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ABSTRACT

Image-to-image translation plays a central role in computer vision, enabling appli-
cations such as style transfer, domain adaptation, and image enhancement. While
recent advances have achieved strong paired translation results, learning map-
pings in unpaired settings remains challenging. In this work, we present a sys-
tematic comparison of autoencoder and variational autoencoder (VAE) variants
for unpaired image-to-image translation, using paired data solely as a reference
baseline. To capture distributional uncertainty, we introduce VAE-CycleGAN,
a unified probabilistic framework that integrates variational inference into the
CycleGAN architecture. Our method combines adversarial training and cycle-
consistency with a VAE’s probabilistic latent space, allowing the model to ap-
proximate the true posterior distribution. Further, the architecture achieves a 256×
spatial compression, efficiently compressing the input into a compact latent repre-
sentation. Empirical results across the satellite-to-map benchmark dataset demon-
strate that VAE-CycleGAN generates high-quality translated images (FID: 69.25,
KID: 0.0378) and achieves superior reconstruction fidelity (MSE: 0.0011, PSNR:
29.67 dB, SSIM: 0.7804) comparable to state-of-the-art deterministic approaches
without hyperparameter tuning.

1 INTRODUCTION

Deep generative models learn underlying probability distributions of real data to synthesize novel,
realistic samples, though current methodologies still face significant limitations. Variational Au-
toencoders (VAEs) often yield oversimplified approximations of complex latent space data priors.
Energy based models such as Restricted or Deep Boltzmann Machines (RBMs and DBMs), rely on
intractable posterior computations and slow Markov Chain Monte Carlo (MCMC) sampling (Fischer
& Igel, 2012), (Zhang et al., 2018). Finally, Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) avoid explicit likelihoods but suffer from mode collapse, instability, and a reliance on
paired data for conditional tasks.

Although unsupervised models like CycleGAN (Zhu et al., 2017a) overcome the need for paired
data, their deterministic nature prohibits ill-posed, multimodal translation. To address the above is-
sues, we propose VAE-CycleGAN, a unified framework that integrates the probabilistic latent space
of a Variational Autoencoder (VAE) into the CycleGAN architecture. Our model combines adversar-
ial and cycle-consistent training with a structured latent distribution, enabling diverse, controllable,
and high-fidelity unpaired image-to-image translation.

2 RELATED WORK

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) introduce a transformative
adversarial framework where a generator (G) and discriminator (D) are trained simultaneously
through a minimax game. This approach produces high-fidelity samples efficiently via backprop-
agation, bypassing the need for Markov chains or explicit likelihoods. Subsequent developments
improve training stability and sample quality (Radford et al., 2016; Arjovsky et al., 2017). Ad-
vancements on conditional GANs (cGANs) by Isola et al. (2017) enable directed generation but
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require paired data (x, y). For high-resolution image generation, Wang et al. (2018) incorporates
segmentation information, while Park et al. (2019) advances semantic manipulation capabilities.
The challenge of multimodality in paired settings is addressed by Zhu et al. (2017b) with Bicycle-
GAN, which combines cGANs with variational objectives to generate diverse outputs from single
inputs.

However, paired data requirements render cGANs unsuitable for ill-posed inverse problems such
as tomographic reconstruction or image colorization, where single inputs correspond to multiple
valid outputs, as well as for distribution-level translation between unpaired domains like artistic
style transfer. To address paired data limitations, unsupervised methods emerge. CycleGAN (Zhu
et al., 2017a) and DualGAN (Yi et al., 2017) pioneer cycle-consistency loss with adversarial train-
ing for unpaired bi-directional mapping. UNIT (Liu et al., 2017) introduces shared-latent space
assumptions, while StarGAN (Choi et al., 2018; 2020) enables multi-domain translation within a
unified framework. Subsequent efforts addressing deterministic limitations include MUNIT (Huang
et al., 2018) and DRIT (Lee et al., 2018), which explicitly disentangle style and content codes for
multimodal translation, albeit with increased architectural complexity.

Alternatively, Augmented CycleGAN (Almahairi et al., 2018) approaches multimodality through
auxiliary latent variables, enabling many-to-many mappings by cycling through augmented spaces.
Contrastive learning approaches (Park et al., 2020) further advance unpaired translation by leverag-
ing patch-wise contrastive losses.

Recently, flow-based models, including normalizing flows and diffusion models provide an alterna-
tive generative modeling paradigm through quasi-invertible transformations (Rezende & Mohamed,
2015; Kingma & Dhariwal, 2018), enabling both precise likelihood estimation and bi-directional
latent space manipulation. Diffusion models (Ho et al., 2020; Song et al., 2021; Saharia et al., 2022)
utilize iterative denoising processes to achieve state-of-the-art performance in high-resolution image
synthesis. Diffusion-4K (Zhang et al., 2023) specifically addresses ultra-high-resolution generation
through efficient architectural designs that overcome memory constraints while maintaining sample
quality.

Additionally, modern VAE architectures have substantially advanced beyond the original formula-
tion (Kingma et al., 2013). Hierarchical VAEs (Vahdat & Kautz, 2020) employ multi-scale latent
representations to capture complex data distributions. Vector-quantized VAEs (VQ-VAE) (Van den
Oord et al., 2017) introduce discrete latent representations through a codebook mechanism, effec-
tively circumventing the posterior collapse problem common in continuous VAEs when paired with
powerful decoders. This approach replaces the continuous latent space with discrete codes learned
via vector quantization, creating a robust framework for high-quality image, video, and speech gen-
eration. The subsequent VQ-VAE-2 (Razavi et al., 2019) enhances this foundation through a multi-
scale hierarchical architecture, employing powerful autoregressive priors over the latent codes to
generate high-fidelity, diverse samples that rival state-of-the-art GANs, while maintaining the train-
ing stability and diversity advantages of VAE-based approaches.The NVAE architecture (Vahdat &
Kautz, 2020) uses depth-wise separable convolutions to also demonstrate that hierarchical VAEs
can compete with other state-of-the-art generative models; the Very Deep VAE (Child, 2021) shows
that extremely deep hierarchical variational models can rival autoregressive approaches in sample
quality.

Finally, the VAE-GAN paradigm (Larsen et al., 2016) combines variational autoencoders’ latent
space learning with GANs’ adversarial training, using the discriminator for perceptually-aware re-
construction losses rather than pixel-wise metrics. This hybrid approach demonstrates enhanced
generalization and output fidelity (Yan et al., 2025; Denton & Fergus, 2019), with the VAE learning
meaningful latent representations while the adversarial component ensures distributional alignment.

Our proposed VAE-CycleGAN builds upon these advances, incorporating cycle-consistent adver-
sarial training for bi-directional unpaired translation while leveraging VAE-based generators to
introduce multimodality and structured latent spaces. This distinguishes our work from standard
VAE-GANs (Larsen et al., 2016; Yan et al., 2025) and addresses CycleGAN’s determinism through
intrinsic stochasticity rather than external auxiliary variables (Almahairi et al., 2018). While we do
not explicitly include diffusion models, the VAE-based model allows for easy integration with latent
diffusion models as in Zhang et al. (2023).
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Concurrent research by Sharma et al. (2025) explored medical image translation with unpaired data
using a similar combination of a VAE and a CycleGAN. Their architecture employs two GANs
where the generator module of only one GAN incorporates a VAE neural network. In contrast, our
network integrates a VAE into each of the two GANs, fully leveraging the potential for variability in
the translated images. Furthermore, our paper provides a comprehensive comparison of different AE
(autoencoder) and VAE variants in terms of reconstruction, translation, and diversity of the translated
samples, with both perception (visual quality) and distortion (pointwise accuracy) metrics.

3 PROBLEM FORMULATION

In consistent image translation, we expect a canonical isomorphism between two visual domains
X,Y . In practice, all possible such mappings are lossy and thus non-invertible; we thus seek the
maximally structure-preserving map (or pair of homomorphisms with minimal kernel). These maps
are not unique; given an image xi ∈ X , we can define the possible outcomes ŷ ∼ pŶ |X with a
posterior distribution, as in classical ill-posed inverse problems.

As in CycleGAN (Zhu et al., 2017a), we indirectly enforce maximal structure preservation through
a cycle consistency loss, for generators G : X → Y , F : Y → X .

Lcycle = Ex [|x− F (G(x))|1] + Ey [|y −G(F (y))|1] (1)
Since this is a distortion metric, our model follows the perception-distortion tradeoff (Blau &
Michaeli, 2018): an estimator cannot simultaneously achieve optimal accuracy (minimal distor-
tion) and optimal perception (distributional or visual quality). For an allowable distortion level D,
perception metric (f-divergence, e.g. Kullback-Leibler (KL)) d, and distortion metric (e.g. L1 loss)
∆, the optimal model satisfies Eqn. 2:

p̂ŷ|x = argmin
pŷ|x

d(py, pŷ) s.t. Ex,y∼pdataEŷ∼pŷ|x

[
∆(y, ŷ)

]
≤ D (2)

Low distortion estimators (e.g., standard VAEs, autoencoders) minimize E[∆(y, ŷ)] but ignore the
distribution pŷ , resulting in blurry, perceptually unrealistic outputs (converging to the pixel-wise
maximum a-posteriori solution). In contrast, high perception estimators (e.g., GANs) learn and
minimize d(py, pŷ) and produce sharp, realistic samples but provide no guarantee that a generated
sample ŷ is a faithful reconstruction of a specific input x. An optimal inversion requires sampling
from the full posterior p(y | x), which defines the Pareto frontier in Eqn. 2. VAE-CycleGAN
is designed to learn this posterior distribution, enabling both perceptually realistic and distortion-
faithful reconstructions. To this end, we use for perception metric d(py, pŷ) an adversarial χ2

divergence between generated images and target domains, with discriminators DX : X → PX , DY :
Y → PY .

LX→Y
GAN = Ey[DY (y)

2] + Ex[(1−DY (G(x)))2] (3)
LY→X

GAN = Ex[DX(x)2] + Ey[(1−DX(F (y)))2] (4)
Interestingly, at no point have we required paired data; by quantifying both perception and distortion
the model is now fully specified, even in the unpaired setting (where we have datasets: {(xi ∈ X) ∼
pdata(x)}Ni=1 and {(yj ∈ Y ) ∼ pdata(y)}Mj=1). Please see Appendix 8.1 for a proof sketch of model
convergence to a natural map, though not necessarily a human-preferred, canonical map.

We finish the training objectives with a couple of regularizers. For fast posterior sampling, a β-
VAE loss regularizes the latent space to a normal distribution with a traditional KL divergence dKL

(Higgins et al., 2017),(Weng, 2018). For latent variable z, ϕ and θ parameterize the encoder qϕ(z|·)
and decoder pθ(·|z) respectively. For stability when the input is already in the target domain, we
add an identity loss regularizer to preserve content.

LX
VAE = Ez∼qϕ(z|x) dKL

(
qϕ(z|x) ∥ p(z) ≜ N (0, I)

)
(5)

LY
VAE = Ez∼qϕ(z|y) dKL

(
qϕ(z|y) ∥ p(z) ≜ N (0, I)

)
(6)

Lidentity = Ex [|G(x)− x|1] + Ey [|F (y)− y|1] (7)
The complete training objectives are then as in Eqns. 8, 9, where λGAN, λcycle, λid, λkl << 1 are
weighting coefficients.

AE-CycleGAN: LTotal = λGANLGAN + λcycleLcycle + λidLidentity (8)
VAE-CycleGAN: LTotal = λklLVAE + λGANLGAN + λcycleLcycle + λidLidentity (9)
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3.1 NETWORKS

We train the following variants in Table 1 to fully ablate these objectives, on an asymmetric trans-
lation benchmark between high-resolution satellite (aerial) photos X and simplified map-like rep-
resentations Y , with comprehensive architecture as in Figure 1. Please see Appendix 8.2, 8.3 for
implementation details, respectively.

Table 1: Architecture variants

Model Type Objectives

Pa
ir

ed
D

at
as

et AE Deterministic Translation
Cycle AE Deterministic Translation, Cycle consistency
AE-GAN Deterministic Translation, Adversarial, Identity
VAE Stochastic Translation, KL-Divergence
Cycle-VAE Stochastic Translation, Cycle consistency, KL-Divergence
VAE-GAN Stochastic Translation, Adversarial, Identity, KL-Divergence

U
np

ai
re

d Cycle AE Deterministic Cycle consistency
AE-CycleGAN Deterministic Adversarial, Identity, Cycle consistency
Cycle-VAE Stochastic Cycle consistency, KL-Divergence
VAE-CycleGAN Stochastic Adversarial, Identity, Cycle consistency, KL-Divergence

Generator G:X? Y

Encoder Decoder
F(Y)

F(G(X))

G(F(Y))

X

G(X)

Discriminator

DX
fake

real
Discriminator

DY
fake

real

Generator F:Y? X

Encoder Decoder
Y

Figure 1: VAE-CycleGAN

4 RESULTS

We first compare the performance of paired dataset AE and VAE variants, then extend to unpaired
settings. We then return to the role of adversarial loss and cycle-consistency in the stochastic
(inverse-problem) case, by introducing a Gaussian prior in the latent space.

To evaluate performance, we use distortion-based metrics MSE, PSNR, the perception-oriented
Structural Similarity Index (SSIM), and perception-based metrics including the common Fréchet
Inception Distance (FID) and more flexible Kernel Inception Distance (KID). FID measures distri-
butional distance between real and generated images, through Gaussian-fitted latent distributions.
Since our dataset is relatively small with only 1096 training and testing samples each, we also report
a KID score. KID uses a polynomial kernel to compute maximum mean discrepancy, relaxing the
Gaussian assumption, and may provide an more unbiased estimate.

For brevity, we present VAE-CycleGAN (in an unpaired setting) as an example of translation and
reconstruction in Figure 2. Examples of all AE and VAE variants as listed in Table 1 are presented
in Appendix 8.4.
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Input x Ground Truth y Translation G(x) Reconstruction F(G(x))

Input y Ground Truth x Translation F(y) Reconstruction G(F(y))

Figure 2: VAE-CycleGAN translated and reconstructed outputs.

Tables 2 and 3 display the average translation and reconstruction errors.

Table 2: Model ablation across translation tasks.

Model G : X → Y (aerial→map) F : Y → X (map→aerial)

MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓

Pa
ir

ed

AE 0.0018 27.37 0.7636 325.56 0.3530 ± 0.0374 0.0256 14.08 0.2489 253.05 0.2331 ± 0.0196
Cycle AE 0.0018 27.46 0.7650 273.17 0.2729 ± 0.0241 0.0251 14.13 0.2553 241.77 0.2175 ± 0.0189
AE-GAN 0.0031 25.10 0.6684 63.83 0.0316 ± 0.0066 0.0349 14.29 0.2079 52.33 0.0175 ± 0.0055
VAE 0.0024 26.03 0.6753 358.70 0.3547 ± 0.0310 0.0261 13.50 0.1894 304.34 0.2858 ± 0.0209
Cycle VAE 0.0022 26.58 0.7117 325.89 0.3369 ± 0.0236 0.0255 13.25 0.2080 259.83 0.2403 ± 0.0189
VAE-GAN 0.0033 24.85 0.6272 83.18 0.0510 ± 0.0091 0.0354 14.17 0.1705 64.45 0.0301 ± 0.0052

U
np

ai
re

d Cycle AE 0.0872 10.59 0.0318 409.27 0.5077 ± 0.0163 0.0410 13.69 0.0924 329.51 0.3552 ± 0.0175
Cycle VAE 0.0113 19.47 0.3128 419.51 0.5393 ± 0.0194 0.0614 7.90 0.0885 475.98 0.5931 ± 0.0274
AE-CycleGAN 0.0050 22.97 0.6737 70.08 0.0460 ± 0.0131 0.0389 13.62 0.1641 52.53 0.0170 ± 0.0048
VAE-CycleGAN 0.0056 22.50 0.5793 90.87 0.0594 ± 0.0092 0.0443 13.36 0.0965 69.25 0.0378 ± 0.0063

Table 3: Model ablation across reconstruction tasks.

Model G(F (y)): Map Reconstruction F (G(x)): Aerial Reconstruction

MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓

Pa
ir

ed

AE 0.0017 27.77 0.7718 315.15 0.3347 ± 0.0324 0.0287 13.95 0.1992 288.35 0.2807 ± 0.0208
Cycle AE 0.0003 35.91 0.9242 83.08 0.0604 ± 0.0066 0.0059 21.53 0.6661 175.29 0.1621 ± 0.0164
AE-GAN 0.0050 22.99 0.6969 74.76 0.0425 ± 0.0082 0.0392 13.90 0.1481 70.75 0.0347 ± 0.0067
VAE 0.0049 22.63 0.6717 367.13 0.3895 ± 0.0250 0.0340 11.13 0.1344 347.17 0.3642 ± 0.0188
Cycle VAE 0.0007 31.81 0.8450 170.27 0.1546 ± 0.0154 0.0145 17.03 0.3330 266.76 0.2587 ± 0.0173
VAE-GAN 0.0060 22.22 0.6172 104.49 0.0800 ± 0.0107 0.0430 13.35 0.0954 84.63 0.0496 ± 0.0101

U
np

ai
re

d Cycle AE 0.0002 36.59 0.9317 80.05 0.0608 ± 0.0075 0.0063 21.12 0.6451 180.12 0.1662 ± 0.0188
Cycle VAE 0.0006 32.44 0.8468 219.37 0.2130 ± 0.0282 0.0146 17.31 0.3151 281.64 0.2761 ± 0.0168
AE-CycleGAN 0.0005 32.99 0.8760 106.63 0.0844 ± 0.0092 0.0096 19.01 0.5069 200.11 0.1833 ± 0.0181
VAE-CycleGAN 0.0011 29.67 0.7804 241.78 0.2409 ± 0.0259 0.0175 16.10 0.2779 271.72 0.2703 ± 0.0200

The asymmetric difficulty of the aerial and map datasets is immediately obvious, with any aerial
task generally worse in distortion metrics (high MSE, low PSNR, SSIM) but easier to capture in-
distribution (low FID, KID). Regardless, optimal translation and reconstruction models closely fol-
low the perception-distortion trade-off (Blau & Michaeli, 2018). In both paired translation and re-
construction, Cycle-AE minimizes distortion via a cycle-consistency loss (lowest MSE, high PSNR,
SSIM), while AE-GAN optimizes for perception with the adversarial loss (lowest FID, KID). Inter-
estingly, in unpaired translation, the adversarial loss becomes crucial for domain alignment. Con-
sequently, AE-CycleGAN achieves the best overall performance, superior in both distortion and
perception metrics. Similarly, Cycle AE (with only cycle-consistency) performs best in all recon-
struction metrics, as cycle-consistency is crucial for information preservation.
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We find AE-CycleGAN the best overall performing (deterministic) model. No metric in Table 2
directly quantifies the conditional posterior (distribution of possible cycle-consistent translations),
since that is intractable over the large 256x256x3 image space, so stochastic models are expected
to perform worse on this benchmark. FID and KID only quantify the marginal posterior (any con-
ditioned translation regardless of consistency). Nevertheless, unlike the other stochastic models,
VAE-CycleGAN performs closely behind AE-CycleGAN in translation. We expand on this with
qualitative measurements in section 5.

We now visualize translations from aerial photos to maps, x → G(x) in Figure 3 and the aerial
image reconstructions, x ≈ F (G(x)) in Figure 4 for additional qualitative comparison.

Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 3: Left to right: input x, target y, map translations G(x). Top to bottom: AE/VAE variants.

Input AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 4: Left to right: input x, aerial reconstructions F (G(x)). Top to bottom: AE/VAE variants.

Per Figure 3, maps translated by the Cycle-AE and Cycle-VAE models in an unpaired data setting
show no structural similarity to the map domain, as there is neither an adversarial constraint nor a
paired dataset to ensure domain alignment. However, spatial information is preserved and allows for
the complete reconstruction of the original aerial input, as shown in Figure 4. We notice a similar
pattern for aerial photos translation, y → F (y) in Figure 5 and map reconstruction, y ≈ G(F (y))
in Figure 6.

Visually, VAE-CycleGAN and AE-CycleGAN both produce the highest quality translations, with
the VAE-CycleGAN enabling distributional sampling at a moderate hit to reconstruction quality, as
expected from the perception-distortion tradeoff Blau & Michaeli (2018).

6
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Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 5: Left to right: input y, target x, aerial translations F (y). Top to bottom: AE/VAE variants.

Input AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 6: Left to right: input y and map reconstructions G(F (y)). Top to bottom: AE/VAE variants.

5 REALIZATIONS

Realizations, ensemble mean, standard deviation, and ensemble error together form a qualitative
measure of the intractable conditional performance mentioned in section 4. For brevity, we now
visualize VAE-CycleGAN realizations and ensemble statistics in Figures 7, 8. Please find expanded
figures and metrics in Appendix 8.5 and 8.6.

Figure 7: VAE-CycleGAN sample realizations. Row 1: aerial→ maps, row 2: maps → aerial

We note a tradeoff in feature sharpness. In aerial output from Figure 7, we find homogeneous, low-
information areas (such as roads and open fields) lose sharpness, while sharp edges and textured
areas (such as buildings) gain sharpness. Similarly, in map output the low-information features
can drift or distort in shape. Similar behavior is visible in the ensemble mean (Figure 8). Cycle-
consistency is satisfied on the low-information areas (even if the translation is missing information,
the details are trivially reconstructed), so it follows that the adversarial loss is poorly aligned with
human perception. In particular, the choice of χ2 divergence induces a scoring rule on feature

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

information (just like how L2-norms penalize outliers more than L1-norms) which determines the
spectral accuracy profile. So a-priori, the dataset’s power spectra must be known, so the f-divergence
can be chosen accordingly.

Figure 8: Mean, scaled STD (aerial 3×, maps 20×), and MSE across 30 realizations.

The standard deviation and MSE are reported in true color, with purple color in standard deviation
demonstrating that the generator is confident in green value but highly variable in red and blue. Such
behavior is especially prominent in heavily treed or grassy areas (green areas) in satellite images;
as expected, the generators learn green value well due to the imbalanced dataset (trees and grass
dominate the satellite images).

We find the model is good at uncertainty quantification. The standard deviation across realizations
is well correlated with (so a good estimator of) the ensemble MSE. In satellite to map translation,
uncertainty is highest when translating low-detail ground features (like grass or empty fields) as there
is simply not enough information for accurate translation. In map to satellite translation, high-detail
textures (like buildings) naturally have highest uncertainty (as an ill-posed inverse problem). Across
an ensemble of 30 samples, the map translation MSE is ≈ 6.4 × 10−3 while the aerial translation
MSE is ≈ 35.1× 10−3 for VAE-CycleGAN, due to the greater ill-posedness of the latter.

For all VAE models, Figures 9 and 10 display ensemble summaries. For visibility, map standard
deviation images for all networks were scaled by a factor of 20 (excepting VAE-CycleGAN at 25×)
and then clamped to the 0-1 range for display. Similarly, aerial standard deviation images were
scaled by 10× for VAE and Cycle VAE variants, by 3× for GAN based VAEs, and also clamped.

VAE Cycle-VAE(pair) Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 9: Rows: mean, STD (scaled for visibility), and MSE of 30 aerial realizations (VAE variants).

In Figures 9 and 10, we observe that the ensemble means for the GAN-based VAEs are much sharper
than the VAE and paired Cycle-VAE, despite the paired data. Conversely, the unpaired Cycle-VAE
completely lacks domain alignment, without the adversarial loss or paired data. For nearly all models
except VAE and the unpaired Cycle-VAE, standard deviation is again a good estimator of ensemble

8
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VAE Cycle-VAE(pair) Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 10: Rows: mean, STD (scaled for visibility), and MSE of 30 map realizations (VAE variants).

MSE. Lastly, note VAE-CycleGAN shows some positional distortion in the map due to the limited
domain alignment possible in the unpaired setting; it is the only performant unpaired stochastic
model.

6 DISCUSSION

The VAE-CycleGAN model performs competitively on distortion and perception metrics during
satellite to map translations, at acceptable reconstruction tradeoff, while maintaining output diver-
sity. We have presented a competitive framework for unpaired image-to-image translation, with
multiple avenues for improvement.

First, integrating a Wasserstein GAN (WGAN) or a two-stage training strategy would improve train-
ing stability. Natural integration with latent diffusion models could help enhance output sharp-
ness (Zhang et al., 2023). Next, compression and latent-space regularization can also be improved.
The 256× spatial compression ratio can become a true total compression with advanced tokeniza-
tion approaches (Yu et al., 2024). High KL divergence during training indicates that the latent
space is poorly regularized, which could be improved by vector quantization (VQ-VAE) (Razavi
et al., 2019). For tasks involving significant geometric transformations, replacing pixel-level cycle-
consistency with an attention mechanism could yield more realistic results. Semantic conditioning
or a StyleGAN-like modulation architecture (Karras et al., 2018) can enable precise attribute editing.

Finally, the versatility of our framework suggests strong potential for application beyond natural
images, such as in molecular design and medical image synthesis (CT-to-MRI synthesis, PET-to-CT
conversion, etc.).

7 CONCLUSION

We demonstrate a VAE-CycleGAN framework that allows for bidirectional posterior sampling in
unpaired image-to-image translation by unifying variational inference with the CycleGAN architec-
ture. VAE-CycleGAN achieves competitive performance with deterministic counterparts, and can
be easily extended to a general class of bidirectional ill-posed inverse problems with only unpaired
data. Further, the variational latent space allows future adaptation with other state-of-the-art methods
such as diffusion models, enabling fine-grained or prompt-based control.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223, 2017.

Yochai Blau and Tomer Michaeli. The Perception-Distortion Tradeoff. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 6228–6237, June 2018. doi: 10.1109/
CVPR.2018.00652. URL http://arxiv.org/abs/1711.06077. arXiv:1711.06077 [cs].

Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on images.
In International Conference on Learning Representations, 2021.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–
8797, 2018.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8188–8197, 2020.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In International
Conference on Machine Learning, pp. 1574–1583, 2019.

Asja Fischer and Christian Igel. An Introduction to Restricted Boltzmann Machines. In Luis Al-
varez, Marta Mejail, Luis Gomez, and Julio Jacobo (eds.), Progress in Pattern Recognition, Im-
age Analysis, Computer Vision, and Applications, pp. 14–36, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-33275-3.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851, 2020.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-
image translation. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
172–189, 2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time Style Transfer
and Super-Resolution. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer
Vision – ECCV 2016, pp. 694–711, Cham, 2016. Springer International Publishing. ISBN 978-3-
319-46475-6.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4396–4405, 2018. URL https://api.semanticscholar.org/
CorpusID:54482423.

10

http://arxiv.org/abs/1711.06077
https://api.semanticscholar.org/CorpusID:54482423
https://api.semanticscholar.org/CorpusID:54482423


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), ICLR (Poster), 2015. URL http://dblp.uni-trier.de/
db/conf/iclr/iclr2015.html#KingmaB14.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems, volume 31, 2018.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Au-
toencoding beyond pixels using a learned similarity metric, February 2016. URL http:
//arxiv.org/abs/1512.09300. arXiv:1512.09300 [cs].

Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Diverse
image-to-image translation via disentangled representations. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 35–51, 2018.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2337–2346, 2019.

Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired
image-to-image translation. In European Conference on Computer Vision, pp. 319–345, 2020.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In International Conference on Learning Repre-
sentations, 2016.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. In Advances in Neural Information Processing Systems, volume 32, 2019.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pp. 1530–1538, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Palette:
Image-to-image diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10,
2022.

Yashvi Sharma, Shikha Diya, and Najme Zehra Naqvi. Images-variational autoencoder cyclegan.
Proceedings of Data Analytics and Management: ICDAM 2024, Volume 3, 1299:329, 2025.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. In Advances in
Neural Information Processing Systems, volume 33, pp. 19667–19679, 2020.

Aaron Van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Advances in Neural Information Processing Systems, volume 30, 2017.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807, 2018.

Lilian Weng. From autoencoder to beta-vae. lilianweng.github.io, 2018. URL https://
lilianweng.github.io/posts/2018-08-12-vae/.

Jian’en Yan, Haihui Huang, Kairan Yang, Haiyan Xu, and Yanling Li. Synthetic data for enhanced
privacy: A vae-gan approach against membership inference attacks. Knowledge-Based Systems,
309:112899, 2025.

11

http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
http://arxiv.org/abs/1512.09300
http://arxiv.org/abs/1512.09300
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual learning for image-
to-image translation. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 2849–2857, 2017.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
An image is worth 32 tokens for reconstruction and generation, 2024. URL https://arxiv.
org/abs/2406.07550.

Lvmin Zhang, Yi Zhang, Jiawei Zhang, Yang Liu, Yifan Huang, Chunyu Wang, Fang Zhao, and
Hang Zhou. Diffusion-4k: High-fidelity diffusion model for 4k image generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12345–12354,
2023.

Nan Zhang, Shifei Ding, Jian Zhang, and Yu Xue. An overview on Restricted Boltzmann Ma-
chines. Neurocomputing, 275:1186–1199, 2018. ISSN 0925-2312. doi: https://doi.org/10.1016/j.
neucom.2017.09.065. URL https://www.sciencedirect.com/science/article/
pii/S0925231217315849.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017a.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and
Eli Shechtman. Toward multimodal image-to-image translation. Advances in neural information
processing systems, 30, 2017b.

8 APPENDIX

8.1 CONVERGENCE AND OPTIMALITY

To our knowledge, Zhu et al. (2017a) do not provide a proof of convergence for a cycle-consistent
framework. We provide a quick sketch below.

We begin by defining the spaces and mappings relevant to the cycle-consistent neural network frame-
work. Let X denote the input domain, where each element x ∈ X represents one of n distinct items
(e.g., images), as determined by the dimensionality of the input data. Let Y be the target output
domain, where each y ∈ Y likewise corresponds to one of n distinct items, consistent with the
output data dimension. Let f : X → Z denote the forward mapping implemented by the neural
network, where Z is an intermediate representation space. Let g : Z → X be the inverse mapping
used to reconstruct the original input from the network’s output. In the context of a model trained
with cycle-consistency loss, we assume the following two properties:

∀x ∈ X, ∃ g such that g(f(x)) = x (10)

Z = Y (11)
Equation 10 ensures the existence of a cycle-consistent mapping. Equation 11 states that the inter-
mediate representation space Z is equivalent to the target output domain Y , thereby implying that
the network effectively learns a mapping from X to Y .

Given that f is bijective (by Equation 10) and that |X| = |Y | = n (by Equation 11), it follows
that there exist n! possible one-to-one mappings (i.e., permutations) between elements of X and
Y . Although many such bijective mappings exist in theory, the cycle-consistency loss biases the
network toward converging on a single, consistent, and invertible transformation that minimizes the
reconstruction error.

Let fθ denote the forward neural network (parameterized by weights θ) which maps inputs from
domain X to outputs in domain Y . Let gθ denote the inverse neural network, also parameterized
by θ, that attempts to reconstruct the original input from the output of fθ. By Equation 10 and
|X| = |Y | = n, note that g = f−1. The cycle-consistency loss L(θ) is then defined as the expected
reconstruction error between the original input x and its reconstruction gθ(fθ(x)), measured using
the squared L2 norm:

L(θ) = Ex∼X

[
∥gθ(fθ(x))− x∥22

]
(12)
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The optimal parameters θ∗ are obtained by minimizing the cycle-consistency loss: θ∗ =
argminθ L(θ).
In general, we assume the following about the solution (θ∗) landscape:

1. No local minima exist (i.e., network optimizer will never be stuck at a local minima)

2. There exists a unique θ∗ such that L(θ∗) < ϵ for some ϵ ∈ R+

Solution uniqueness is enforced by the neural network’s inherent incompleteness: the neural network
cannot perfectly reconstruct x, i.e., L(θ) > 0 ∀θ. Since exact recovery is impossible, the model
cannot satisfy cycle-consistency for any parameterization/mapping. So, the model will choose the
lowest θ∗ for convergence. Under these assumptions, then, gradient descent will thus converge to a
unique solution θ∗ with corresponding invertible mappings (fθ∗ , gθ∗ ) between domains X and Y .

Given a particular network architecture, then, if the human-preferred canonical map is suboptimal
in perception-distortion, the model will converge to a different, possibly unusable solution. To avoid
such behavior, small amounts of paired data can produce improved results.

8.2 TRAINING DETAILS

We provide a PyTorch implementation of our models.

The dataset consists of satellite photographs and images. We adopt train and test datasets from Zhu
et al. (2017a), consisting of 1096 maps and satellite (aerial) photographs. Images are resized with
random crop and flip to 256 × 256, then normalized before training. For all probabilistic models, we
set λcycle = 10, λid = 5, and λkl = 1e − 05 in Equation 9. We use the Adam optimizer (Kingma
& Ba, 2015) with a batch size of 5. All networks were trained from scratch with a learning rate
of 0.0002 and a latent dimension of 64x16x16 (channels, height, and width respectively) for 600
epochs.

8.3 NETWORK ARCHITECTURE

Generator:

We use a U-Net style architecture (Johnson et al., 2016) with a variational bottleneck. The encoder
and decoder are symmetric. Let c7s1-k denote a 7 × 7 Convolution-InstanceNorm-ReLU layer
with k filters and stride 1. dk denotes a custom Downsampling block via PixelUnshuffle with output
channels k. Rk denotes a residual block that contains Reflection padding, two 3 × 3 convolutional
layers with the same number of filters, two InstanceNorm layers and a ReLU activation.

Lk denotes a linear (1 × 1 convolutional) layer. Sk denotes a skip connection block that performs
a linear projection or averaging to change the number of channels from the previous layer to k.
uk denotes a custom Upsampling block via Pixelshuffle with output channels k. The network uses
Reflection Padding throughout to reduce artifacts.

The model encodes an input image into parameters of a Gaussian distribution (mean, µ and log-
variance, log σ) in a learned latent space. The dimensionality of this space, Nz , determines the
size of the bottleneck and the complexity of the learned representation. A latent code z is sampled
from this distribution using the reparameterization trick and is subsequently decoded to generate the
output image.

For a 256 × 256 input image with 4 downsampling/upsampling layers and one residual block, the
architecture is as follows:

Encoder: c7s1-64, d128, d256, d512, d1024, R1024, SNz

Variational Bottleneck:

µ = SNz (SNz (enc)), log σ
2 = LNz (enc), z ∼ N (µ, exp(log σ2))

Decoder: S1024, R1024, u512, u256, u128, u64, c7s1-3 .

The final output layer (c7s1-3) consists of: ReflectionPad2d(3) → Conv7-1 → Tanh() activation.
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Discriminator:

The discriminator architecture is adopted from Zhu et al. (2017a), specifically utilizing a 70×70
PatchGAN. The network is constructed from a series of 4×4 convolutional layers with Instance Nor-
malization and LeakyReLU (slope 0.2). The first layer, C64 (64 filters, stride 2), omits Instance
Normalization. This is followed by successive layers (C128, C256, C512), each doubling the num-
ber of filters. A final convolution layer produces a 1-dimensional output map.

8.4 TRANSLATION AND RECONSTRUCTION EXAMPLES

Each set of figures/images visualize (a) the aerial to map translation and aerial reconstruction and (b)
map to aerial translation and map reconstruction. The maps translated by the Cycle-AE and Cycle-
VAE models in an unpaired data setting show no structural similarity to the map domain, as there is
neither an adversarial constraint nor a paired dataset to ensure domain alignment. However, spatial
information is preserved and allows for the complete reconstruction of the original aerial input. We
notice a similar pattern for aerial photos translation and map reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 11: AE translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 12: Cycle-AE (paired) translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 13: Cycle-AE (unpaired) translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 14: AE-GAN translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 15: AE CycleGAN translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 16: VAE translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 17: Cycle-VAE (paired) translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 18: Cycle-VAE (unpaired) translation and reconstruction.

Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 19: VAE-GAN translation and reconstruction.
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Input x Ground Truth y Output G(x) Reconstruction F(G(x))

(a) Aerial to map translation and aerial reconstruction

Input y Ground Truth x Output G(y) Reconstruction F(G(y))

(b) Map to aerial translation and map reconstruction

Figure 20: VAE CycleGAN translation and reconstruction.
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8.4.1 ERROR EVALUATION METRICS

Table 4: Translation and reconstruction error evaluation of Autoencoder (AE) based models on aerial
photos (x) ↔ maps (y) after 600 epochs

(a) AE

AE MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0256 14.08 0.2489 253.05 0.2331 0.0196
Map Translation 0.0018 27.37 0.7636 325.56 0.3530 0.0374

Aerial Reconstruction 0.0287 13.95 0.1992 288.35 0.2807 0.0208
Map Reconstruction 0.0017 27.77 0.7718 315.15 0.3347 0.0324

(b) CycleAE-paired

CycleAE-paired MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0251 14.13 0.2553 241.77 0.2175 0.0189
Map Translation 0.0018 27.46 0.7650 273.17 0.2729 0.0241

Aerial Reconstruction 0.0059 21.53 0.6661 175.29 0.1621 0.0164
Map Reconstruction 0.0003 35.91 0.9242 83.08 0.0604 0.0066

(c) CycleAE-unpaired

CycleAE-unpaired MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0410 13.69 0.0924 329.51 0.3552 0.0175
Map Translation 0.0872 10.59 0.0318 409.27 0.5077 0.0163
Aerial Reconstruction 0.0063 21.12 0.6451 180.12 0.1662 0.0188
Map Reconstruction 0.0002 36.59 0.9317 80.05 0.0608 0.0075

(d) AE-GAN

AE-GAN MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0349 14.29 0.2079 52.33 0.0175 0.0055
Map Translation 0.0031 25.10 0.6684 63.83 0.0316 0.0066

Aerial Reconstruction 0.0392 13.90 0.1481 70.75 0.0347 0.0067
Map Reconstruction 0.0050 22.99 0.6969 74.76 0.0425 0.0082

(e) AE-CycleGAN

AE-CycleGAN MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0389 13.62 0.1641 52.53 0.0170 0.0048
Map Translation 0.0050 22.97 0.6737 70.08 0.0460 0.0131

Aerial Reconstruction 0.0096 19.01 0.5069 200.11 0.1833 0.0181
Map Reconstruction 0.0005 32.99 0.8760 106.63 0.0844 0.0092
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Table 5: Translation and reconstruction error evaluation of Variational Autoencoder (VAE) based
models on aerial photos (x) ↔ maps (y) after 600 epochs.

(a) VAE

VAE MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0261 13.50 0.1894 304.34 0.2858 0.0209
Map Translation 0.0024 26.03 0.6753 358.70 0.3547 0.0310

Aerial Reconstruction 0.0340 11.13 0.1344 347.17 0.3642 0.0188
Map Reconstruction 0.0049 22.63 0.6717 367.13 0.3895 0.0250

(b) Cycle-VAE-paired

Cycle-VAE-paired MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0255 13.25 0.2080 259.83 0.2403 0.0189
Map Translation 0.0022 26.58 0.7117 325.89 0.3369 0.0236

Aerial Reconstruction 0.0145 17.03 0.3330 266.76 0.2587 0.0173
Map Reconstruction 0.0007 31.81 0.8450 170.27 0.1546 0.0154

(c) Cycle-VAE-unpaired

Cycle-VAE-unpaired MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0614 7.90 0.0885 475.98 0.5931 0.0274
Map Translation 0.0113 19.47 0.3128 419.51 0.5393 0.0194
Aerial Reconstruction 0.0146 17.31 0.3151 281.64 0.2761 0.0168
Map Reconstruction 0.0006 32.44 0.8468 219.37 0.2130 0.0282

(d) VAE-GAN

VAE-GAN MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0354 14.17 0.1705 64.45 0.0301 0.0052
Map Translation 0.0033 24.85 0.6272 83.18 0.0510 0.0091

Aerial Reconstruction 0.0430 13.35 0.0954 84.63 0.0496 0.0101
Map Reconstruction 0.0060 22.22 0.6172 104.49 0.0800 0.0107

(e) VAE-CycleGAN

VAE-CycleGAN MSE PSNR SSIM FID KID Mean KID STD
Aerial Translation 0.0443 13.36 0.0965 69.25 0.0378 0.0063
Map Translation 0.0056 22.50 0.5793 90.87 0.0594 0.0092

Aerial Reconstruction 0.0175 16.10 0.2779 271.72 0.2703 0.0200
Map Reconstruction 0.0011 29.67 0.7804 241.78 0.2409 0.0259
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8.4.2 COMPARISON: AE VARIANTS

Input Ground Truth AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 21: Translated maps x → G(x) of different AE models for the given aerial input x. From
left to right: input, ground truth, translated map output from models AE, Cycle-AE (paired data),
Cycle-AE (unpaired data), AE-GAN, and AE-CycleGAN.

Input Ground Truth AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 22: Translated aerial images y → F (y) of different AE models for the given map input y. .
From left to right: input, ground truth, translated aerial images from models AE, Cycle-AE (paired
data), Cycle-AE (unpaired data), AE-GAN, and AE-CycleGAN.
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Input AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 23: Reconstructed maps G(F (y)) of different AE models for the given input y. From left to
right: input y, reconstructed maps from the models AE, Cycle-AE (paired data), Cycle-AE (unpaired
data), AE-GAN, and AE-CycleGAN.

Input AE Cycle AE (pair) Cycle AE(un-pair) AE GAN AE CycleGAN

Figure 24: Reconstructed aerial images F (G(x)) of different AE models for the given input x. From
left to right: input x, reconstructed maps from the models AE, Cycle-AE (paired data), Cycle-AE
(unpaired data), AE-GAN, and AE-CycleGAN.
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8.4.3 COMPARISON: VAE VARIANTS

Input Ground Truth VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 25: Translated maps x → G(x) of different VAE models for the given aerial input x. From
left to right: input, ground truth, translated map output from models VAE, Cycle-VAE (paired data),
Cycle-VAE (unpaired data), VAE-GAN, and VAE-CycleGAN.

Input Ground Truth VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 26: Translated aerial images y → F (y) of different VAE models for the given map input
y. From left to right: input, ground truth, translated aerial images from models VAE, Cycle-VAE
(paired data), Cycle-VAE (unpaired data), VAE-GAN, and VAE-CycleGAN.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Input VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 27: Reconstructed maps G(F (y)) of different VAE models for the given input y. From left
to right: input y, reconstructed maps from the models VAE, Cycle-VAE (paired data), Cycle-VAE
(unpaired data), VAE-GAN, and VAE-CycleGAN.

Input VAE Cycle VAE (pair) Cycle VAE(un-pair) VAE GAN VAE CycleGAN

Figure 28: Reconstructed aerial images F (G(x)) of different VAE models for the given input x.
From left to right: input x, reconstructed aerial images from the models VAE, Cycle-VAE (paired
data), Cycle-VAE (unpaired data), VAE-GAN, and VAE-CycleGAN.
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8.4.4 COMPARISON BETWEEN AE AND VAE MODELS

Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 29: Comparison of translated map outputs G(x) from different models for a given input x.
From left to right: input x, ground truth y, translated map output from the models. From top to
bottom: AE variants, VAE variants.

Input Ground Truth AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input Ground Truth VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 30: Comparison of translated aerial image outputs F (y) from different models for a given
input y. From left to right: input y, ground truth x, translated aerial output from the models. From
top to bottom: AE variants, VAE variants.

Input AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 31: Comparison of reconstructed maps G(F (y)) from different models for a given input y.
From left to right: input y, reconstructed map output from the models. From top to bottom: AE
variants, VAE variants.
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Input AE Cycle-AE(pair) Cycle-AE(un-pair) AE-GAN AE-CycleGAN

Input VAE Cycle-VAE(pair)Cycle-VAE(un-pair) VAE-GAN VAE-CycleGAN

Figure 32: Comparison of reconstructed aerial image outputs F (G(x)) from different models for a
given input y. From left to right: input x, reconstructed aerial output from the models. From top to
bottom: AE variants, VAE variants.

8.4.5 ERROR EVALUATION: TRANSLATION AND RECONSTRUCTION

Table 6: Translation error evaluation: comparison between deterministic and stochastic models.

Model G : X → Y (aerial→map) F : Y → X (map→aerial)

MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓

D
et

er
m

in
is

tic AE 0.0018 27.37 0.7636 325.56 0.3530 ± 0.0374 0.0256 14.08 0.2489 253.05 0.2331 ± 0.0196
Cycle AE (paired) 0.0018 27.46 0.7650 273.17 0.2729 ± 0.0241 0.0251 14.13 0.2553 241.77 0.2175 ± 0.0189
Cycle AE (unpaired) 0.0872 10.59 0.0318 409.27 0.5077 ± 0.0163 0.0410 13.69 0.0924 329.51 0.3552 ± 0.0175
AE-GAN 0.0031 25.10 0.6684 63.83 0.0316 ± 0.0066 0.0349 14.29 0.2079 52.33 0.0175 ± 0.0055
AE-CycleGAN 0.0050 22.97 0.6737 70.08 0.0460 ± 0.0131 0.0389 13.62 0.1641 52.53 0.0170 ± 0.0048

St
oc

ha
st

ic VAE 0.0024 26.03 0.6753 358.70 0.3547 ± 0.0310 0.0261 13.50 0.1894 304.34 0.2858 ± 0.0209
Cycle VAE (paired) 0.0022 26.58 0.7117 325.89 0.3369 ± 0.0236 0.0255 13.25 0.2080 259.83 0.2403 ± 0.0189
Cycle VAE (unpaired) 0.0113 19.47 0.3128 419.51 0.5393 ± 0.0194 0.0614 7.90 0.0885 475.98 0.5931 ± 0.0274
VAE-GAN 0.0033 24.85 0.6272 83.18 0.0510 ± 0.0091 0.0354 14.17 0.1705 64.45 0.0301 ± 0.0052
VAE-CycleGAN 0.0056 22.50 0.5793 90.87 0.0594 ± 0.0092 0.0443 13.36 0.0965 69.25 0.0378 ± 0.0063

Table 7: Reconstruction error: comparison between deterministic and stochastic models.

Model G(F (y)): Map Reconstruction F (G(x)): Aerial Reconstruction

MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ KID µ ± σ ↓

D
et

er
m

in
is

tic AE 0.0017 27.77 0.7718 315.15 0.3347 ± 0.0324 0.0287 13.95 0.1992 288.35 0.2807 ± 0.0208
Cycle AE (paired) 0.0003 35.91 0.9242 83.08 0.0604 ± 0.0066 0.0059 21.53 0.6661 175.29 0.1621 ± 0.0164
Cycle AE (unpaired) 0.0002 36.59 0.9317 80.05 0.0608 ± 0.0075 0.0063 21.12 0.6451 180.12 0.1662 ± 0.0188
AE-GAN 0.0050 22.99 0.6969 74.76 0.0425 ± 0.0082 0.0392 13.90 0.1481 70.75 0.0347 ± 0.0067
AE-CycleGAN 0.0005 32.99 0.8760 106.63 0.0844 ± 0.0092 0.0096 19.01 0.5069 200.11 0.1833 ± 0.0181

St
oc

ha
st

ic VAE 0.0049 22.63 0.6717 367.13 0.3895 ± 0.0250 0.0340 11.13 0.1344 347.17 0.3642 ± 0.0188
Cycle VAE (paired) 0.0007 31.81 0.8450 170.27 0.1546 ± 0.0154 0.0145 17.03 0.3330 266.76 0.2587 ± 0.0173
Cycle VAE (unpaired) 0.0006 32.44 0.8468 219.37 0.2130 ± 0.0282 0.0146 17.31 0.3151 281.64 0.2761 ± 0.0168
VAE-GAN 0.0060 22.22 0.6172 104.49 0.0800 ± 0.0107 0.0430 13.35 0.0954 84.63 0.0496 ± 0.0101
VAE-CycleGAN 0.0011 29.67 0.7804 241.78 0.2409 ± 0.0259 0.0175 16.10 0.2779 271.72 0.2703 ± 0.0200
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8.5 REALIZATIONS

8.5.1 VARIATIONAL AUTOENCODER (VAE) REALIZATIONS

Figure 33: VAE model map realizations. From left to right: input (x), ground truth (y), 2 sample
realizations, mean, STD, MSE of the 30 map realizations. STD is scaled by 20× for visibility.

Figure 34: VAE model aerial photo realizations. From left to right: input (y), ground truth (x), 2
sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by 10× for
visibility.
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Figure 35: Cycle VAE (paired) sample aerial and map realizations.

Figure 36: Cycle-VAE (paired) model mean, STD and MSE of the 30 realizations. Top row: aerial→
maps, bottom row: maps → aerial images. For visibility, the STD of the aerial image is scaled by
10x and the STD of the map image by 20×.

8.5.2 CYCLE-VAE (PAIRED) REALIZATIONS

Figure 37: Cycle-VAE (paired) model map realizations. From left to right: input (x), ground truth
(y), 2 sample realizations, mean, STD, MSE of the 30 map realizations. STD is scaled by 20× for
visibility.
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Figure 38: Cycle-VAE (paired) model aerial photo realizations. From left to right: input (y), ground
truth (x), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by
10× for visibility.

8.5.3 CYCLE-VAE (UNPAIRED) REALIZATIONS

Figure 39: Cycle VAE (unpaired) sample aerial and map realizations.

Figure 40: Cycle-VAE (unpaired) model mean, STD and MSE of the 30 realizations. Top row:
aerial→ maps, bottom row: maps → aerial images. For visibility, the STD of the aerial image is
scaled by 10× and the STD of the map image by 20×.
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Figure 41: Cycle-VAE (unpaired) model map realizations. From left to right: input (x), ground truth
(y), 2 sample realizations, mean, STD, MSE of the 30 map realizations. STD is scaled by 20× for
visibility.

Figure 42: Cycle-VAE (unpaired) model aerial photo realizations. From left to right: input (y),
ground truth (x), 2 sample realizations, mean, STD, and MSE of the 30 aerial realizations. STD is
scaled by 10× for visibility.
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8.5.4 VAE-GAN REALIZATIONS

Figure 43: VAE-GAN sample aerial and map realizations.

Figure 44: VAE-GAN model mean, STD and MSE of the 30 realizations. Top row: aerial→ maps,
bottom row: maps → aerial images. For visibility, the STD of the aerial image is scaled by 3× and
the STD of the map image by 20×.

Figure 45: VAE-GAN model aerial photo realizations. From left to right: input (y), ground truth
(x), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by 3×
for visibility.
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Figure 46: VAE-GAN model aerial photo realizations. From left to right: input (y), ground truth
(x), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by 3×
for visibility.

8.5.5 VAE-CYCLEGAN REALIZATIONS

Figure 47: Mean, scaled STD (aerial 3×, maps 20×), and MSE across 30 realizations.
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Figure 48: VAE-CycleGAN model map realizations. From left to right: input (x), ground truth (y),
2 sample realizations, mean, STD and MSE of the 30 map realizations. STD is scaled by 25× for
visibility.

Figure 49: VAE-CycleGAN model aerial photo realizations. From left to right: input (y), ground
truth (x), 2 sample realizations, mean, STD and MSE of the 30 aerial realizations. STD is scaled by
3× for visibility.
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8.6 REALIZATION METRICS

Table 8: MSE comparisons for 30 realizations, evaluated on aerial photos (x) ↔ maps (y). As
the true translation posterior is intractable, high MSE may either indicate mean error or a (correct)
region of high variance in the translation.

Table 9: VAE

VAE MSE (y, ŷi)
Maps

MSE (x, x̂i)
Aerial photos

Image 1 0.001517 0.024690
Image 2 0.001211 0.023881
Image 3 0.001258 0.027295
Image 4 0.006711 0.023370

Average (30) 0.006711 0.023370

Table 10: Cycle VAE (paired)

Cycle VAE
(paired)

MSE (y, ŷi)
Maps

MSE (x, x̂i)
Aerial photos

Image 1 0.001212 0.023442
Image 2 0.000959 0.025219
Image 3 0.001035 0.027436
Image 4 0.006002 0.022164

Average (30) 0.002302 0.024565

Table 11: Cycle VAE (unpaired)

Cycle VAE
(unpaired)

MSE (y, ŷi)
Maps

MSE (x, x̂i)
Aerial photos

Image 1 0.008954 0.061927
Image 2 0.007704 0.056705
Image 3 0.008576 0.071990
Image 4 0.023110 0.053937

Average (30) 0.012086 0.061140

Table 12: VAE-GAN

VAE-GAN MSE (y, ŷi)
Maps

MSE (x, x̂i)
Aerial photos

Image 1 0.001687 0.028285
Image 2 0.001156 0.030473
Image 3 0.000963 0.031132
Image 4 0.009378 0.025543

Average (30) 0.003296 0.028858

Table 13: VAE-CycleGAN

VAE-CycleGAN MSE (y, ŷi)
Maps

MSE (x, x̂i)
Aerial photos

Image 1 0.003122 0.033576
Image 2 0.001444 0.036811
Image 3 0.001688 0.036307
Image 4 0.019514 0.033555

Average (30) 0.006442 0.035062
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