BOTS: Batch Bayesian Optimization of
Extended Thompson Sampling
for Severely Episode-Limited RL Settings

Karine Karine Susan A. Murphy
University of Massachusetts Amherst, USA Harvard University, USA
karine@cs.umass.edu samurphy@g.harvard.edu

Benjamin M. Marlin
University of Massachusetts Amherst, USA
marlin@cs.umass.edu

Abstract

In settings where the application of reinforcement learning (RL) requires running
real-world trials, including the optimization of adaptive health interventions, the
number of episodes available for learning can be severely limited due to cost or time
constraints. In this setting, the bias-variance trade-off of contextual bandit methods
can be significantly better than that of more complex full RL methods. However,
Thompson sampling bandits are limited to selecting actions based on distributions
of immediate rewards. In this paper, we extend the linear Thompson sampling
bandit to select actions based on a state-action utility function consisting of the
Thompson sampler’s estimate of the expected immediate reward combined with an
action bias term. We use batch Bayesian optimization over episodes to learn the
action bias terms with the goal of maximizing the expected return of the extended
Thompson sampler. The proposed approach is able to learn optimal policies
for a strictly broader class of Markov decision processes (MDPs) than standard
Thompson sampling. Using an adaptive intervention simulation environment that
captures key aspects of behavioral dynamics, we show that the proposed method
can significantly out-perform standard Thompson sampling in terms of total return,
while requiring significantly fewer episodes than standard value function and policy
gradient methods.

1 Introduction

There is an increasing interest in using reinforcement learning methods (RL) in the healthcare setting,
including in mobile health |Coronato et al.|[2020]], |Yu et al.[[2021]], Liao et al.|[2022]. However, the
healthcare domain presents a range of challenges for existing RL methods. In mobile health, each
RL episode typically corresponds to a human subjects trial involving one or more participants that
requires substantial time to carry out (weeks to months) and can incur significant cost. As a result,
methods that require many episodes are usually not feasible [Williams, 1987, Mnih et al., [2013].

Within the mobile health research community specifically, adaptive intervention policy learning
methods have addressed severe episode count restrictions imposed by real-world research constraints
by focusing on the use of contextual bandit algorithms [[Tewari and Murphy, [2017]]. By focusing on
maximizing immediate reward, bandit algorithms have the potential to provide an improved bias-
variance trade-off compared to policy gradient and state-action value function approaches [Lattimore

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

and Szepesvari,[2017]. Linear Thompson sampling (TS) bandits are a particularly promising approach
due to the application of Bayesian inference to capture model uncertainty due to data scarcity in the
low episode count setting [Agrawal and Goyall [2013]].

Of course, the main drawback of bandit-like algorithms is that they select actions based on distribu-
tions of immediate rewards, thus they do not account for long term consequences of present actions
[Chapelle and Li, [2011]]. This can lead to sub-optimal performance in real world applications where
the environment corresponds to an arbitrary MDP, referred to as the “full RL” setting.

In this paper, we propose an approach to extending the linear TS bandit such that actions are selected
using a state-action utility function that includes an action bias term learned across episodes using
Bayesian Optimization (BO) applied to the expected return of the extended Thompson sampler. This
approach retains much of the bias-variance trade-off of the classical TS bandit while having the
ability to provide good performance for a strictly larger set of MDPs than the classical TS bandit.

Further, we explore the use of batch Bayesian optimization methods, including local methods, that
enable multiple episodes to run in parallel while exploring the space of action bias terms in a
principled manner. The use of batch BO in our target application domain is critical since real adaptive
intervention studies must support multiple simultaneous participants in order to satisfy constraints
on total study duration. To improve the BO exploration, we also investigate setting the TS prior
parameters using a small micro-randomized trial (MRT).

We explore the above issues in the context of a recently proposed physical activity intervention
simulation where the reward is in terms of step count and the actions correspond to the selection
of different forms of contextualized motivational messages [[Karine et al., 2023[]. The simulation
captures key aspects of the physical activity intervention domain including a habituation process
affected by treatment volume and a disengagement process affected by context inference errors.

Our results show that optimizing action bias terms using batch BO and selecting actions using the
proposed utility function leads to an extended Thompson sampler that outperform standard TS and full
RL methods. Using local batch BO instead of global batch BO can further improve the performance.
Moreover, modeling the reward variance in addition to the action bias terms can provide further mean
performance improvements in some settings. These results suggest that our proposed approach has
the potential to enhance the treatment efficacy of TS-based adaptive interventions.

Our main contributions are: (1) We introduce a novel extended Thompson sampling bandit model
and learning algorithm that can solve a broader class of MDPs than standard Thompson sampling. (2)
We show that the proposed extended Thompson sampler outperforms a range of RL baseline methods
in the severely episode-limited setting. (3) We provide an implementation of the proposed approach.
The code is available at: github.com/reml-1ab/BOTS.

2 Methods

In this section, we describe our extension to Thompson sampling, our approach to optimizing the
additional free parameters introduced, and the JITAI simulation environment. We describe the related
work in Appendix[A.T]

Extended Thompson Sampling (xTS). Our primary goal is to reduce the myopic nature of standard
TS for contextual bandits when applied in the episodic MDP setting while maintaining low variance.
Our proposed extended Thompson sampling approach is based on selecting actions according to a
state-action utility that extends the linear Gaussian reward model used by TS as shown below.

Utq = Tta + Ba (1)
p(rta|aa St) = N(Tta; Q;I;St’ 0-12/0,) (2)
p(eta“f(‘tum Zta) = N(ata; Hta, 2ta) (3)

where at each time ¢, s; is the state (or context) vector, r, is the reward for taking action a, 0;, is a
vector of weights for action a. We refer to the additional term 3, included in the utility as the action
bias for action a. The action bias values are fixed within each episode of xTS, but are optimized
across episodes to maximize the total return of the resulting policy m,7s. The policy 7 zs is similar in

https://github.com/reml-lab/BOTS

form to that of standard TS except that actions are selected according to the probability that they have
the highest expected utility. The policy 7,75 maintains the same posterior distribution over immediate
rewards used by standard TS. We provide the pseudo code in Algorithm[2]in Appendix[A.2.3]

The basic intuition for the XT'S model is that the action bias parameters enable penalizing or promoting
the selection of each action a (regardless of the current state), based on action a’s average long term
consequences effect on the total return. The inclusion of action bias parameters in the policy m,7g
provides access to a strictly larger policy space than standard TS. At the same time, the number of
additional parameters introduced by xTS is low, enabling the resulting approach to retain relatively
low variance when learning from a limited number of episodes.

‘We note that in adaptive health interventions, it can be the case that the long term consequences of
specific actions taken in different state have similar effect on the total return. For example, sending a
message in a messaging-based adaptive health intervention will typically have a positive short-term
impact, but this action will also increase habituation. Increased habituation then typically results in
lower reward for some number of future time steps. Our proposed approach has the potential to result
in an improved policy in such settings relative to TS, by recognizing that the long term consequences
of actions on the total return may be mismatched with the expected immediate reward that they yield.

Bayesian Optimization for xTS. We now turn to the question of how to select the action bias values
B to optimize the xTS policy. Let R = Zthl r¢ represent the total reward for an episode, where r;
is the observed reward at time ¢, and [E[R] represent the expected return when following policy 7.
Letting vectors 8 = {34 }o.4, o = {#0a }o:4> S0 = {X0a }o:4, and 02 = {032/&}0:,4, we propose to
select 3 to maximize the expected return of the policy m.zs(83, 0, S0, 0%):

R] “

ﬂ* = arg;nax Eﬂ'ﬂ'g(ﬁ,ﬂg,EQ,U%,) [
To solve this optimization problem, we propose the use of batch Bayesian optimization. The target
function is the expected return of the xTS policy with respect to the /5 parameters. We begin by
defining a schedule of batch sizes B; for rounds ¢ from 0 to R. On each round ¢, we use a batch
acquisition function to select a batch of B; values of action bias parameters (3,1, ..., 5; 5, based on the
current Gaussian process approximation to the expected return function. We run one episode of xTS
using the policy m7s(Bib, 10, X0, 032,) for 1 < b < B, and obtain the corresponding returns R;,. All
episodes in round ¢ are run in parallel. When all episodes in round ¢ are complete, we use the B; pairs
(Biv, Rip) to update the Gaussian process. We provide the pseudo code in Appendix Algorithm

We perform experiments using several configurations of this algorithm. To start the BO procedure,
we apply Sobol sampling to obtain an initial set of 3 values. On later rounds, we typically apply the
qEI acquisition function. When applying the acquisition function, we consider both unconstrained
and local optimization. This choice corresponds to using global or local BO (e.g., TuRBO) [Balandat
et al., 2020, [Eriksson et al.,[2019].

When using a global BO method to optimize xTS, this approach can represent optimal policies for
any MDP where standard TS can represent an optimal policy, simply by learning to set 5, = 0 for all
a. Moreover, our approach can also represent optimal policies for MDPs where the optimal action
in each state corresponds to the action with the highest expected utility under some setting of the
action bias parameters (3. This is a strictly larger set of MDPs than can be solved using standard TS.
However, it is clearly also strictly smaller than the set of all MDPs since the action bias terms are
state independent, while the expected value of the next state in the optimal state-action value function
Q* (s, a) depends on the current state.

Setting Thompson Sampling Parameters.

As for typical TS, xTS requires that a prior N'(04; tioa, 20a) be specified. This prior can be set by
hand using domain knowledge or hypothesized relationships between the immediate reward and the
state variables. In the absence of strong domain knowledge, the prior can be set broadly to reflect
this lack of prior knowledge. Finally, in the adaptive intervention domain, this prior is often set by
applying Bayesian linear regression to a small number of episodes with randomized action selection
referred to as a micro-randomized trial (MRT). Note that these episodes can also be performed in
parallel.

When learning xTS over multiple rounds, we can fix the same reward model prior for all rounds,
or update the prior from round to round using Bayesian linear regression. We call these strategies

3500 3500

3500 3500

3000 3000 3000 3000
c € €
5 2500 3 2500 2500 3 2500
° a a
2 000 & 2000 2000 & 2000

-

——

o
o R g
o 1500 1500
8 1500 4_ o — ©

Average Return

< 1000 /.r’ 2 1000 1000 2 1000
2
500] @fasrnnnan i, 500 500 500
0 0 0 0
R : %% % % %% % % %% % %
e Be e 2 e o " e o " e o "
%, % % X o 9% % ° 9% % o 9% %
== = DQN === REINFORCE —— TURBO(qE!) TS(Update) TS(Update) —— TURBO(qE!) TS(Update) TS(Update) —— TURBO(qE!) TS(Update) TS(Update)
— PPO — BO(qEN TS(Update) — BO(qEN TS(Update) — BO(qEN TS(Update)
(a) Baselines (b) BOTS with {3, }1:3 (c) BOTS with {84 }1:3, 0y (d) BOTS with {Ba}1:3,
{GY a }0:4

Figure 1: Results for severely episode-limited settings. Note: the x-axes show (number of rounds, batch size)
combinations, not round index. In all experiments, BOTS shows a better performance in a low number of rounds.

TS(Fixed) and TS(Update) respectively. Lastly, we note that the reward variance o3 terms also need
to be chosen. These values can be chosen using domain knowledge, ascribed a hierarchical prior and
marginalized over, or optimized over using the same procedure described above and in Appendix
Algorithm by augmenting the BO procedure to use [3, 03] as optimization variables.

Adaptive Intervention Trial Simulation. To evaluate our approach, we use the Just-in-Time
Adaptive Intervention (JITAI) simulation environment introduced in [Karine et al.|[2023]]. The JITAI
environment models a messaging-based physical activity intervention applied to a single individual.
The JITAI environment simulates: a binary context variable (C), a real-valued habituation level
(H), a real-valued disengagement risk (D), and the walking step count (S). We use step count
S as the reward in RL. The context C' can represent a behavioral state such as ‘stressed’/ ‘not
stressed’. The simulation includes four actions: ¢ = 0 indicates that no message is sent to the
participant, ¢ = 1 indicates that a non-contextualized message is sent, @ = 2 indicates that a message
customized to context 0 is sent, and ¢ = 3 indicates that a message customized to context 1 is
sent. The maximum study length is 50 days, with a daily intervention. We fix the action bias for
action 0 to 0. The dynamics are such that sending any message causes habituation to increase, while
sending an incorrectly contextualized message causes disengagement risk to increase. The effect of
habituation is to decrease the ability of a message to positively influence the step count. When the
disengagement risk exceeds a set threshold, the simulation models the participant withdrawing from
the trial, eliminating all rewards after that time point, which is a common problem in mobile health
studies. As a result of these dynamics, actions can strongly impact future rewards.

BOTS overview. We summarize and provide a graphical overview of the BOTS method, as applied
in the JITAI setting, including setting TS priors using the MRT, in Appendix Figure [2]

3 Experiments and Results

We perform extensive experiments, which are detailed in Appendix [B} basic MDPs, baselines without
episode limits and the severely episode-limited settings. In severely episode-limited settings, we limit
the total number of participants and thus episodes to 140. For BOTS, we allocate 10 individuals in
rounds 0 and 1. This leaves a total of 120 from the budget of 140 participants. We evenly partition
the remaining 120 across 2, 6, 12, 24, 30, 60 or 120 rounds. We run the same configurations on the
baseline methods for comparison. We note that with 50 days required per round, the configurations
that use 15 or more rounds would typically not be feasible in real studies, as they would require in
excess of two years to run. In all our experiments, BOTS shows better performance in a low number
of rounds, as shown in Figure

4 Conclusions

Motivated by the use of RL methods to aid in the design of just-in-time adaptive health interventions,
this paper focuses on practical methods that can deal with (1) severe constraints on the number of
episodes available for policy learning, (2) constraints on the total duration of policy optimization
studies, and (3) long terms consequences of actions. We have proposed a two-level approach that
uses extended Thompson sampling (xTS) to select actions via an expected utility that includes fixed
action bias terms, while a batch Bayesian optimization method is used to learn the action bias terms

over multiple rounds, to maximize the expected return of the xTS policy. We have also presented
a practical method to set the linear reward model priors using a small micro-randomized trial. Our
results show that under realistic constraints on the total episode count and the intervention study
duration, the use of local batch Bayesian optimization combined with xTS outperforms the other
methods considered and is a promising approach for deployment in real studies.

Acknowledgements

This work is supported by National Institutes of Health National Cancer Institute, Office of Behavior
and Social Sciences, and National Institute of Biomedical Imaging and Bioengineering through grants
U01CA229445 and 1P41EB028242. The authors would like to thank Philip Thomas for helpful
discussions related to this work.

References

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In
Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine
Learning Research, pages 127-135, 2013.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems 33, 2020.

Craig Boutilier, Chih-Wei Hsu, Branislav Kveton, Martin Mladenov, Csaba Szepesvari, and Manzil
Zaheer. Differentiable meta-learning of bandit policies. Advances in Neural Information Processing
Systems, 33:2122-2134, 2020.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in
Neural Information Processing Systems 24, pages 2249-2257, 2011.

Antonio Coronato, Muddasar Naeem, Giuseppe De Pietro, and Giovanni Paragliola. Reinforcement
learning for intelligent healthcare applications: A survey. Artificial Intelligence in Medicine, 109:
101964, 2020.

David Eriksson, Jacob R Gardner Michael Pearce, Ryan Turner, and Matthias Poloczek. Scal-
able global optimization via local bayesian optimizationg. In Advances in Neural Information
Processing Systems, 2019.

Karine Karine, Predrag Klasnja, Susan A. Murphy, and Benjamin M. Marlin. Assessing the impact
of context inference error and partial observability on rl methods for just-in-time adaptive inter-
ventions. In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence,
volume 216, pages 1047-1057, 2023.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge: Cambridge University Press,
2017.

Peng Liao, Zhengling Qi, Runzhe Wan, Predrag Klasnja, and Susan A. Murphy. Batch policy learning
in average reward Markov decision processes. The Annals of Statistics, 50(6):3364 — 3387, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NeurIPS Deep
Learning Workshop, 2013.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Reddy Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural
networks. In Conference on Uncertainty in Artificial Intelligence, 2023.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

Ambuj Tewari and Susan A. Murphy. From ads to interventions: Contextual bandits in mobile health.
In Mobile Health: Sensors, Analytic Methods, and Applications, pages 495-517, 2017.

Anna L. Trella, Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez, and Susan A.
Murphy. Reward design for an online reinforcement learning algorithm supporting oral self-care.
In AAAI Press, 2023.

R Williams. A class of gradient-estimation algorithms for reinforcement learning in neural networks.
In Proceedings of the International Conference on Neural Networks, pages 11-601, 1987.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A
survey. ACM Computing Surveys (CSUR), 55(1):1-36, 2021.

A Appendix

A.1 Related work

Our overall approach is based on the use of local batch BO to learn the additional parameters of our
proposes extended TS model. Our overall approach is closely related to the use of BO methods to
tune hyper-parameters of machine learning algorithms [Snoek et al.l 2012]. This includes the use
of BO for direct policy search in hierarchical RL [Brochu et al.l|2010]. Another recent work uses
ensembles of bootstrapped neural networks coupled with randomized prior functions to approximate
the TS posterior distribution [Osband et al.,[2023]]. This work proposes a modification of TS intended
to enable solving any MDP, whereas we focus on a more modest extension of TS that retains low
variance. The computational approach used by [Osband et al.,[2023] is also quite different than our
work which focuses on GP optimization of the additional terms introduced in the state-action utility
function. Our approach is closely related to recent work on differentiable meta-learning of bandit
policies [Boutilier et al., 2020] with the main difference being that we focus on the use of batch BO
to explore many extended TS models simultaneously. |Liao et al.[[2022] consider the problem of
learning corrections for linear TS, but their approach requires estimating an auxiliary MDP model
and is less general than the method we propose. [Irella et al.| [2023]] consider a similar model to the
one considered in this paper, but use previously collected data with domain knowledge to hand-design
an estimator for the correction terms in the context of a specific application.

A.2 BOTS overview

In this section, we summarize the BOTS method described in Section [2] and provide a graphical
overview of BOTS in the JITAI setting, and the BOTS pseudo codes.

A.2.1 BOTS methods and parameters

We provide a summary of the BOTS methods and parameter space configurations in Tables [[|and [2}

Table 1: Summary of the BOTS methods

Method Type Description
BO(qgEI) global BO + extended TS Batch BO with gEI acquisition function
TuRBO(qEI) local BO + extended TS Batch TuRBO with qEI acquisition function

Table 2: Summary of the BOTS parameter space configuration

Configuration BO parameters Description

{Ba}t1:3 (81, B2, B3] action bias terms (for actions 1,2 and 3)
{Ba}1:3, 0y [B1, B2, B3, J%/] action bias terms, shared reward variance
{Bat1:3, {ovatou (81, B2, B3, 0%/0, 032/1 , 0%2, 0’%/3] action bias terms, per-action reward variance

A.2.2 BOTS graphical overview in the JITAI setting

We provide a graphical overview of the BOTS method as applied in the JITAI setting, including
setting TS priors using the MRT, in Figure 2] The BO parameters are summarized in Table 2]

dataset tofit GPatr>2

initial dataset

tofit GPatr=2 Batch acq function

to get new
BO parameters

Run xTS
in parallel
and get returns

Create initial Apply
MRT data BLR

N
and get returns "eMS | the next round

Run xTS Update dataset
in parallel tofit GPin

rrrrr

Set TS priors
using TS(Fixed) or

TS(Update)

Initial MRT data

atr =0, batch size = 10 atr =1, batch size = 10

Figure 2: BOTS overview in the JITAI setting, including setting TS initial priors using an MRT. The TS priors
are propagated across episodes using one of two strategies: TS(Fixed) where we fix the same reward model prior
for all rounds, or TS(Update) where we update the prior from round to round. The BO parameter can be: vector
{Ba}1:3, vector {Bq}1:3, oy, or vector {Ba}1:3, {0vatoa.

A.2.3 BOTS algorithm

Below are the BOTS pseudo codes. The algorithm descriptions are provied in Section 2]

Algorithm 1 BOTS: Batch Bayesian Optimization of Extended Thompson Sampling

IHPUtS {Bi}O:Ra 1o, Z07 O-%/:
for:=0: Rdo
Use batch acq function to select B for 1 < b < B;
for all b =1 : B; do in parallel
Run episode using policy m.rs(Biv, to, X0, 0%)
Obtain return R;;,
end for
Update GP using {(Bip, Rip)|1 < b < B;}
end for

Algorithm 2 Extended Thompson Sampling policy 7,rs

IHPUtS {ﬂa}O:A’ {,U/Oa}O:As {EOG}O:Av {J%a}O:A
for t=0:T do
Observe state s;
for a=0:A do
eta ~ j\[(etzﬁ Hta, Eta)
fta $— 9;515
atu — fta + ﬁa
end for
Gt < argmax, g
Take action a;. Observe r;.
for a=0:A do
Yt1ya ¢ 0va (lae = dls! st + 05, 5,,)
H(t+1)a & X(t+1)a ([at = a)(0%,) " rese + DI Mta)
end for
end for

—1

A.3 Implementation details

In this section, we provide the implementation details for the RL methods, basic MDPs, Bayesian
Optimization (BO), and a summary of the JITAI environment specification.

A.3.1 RL methods implementation details

As baseline methods, we consider REINFORCE and PPO as examples of policy gradient methods,
and deep Q networks (DQN) as an example of a value function method. We also consider standard
Thompson sampling (TS) with a fixed prior. We select the best hyper-parameters that maximize
the performance, with the lowest number of episodes: the average return is around 3000 for the
RL methods, and around 1500 for basic TS, using the JITAI setting described in Section @ All
experiments can be run on CPU, using Google Colab within 2GB of RAM.

REINFORCE. We use a one-layer policy network. We perform hyper-parameter search over hidden
layer sizes [32, 64,128, 256], and Adam optimizer learning rates from le-6 to le-2. We report the
results for 128 neurons, batch size b = 64, and Adam optimizer learning rate Ir = 6e-4.

DQN. we use a two-layer policy network. We perform a hyper-parameter search over hidden layers
sizes [32, 64, 128, 256], batch sizes [16, 32, 64], Adam optimizer learning rates from 1le-6 to le-2, and
epsilon greedy exploration rate decrements from 1le-6 to le-3. We report the results for 128 neurons
in each hidden layer, batch size b = 64, Adam optimizer learning rate [r = 5e-4, epsilon linear
decrement 6. = 0.001, decaying € from 1 to 0.01. The target Q network parameters are replaced
every K = 1000 steps.

PPO. We use a two-layer policy network, and a three layers critic network. We perform a hyper-
parameter search over hidden layers sizes [32, 64, 128, 256], batch sizes [16, 32, 64], Adam optimizer
learning rates from le-6 to le-2, horizons from 10 to 40, policy clips from 0.1 to 0.5, and the other
factors from .9 to 1.0. We report the results for 256 neurons in each hidden layer, batch size b = 64,
Adam optimizer learning rate [= 0.001, horizon H = 20, policy clip ¢ = 0.1, discounted factor
v = 0.99 and Generalized Advantage Estimator (GAE) factor A = 0.95.

Q-Learning. We perform a hyper-parameter search over learning rates from 0.01 to 0.1, discount
factor v from 0.8 to 1., decaying € from 1 to 0.01, with decay rates from 0.01 to 0.5. We report the
results for learning rate I = 0.8, v = 0.99, and decay rate 6. = 0.1.

TS(Fixed). We consider a baseline approach where TS is applied with a fixed prior. When fixing
(e.g., not learning) elements of the Thompson sampling prior, we set them to the same values for all
methods. We set 1o, = 0 for all a, and ¥, = 100/. We fix the Thompson sampling reward model
noise variance to o3, = 25 for all a.

Batch RL agents. We consider batch versions of the RL methods to match our focus on batch
Bayesian optimization. In the case of REINFORCE, we simulate all episodes of a batch in parallel
and compute an average policy gradient based on the average return of the batch elements. In
the case of DQN, we again simulate all episodes in a batch in parallel. However, in this case we
compute an average gradient across batch elements at each iteration of the DQN algorithm. Both
REINFORCE and DQN are applicable in the full Markov decision process (MDP) setting with
sequential dependence of rewards on prior state and actions.

A.3.2 Basic MDPs implementation details

We implement three basic MDPs to empirically demonstrate scenarios in which basic TS and our
proposed approach can and can not achieve optimal performance. These correspond to the MDPs in
Figure 3| For the notation below: s represents the current state value, a is the action value given s, s’
is the next state value after taking action a, and 7 is the reward.

r=10
r=10
MDP1: TSv BOTS vV Qv

r=0

r=10
r=1

r=0
MDP2: TS X BOTS vV Qv

r=0 r=

r=0 r=0
MDP3: TS XBOTS X Qv

0

Figure 3: Sketch of the three basic MDPs. Each MDP is annotated with an indication of whether
each method considered finds the optimal policy (v') or fail to find the optimal policy (X).

MDP1 has a binary state: s € {0,1}, and actions a € {0,1}. The episode length is 100. The
transition function and reward function are both deterministic and are given below. The starting state
iss =0.

Table 3: MDP1 Transition Function

State | Action || Next State
0 0 0
0 1 1
1 0 0
1 1 1

Table 4: MDP1 Reward Function

State | Action || Reward
0 0 0
0 1 10
1 0 10
1 1 0

MDP2 has a binary state: s € {0,1}, and actions a € {0,1}. The episode length is 100. The
transition function and reward function are both deterministic and are given below. The starting state
iss = 0.

10

Table 5: MDP2 Transition Function

State | Action || Next State
0 0 0
0 1 1
1 0 1
1 1 1

Table 6: MDP2 Reward Function

State | Action || Reward
0 0 1
0 1 10
1 0 0
1 1 0

MDP3 has a state with four possible values: s € {0,1, 2,3}, and actions a € {0,1}. The episode
length is 100. The transition function and reward function are both deterministic and are given below.
The starting state is chosen randomly with s = 1 or 2.

Table 7: MDP3 Transition Function
State | Action || Next State

— O —, O = O =0

LW = =OO
WWWwWwh— O oo

Table 8: MDP3 Reward Function

State | Action || Reward
0 0 0
0 0
1 0 10
1 1 1
2 0 1
2 1 10
3 0 0
3 1 0

11

A.3.3 Summary of JITAI simulation environment specifications

The JITAI simulation environment introduced in [Karine et al., [2023]], is a behavioral simulation
environment that mimics a participant’s behaviors in a mobile health study, where the interventions

(actions) are the messages sent to the participant. We summarize the JITAI environment specifications
in Tables Bland

Table 9: Possible action values

Action value Description
a=0 No message is sent to the participant.
a=1 A non-contextualized message is sent to the participant.
a=2 A message customized to context 0 is sent to the participant.
a=3 A message customized to context 1 is sent to the participant.

Table 10: JITAI simulation variables

Variable Description Values
Ct true context {0,1}
Pt context probabilities Al
Iy inferred context {0,1}
dy disengagement risk level [0,1]
hy habituation level [0,1]
St step count N

We also provide a summary of the deterministic dynamics below.
¢t ~ Ber(0.5)
zy ~ N(c,0?)

p; = [pot, P1¢]
l; = arg max pg;
ce{0,1}

h o (1_5h)ht ifat:()
17 Umin(1, hy +€,) otherwise
dt if ay = 0

dt+1: (1_5d)'dt ifatzlorat:ct+2
min(1,d; + ¢4) otherwise

/~Ls+(1_ht+1)‘pl ifat:].
Sep1 = s+ (L =hey1) - po ifar =ci +2
s otherwise

where ¢, is the true context, x is the true context feature, o is the context uncertainty, p, is a vector
of context probabilities, pg: is the probability of context 0, p;; is the probability of context 1 (where
p1t = 1 — por), I; is the inferred context, h; is the habituation level, d; is the disengagement risk, s,
is the step count (s; is the participant’s number of walking steps), and a; is the action value at time .

The behavioral dynamics can be tuned using the hyperparameters: disengagement risk decay d4,
disengagement risk increment €4, habituation decay ¢y, and habituation increment €y,.

The default hyperparameters values for the base JITAI simulation environment are: §, = 0.1,
er, = 0.05, 64 = 0.1, ¢4 = 0.4, ps = [0.1,0.1], p1 = 50, po = 200, disengagement threshold
Dipreshora = 0.99 (the study ends if d; exceeds Dipreshoid)- The maximum study length is 50 days
with one intervention per day. The context uncertainty o is typically set by the user, with value
o € [0.1, 2], as detailed in [Karine et al., [2023]].

12

A.3.4 BO implementation details

To apply Bayesian optimization, we need to define bounds on all parameters. For the action bias
terms, we use —100 < 3, < 0 for a > 0 as we select actions to have negative or neutral impacts in
our environment. For the reward variances, we use 0.1 < oy < 502 and 0.1 < oy, < 50%. When
applying Sobol sampling, we sample within these bounds.

The GP is fit to the normalized BO parameters and standardized returns. We initialize the GP
likelihood noise standard deviation to o. = 0.7. We place a hierarchical prior on the Matérn 5/2
kernel parameters including a Gamma(3.0, 6.0) prior on the lengthscale o; and a Gamma(2.0, 0.15)
prior on the output scale ;. We use marginal likelihood maximization to refine the kernel hyper-
parameters during BO. We use the BoTorch implementations of the qEI acquisition function and the
TuRBO method.

B Experiments and Results
In this section, we describe the experiments and results for basic MDPs and for JITAI environment.

B.1 Basic MDPs Experiments

We show results on basic MDPs to empirically demonstrate scenarios in which basic TS and our
proposed approach can and can not achieve optimal performance. We use three MDPs as shown in
Figure 3| All three MDPs are deterministic and have two actions (red and blue). The state transitions
are deterministic and are shown by arrows. The arrows are annotated with the immediate rewards.
The rewards are also deterministic. MDP1 and MDP2 consist of a binary state and a binary action,
with starting state s; = 0. MDP3 consists of a state with values [0, 1, 2, 3], and a binary action, where
the starting state is chosen uniformly at random from the set {1, 2}. The episode length is 100. We
provide the implementation details for these MDPs in Appendix [A.3.2]

We consider the application of three methods. First, we apply classical tabular Q-Learning with an
epsilon greedy exploration policy, which will converge to the optimal policy for these MDPs. Details
are provided in Appendix [A.3.1] We also apply standard TS starting from an uniformed prior and
applied in a mode where the posterior obtained at the end of one episode becomes the prior for the
next episode. Finally, we apply BOTS starting from the same prior as standard TS. We use TuURBO
as the BO approach. On the first BOTS round, we use Sobol sampling with a batch size of 2. For
the remaining rounds, we use one episode per batch and apply the EI acquisition function. Figure f]
shows average return versus the number of episodes results for each method.

MDP1 corresponds to a case where the action a with the highest immediate reward in each state
s also corresponds to the action with highest value of Q*(s, a). We can see that all three methods
converge to the same optimal return. MDP2 corresponds to a case where the action a with the highest
immediate reward in each state s does not correspond to the action with highest value of Q* (s, a),
but there do exist settings of the action bias parameters such that the action with the highest value
of the BOTS utility function corresponds to the action with the highest value of Q*(s, a). For this
MDP, TS has poor performance while BOTS matches the performance of Q-learning. Lastly, MDP3
is a case where the BOTS utility function and action bias parameters are not sufficient to learn an
optimal policy. For this MDP, both TS and BOTS fail to match Q-Learning, as expected. The results
are shown in Figure]

-
o
3
=3

800

o

<3

=3
!

Average Return
Average Return
Average Return

400

— T 0- T T T T T 0 u U T T T

0 20 40 60 80 100 0 50 100150200250 0 40 80 120160200
episode episode episode

----- QLeamning —— TS .- QLearning —— TS ..o Qleamning —— TS

—— TuRBO(qEI) —— TuRBO(qEIl) —— TuRBO(qEIl)

Figure 4: Results for MDP1 (left), MDP2 (middle) and MDP3 (right).

13

B.2 JITAI Simulation Experiments

In this section, we describe the experiments using the JITAI simulation environment. We start with
the simulator settings, then describe performance metrics, method configurations, and the results.

JITAI Simulation Environment Configuration. To model a realistic total number of participants in
multi-round mobile health adaptive intervention studies, we set 140 as the total number of simulated
participants. Each participant in an intervention trial corresponds to one RL episode. The maximum
episode length is L = 50 days. The JITAI simulation environment contains a number of parameters
for tuning the simulation dynamics [Karine et al.|[2023]]. We report results using context uncertainty
o = 0.1, disengagement threshold D = 0.99, habituation decay 6, = 0.1, habituation increment
en, = 0.05, disengagement decay 64 = 0.1, disengagement increment e¢; = 0.4, base rewards for
non-tailored and tailored message p; = 50 and p = 200 respectively.

Performance Metrics. In our specific adaptive health intervention setting, the efficacy of the
treatment received by each individual during the course of the trial is an important performance
metric. We thus focus on the average return over all participants in the adaptive intervention
optimization study as the primary performance metric in our experiments. We report results in terms
of the mean of the average return computed over the 10 simulated repetitions of the study. We also
report the standard error computed over the average return of the 10 repetitions of the study. The
standard errors are presented graphically as shaded regions.

Method Configurations. In terms of baselines, we consider REINFORCE and PPO as examples of
policy gradient methods, and deep Q networks (DQN) as an example of a value function method. We
implement batch versions of these methods to match our focus on batch BO. The implementation
details are in Appendix [A.3.1]

For BOTS, we consider an application of the method where we simulate an MRT with 10 individuals
in parallel to set the reward model priors. We then perform a Sobol sampling round to initialize
the GP with 10 individuals in parallel. We then perform a number of BO rounds that differs per
experiment. We use the qEI acquisition function with the BO variants: global batch BO, which we
denote by BO(gEI), and trust region batch BO, which we denote by TuURBO(qEI). As with standard
TS, we can either fix the same reward model prior for all rounds, or update the prior from round to
round. We provide implementation details in Appendix [A.3.4] and a graphical overview in Figure[2]

Performance of baselines without episode limits. In this experiment we assess the performance
limits of baseline methods on the simulation environment in the absence of constraints on the episode
count. We perform the experiments using REINFORCE, DQN, PPO, and standard TS with fixed and
updated priors. We run 10 repetitions of 1500 episodes and report average results in Figure[5} The
results show that REINFORCE, DQN and PPO require a large number of sequential episodes to reach
high performance: about 1500 episodes for REINFORCE (e.g., up to 75, 000 days) and more than
100 episodes for DQN and PPO (e.g., up to 5,000 days). As expected, the standard TS methods show
fast convergence, but to lower performance than the full RL methods. These results motivate the
need for BOTS in terms of an approach that can both enable parallelization across episodes to reduce
total study time while achieving a performance improvement relative to standard TS. We provide the
results for the experiments without episode limits in Figure 3}

3000 A

N
o
o
IS)

Average Return
=
o
o
o

0 200 400 600 800 1000 1200 1400
episode
== DQN e REINFORCE —— PPO — TS TS fixed priors

Figure 5: Baseline results without episode limits.

14

	Introduction
	Methods
	Experiments and Results
	Conclusions
	Appendix
	Related work
	BOTS overview
	BOTS methods and parameters
	BOTS graphical overview in the JITAI setting
	BOTS algorithm

	Implementation details
	RL methods implementation details
	Basic MDPs implementation details
	Summary of JITAI simulation environment specifications
	BO implementation details

	Experiments and Results
	Basic MDPs Experiments
	JITAI Simulation Experiments

