle-consistency for any parameterization/mapping. So, the model will choose the
lowest 8* for convergence. Under these assumptions, then, gradient descent will thus converge to a
unique solution §* with corresponding invertible mappings (fo-, go~) between domains X and Y.

Given a particular network architecture, then, if the human-preferred canonical map is suboptimal
in perception-distortion, the model will converge to a different, possibly unusable solution. To avoid
such behavior, small amounts of paired data can produce improved results.

8.2 TRAINING DETAILS

We provide a PyTorch implementation of our models.

The dataset consists of satellite photographs and images. We adopt train and test datasets from |Zhu
et al.| (2017a), consisting of 1096 maps and satellite (aerial) photographs. Images are resized with
random crop and flip to 256 x 256, then normalized before training. For all probabilistic models, we
set Aeyete = 10, Ajg = 5, and A\j; = le — 05 in Equation@ We use the Adam optimizer (Kingma
& Ba, [2015) with a batch size of 5. All networks were trained from scratch with a learning rate
of 0.0002 and a latent dimension of 64x16x16 (channels, height, and width respectively) for 600
epochs.

8.3 NETWORK ARCHITECTURE

Generator:

We use a U-Net style architecture (Johnson et al., [2016) with a variational bottleneck. The encoder
and decoder are symmetric. Let c7s1-k denote a 7 x 7 Convolution-InstanceNorm-ReL U layer
with £ filters and stride 1. dk denotes a custom Downsampling block via PixelUnshuffle with output
channels k. Rk denotes a residual block that contains Reflection padding, two 3 x 3 convolutional
layers with the same number of filters, two InstanceNorm layers and a ReLU activation.

Lk denotes a linear (1 x 1 convolutional) layer. Sk denotes a skip connection block that performs
a linear projection or averaging to change the number of channels from the previous layer to k.
uk denotes a custom Upsampling block via Pixelshuffle with output channels k. The network uses
Reflection Padding throughout to reduce artifacts.

The model encodes an input image into parameters of a Gaussian distribution (mean, p and log-
variance, log o) in a learned latent space. The dimensionality of this space, V., determines the
size of the bottleneck and the complexity of the learned representation. A latent code z is sampled
from this distribution using the reparameterization trick and is subsequently decoded to generate the
output image.

For a 256 x 256 input image with 4 downsampling/upsampling layers and one residual block, the
architecture is as follows:

Encoder: c7s1-64,d128,d256,d512,d1024,R1024, SN,

Variational Bottleneck:

= Sn.(Sn.(enc)), loga? = Ly_(enc), z ~ N(u, exp(log a?))

Decoder: S1024,R1024,u512,u256,ul28,u64,c7s1-3.

The final output layer (c7s1-3) consists of: ReflectionPad2d(3) — Conv7-1 — Tanh() activation.
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Discriminator:

The discriminator architecture is adopted from Zhu et al.| (2017a), specifically utilizing a 70x70
PatchGAN. The network is constructed from a series of 4x4 convolutional layers with Instance Nor-
malization and LeakyReLU (slope 0.2). The first layer, C64 (64 filters, stride 2), omits Instance
Normalization. This is followed by successive layers (C128, C256, C512), each doubling the num-
ber of filters. A final convolution layer produces a 1-dimensional output map.

8.4 TRANSLATION AND RECONSTRUCTION EXAMPLES

Each set of figures/images visualize (a) the aerial to map translation and aerial reconstruction and (b)
map to aerial translation and map reconstruction. The maps translated by the Cycle-AE and Cycle-
VAE models in an unpaired data setting show no structural similarity to the map domain, as there is
neither an adversarial constraint nor a paired dataset to ensure domain alignment. However, spatial
information is preserved and allows for the complete reconstruction of the original aerial input. We
notice a similar pattern for aerial photos translation and map reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction (b) Map to aerial translation and map reconstruction

Figure 11: AE translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction  (b) Map to aerial translation and map reconstruction

Figure 12: Cycle-AE (paired) translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction (b) Map to aerial translation and map reconstruction

Figure 13: Cycle-AE (unpaired) translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction  (b) Map to aerial translation and map reconstruction

Figure 14: AE-GAN translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction (b) Map to aerial translation and map reconstruction

Figure 15: AE CycleGAN translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction  (b) Map to aerial translation and map reconstruction

Figure 16: VAE translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction (b) Map to aerial translation and map reconstruction

Figure 17: Cycle-VAE (paired) translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction  (b) Map to aerial translation and map reconstruction

Figure 18: Cycle-VAE (unpaired) translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction (b) Map to aerial translation and map reconstruction

Figure 19: VAE-GAN translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x)) Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(a) Aerial to map translation and aerial reconstruction  (b) Map to aerial translation and map reconstruction

Figure 20: VAE CycleGAN translation and reconstruction.

19



Under review as a conference paper at ICLR 2026

8.4.1 ERROR EVALUATION METRICS

Table 4: Translation and reconstruction error evaluation of Autoencoder (AE) based models on aerial
photos (x) <+ maps (y) after 600 epochs

(a) AE

AE MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0256 14.08 0.2489 253.05 0.2331 0.0196
Map Translation 0.0018 27.37 0.7636 325.56 0.3530 0.0374
Aerial Reconstruction 0.0287  13.95 0.1992 288.35 0.2807 0.0208
Map Reconstruction 0.0017 27.77 0.7718 315.15 0.3347 0.0324

(b) CycleAE-paired

CycleAE-paired MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0251 14.13 0.2553 241.77 0.2175 0.0189
Map Translation 0.0018 27.46 0.7650 273.17 0.2729 0.0241
Aerial Reconstruction 0.0059 21.53 0.6661 175.29 0.1621 0.0164
Map Reconstruction 0.0003 3591 0.9242 83.08 0.0604 0.0066

(c) CycleAE-unpaired

CycleAE-unpaired MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0410 13.69 0.0924 329.51 0.3552 0.0175

Map Translation 0.0872 10.59 0.0318 409.27 0.5077 0.0163
Aerial Reconstruction  0.0063  21.12  0.6451 180.12 0.1662 0.0188
Map Reconstruction 0.0002 36.59 0.9317 80.05 0.0608 0.0075
(d) AE-GAN
AE-GAN MSE PSNR SSIM FID KID Mean KIDSTD
Aerial Translation 0.0349 1429 0.2079 52.33 0.0175 0.0055
Map Translation 0.0031 25.10 0.6684 63.83 0.0316 0.0066
Aerial Reconstruction  0.0392 1390 0.1481 70.75 0.0347 0.0067
Map Reconstruction 0.0050 22.99 0.6969 74.76 0.0425 0.0082

(e) AE-CycleGAN

AE-CycleGAN MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0389 13.62 0.1641 52.53 0.0170 0.0048
Map Translation 0.0050 2297 0.6737 70.08 0.0460 0.0131
Aerial Reconstruction  0.0096  19.01  0.5069 200.11 0.1833 0.0181
Map Reconstruction 0.0005 3299 0.8760 106.63 0.0844 0.0092
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Table 5: Translation and reconstruction error evaluation of Variational Autoencoder (VAE) based
models on aerial photos (x) <+ maps (y) after 600 epochs.

(a) VAE
VAE MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0261 13.50 0.1894 304.34 0.2858 0.0209
Map Translation 0.0024 26.03 0.6753 358.70 0.3547 0.0310
Aerial Reconstruction 0.0340 11.13  0.1344 347.17 0.3642 0.0188
Map Reconstruction 0.0049 22.63 0.6717 367.13 0.3895 0.0250

(b) Cycle-VAE-paired

Cycle-VAE-paired MSE PSNR SSIM FID KID Mean KID STD

Aerial Translation 0.0255 13.25 0.2080 259.83 0.2403 0.0189
Map Translation 0.0022 26.58 0.7117 325.89 0.3369 0.0236
Aerial Reconstruction 0.0145 17.03  0.3330 266.76 0.2587 0.0173
Map Reconstruction 0.0007 31.81 0.8450 170.27 0.1546 0.0154

(c) Cycle-VAE-unpaired

Cycle-VAE-unpaired MSE PSNR SSIM FID KID Mean KID STD

Aerial Translation 0.0614 790 0.0885 47598 0.5931 0.0274
Map Translation 0.0113 1947 0.3128 419.51 0.5393 0.0194
Aerial Reconstruction  0.0146 1731  0.3151 281.64 0.2761 0.0168
Map Reconstruction 0.0006 32.44 0.8468 219.37 0.2130 0.0282
(d) VAE-GAN
VAE-GAN MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0354 14.17 0.1705 64.45 0.0301 0.0052
Map Translation 0.0033 24.85 0.6272 83.18 0.0510 0.0091
Aerial Reconstruction  0.0430  13.35 0.0954  84.63 0.0496 0.0101
Map Reconstruction 0.0060 22.22 0.6172 104.49 0.0800 0.0107

(e) VAE-CycleGAN

VAE-CycleGAN MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0443 13.36 0.0965 69.25 0.0378 0.0063
Map Translation 0.0056 22.50 0.5793 90.87 0.0594 0.0092
Aerial Reconstruction 0.0175 16.10 0.2779 271.72 0.2703 0.0200
Map Reconstruction 0.0011 29.67 0.7804 241.78 0.2409 0.0259
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8.4.2 COMPARISON: AE VARIANTS

Input Ground Truth AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 21: Translated maps x — G(z) of different AE models for the given aerial input x. From
left to right: input, ground truth, translated map output from models AE, Cycle-AE (paired data),
Cycle-AE (unpaired data), AE-GAN, and AE-CycleGAN.

Input Ground Truth AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 22: Translated aerial images y — F'(y) of different AE models for the given map input y. .
From left to right: input, ground truth, translated aerial images from models AE, Cycle-AE (paired
data), Cycle-AE (unpaired data), AE-GAN, and AE-CycleGAN.
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Input AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 23: Reconstructed maps G(F(y)) of different AE models for the given input y. From left to
right: input y, reconstructed maps from the models AE, Cycle-AE (paired data), Cycle-AE (unpaired
data), AE-GAN, and AE-CycleGAN.

Input AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 24: Reconstructed aerial images F'(G(z)) of different AE models for the given input . From
left to right: input x, reconstructed maps from the models AE, Cycle-AE (paired data), Cycle-AE
(unpaired data), AE-GAN, and AE-CycleGAN.
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8.4.3 COMPARISON: VAE VARIANTS

Input Ground Truth VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 25: Translated maps © — G(x) of different VAE models for the given aerial input . From
left to right: input, ground truth, translated map output from models VAE, Cycle-VAE (paired data),
Cycle-VAE (unpaired data), VAE-GAN, and VAE-CycleGAN.

Input Ground Truth VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 26: Translated aerial images y — F'(y) of different VAE models for the given map input
y. From left to right: input, ground truth, translated aerial images from models VAE, Cycle-VAE
(paired data), Cycle-VAE (unpaired data), VAE-GAN, and VAE-CycleGAN.

24



Under review as a conference paper at ICLR 2026

Input VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 27: Reconstructed maps G(F(y)) of different VAE models for the given input y. From left
to right: input ¥, reconstructed maps from the models VAE, Cycle-VAE (paired data), Cycle-VAE
(unpaired data), VAE-GAN, and VAE-CycleGAN.

Input VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 28: Reconstructed aerial images F'(G(x)) of different VAE models for the given input x.
From left to right: input x, reconstructed aerial images from the models VAE, Cycle-VAE (paired
data), Cycle-VAE (unpaired data), VAE-GAN, and VAE-CycleGAN.
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8.4.4 COMPARISON BETWEEN AE AND VAE MODELS

Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair) Cycle-VAE(un-pair)  VAE-GAN VAE-CycleGAN
Figure 29: Comparison of translated map outputs G(z) from different models for a given input x.

From left to right: input x, ground truth y, translated map output from the models. From top to
bottom: AE variants, VAE variants.

Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair) Cycle-VAE(un-pair)  VAE-GAN VAE-CycleGAN
Figure 30: Comparison of translated aerial image outputs F'(y) from different models for a given

input y. From left to right: input y, ground truth z, translated aerial output from the models. From
top to bottom: AE variants, VAE variants.

Input AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input VAE Cycle-VAE(pair) Cycle-VAE(un-pair)  VAE-GAN VAE-CycleGAN
Figure 31: Comparison of reconstructed maps G(F(y)) from different models for a given input y.

From left to right: input y, reconstructed map output from the models. From top to bottom: AE
variants, VAE variants.
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Input

Input

AE

VAE

Cycle-AE(pair) Cycle-AE(un-pair)

Cycle-VAE(pair) Cycle-VAE(un-pair)

AE-GAN

VAE-GAN

AE-CycleGAN

VAE-CycleGAN

Figure 32: Comparison of reconstructed aerial image outputs F'(G(x)) from different models for a
given input y. From left to right: input x, reconstructed aerial output from the models. From top to
bottom: AE variants, VAE variants.

8.4.5 ERROR EVALUATION: TRANSLATION AND RECONSTRUCTION

Table 6: Translation error evaluation: comparison between deterministic and stochastic models.

G : X — Y (aerial—map)

F Y — X (map—aerial)

Model
MSE | PSNRT SSIMt FID| KIDu+ol |[MSE| PSNRT SSIMT FID, KIDu+ol
£ AE 0.0018 27.37 07636 325.56 0.3530 & 0.0374 | 0.0256  14.08  0.2489 253.05 0.2331 = 0.0196
£ Cycle AE (paired) 0.0018 2746 07650 273.17 0.2729 & 0.0241 | 0.0251  14.13  0.2553 241.77 0.2175 = 0.0189
£ Cycle AE (unpaired)  0.0872 1059 00318 409.27 05077 £00163 | 00410 1369 00924 329.51 0355200175
5 AE-GAN 0.0031 25.10 0.6684 63.83 0.0316 & 0.0066 | 0.0349 14.29  0.2079 5233 0.0175 = 0.0055
2 AE-CycleGAN 0.0050 2297 06737 70.08 0.0460 & 0.0131 | 0.0389 13.62 0.1641 5253 0.0170 = 0.0048
o VAE 0.0024 26.03 06753 358.70 0.3547 4 0.0310 | 0.0261  13.50  0.1894 304.34 0.2858 = 0.0209
£ Cycle VAE (paired)  0.0022 2658 07117 325.89 0.3369 & 0.0236 | 0.0255 1325  0.2080 259.83 0.2403 & 0.0189
£ Cycle VAE (unpaired) 00113 1947 03128 419.51 0.5393 00194 | 0.0614 790  0.0885 47598 0.5931 = 0.0274
& VAE-GAN 0.0033 24.85 06272 83.18 0.0510 & 0.0091 | 0.0354 1417  0.1705 64.45 0.0301 == 0.0052
% VAE-CycleGAN 0.0056 2250 05793 90.87 0.0594 4 0.0092 | 0.0443 1336  0.0965 69.25 0.0378 = 0.0063
Table 7: Reconstruction error: comparison between deterministic and stochastic models.
Model G(F(y)): Map Reconstruction F(G(x)): Aerial Reconstruction
MSE| PSNRT SSIMT FID| KIDu+ol |[MSE.L PSNRT SSIMT FID| KIDu+ol
£ AE 0.0017 2777 07718 315.15 0.3347 4 0.0324 | 0.0287  13.95  0.1992 288.35 0.2807 = 0.0208
- Cycle AE (paired) 0.0003 3591 09242 83.08 0.0604 & 0.0066 | 0.0059 21.53  0.6661 17529 0.1621 & 0.0164
‘E Cycle AE (unpaired)  0.0002 3659 09317 80.05 0.0608 & 0.0075 | 0.0063  21.12  0.6451 180.12 0.1662 %+ 0.0188
5 AE-GAN 0.0050 2299  0.6969 74.76 0.0425 -+ 0.0082 | 0.0392  13.90  0.1481 70.75 0.0347 - 0.0067
2 AE-CycleGAN 0.0005 3299 0.8760 106.63 0.0844 4 0.0092 | 0.0096 19.01  0.5069 200.11 0.1833 = 0.0181
. VAE 0.0049 2263 06717 367.13 0.3895+0.0250 | 0.0340  11.13  0.1344 347.17 0.3642 = 0.0188
£ Cycle VAE (paired) ~ 0.0007 31.81  0.8450 170.27 0.1546 & 0.0154 | 0.0145 17.03  0.3330 266.76 0.2587 & 0.0173
£ Cycle VAE (unpaired) 0.0006 3244 0.8468 219.37 0213000282 | 00146 17.31 03151 281.64 0.2761 + 0.0168
& VAE-GAN 0.0060 2222 06172 104.49 0.0800 & 0.0107 | 0.0430  13.35  0.0954 84.63 0.0496 = 0.0101
% VAE-CycleGAN 0.0011 29.67 07804 241.78 0.2409 + 0.0259 | 0.0175 16.10 02779 271.72 0.2703 & 0.0200
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8.5 REALIZATIONS

8.5.1 VARIATIONAL AUTOENCODER (VAE) REALIZATIONS

Figure 33: VAE model map realizations. From left to right: input (x), ground truth (y), 2 sample
realizations, mean, STD, MSE of the 30 map realizations. STD is scaled by 20x for visibility.

Figure 34: VAE model aerial photo realizations. From left to right: input (y), ground truth (z), 2
sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by 10x for
visibility.
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Figure 35: Cycle VAE (paired) sample aerial and map realizations.

Figure 36: Cycle-VAE (paired) model mean, STD and MSE of the 30 realizations. Top row: aerial—
maps, bottom row: maps — aerial images. For visibility, the STD of the aerial image is scaled by
10x and the STD of the map image by 20x.

8.5.2 CYCLE-VAE (PAIRED) REALIZATIONS

Figure 37: Cycle-VAE (paired) model map realizations. From left to right: input (x), ground truth
(), 2 sample realizations, mean, STD, MSE of the 30 map realizations. STD is scaled by 20x for
visibility.
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Figure 38: Cycle-VAE (paired) model aerial photo realizations. From left to right: input (y), ground
truth (x), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by
10x for visibility.

8.5.3 CYCLE-VAE (UNPAIRED) REALIZATIONS

Figure 39: Cycle VAE (unpaired) sample aerial and map realizations.

Figure 40: Cycle-VAE (unpaired) model mean, STD and MSE of the 30 realizations. Top row:
aerial— maps, bottom row: maps — aerial images. For visibility, the STD of the aerial image is
scaled by 10x and the STD of the map image by 20 x.
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Figure 41: Cycle-VAE (unpaired) model map realizations. From left to right: input (x), ground truth
(), 2 sample realizations, mean, STD, MSE of the 30 map realizations. STD is scaled by 20x for
visibility.

Figure 42: Cycle-VAE (unpaired) model aerial photo realizations. From left to right: input (y),
ground truth (z), 2 sample realizations, mean, STD, and MSE of the 30 aerial realizations. STD is
scaled by 10x for visibility.
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8.5.4 VAE-GAN REALIZATIONS

Figure 43: VAE-GAN sample aerial and map realizations.

Figure 44: VAE-GAN model mean, STD and MSE of the 30 realizations. Top row: aerial— maps,
bottom row: maps — aerial images. For visibility, the STD of the aerial image is scaled by 3 x and
the STD of the map image by 20x.

Figure 45: VAE-GAN model aerial photo realizations. From left to right: input (y), ground truth
(z), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by 3x
for visibility.
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Figure 46: VAE-GAN model aerial photo realizations. From left to right: input (y), ground truth

(z), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by 3x
for visibility.

8.5.5 VAE-CYCLEGAN REALIZATIONS

Figure 47: Mean, scaled STD (aerial 3 x, maps 20x), and MSE across 30 realizations.
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Figure 48: VAE-CycleGAN model map realizations. From left to right: input (x), ground truth (y),
2 sample realizations, mean, STD and MSE of the 30 map realizations. STD is scaled by 25x for
visibility.

Figure 49: VAE-CycleGAN model aerial photo realizations. From left to right: input (y), ground
truth (), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by
3x for visibility.
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8.6 REALIZATION METRICS

Table 8: MSE comparisons for 30 realizations, evaluated on aerial photos (x) <> maps (y). As
the true translation posterior is intractable, high MSE may either indicate mean error or a (correct)
region of high variance in the translation.

Table 9: VAE Table 10: Cycle VAE (paired)
VAE MSE (y,¥:) MSE (x, X;) Cycle VAE  MSE (y,yi) MSE (x, X;)
Maps Aerial photos (paired) Maps Aerial photos
Image 1 0.001517 0.024690 Image 1 0.001212 0.023442
Image 2 0.001211 0.023881 Image 2 0.000959 0.025219
Image 3 0.001258 0.027295 Image 3 0.001035 0.027436
Image 4 0.006711 0.023370 Image 4 0.006002 0.022164
Average (30) 0.006711 0.023370 Average (30) 0.002302 0.024565
Table 11: Cycle VAE (unpaired) Table 12: VAE-GAN
Cycle VAE  MSE (y, yi) MSE (x, X;) VAE-GAN MSE (y, ¥i) MSE (x, X;)
(unpaired) Maps Aerial photos ) Maps Aerial photos
Image 1 0.008954 0.061927 Image 1 0.001687 0.028285
Image 2 0.007704 0.056705 Image 2 0.001156 0.030473
Image 3 0.008576 0.071990 Image 3 0.000963 0.031132
Image 4 0.023110 0.053937 Image 4 0.009378 0.025543
Average (30) 0.012086 0.061140 Average (30) 0.003296 0.028858

Table 13: VAE-CycleGAN

MSE (y,9i) MSE (x, X;)

VAE-CycleGAN Maps Aerial photos

Image 1 0.003122 0.033576
Image 2 0.001444 0.036811
Image 3 0.001688 0.036307
Image 4 0.019514 0.033555
Average (30) 0.006442 0.035062
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