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Figure 1: (A) Low-Rank Sparse Attention (Lorsa) comprises thousands of sparsely activated attention
heads with 1D outputs, designed to extract interpretable attention units from the original Multi
Head Self Attention (MHSA). (B) Lorsa serves as a replacement model for Transformer attention,
substituting sparse interpretable components for attention modules. (C) Each Lorsa head explains an
atomic feature-feature interaction across token positions, which was originally a part of an MHSA
head or spread across multiple heads, i.e. put in attention superposition.

Abstract

We propose Low-Rank Sparse Attention (Lorsa), a sparse replacement model of
Transformer attention layers to disentangle original Multi Head Self Attention
(MHSA) into individually comprehensible components. Lorsa is designed to ad-
dress the challenge of attention superposition to understand attention-mediated
interaction between features in different token positions. Lorsa helps find cleaner
and finer-grained versions of previously discovered MHS A behaviors like induction
heads, successor heads, attention sink, and a comprehensive family of arithmetic-
specific Lorsa heads. Interestingly, we identify a novel head type called subtoken
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induction heads that function at character level rather than token level. Auto-
mated interpretability analysis indicates that Lorsa achieves parity with SAE in
interpretability while Lorsa exhibits superior circuit discovery properties. We
also conduct extensive experiments on architectural design ablation, correlation
to original MHSA heads and error analysis. Our early attempt to fully sparsify
a toy Transformer succeeds to reveal clean global circuits. Eventually, we hope
Lorsa would help us greatly understand attention computation and enable full
sparsification of model computation along with its MLP counterparts. Lorsa is
open-sourced at https://anonymous.4open.science/r/Lorsa-5686/.

1 Introduction

When examining the function of individual attention heads in a Transformer model, one might
identify some of these heads implementing a specific behavior. A canonical example is induction
heads which predicts ‘Potter’ following the token ‘Harry’ when ‘Harry Potter’ is present in the
context [Olsson et al.|[2022]]. Ablating these heads substantially prevents the model from correctly
performing corresponding tasks, which indicates causal relation of these heads and the model’s
macroscopic behaviors. These interpretable attention units constitute the basic building blocks of the
model’s inter-token information mixing algorithm.

Not all attention heads, however, exhibit clear functionality. Most heads distribute attention across
diverse contexts. Although some heads exhibit identifiable patterns, there might be inter-head
collaboration that explains the whole story. These challenges in attention head interpretation is
analogous to feature superposition in understanding individual neurons, which suggests the existence
of attention superposition [Jermyn et al.,[2024]] in Multi Head Self Attention (MHSA), which we
will further discuss in Section[2l

Inspired by the recent success of Sparse Autoencoders (SAEs) to extract monosemantic features
from Transformers’ hidden space [Templeton et al.| 2024b]] or approximate part of the network’s
computation as a sparse computation [Templeton et al.| [2024al |Ge et al, 2024, |Dunefsky et al.|
2024]), we propose Low-Rank Sparse Attention (Lorsa) to disentangle the atomic attention units from
attention superposition (Section[3). Lorsa serves as a replacement module of the original MHSA with
an overcomplete set of attention heads featuring a single-dimensional OV circuit [Elhage et al.l 2021]]
and sparsity constraints.

We evaluate the reconstruction fidelity and sparsity trade-off of Lorsa in Section [4] along with
scalability analysis. In Section [5] we introduce our exploration interface following Bricken et al.
[2023]], providing multifaceted information on each Lorsa head. We also quantitatively assess Lorsa
head interpretability using top activations and their attribution patterns (z pattern) with automated
interpretability [Bills et al.|[2023]]. The results indicate that Lorsa’s monosemanticity is comparable
to SAE features.

Section [6] presents findings with Lorsa on Pythia-160M [Biderman et al) 2023]] and Llama-3.1-
8B [Dubey et al.,[2024]]. For validation, we first identify the Lorsa instantiations of known attention
mechanisms: induction heads, name mover heads [[Wang et al., 2023||, successor heads [|Gould et al.}
2024], and attention sinks [Xiao et al.,[2024]]. Furthermore, we characterize a family of arithmetic-
specific Lorsa heads in Llama-3.1-8B. We also identify a subset of Lorsa heads in Llama-3.1-8B that
function as theme anchors by exhibiting long-range, topic-specific attention patterns.

To the best of our knowledge, Lorsa is the first attempt to extract sparse and interpretable attentional
computation, yet still has significant room for improvement in aspects discussed in Section[§] We
hope these discussions and findings will facilitate future research along this direction.

Note on Terminology: While prior work refers to the atomic computational units we aim to
independently understand as attentional features [Jermyn et al.l[2024, Ameisen et al.| [2025]], we adopt
attention units to avoid conflating with activation-space features (which denote 1D linear features in
representation spaces [Elhage et al.,[2022]). The term head flexibly denotes either MHSA heads or
Lorsa heads as context dictates.


https://anonymous.4open.science/r/Lorsa-5686/

2 Attention Superposition

Analogous to how post-ReLLU neurons in Transformer MLPs learn to represent more features than
they have dimensions [Elhage et al., [2022], a similar phenomenon may occur in Multi-Head Self
Attention (MHSA). We hypothesize MHSA may comprise multiple attention units in attention
superposition, each attending between certain token pairs with interpretable read/write operations on
the residual stream. Under this hypothesis, we would expect (1) an atomic attention unit is spread
across multiple MHSA heads. (2) One MHSA head includes multiple units. We list three points of
evidence of attention superposition in Transformer language models.

1. A Few Neurons (Heads) Are Polysemantic. Gurnee et al.[|[2023] discovered compound word
neurons activating across diverse unrelated n-grams, while Bricken et al.| [2023]] reported neurons
responding to mixed stimuli including academic citations and Korean text. (link)). Similarly, successor
heads [Gould et al.| 2024]] which increment ‘Monday’ into ‘“Tuesday’ and ‘1’ into ‘2’ simultaneously
exhibit Acronym behavior, Copying behavior and Greater-than behavior.

2. Most Neurons (Heads) Exhibit Uninterpretable Activating (Attention) Patterns. Multiple
studies report the predominance of MLP neurons lacking clear activation patterns [[Arora et al., 2018|
Bricken et al.||2023]]. Likewise, Krzyzanowski et al.|[2024] reports failed interpretation attempts for
more than 90% heads in GPT-2.

3. Attention Superposition in the Wild. He et al.|[2024a] and Kissane et al.| [2024]] both found
attention output SAE features collectively contributed by multiple attention heads. If we consider
SAE features to represent monosemantic directions, such distribution provides evidence for attention
superposition. Furthermore, Jermyn et al.|[2024] directly demonstrate this through a toy model where
5 ground-truth attention units are put in superposition over 2 attention heads. We also show that about
25% of our learned attention units are spread across multiple MHSA heads (Appendix [F.2).

Why Does Attention Superposition Matter? Practically, attribution-based circuit tracing [Ge
et al., 2024, |Ameisen et al., 2025]] becomes challenging when features are computed collectively:
individual QK patterns do not explain the full mechanism and may be misleading due to interference
from other features’ computations within the same heads. The structure of attention superposition
may relect intriguing motifs of model biology. For example, what makes some privleged attention
units like induction heads mostly implemented by a single MHSA head [[Olsson et al.,2022] while
others are put in superposition? This parallels privleged bases in MLP neurons [Elhage et al.l 2023].

3 Low-Rank Sparse Attention

3.1 Lorsa Architecture

We detail Lorsa’s architectural designs in this section, with Algorithm [I] highlighting how Lorsa
architecture differs from a standard MHSA layer. Lorsa takes in the same inputs of MHSA and is
trained to predict MHSA outputs. The training objective is simply minimizing the mean square error
(MSE): £ = Exepl|Lorsa(x) — MHSA(X)||2.

Rank-1 Output-Value Circuits. Each MHSA head reads from and writes to a residual stream
subspace via its OV circuit [Elhage et al., [2021]], whose rank is decided by its head dimension
dp,. Under the linear representation hypothesis that unidimensional features are encoded in the
residual stream, we design Lorsa heads with rank-1 OV circuits. This offers the advantage of
restricting read/write operations to one or few residual stream features (directions). Although ideal
implementations would use rank-1 QK and OV circuits, we restrict dimensionality reduction to OV
circuits for practical reasons.

Query and Key Weights with Parameter Sharing. We observe significant performance drop as
g p P
D™ decreases, which is severer when D™ < DgyidSA. This may suggest QK circuits for attention

units are multidimensional. In result, we choose Dé‘]’(rsa = Dg]?SA and implement parameter sharing

for QK weights across every Dg‘f{sa heads as the default setting. This strategy maintains a parameter

count of 4Dp0q4e1 per head - equivalent to setting Dg‘l’(rsa to 1 without parameter sharing, which is
crucial for Lorsa scalability.


https://transformer-circuits.pub/2023/monosemantic-features/vis/a-neurons.html?ordering=index#feature-83
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Algorithm 1: Low-Rank Sparse Attention (MHSA: Lorsa)

Input: X € R™*?: Input sequence (n tokens, d dimensions)
Wr W e R™4n: Query/Key weights for head h
h e Rdxdn ) ¢ R4X1: 1-Dim Value weights
Wh e Rduxd )l ¢ R1X4: [-Dim Output weights
H ¢ Z*: Number of Lorsa heads
K eZt: Max number of activated Lorsa Heads
Output: Y € R"*%: Output sequence
for h < 1to H do

Q" = XVV(;1 € R*xdn ; // Query projection for head h
KM= XW}h e Rvxdn // Key projection
o= Xwh e RP¥L // dp-Pim 1-Dim Value projection
h h\T
A" = softmax @K e R"x" // Attention patterns (Causal Mask)
Var, P
= Ahgph e RXL // dp—BPim 1-Dimensional Weighted sum of values
B Yh = 2hwh e RP¥4 // Output of a single Lorsa head
S <« TopKlIndices({z" | h=1,..., H} K); // Select top K heads by z
Y = Yohes Yh. // Add up &}t selected heads
return Y

Our parameter binding strategy renders Lorsa QK circuit strikingly similar to MHSA - a QK-sharing
group of Lorsa heads is almost identical to an original MHSA head except the sparsity constraints
applied on each OV dimension. We describe Lorsa heads as individual heads with shared QK circuits
rather than a sparse dimension in MHSA architecture because they often exhibit correlated yet distinct
interpretable functionalities, as we will show in Section[6] And there are cases where a QK-sharing
group of Lorsa heads show no clear semantic correlation (Appendix [DJ.

We also show in Appendix [C.3|that Lorsa QK circuits are not solely learning to copy the original
QK circuits. This distinguishes Lorsa from only applying sparse dictionary learning or Independent
Component Analysis on OV circuits [Ameisen et al.,2024].

Orders of Magnitudes More Heads and Sparsity. To capture numerous underlying attention
units, Lorsa employs an overcomplete architecture with N5, > Nymusa heads per layer, activating
only K < Np, heads per token. This parallels Sparse Autoencoders’ approach of learning more
features than the input dimension while enforcing sparsity.

For a given token position, Lorsa’s output aggregates the Top-K heads with largest z’s, where z is
the scalar activation value of a Lorsa heacﬂ The active head subset dynamically varies across token
positions. This sparsity mechanism resembles TopK-SAEs [[Gao et al., 2024], as both select the K
most salient linear components.

Connection to Sparse Autoencoders. Lorsa shows notable resemblance to attention SAEs [Kissane
et al., [2024] for its rank-1 OV circuits. Lorsa learns an overcomplete linear basis of the attention
output space {w” | h = 1,..., H} with sparsely activated scalar components {z | h =1,..., H}
at the ¢-th position, which is analogous to SAE decoder and sparse feature activations.

However, whereas SAE features are computed via single linear encoders with ReLLU, Lorsa head
activation at a given position 2! derives from attention patterns A and v" of previous tokens.
Moreover, SAEs take in and predict the same activations while Lorsa, like Transcoders [Ge et al.,
2024, Dunefsky et al., |2024] , learns to predict downstream activations. It is more similar to a
Gated [Rajamanoharan et al., 2024] Transcoder taking in activations from multiple positions, where
the QK circuit resembles the gate with a non-linearity and w, is simply a linear encoder.

3Conceptually, a Lorsa head’s activation on a sequence should be z"||w||2 rather than z". For analytic
simplicity and clarity, we construct a model with identical predictions but set w! < w!||w!||2, b < b%||w’||2
and w? < w” /||w!||2. This operation isolates activation 2" from output direction w”.




3.2 Lorsa Training

The Low-Rank Sparse Attention modules we are studying throughout this work are trained on all
layers of Pythia-160M and Llama-3.1-8B. The training data is sampled from 800 million tokens for
each model. The prompts are collected from SlimPajama [Soboleva et al.,[2023]] truncated to 256
tokens for Pythia and 1024 tokens for Llama.

Best practices for Lorsa training (e.g. Adam optimizer, warm-stable-decay schedule, optimal Ir
scaling law, etc.) largely complies with ones adopted in |Templeton et al.|[2024b]. Training one Lorsa
module with settings described in Table I]takes 2 Nvidia A100 GPU hours for Pythia (batch size =
4,096 tokens) and 24 hours for Llama (batch size = 16,384 tokens).

. . # Active Heads # Params
Target Model # Heads ‘ Head Dimension ‘ per Token Per Layer
Independent | Lorsa | Lorsa Lorsa | Lorsa . .
‘ MHSA Lorsa QK QK oV MHSA QK oV MHSA | Lorsa | MHSA | Lorsa
Pythia-160M 12 96 6K 6K 64 64 1 12 64 225M  18M
Llama-3.1-8B 32 256 32K 32K 128 128 1 32 128 64M  512M

Table 1: Architectural setups for both target models. We primarily focus on Lorsa modules with
500-1,000 times more heads than the original MHSA. For instance, we have 6K Lorsa heads for an
MHSA layer in Pythia-160M, with every D™ = D> = 64 heads sharing QK weights. This
gives us 96 independent QK weights.

Both models adopt Rotary Embedding (RoPE) [Su et al., 2021]] and Llama uses Grouped Query
Attention (GQA) [Ainslie et al., 2023]. We show how Lorsa fits these modifications in Appendix [B]

4 Evaluating Lorsa Fidelity-Sparsity Performance

41 L(N, K) Scaling Laws

We explore Lorsa scaling laws with respect to both >
number of learnable parameters N and their sparsity

K (i.e. number of active Lorsa heads per token) as E "‘\*
shown in Figure[2] compared to Top-K SAEs [Gao| £ — 128
et al.| |2024]. Despite similar scaling trends, there is a 2 19 x\,\“\* §
notable gap between Lorsa and SAE under the same 3 < '\\\-\“ﬂ.\._\ =
parameter budget and sparsity, especially when K is £ 5 i
large. Such comparison in terms of reconstruction = { ~*Lorsa o
fidelity and sparsity is in favor of SAEs since Lorsa = - SAE &
learns QK and OV circuits to predict attention output & 32
with hundreds of activations, while SAE adopts a g 14

standard dictionary learning setting with the same &

input and output. . T e

4.2 Per-Layer Evaluation Number of Parameters

Figure [3|shows Lorsa’s per-layer reconstruction er-  Figure 2: Scaling laws of FVU against num-
ror on Pythia-160M and Llama-3.1-8B in terms of  ber of parameters and fixed LO for SAEs and
fraction of variance unexplained (FVU). Lorsas trained on layer 3 in Pythia-160M.

We would like to highlight the notable correlation between trends of FVU across layers yielded
by Lorsa and SAE in both models. We also observe strong correlation between these two sparse
dictionary learning methods in terms of per-token error norm and direction (Appendix [HJ.
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Figure 3: Per-layer reconstruction FVU for Top-K SAEs and Lorsas. All Pythia modules (left)
comprises 18M learnable parameters and K = 64. Llama modules (right) have 512M parameters and
K = 128. We evaluate the mean and standard deviation (shown as shaded areas) with 64K tokens.

5 Assessing Lorsa Interpretability

5.1 Interpreting Individual Lorsa Heads

Top Activations. With Lorsa heads’ output restricted to a single direction, their activation strength
at a given position ¢ can be described with a scalar zzh (Section . Similar to SAE interpretation
methods [Bricken et al., 2023| Templeton et al.,[2024b]], we iterate over 100M activations from a
held-out dataset to identify the 16 highest-activating tokens for each Lorsa head.

z Pattern. According to Algorithm the top activations 2" decompose linearly into token-wise

contributions from preceding positions: 2 = Ay = Z;Zl Aﬁ j v?, where AZ ; denotes attention
h

weight from token ¢ to token j and v? = wyx;. Conceptually this tells from which previous tokens
the activation 2" is computed. Thus we call it the z pattern. This is analogous to direct feature

attribution (DFﬁA) analysis for attention SAEs [Kissane et al.| [2024, He et al., 2024a]. An SAE
feature’s activation at the ¢-th token f; can be decomposed along heads and sequence position, i.e.,
fi=> i<i Y oheH W]?“CO;-L where 0? is a linear component of MHSA output at token j from head h.
The DFA from token j is then defined as > heH W;HCO?. In comparison, Lorsa’s attribution includes
only one rank-1 OV circuit and a single, though shared, QK circuit without multi-head aggregation.

This enables QK circuit attribution for attention units distributed across multiple MHSA heads.

5.2 Visualization Interface

Automated SAE features strongly Top activating samples
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Figure 4: Visualization dashboard for a “you”-specific induction Lorsa head. We provide an example
interpretation of each item below.

Our visualization interface provides multifaceted information on Lorsa head interpretation. We
illustrate our dashboards with the example in Figure[d which visualizes to an induction Lorsa head
specifically firing for the token “you”. The methods used to identify correlated MHSA heads and
SAE features are described in Appendix [Fland[G|



* Correlation to SAE features / Logits via OV: It mainly reads from current token is “you”/“your”
features via its w”; It strongly activates a say “you” feature (i.e., a feature amplifying the logit of
“you” via the logit lens [nostalgebraist, [2020]); It amplifies the logits of a variety of “you” tokens.

* Correlation to SAE features via QK: Its QK attention pattern is mainly computed by current
token is “X” features on the query position and previous token is “X” & current token is “you”
features on the key side, where “X” can be a number of tokens that often precedes “you”, such as
“with”, “thank” or “do”.

* Correlation to MHSA heads: This Lorsa head is almost equally distributed in MHSA.5.0 and
MHSA.5.7. Both MHSA heads exhibit induction functionality, as shown in Appendix [F

5.3 Quantitative Evaluation with Automated Interpretability
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Figure 5: Automated interpretability scores of L.orsa heads and features. Each distribution is

estimated with 100 heads / features. The average score of each group is represented by a horizontal
dash line. We highlight distributions with larger mean value suggested by t-tests with o = 0.05.

To quantify the interpretability of Lorsa heads in terms of its top activations and z pattern, we
perform automated interpretability (autointerp) [Bills et al., 2023|] with GPT-40 to estimate how
comprehensible each Lorsa head is. We apply standard autointerp on max activating samples and
extend to Lorsa z-patterns and direct feature attribution of attention output SAEs [Kissane et al.,
2024]. Prompt design, scoring method and choice of few-shot examples are detailed in Appendix [J|
All results are obtained with Pythia-160M Lorsa and SAEs of the same size.

As shown in Figure [5} Lorsa achieves a higher score in 6 cases, with 3 losses and 15 ties at
o = 0.05 significance across 24 layer-wise comparisons, suggesting comparable interpretability
to SAE features. Both methods exhibit descending scores in deeper layers. Potential explanations
include: (1) increased polysemanticity in later layers, or (2) limited capacity of current autointerp
pipelines to capture long-range dependencies.

6 Searching for Specific Lorsa Heads

We use path patching [Wang et al., 2023} |(Conmy et al., [2023]] to find the Lorsa heads involved in
specialized tasks. For a given Lorsa head, path patching ablates its output and allows the influence to
propagate only through residual connections and MLPs (but not through other attention heads). This
measures the head’s counterfactual influence on the model’s behavior.

6.1 Lorsa Re-discovers Previously Reported Heads

Previous works have documented attention heads with specific functionalities in well-characterized
contexts (Section [7.I). We demonstrate that Lorsa rediscovers more specialized units of these
attention behaviors due to its rank-1 OV circuit. Lorsa also isolates an important phenomenon called
attention sink [Xiao et al.,[2024] from other semantically meaningful heads. Figure [6] showcases four
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Figure 6: Examples of Lorsa heads re-discovering finer-grained or cleaner versions of previously
reported heads. Lorsa.5.1025: A subtoken induction head for names, see details below. Lorsa.6.2814:
A successor head attending to the previous arabic numeral token (almost exclusively 1, 2, and 3)
and predicts its successor. Lorsa.8.5963: A copy suppression head attending to the previous token
(almost exclusively ‘poly” and ‘mix’) and suppresses its copy. Lorsa.10.4066: An attention sink head
almost exclusively attending to the ‘<lbeginoftext/>’ token.

such heads, with their visualization dashboards provided in Appendix A representative selection
of interpretable Lorsa heads is presented in Table[2]

We want to highlight an interesting variant of induction heads we call subtoken induction heads where
the prediction operates at the subtoken level. When the sequence contains “[ Marion] ...[M]”, the
head predicts “[arion]”, despite involving three distinct tokens ([A] [B] ... [C]). This occurs because
the leading space in “[ Marion]” causes tokenization misalignment, splitting what would otherwise
be a single token into subcomponents.

Lorsa Head ID Manual Interpretation 98
Lorsa.5.3955 Induction for “ve (@]
Lorsa.5.4010 Induction for last names oplc 2743 I
Lorsa.7.4203 Induction for abbreviations oplmod 10 ¢ (4.5, 6]

Lorsa.9.132 Induction after “and”/*with”
Lorsa.9.1622 Induction in Italian :j 6
Lorsa.4.32 “define”’/“include” in PHP 45
Lorsa.4.3013 “public static” in Java Corea16.20791
Lorsa.5.4035 Say “Four”/“Five”
Lorsa.8.142 Apple Inc. and products (iPhone etc.) Lorsa.16.20931
Lorsa.4.5167 Previous token is “can”/*“could” opZmed10-2
Lorsa.11.6084 Previous token is “make”
Lorsa.4.487 Abbreviations (parentheses/quotes)
Lorsa.6.1491 Abbreviations in parentheses
Lorsa.6.1787 Abbreviations in parentheses 2 42 6 8
Lorsa.6.5499 Abbreviations in parentheses Lorsa.15.3646
Lorsa.4.1420 Russian contexts
Lorsa.9.1622 Induction in Italian Lorsa.15.4001
Lorsa.4.4388 Attention sinks 000 (@)
Lorsa.7.862 Attention sinks 36 + 62 =
Lorsa.6.2592 “the other”/“another”
Lorsa.10.1232 Year of birth and death op1] [op2]

) . ) . Figure 7: For the prompt “36 + 62 =", Lorsa
Table 2: A non-exhaustive collection of inter- moves two operands to the last position with 3

pretablglf)orsa ll1eac%s we have fol;md, W_hi,Ch dare heads each. The first operand (36) is attended in
grouped by color from top to bottom: induc- terms of 2 pattern by an “op1 € 27 — 43”, an “op1

tion heads, specific token heads, previous token % 10 € [4,5,6]” and an “op1 % 10 € [6,7,8]"
heads, acronym heads, , . o

; . . head, which uniquely determines “op1 = 36”. The
attention sink heads, and miscellaneous heads. queyy P

same applies to op2.

6.2 A Family of Arithmetic Lorsa Heads in Llama-3.1-8B

We identify a group of arithmetic-specific Lorsa heads in Llama-3.1-8B that activate during simple
arithmetic operations following the template [op1] [operator] [op2] [=]. One observation is that
each head fetches certain operands with a number of unrelated heuristics, consistent to prior findings
at neuron level on arithmetic mechanisms [Nikankin et al., [2024]], despite Lorsa’s architectural
differences.




Figure [7]demonstrates an example of the prompt “36 + 62 =”. Similar to|[Ameisen et al.| [2025]], we
visualize the function of each Lorsa head with an operand plot, displaying its activity on the 100 x
100 grid of potential inputs of the template “op1l+op2=".

These six Lorsa heads exhibit consistent interpretations in terms of their operand plots and z patterns
sampled from natural language prompts like “The price went up by 27% from $100 to”. We exemplify
this in Appendix [E.3] along with more examples of arithmetic-specific Lorsa heads. We also conduct
very preliminary pertubation experiments in arithmetic tasks to validate Lorsa’s causal influence on
the model’s behavior, as described in Appendix [E.4]

6.3 Lorsa Heads as Theme Anchors

While exploring through Lorsa heads in Llama-3.1-8B, we notice a distinctive subset of Lorsa heads
attending to keywords with remarkable theme consistency from all subsequent tokens in a sentence.
Figure [12]in Appendix [E.5|illustrates two representative cases which exhibit relatively selective,
long-range attention to tokens related to presidency and dynamical systems as evidenced by z pattern.
Through manual inspection we also find Lorsa heads activating on topics like alcohol addiction,
dynamic system, medication instructions and terms of service.

An intuitive hypothesis of these heads’ function is serving as theme anchors to maintain persistent
topic representations to bias subsequent token predictions toward domain-appropriate vocabulary and
syntactic structures. We believe these heads to be closely related to SAE features “smeared” across
token positions, as mentioned in [Lindsey et al.|[2025]] (link) (example).

7 Related Work

7.1 Explaining Individual Attention Heads

With the help of activation patching [Meng et al., 2022, [Zhang and Nanda, [2024]] or path patch-
ing [Wang et al., 2023} |Conmy et al., 2023]], the literature has discovered a number of heads that
exhibit certain functionality in pre-defined contexts. This line of research starts from a composition of
previous token heads and induction heads [Olsson et al.|,[2022] which is closely related to in context
learning. More work on this line includes name mover heads [Wang et al., 2023||, number comparison
heads [Hanna et al.|[2023|], copy suppression heads [McDougall et al.l | 2023]], successor heads [Gould
et al.,[2024]] and long context retrieval heads [Wu et al., [2024]].

7.2 Superposition Hypothesis and Sparse Autoencoders

The superposition hypothesis [|Arora et al., 2018} |Olah et al., 2020, [Elhage et al.,|2022]] assumes that
neurons are related to multiple non-orthognal underlying features. Sparse Autoencoders [[Cunningham
et al.}2023| Bricken et al., [2023]] are proposed to extract an overcomplete set of the sparse and linear
comprehensible features. Importantly, the success of the technique also sheds light on universality of
superposition across model size [Templeton et al.,|2024b} |Lieberum et al., 2024, |He et al., [2024b],
model architectures [Wang et al., 2024]] and modality [[Abdulaal et al.| 2024]].

7.3 Sparse Autoencoder Variants

We see SAEs to have developed multiple forms along with the rapid evolution of SAESs in the past
year. Some of them improve initialization [Conerly et al., [2024], loss function [[Conerly, 2024}
Bussmann et al., 2024 or sparsity constraints [[Gao et al., 2024 to solve specific issues such as
shrinkage [Wright and Sharkeyl 2024]] and massive inactive features [Bricken et al.| 2023|.

Another direction of improvement is the SAE architecture. For instance, Gated SAEs [Rajamanoharan
et al., [2024] are proved effective in mitigating shrinkage. Transcoders [Ge et al., {2024, [Dunefsky:
et al., 2024] aims to simplify sparse circuit analysis by replacing MLPs, whose non-linear nature
makes causal attribution intractable.


https://transformer-circuits.pub/2025/attribution-graphs/biology.html#structure
https://www.neuronpedia.org/llama3.1-8b/15-llamascope-res-32k/23

8 Conclusion and Future Directions

In this work, we introduced Low-Rank Sparse Attention (Lorsa) to disentangle atomic attention
units from attention superposition in Transformer models. Our experiments validated that Lorsa
can recover known attention mechanisms and uncover novel interpretable behaviors. The scalability
and quantitative autointerp results suggest the potential of Lorsa to adapt to real-world applications,
especially unveiling the nature of attention computation in systematic end-to-end circuit tracing.

Eventually, we hope Lorsa would help build a sparse replacement model of Transformer attention
modules, along with its MLP counterparts to enable full sparsification of model computation. Our
initial attempt gives promising results in a two layer Transfomer and unveil an easy yet clean induction
circuit at feature level. We report this in Appendix [[] since induction circuits have been well studied.

Despite our findings with current Lorsa design and training strategy, a number of key challenges
remain. We detail limitations and future directions in Appendix [Al There is significant design
freedom in Lorsa, especially in QK rank and our binding strategy. We also highlight a number
of limitations applicable to more sparse dictionary learning methods, including dark matter, dead
latents, cross-layer superposition and global weights.
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A Discussion and Limitations

We report a number of intriguing findings and limitations of Low-Rank Sparse Attention. We believe
there remains significant room for improvement for future work in each of these following aspects.

Unbinding QK circuits. One significant limitation of our approach is that we do not get completely
independent or low rank Lorsa heads. The shared QK circuit of Lorsa heads raises concerns on
whether they can be independently understood, despite our current positive findings with z patterns
which is a mixed artifact of Q, K and V. Especially in circuit tracing, there might be a risk of
mis-attributing the QK circuit to the ‘true’ components of other Lorsa heads sharing the same QK
circuit.

Dynamically Reducing QK Rank. One solution to unbind QK circuits is to reduce QK rank for
each Lorsa head. If we could overcome the performance degradation of low-dimensional QK circuits,
it is possible to scale up Lorsa with more independent QK circuits and fewer residual stream features
interacting via QKﬂ This is also crucial for circuit tracing methods to have a clearer attribution of
QK circuits with fewer features involved.

(i.e., d}?elzd). In Appendix |D|we show that Lorsa QK rank can be varied across heads by visualizing
the singular values of W and Wi . A mechanism to dynamically determine the rank of QK circuits
for each Lorsa head would be a promising direction for future work.

Moreover, our current desliﬁln of Lorsa QK circuits assumes that all attention units have the same rank

Dark Matters. We find non-trivial correlation between Lorsa error and SAE errors trained on the
same attention layer in terms of (1) average loss per layer (2) loss per token on the same context
and (3) error direction, as shown in Appendix [H] This may suggest the existence of universal dark
matters [[Olah and Jermyn| [2024, [Engels et al.| [2024]] for sparse dictionary learning methods like
SAE and Lorsa. Any progress along this direction to reduce or understand SAE / Lorsa dark matters
should reveal many interesting behaviors of neural networks.

Inactive Attention SAE Features and Lorsa Heads. Despite efforts on hyperparameter search,
we find that attention SAE and Lorsa both contains a majority of inactive feature / heads (i.e. not
activated once in le6 tokens). This phenomenon renders most computation wasted and raises a
question about the difference between structure of attention output space and MLP output space or
residual streams, where SAEs of the same size only have few dead features if configured properly.

Cross Layer Attention Superposition. If certain inter-token feature interaction is performed in
more than one layer, our current method which decomposes only one MHSA layer does not suffice to
find such relation. This parallels the problem of cross-layer superposition [Templeton et al., 2024b]
for residual stream features. A cross-layer variant of Lorsa [Lindsey et al., 2024]] might be tractable.

Global Weights and Systematic Q/K/V Composition. To better understand the global attention
behavior of Transformers, one important research direction is to identify systematic Q/K/V compo-
sition like induction heads and previous token heads. Since Lorsa reveals finer-grained versions of
MHSA heads, we can expect to find more of such cross-layer collaboration behavior. However, we
failed in our early attempts to find Lorsa heads with Q/K composition.

B Applying Lorsa to MHSA Variants

Modern transformer-based models commonly employ variants of multi-head self-attention (MHSA),
such as those incorporating rotary position embeddings (RoPE) [Su et al.,2021]] and grouped-query
attention (GQA) [Ainslie et al.,|2023]]. Lorsa demonstrates compatibility with these MHSA variants
through straightforward adaptations.

“It might also be the case that attention units must be described in multidimensional QK circuits, like
induction heads requiring attending to multiple “the previous token is X features.
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* For RoPE-based MHSA layers, we apply the same rotary transformations to Lorsa’s computed
queries and keys before computing attention scores, maintaining the positional information encod-
ing.

* In GQA implementations, Lorsa operates without modification—specifically, we intentionally
avoid introducing grouped queries within the Lorsa framework.

Empirical results on both Pythia-160M and Llama-3.1-8B demonstrate that this design choice does
not adversely affect performance. We apply these architectural variants based on the TransformerLens
library [Nanda and Bloom, [2022].

C Ablation Study on Crucial Architectural Designs

We conduct ablation studies on two crucial architectural designs: (1) the query and key dimension
and (2) the binding ratio. Our experiments validate the necessity of maintaining both the QK
dimension and the binding mechanism in our proposed architecture. Additional ablation tests on
other implementation details further validate our decisions.

Furthermore, we derive two hard constraints for parameter selection (violating these constraints
leads to significant performance degradation):

* The QK dimension must not be smaller than the head dimension in MHSA

* The number of QK pairs must not be fewer than the number of attention heads in MHSA

C.1 Ablation Study on QK Dimension

Original MHSA QK Dimension Original MHSA QK Dimension

70%
60% -
50% -
40% -
30%-
20% -
10%-

—— Layer 3
—— Layer 6
——Layer 9

—— Layer 3
—— Layer 6
——Layer 9

40%
30%-|

20%
—_

4 8 1‘6 3‘2 6‘4 128 2'.%6 4 8 1‘6 3‘2 6‘4 128 256
QK Dimensions QK Dimensions

10%-+

Fraction Variance Unexplained (FVU)
Fraction Variance Unexplained (FVU)

(a) Context Length: 256 (b) Context Length: 1024

Figure 8: Ablation study on the QK dimension using Pythia-160M under different context lengths
(K = 64). We fix the parameter budget across all settings and observe that reducing the QK
dimension below the original MHSA head dimension (dpe,g = 64) results in significant performance
degradation, highlighting the importance of maintaining a high QK dimension.

We conduct ablation studies on the QK dimension using Pythia-160M, evaluating performance under
different context lengths (256 and 1024 tokens). To ensure fair comparison, we fix the parameter
budget at 4 Dy,04e1 per attention head and maintaining a total parameter count equivalent to 4 x the
original MHSA configuration throughout all experiments. As shown in Figure[8] reducing the QK
dimension below the original MHSA’s head dimension (dhe.g = 64) leads to severe performance
degradation. This empirical evidence supports our design choice to maintain a high QK dimension.

C.2 Ablation Study on Binding Ratio
We conduct a systematic study on the impact of the number of independent Lorsa QK heads (i.e., the

number of Lorsa heads divided by the binding ratio) across a range of configurations, as illustrated in
Figure[9} Our experimental results highlight two key observations:
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Figure 9: Ablation study on the binding ratio. We vary the number of independent Lorsa QK heads
and evaluate model performance under different settings. Appropriate binding maintains performance
while reducing QK circuit cost, whereas overly aggressive binding (below the number of original
MHSA heads) leads to substantial degradation.

» Appropriate binding effectively preserves model performance while substantially reducing both
the parameter count and the computational cost of the QK circuit (scaling proportionally with the
binding ratio).

* Model performance deteriorates significantly when the number of independent QK heads falls
below the original MHSA head count, establishing this threshold as a critical lower bound for
binding ratio selection.

C.3 Ablation Study on QK Initialization

Given that our QK matrices maintain high dimensionality and adopt a binding strategy, a natural
question arises: can we directly reuse the original MHSA QK parameters in Lorsa? To investigate
this, we evaluate three settings: (1) randomly initializing the QK parameters of Lorsa, (2) initializing
the QK parameters of Lorsa with the original MHSA QK parameters and allowing them to be updated
during training, and (3) fixing the QK parameters to the original MHSA QK parameters throughout
training. The results, summarized in Table[3] show that directly fixing the QK parameters to those
of MHSA leads to worse performance compared to the other two setups. This suggests that during
optimization, Lorsa learns QK parameters that capture information not present in the original MHSA
parameters.

Initialization Strategy Fraction Variance Unexplained (FVU)
Random Initialization 11.3%
Initialization with Original QK (Trainable) 11.2%
Initialization with Original QK (Fixed) 12.4%

Table 3: Comparison of different QK initialization strategies for Lorsa.

C.4 Does (Top-K) Lorsa Need ReLU Non-linearity to Guarantee Non-negative Outputs?

To align with the superposition hypothesis and the architectural design of the SAE, we apply a
ReLU to ensure that the activations z are non-negative. However, we observe that this modification
has negligible impact on training dynamics, as the top-k activations are almost always positive for
reasonable choices of k. This is consistent with findings reported in |Gao et al.|[2024]].

D Does QK Rank Vary Across Attention Units?

We analyze the structure of 24 independent QK projections trained at layer 5 of Pythia-160M.
Specifically, we estimate the effective rank of each pair of W and Wy by sorting their relative
singular values in descending order, as shown in Figure Among these QK circuits, Circuit 4
exhibits subtoken induction, previous-token, and successor attention patterns; Circuit 15 also shows
clear induction behavior. These circuits tend to have relatively high ranks. In contrast, Circuit 16
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Figure 10: Sorted relative singular values of Wg and W for each QK circuit at pythia-160m layer
5. Each circuit shows strong alignment between the spectra of W and Wiy, suggesting similar
structural properties. Circuits 4 and 15 have relatively high effective rank, while Circuits 16 and 17
exhibit significantly lower rank.

attends to itself on certain special tokens, and Circuit 17 functions as an attention sink while also
attending to itself on specific inputs. Both of these circuits exhibit lower effective ranks.

E Additional Case Studies

E.1 Attribution Algorithm for Identifying Lorsa Heads with Specific Functionalities

In addition to the path patching method discussed in Section[6.1], we employ an attribution algorithm,
inspired by the approach for detecting important features with attribution in Batson et al.|[2024], to
identify Lorsa heads associated with specific functionalities.

The attribution score for a given Lorsa head h, is defined as:

attry, :== Oy, - VL

Here, V. L is the gradient of the logit on the prediction of the target token with respect to the
attention output Oy, of the Lorsa head. For different prompt, we also try logit difference or probability
difference to calculate VL.

quantifies the contribution of Lorsa head h to the prediction of the correct token.

E.2 Examples of Lorsa’s Rediscovery of Reported Functional Heads

The detailed information on the Lorsa heads discussed in Section[6.1]is provided in Figure [T} where
we visually demonstrate the logit differences induced by the Lorsa head ,along with the most strongly
correlated MSHA heads and SAE features.

E.3 Arithmetic Lorsa Heads

We present the SAE features related to the reported arithmetic Lorsa heads in Table[d] which shows
consistent interpretation in terms of operand plot and z pattern. Additionally, Table [5 provides a
broader set of examples for these arithmetic Lorsa heads, including functional descriptions and the
z-patterns of their top activations.

E.4 Preliminary Pertubation Results

We feed Llama-3.1-8B “75 + 3 =" as the clean prompt and it succeeds to predict the answer 25
(p = 0.73). With attribution from the correct answer logit we identify an “op2 = 3” Lorsa head in
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Figure 11: Detailed information on Lorsa’s rediscovery of reported functional heads.

layer 15 (Lorsa.15.2668) with notable contribution. We then set the activation strength z of this head
to 0 at the last token position (“=") and copy its original value to a an “op2 = 5 head (Lorsa.15.3099)
and rerun the forward pass from layer 15 attention. This gives an answer of 15 (p = 0.66).

Since z of a Lorsa head indicates its output norm along the w, direction, this pertubation experiment
greatly resembles steering SAE vectors [Templeton et al, [2024b]. There is also an alternative
interpretation that we are intervening attention computation in OV circuits - this result can be
precisely achieved by swapping the w,’s of these two Lorsa heads. In consequence, the pertubed
Lorsa head recieves “op2 = 3” but tell subsequent computation that “op2 = 5”. Such pertubation
is independent from QK circuits as both Lorsa heads share the same QK weights. This serves as
evidence in the wild that Lorsa heads with shared QK circuits often show similar functionalities.

E.5 Theme Anchor Heads

F Assessing Correlation with MHSA

How to understand the correlation between Lorsa heads and original MHSA heads? We try to answer
this by computing the attribution of each Lorsa head to the original attention heads using an oblique
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Lorsahead ID  Manual Interpretation with Operand Plot ~Manual Interpretation with z Pattern

Lorsa.16.20791 opl €27 —43
Lorsa.16.20931 opl % 10 € [4,5, 6]
Lorsa.16.20947 opl % 10 € [6, 7, 8]

near 30
ending with 4 or 6
ending with 7, sometimes 6

Lorsa.15.3646 op2 % 10 =2 ending with 2
Lorsa.15.3813 op2 € 55—-99 from 50 - 99
Lorsa.15.4001 op2 € 38 — 63 near 50

Table 4: Supplementary information of Lorsa Head in Figure (7| We observe alignment between
interpretations obtained from operand plots and top activating z patterns sampled from natural
language text corpus.

ID Operator Operand Top Activation Z Pattern
Addition op2 ends with 2
Subtraction min(opl, op2) ends with 2 ( ¥
Lorsa.15.3646 Multiplication op2=2or 12 E]E]B
Division op2=2
Addition op2 ends with 4
Subtraction min(opl, op2) ends with 4 v
Lorsa.15.3648 | \ptiplication op2 = 4, 24, or 40 (fetded) (=) egimented) @) () (4) B (2)(Fermation)
Division op2=4
Addition Inactive
Subtraction Inactive
Lorsa.15.2668 Multiplication op2 =3, 6, 30, or 60 E]E] @ 3) E] @
Division op2 around 3 or 30
Addition Inactive
Subtraction Inactive
Lorsa.15.2770 Multiplication | op2 around 62 and its multiples @
Division op2 around 62 and its multiples
Addition Inactive
Subtraction Inactive m
Lorsa.15.2945 Multiplication | op2 =7, 11 and their multiples v o)) BB o)) 0]
Division op2 =7, 11 and their multiples

Table 5: Additional cases of arithmetic heads

projection method (Appendix [F.I)). Analyzing all Lorsa heads trained on Pythia-160M (Appendix[F.2)),
we find that roughly half of the Lorsa heads originate from a single original head, while the other half
are superpositions across multiple original heads.

F.1 Oblique Projection Method for Attribution

Given the output of an original attention head, we project it obliquely onto the (generally non-
orthogonal) basis formed by the outputs of all Lorsa heads at the same layer. The resulting coefficients
represent the contribution of the original head to each Lorsa head. Since the summed outputs of
original heads and Lorsa heads closely match, the contribution coefficients for a given Lorsa head
approximately sum to one. Conversely, we similarly compute the fraction of each Lorsa head’s output
that can be attributed to each original attention head by projecting the Lorsa head’s output onto the
basis formed by the original heads’ outputs. All reported results are averaged over more than 1M
tokens.

F.2 How Many Attention Units are Distributed Across MHSA Heads?
We compute the attribution statistics for all Lorsa heads trained on Pythia-160M. For a given Lorsa

head, we define n as the minimum number of original heads whose cumulative contributions exceed
90%. We interpret n as the effective number of original heads a Lorsa head superposes over. As
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A Presidency-Related Theme Anchor Head A Dynamical-System Theme Anchor Head

Key = "_President"

| e EmEEE ~ e
7 () Gsteerea ) (22) (e) (] leﬂﬁi?g?égiﬁ
! A= E f () (romeomorphism ) (of)(compact)

Key = (Self) "-affine”
| Key = "_nomination"

Key = "_presidents" H l

(a) z pattern of a presidency-related theme anchor (b) z pattern of a theme anchor Lorsa head related to
Lorsa head. dynamical systems.

Figure 12: Two examples of theme anchor Lorsa heads.
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Figure 13: Distribution of Lorsa heads based on the number of original attention heads they are
superposed over. No clear trend is observed across different layers. Approximately 50% Lorsa heads
are primarily associated with a single original head, about 25% are superposed over two different
original heads, around 10% are superposed over three different original heads, and others superposed
over more than three original heads.

shown in Figure[T3] approximately half of the Lorsa heads are primarily derived from a single original
head, about a quarter involve two original heads, and the remaining quarter involve three or more
original heads.

F.3 Induction MHSA Heads in Pythia-160M

We use path patching to measure the contribution of each MHSA head in Pythia-160M to induction
behavior. The results are shown in Table[6} We find that heads L5.0, L4.6,L5.7,19.0, L5. 6 exhibit
the most prominent induction signals.
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Table 6: Contribution of each MHSA head to induction behavior in Pythia-160M, measured via path
patching. Notable induction heads (L5.0,L4.6,L5.7,L9.0, L5.6) are bold.

Layer\Head | 0 1 2 3 4 5 6 7 8 9 10 11
0 0.00 0.00 000 000 000 000 0.00 000 0.00 000 0.00 0.00
1 0.07 -0.15 -0.10 0.03 0.09 -0.08 -0.07 006 -0.01 0.11 034 -0.05
2 -0.14 007 0.10 0.14 014 -0.13 0.60 -0.03 -0.14 0.10 0.04 0.03
3 -0.24 -0.14 -096 -120 -049 -0.14 020 -038 -0.10 0.06 -0.11 -0.07
4 0.13 -026 0.09 -0.16 -0.10 -0.02 0.89 0.13 009 -028 -0.14 0.30
5 400 -020 005 006 -053 -004 048 0.62 006 0.08 005 -0.23
6 -0.04 -023 -0.04 -022 002 009 004 -033 0.02 -004 -038 0.04
7 -0.28 0.17 003 0.06 -028 -0.07 0.01 -0.18 -023 -0.03 -0.02 0.18
8 -0.07 0.03 050 0.00 015 -0.02 001 -022 0.02 -0.02 -0.08 0.8
9 054 -0.03 0.07 -009 -1.10 -0.04 0.04 0.00 004 010 -0.01 0.02
10 -0.01  0.03 000 0.00 -0.03 -0.10 001 -0.01 0.00 -0.04 0.03 001

11 -0.14 -0.13 -0.05 -0.04 000 -0.02 -0.11 -0.02 0.01 -0.07 -0.02 0.06

G Interaction Between Lorsa Heads and SAE Features

We trained Sparse Autoencoders (SAE) on both the inputs and outputs of Lorsa to facilitate the
understanding of its functionality. Since Lorsa’s Q, K, and V are computed from the input, with the
output derived from O contributing to the final result, interactions between SAE features and these
components exist across all four aspects: Q, K, O, and V. To evaluate the influence of SAE features
on Q and K, we employ an ablation method (Appendix [G.T). The correlation between the OV and
SAE features is assessed using cosine similarity (Appendix [G.2)). For each Lorsa head, we identify
the SAE features most strongly correlated with different aspects. The results are visualized in the
Lorsa head dashboard.

G.1 Quantifying Feature Impacts on Q and K

For a given Lorsa head, the impact of a specific feature on Q is calculated as follows: First, we
compute the attention pattern at the activation locations of the Lorsa head. Then, the feature is ablated
from the input, and Q" and the new attention pattern are computed (with K remaining unaffected).
The Kullback-Leibler (KL) divergence between the original and modified attention patterns is used
to quantify the effect of the feature on Q. After iterating over 1 million tokens, the maximum KL
divergence observed across all activations of the Lorsa head is taken as the measure of the feature’s
influence on Q for this head. A similar approach is used to calculate the impact of a feature on K, with
the difference being that when recalculating the attention pattern, all instances of K are recomputed
using the modified input, while Q remains unchanged.

G.2 Quantifying Direct Feature Attribution via O and V

For a given Lorsa head, both the weight vectors Wy and Wy, are one-dimensional vectors of size
Dinodel- Therefore, for each SAE feature trained on the Lorsa input, the contribution to V' is linear,
meaning that the contribution of each feature to V' scales proportionally with the feature’s activation
value. Similarly, for each activation z of the head, the contribution of SAE features trained on the
Lorsa output to the activation value is also linear. We compute the cosine similarity between the
decoder of each SAE feature trained on the Lorsa input and Wy,, which quantifies its correlation
with V' for the given Lorsa head. Similarly, the cosine similarity between the encoder of each SAE
feature trained on the Lorsa output and Wy is computed to measure its correlation with O for the
given Lorsa head.

H Lorsa Dark Matter

Figure |14| illustrates the per-token error norms of Lorsa and SAE across layers 2, 6, and 10 of
Pythia-160M on a set of 64 tokens. Figure[T5|quantifies the distribution of cosine similarity between
Lorsa and SAE’s per-token error norms on the same layers, measured on approximately 10,000
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tokens. These results indicate that the loss pattern between pre token between Lorsa and SAE has a
nontrivial correlation.

It is interesting that both Lorsa and SAE exhibit a positive correlation in their magnitudes and trends
for FVU and per-token error norms.

We propose that this is not a coincidence, and hypothesize that it stems from a shared gap between
sparse dictionary learning and the representation structure of data within the model. Alternatively, this
correlation may arise from the challenge that sparse dictionary learning faces in capturing super-rare
data features or certain nonlinear or dense components within the features.

This supports the hypothesis of universal dark matters [[Olah et al., 2020, [Engels et al.} [2024]] that
a certain fraction of error results from the superposition hypothesis itself that cannot be addressed
simply with larger Lorsas (SAEs).

Per Token Error L2 Norm
Loyer 2

~— SAE Error L2 Norm in layer 2
- L L2 Norm in layer 2

N A .
TN e WY MAANNA

A~ ~
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- Lorsa Error L2 Norm in layer 6
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SAE Error L2 Norm in layer 10
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..........

Token

Figure 14: Per-token error norms of Lorsa and SAE on layer 2, 6, and 10 of Pythia-160M for a
randomly sampled sequence with 64 tokens.

Layer 6 Layer 10

Frequency

Cosine Similarity

Figure 15: Cosine similarity distribution of per-token error between Lorsa and SAE on layer 2, 6, and
10 in Pythia-160M, measured with approximately 10,000 tokens.
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I Towards Full Sparsification of A 2-Layer Transformer

Since our final goal is to understand Transformers’ inner working by breaking down MHSA and
MLPs into atomic units (Figure[I)), we train Lorsa and Transcoder [Dunefsky et al.;[2024] on a 2-layer
Transfomer (link). We follow the method introduced in|Ge et al.|[2024]] where they multiply features
via QK circuit to find the most salient feature pairs contributing to QK scores. Alternatively applying
attribution through Transcoder features / Lorsa heads and QK ablation gives us the clear attribution
graph for induction behavior (Figure[I6). Due to the capability constraint of this model, we failed to
observe more interesting behaviors or attribution graphs involving Transcoder features. Nonetheless,
we believe applying Lorsa and Cross-Layer Transcoders [Ameisen et al.,[2025]] to a larger model may
reveal a lot of surprising behaviors, following the spirit of Lindsey et al.|[2025]].
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Figure 16: An induction circuit found in our fully sparsified replacement model.

J Automated Interpretability Details

Evaluation Protocol. Our automated interpretability assessment employs a two-phase explanation-
simulation paradigm adapted from Bills et al.|[2023]:

1. Explanation Phase: GPT-40 generates mechanistic explanations using:

* For activation patterns: 8 top-activating token contexts
* For z-patterns/DFAs: Contribution graphs to max-activating tokens

2. Simulation Phase: GPT-4o predicts activations/patterns for:

* 4 top-activating contexts (testing pattern recognition)
* 4 randomly sampled contexts (testing generalization)

Top Activation Explanation Phase Prompt.

We are analyzing the activation levels of features in a neural network, where each feature
activates certain tokens in a text. Each token§ activation value indicates its relevance to the
feature, with higher values showing stronger association. Your task is to infer the common
characteristic that these tokens collectively suggest based on their activation values.

Consider the following activations for a feature in the neural network. Activation values are
non-negative, with higher values indicating a stronger connection between the token and the
feature. Summarize in a single sentence what characteristic the feature is identifying in the text.
Dont list examples of words. Do not start with “This feature is identifying. ..”. Go straight to
the explanation.

26


https://huggingface.co/NeelNanda/GELU_2L512W_C4_Code

Sentence 1:

<START>
<lendoftextl><tab>-0.0
/<tab>-0.0

*/<tab>0.2

... (omitted)

<END>

Sentence 2:

... (omitted)

Top Activation Simulation Phase Prompt.

We’re studying neurons in a neural network. Each neuron looks for certain things in a short
document. Your task is to read the explanation of what the neuron does, and predict the neuron’s
activations for each token in the document.

For each document, you will see the full text of the document, then the tokens in the document
with the activation left blank. You will print the exact same tokens verbatim, but with the
activation values filled in according to the explanation. Pay special attention to the explanation’s
description of the context and order of tokens or words.

Fill out the activation values with integer values from 0 to 10. Don’t use negative numbers.
Please think carefully. No need to include rationales. Directly start with the first token and do
not use code blocks, i.e., “‘.

Neuron 1 explanation: This feature is indentifying vowels.

Sequence 1: Tokens without Activations:

a<tab>

b<tab>

c<tab>

d<tab>

e<tab>

f<tab>

Sequence 1 Tokens with Activations:

a<tab>10

b<tab>0

c<tab>0

d<tab>0

e<tab>10

f<tab>0

Neuron 2 explanation: <Autointerp explanations generated in the previous phase>

<Few shot examples>

z Pattern / DFA Explanation Phase Prompt.

We are analyzing the attention map of attention heads in a neural network, where each head
attends between tokens in a text. Given a head and a query token, we provide each previous
token§ contribution value, with higher values showing stronger association. Your task is to infer
the common characteristic of this head that these sequences collectively suggest based on their
attention map.

Consider the following attention maps for an attention head. [Each line is in the
format of <token><tab><value>. Query tokens are additionally highlighted with <to-
ken><tab><value><tab>**Query token**. Note that query tokens also attend to themselves.
Higher values indicates a stronger contribution from this token to the query token.
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Summarize in a single sentence what characteristic the head is attending from and to in the text.
It might be helpful to summarize both the commonality of query tokens and source tokens (if
any). It is also recommended to mention if this head is often attending to itself.

Don( list examples of words. Do not start with “This head is ...”. Directly start with the
explanation.

Sentence 1:

<START>

<lendoftextl><tab>-0.0

/<tab>0.0

... (omitted)

*/<tab>0.0<tab>**Query token**

z Pattern / DFA Simulation Phase Prompt.

We’re studying attention heads in a neural network. Each head follows a certain attention pattern
in a short document. Your task is to read the explanation of what the head does, and predict the
head’s attention pattern for each previous token in the document, given a specific query token.
For each document, you will see the full text of the document, then the tokens in the document
with the activation left blank. You will print the exact same tokens verbatim, but with the contri-
bution values filled in according to the explanation. Pay special attention to the explanation’s
description of the context and order of tokens or words.

Each line is in the format of <token><tab>. Query tokens are additionally highlighted with
<token><tab>**Query token**<tab>.

Fill out the contribution values with integer values from O to 10. Don’t use negative numbers.
Please think carefully. No need to include rationales. Directly start with the first token and do
not use code blocks, i.e., “‘.

Head 1 explanation: This head is attending from one vowel to previous vowels and itself.
Sequence 1 Tokens without Activations:

a<tab>

b<tab>

c<tab>

d<tab>

e<tab>**Query token**

Sequence 1 Tokens with Activations:

a<tab>10

b<tab>0

c<tab>0

d<tab>0

e<tab>**Query token**<tab>10

Head 2 explanation: <Autointerp explanations generated in the previous phase>

<Few shot examples>
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: There are respective sections supporting the claims made in the abstract
and introduction, namely motivation (attention superposition, Section[2), methods (Lorsa
architecture, Section E]), reconstruction evaluation (L(N, K) scaling law, Section EI), inter-
pretability evaluation (autointerp, Section E]) known and novel cases (Section @ ablation
study on architectural designs (Appendix [C), relation to SAE & MHSA heads (Appendix [F
and [G) and an early attempt to fully sparsify a toy Transformer model (Appendix ).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a detailed discussion of limitations in Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: the paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed architectural designs on both QK and OV circuits, size of
our Lorsa modules and other important training details in Section [3.2]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All models (Llama-3.1-8B and Pythia-160M) and data (Slimpajama) have
open access. We also open sourced our code, see links at the end of the abstract.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include important training (Section [3.2) and test (Section ] and[5) details.
We follow previous work [Templeton et al., [2024b|] in more general sparse dictionary
learning practices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have standard deviation reported in Figure [3|and the whole distribution in
Figure 5]
Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide relevant information in Section[3.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed and conducted our research in the paper conform in every
respect with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Lorsa is proposed to understand attention computation and is relatively content-
free. Better understanding model internals may contribute to reduce potential harms in
frontier AI models, though this is the broader higher goal of the field of interpretability and
is only indirectly related to this work.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not provide new data. Our released models (after the anonymous review
process) are sparse replacement models of already open sourced Transformer language
models.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all code, data, models used in this work.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our released code is well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We used the method of autointerp to quantify Lorsa interpretability.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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