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Abstract

Large language models (LLMs) may exhibit undesirable behaviors. Recent efforts
have focused on aligning these models to prevent harmful generation. Despite
these efforts, studies have shown that even a well-conducted alignment process
can be easily circumvented, whether intentionally or accidentally. Does alignment
fine-tuning have robust effects on models, or is merely superficial? In this work,
we answer this question through both theoretical and empirical means. Empirically,
we demonstrate the elasticity of post-alignment models, i.e., the tendency to revert
to the behavior distribution formed during the pre-training phase upon further fine-
tuning. Using compression theory, we formally derive that such fine-tuning process
disproportionately undermines alignment compared to pre-training, potentially by
orders of magnitude. We conduct experimental validations to confirm the presence
of elasticity across models of varying types and sizes. Specifically, we find that
model performance declines rapidly before reverting to the pre-training distribution,
after which the rate of decline drops significantly. We further reveal that elasticity
positively correlates with increased model size and the expansion of pre-training
data. Our discovery signifies the importance of taming the inherent elasticity of
LLMs, thereby overcoming the resistance of LLMs to alignment finetuning.

1 Introduction

Large language models (LLMs) have exhibited remarkable capabilities [1, 2]. However, given
the inevitable biases and harmful content in the training dataset [3, 4], these models often exhibit
behaviors that deviate from the designer’ intentions, a phenomenon we refer to as model misalignment.
Therefore, aligning LLMs to ensure their behaviors remain consistent with human intentions and
values is particularly important [2, 5, 6, 7, 8].
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Figure 1: Forward and Inverse Alignment. LLMs undergo numerous iterations during pre-training,
forming a stable parameter distribution. Subsequent alignment procedures fine-tune this distribution
to reflect human intentions. Our research question is: During further fine-tuning, is it harder to deviate
from the stable parameter distribution formed during pre-training than to maintain it?
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So far, we mainly steer or align models with finetuning-based methods including supervised fine-
tuning (SFT), reinforcement learning from human feedback (RLHF) [9], and more [8, 10, 11, 12, 13,
14]. However, it remains unclear whether such methods truly penetrate the model representations
or merely perform superficial alignment. Recent studies [15, 16] have shown that the effect of
alignment process is superficial, e.g., models undergoing safety alignment can become unsafe again
with minimal fine-tuning. Furthermore, fine-tuning aligned LLMs on non-malicious datasets can
weaken the models’ safety mechanisms as well [17, 18]. Why is alignment so fragile?

This counterintuitive phenomenon further prompts exploration into the inverse process of alignment:
assuming that the alignment process of LLMs is indeed limited to superficial alignment, is it then
possible to perform an inverse operation of alignment, i.e., to achieve the reversal of the alignment
process through a series of technical measures? In this work, we investigate the possibility of
reversing or revoking the alignment process in LLMs, a concept we refer to as inverse alignment. In
a word, we aim to answer the under-explored question:

Do the parameters of language models exhibit elasticity, thereby resisting alignment?

Our main contribution is Theorem 2.6. We show the elasticity of post-alignment models using tools
from compression theory, demonstrating that models tend to retain the distribution learned from
the pre-train dataset while forgetting the effects of subsequent fine-tuning. We also prove that after
subsequent fine-tuning, the changes in the normalized compression rates of the model for different
datasets are proportional to their respective sizes. Furthermore, we experimentally demonstrate that
the phenomenon of elasticity in post-alignment models is present across models of various scales,
emphasizing that when conducting subsequent safety alignment, it is necessary to consider the impact
of model elasticity on alignment effectiveness.

2 Elasticity in Large Language Models as Resistance to Alignment

Our analysis is conducted with the background of the compression theory of language models
(Appendix B). In this section, we formulate the concept of elasticity and prove its existence in LLMs.
It gives rise to the possibility of inverse alignment, thereby constituting resistance to alignment. We
start by defining these concepts.

Definition 2.1 (The Elasticity of LLM Parameters). Given an LLM pθ0
, and the transformation

pθ0

f(Da)7−−−−→ pθ1
, elasticity is said to exist in (pθ0

,Da) if there is an algorithmically simple inverse
operation g and a dataset Db such that |Db| ≪ |Da|, with the property that

pθ1

g(Db)7−−−−→ pθ′
0

and ρ(pθ′
0
, pθ0) ≤ ϵ.

2.1 The Token-level Response Tree for Compression Analysis

We explain that the post-alignment models contain elasticity using information-theoretic concepts
specifically related to data compression, given the analytical equivalence and practical consistency
between compression and prediction performance (Section B.2). We first present our formulation
for the compression protocol, using tokenized sequences as the input and output modality. Due to
space constraints, we selectively present key definitions, assumptions, and theorems. Please refer to
Appendix C for the full collection of assumptions and proofs.

Assumption 2.2 (Binary Tokens). For the purpose of this analysis, consider the tokenization process
employed on the datasets. Without loss of generality (since any vocabulary sizes can be approximately
reduced to the binary case with a uniform multiplier to the code length), we assume that the token
table contains only binary tokens (specifically 0/1) and is uniform across all datasets.

Definition 2.3 (Token-level Response Tree T ). Consider the dataset D = {zi ∈ {0|1}∞ | i =
1, 2, · · · }, where each zi represents a binary response in D. The token-level response tree, denoted as
TD, is structured such that each node contains child nodes labeled 0 or 1. Additionally, each binary
node terminates with an end-of-sequence (EOS) token leaf node. The path from the root to a leaf
node delineates each response zi. The likelihood of a response that a token represents is indicated by
the probability associated with its EOS token node. Meanwhile, the probability of any binary node is
defined as the sum of the probabilities of all its child nodes.
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Definition 2.4 (Compression with Finite-parameter Models). For a finite-parameter model pθ (·)
and the dataset D, the compression protocol using pθ for D is defined as follows: For D’s TRT TD,
1) Prune the TD in the manner of Remark C.2, retaining only the top d layers of TD, where d is a
quantity determined by pθ’s parameter count. 2) Compress the pruned response tree using Huffman
coding. In this scheme, each response from the root token to a 0/1 token is considered as a letter in
the Huffman coding alphabet, with the probability of the EOS token for the corresponding 0/1 token
serving as the probability of that letter.
Theorem 2.5 (Ideal Code Length with Finite-parameter Models). Consider a finite parameter
model pθ (·) which is training on dataset D, the ideal code length Lpθ

(x) of a random response x
compressed by pθ can be expressed as follows,

E [Lpθ
(x)] =

⌈∣∣x∣∣
d

⌉−
d∑

i=1

2i−1∑
j=1

pij log pij

 , (1)

where d represents the depth of the TD after pruning under Definition 2.4 protocol, and pij represents
the probability values of the EOS nodes for the j-th node at the i-th layer.

2.2 Formal Derivation of Elasticity

Our primary focus is on studying the behavioral changes of the model during subsequent fine-tuning
after pre-training and one round of SFT. Therefore, it can be assumed that in the analysis of model
compression, only three datasets are involved: the pre-training dataset D1, the fine-tuning dataset D2

in the first round of SFT, and the perturbation dataset D3 used in subsequent fine-tuning. Without
loss of generality, we can consider these three datasets to be independent and differently distributed.

Due to the different scales of compression rates obtained for different datasets by the model, we
consider normalizing the compression rates for different datasets when stating Theorem 2.6.
Theorem 2.6 (Elasticity of Language Models). Consider datasets D1, D2, D3 each with a Pareto
mass distribution (Assumption C.15), and the model pθ (·) trained on D = D1 ∪ D2 ∪ D3. When
dataset D3’s data volume |D3| changes, the normalized reciprocal of the compression rate γ

D1/D
pθ ,

γ
D2/D
pθ (Definition C.16) of the model for D1 and D2 satisfies:

dγ
D2/D
pθ

d l
= Θ

(
k
dγ

D1/D
pθ

d l

)
;
dγ

D1/D
pθ

d l
> 0,

dγ
D2/D
pθ

d l
> 0 (2)

where l = |D3|
|D2| ≪ 1, k = |D1|

|D2| ≫ 1.

Theorem 2.6 illustrates that as the amount of data in the perturbation dataset D3 increases, the
normalized compression rates of the model for both the pre-train dataset D1 and the SFT dataset D2

decrease, but the rate of decrease for the pre-train dataset is smaller than that for the SFT dataset by a
factor of Θ(k), which in practice is many orders of magnitude.

3 Experiments

In the previous sections, we proved that LLMs achieve stable behavioral distributions during the
pre-training stage through massive updates on massive data. The alignment stage with small updates
on small data does not erase such a distribution, and subsequent fine-tuning can easily restore this
pre-alignment distribution. Building on top of this discovery, in this section, we primarily aim to
answer the following questions: 1) Does elasticity consistently exist across models of different types
and sizes? 2) Is elasticity correlated with model parameter size and pre-training data size?

3.1 Experiment Setup

To verify the elasticity performance of pre-trained large language models, we select two tasks: positive
generation (IMDb dataset [19]) and single-turn safe conversation (PKU-SafeRLHF dataset [4]). We
verify elasticity in popular pre-trained LLMs such as Gemma-2B [20] and Llama2-7B [7], and use
score models provided by existing research to complete the performance evaluation. For detailed
experimental setup, please refer to Appendix D.1.

3



3.2 Experiment Results

We conduct experiments on the existence of elasticity in language models and the relationship
between elasticity, model size, and pre-training data amount. For additional experimental results
under various settings, please refer to Appendix D.2.

Existence of Elasticity. We evaluate the elasticity phenomenon on Llama2-7B [7] and Gemma-2B
[20]. The experimental results in Figure 2 show that, for models fine-tuned with a large amount of
positive sample data, only a small amount of negative sample fine-tuning is needed to quickly revert
to the pre-training distribution, i.e., to make the curve drop below the gray dashed line. Subsequently,
the rate of performance decline slows down and tends to stabilize.
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(a) IMDb Experimental Results.
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(b) PKU SafeRLHF Experimental Results.

Figure 2: Experimental Results for Validating the Existence of Elasticity. The left and right sides of
each subfigure correspond to the performance of Gemma-2B [20] and Llama2-7B [7], respectively,
while the caption identifies the dataset. The model performance rapidly declines before reverting to
the pre-training distribution, after which the decline becomes significantly slower. This phenomenon
is defined as the elasticity of LLMs.

Elasticity Increases with Model Size. To examine how elasticity changes with model parameter
size, we conducted experiments on Qwen models [21] with 0.5B, 4B, and 7B parameters. In Figure 3,
as the model parameter size increases, the initial performance decline due to negative data fine-tuning
is faster, while the subsequent decline is slower. This indicates that as the parameter size increases,
there is an increased elasticity in response to both positive and negative data.
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(b) PKU SafeRLHF Experimental Results.

Figure 3: Experimental Results for Validating the Positive Correlation Between Elasticity and Model
Parameter Size. Each subfigure from left to right shows the changes in LLMs with parameter sizes of
0.5B, 4B, and 7B, respectively, while the caption identifies the dataset.

Elasticity Increases with Pre-training Data Amount. To verify that elasticity increases with the
growth of pre-training data, we conduct the same experiments on multiple pre-training slices released
by TinyLlama [22]. As shown in Figure 4, when the pre-training data volume increases, the initial
performance decline due to negative data fine-tuning is faster, while the subsequent decline is slower.
It demonstrates that larger pre-training data volumes reinforce the elasticity of LLMs.
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(b) PKU SafeRLHF Experimental Results.

Figure 4: Experimental Results for Validating the Positive Correlation Between Elasticity and Pre-
training Data Size. Each subfigure from left to right shows the changes in pre-training data sizes of
2.0T, 2.5T, and 3.0T, while the caption identifies the dataset.

4 Conclusion and Outlook

In this work, prompted by the fragility of alignment, we show the existence of elasticity in language
models though both theoretical and experimental lens, thereby demonstrating their tendency to resist
alignment. Specifically, large pre-training datasets and large parameter counts enhance the model’s
anti-interference capabilities, making subsequent alignment procedures easy to undo via further
finetuning. We experiment on a variety of models and datasets, and validate elasticity across different
sliced models during pre-training and alignment. Extensive results confirm that language models
exhibit elasticity, indicating that language models resist alignment.

4.1 Ethic Impacts

Rethinking Fine-tuning. The influence of noisy pre-training corpora may cause models to exhibit
unexpected behaviors. Alignment methods seek to modify LLMs’ distributions efficiently to enhance
helpfulness, harmlessness, and honesty. From the inverse alignment perspective, we need more robust
methods to ensure that modifications to model parameters go beyond superficial changes. However,
certain inducement measures might compromise the alignment strategy, potentially causing severe
harm. Additionally, we should prioritize data cleansing during pre-training, rigorously managing
noisy and biased data to enhance the malleability of the model’s final distribution [23, 17].

Rethinking Open-sourcing. Open-sourcing is a double-edged sword [24]. On one hand, it can
pose significant risks, such as model misuse, which could endanger public safety through fine-tuning
for malicious purposes [25] or system jailbreaking [26]. On the other hand, restricting access may
foster monopolistic practices, while open-sourcing cutting-edge models promote a robust open-source
community and enhance the usability of these models. Furthermore, it facilitates the decentralization
of AI technology [27]. From the perspective of model robustness, well-aligned models can be
rendered unsafe with a very small amount of unsafe data. Also, fine-tuning aligned LLMs on non-
malicious datasets can weaken the models’ safety mechanisms [28]. Ensuring that open-source
models are not misused is a critical challenge, and discoveries in this work prompt the community to
build robust alignment algorithms, thereby overcoming the model’s tendency to resist alignment.

Limitations and Future Work Theory-wise, the primary limitation of our work is our specification
of the mass distribution (Assumption C.15), and empirical studies on the exact form of this distribution
shall be valuable. Experiment-wise, we have not systematically validated elasticity throughout the
entire lifecycle of pre-training and alignment phases, due to cost constraints. In future works, we
plan to focus more on whether this phenomenon is universally applicable, such as in multimodal
models. Additionally, we aim to theoretically uncover the relationship between model elasticity and
scaling laws, specifically determining the amount of training data required for elasticity to manifest
and quantitatively analyzing whether elasticity intensifies as model parameters increase.
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A Related Work

The Fragility of LLMs Alignment. Pre-trained LLMs often generate offensive content [6]. Recent
initiatives [9, 3] have aimed to align these models to minimize harmful outputs [3, 29]. However,
studies show that even well-aligned models can be compromised easily, and fine-tuning them on
non-malicious datasets might unintentionally impair their safety mechanisms [15, 17, 30]. Why is
alignment so fragile? [31] pinpoint areas essential for safety guardrails distinct from utility-relevant
regions, achieving this separation at both neuron and rank levels through weight attribution.

Machine Unlearning. The necessity for Machine Unlearning (MU) stems from the requirement
for adaptive learning systems to erase user privacy data and any derived lineage data [32]. This
technique is employed in data deletion [33], enhances the fairness of models [34, 35], and prevents
generative models from creating harmful content [4]. Current MU methods can be categorized into
two families: exact MU and approximate MU [36, 37]. Exact MU seeks to eliminate the influence of
specific data points entirely through comprehensive retraining, offering provable error guarantees for
data removal. Conversely, Approximate MU aims to reduce data point influence through efficient
parameter updates, trading off complete erasure for lower computational demands [38].

B Background

B.1 Large Language Models

We consider an LLM parameterized by θ and denoted by the output distribution pθ(·|·). The
generation process of the LLM can be defined by (X ,Y,V,L, pθ). The input space (prompt space)
is X ∈

∑≤lmax , and the output space (response space) is Y ∈
∑≤lmax for some constant lmax.

The model takes a sequence x = (x0, . . . , xn−1) as input to generate a corresponding output y =
(y0, . . . , ym−1), where xi and yj represent the individual tokens from a predetermined vocabulary Σ.

The autoregressive LLM pθ generates tokens sequentially for a given position, relying solely on
the previously generated tokens sequence. Consequently, this model can be conceptualized as a
markov decision process [39], wherein the conditional probability pθ(y|x) can be defined through a
decomposition as follows,

pθ
(
y0..k−1

∣∣x) = ∏
0≤k≤m

pθ
(
yk
∣∣x, y0..k−1

)
.

Pre-training. During pre-training, an LLM acquires foundational language comprehension and
reasoning abilities by processing vast quantities of unstructured text. The pre-train loss is defined as
follows:

LPT(θ;DPT) = −E(x,xN )∼DPT

[
log pθ

(
xN

∣∣x)] .
where x = (x0, · · · , xN−1) and N ∈ N, such that (x0, · · · , xN ) forms a prefix in some piece of
pre-training text.

Supervised Fine-tuning (SFT). This phase adjusts the pre-trained models to follow specific
instructions, utilizing a smaller dataset compared to the pre-training corpus to ensure mode alignment
with target tasks. For a given SFT dataset DSFT =

{(
xi,yi

)}N
i=1

which is sampled from a high-
quality distribution, SFT aims to minimize the negative log-likelihood loss:

LSFT(θ;DSFT) = −E(x,y)∼DSFT

[
log pθ

(
y
∣∣x)] .

Given that E(x,y)∼DSFT

[
log pD

(
y
∣∣x)] is fixed when specifying DSFT, the optimization objective

LSFT becomes the Kullback-Leibler (KL) divergence between the model pθ and the SFT distribution.

B.2 Compression Theory

Lossless Compression. The goal of lossless compression is to find a compression protocol that
encodes a given dataset D and its distribution PD with the smallest possible expected length, and
allows for a decoding scheme that can perfectly reconstruct the original dataset D from the compressed
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data. According to Shannon’s source coding theorem [40], for a random variable takes value from D
and follows PD, the expected code length L of any lossless compression protocol satisfies

L ≥ H (PD) .

where H (PD) stands for the Shannon entropy of PD. Huffman code [41] is a typical type of optimal
code for lossless compression. For a random variable follows PD, the expected code length L satisfies

H (PD) ≤ L ≤ H (PD) + 1.

Compression and Prediction. The relationship between data compression and prediction is tightly
interconnected. Consider a model pθ and x = (x0, · · · , xm−1) derived from a dataset D. Under
arithmetic coding [42, 43], the optimal expected code length L is given by:

L = Ex∼D

 ∑
0≤k≤m

− log2 pθ
(
xi

∣∣x0,··· ,k−1

) .

This aligns with the cross-entropy loss used when training pθ, which suggests a certain consistency
between compression and prediction. Hutter [44] provides a more detailed explanation of the
equivalence between compressing optimal and predicting optimal. Experimentally, further evidence
has been provided to demonstrate the equivalence between large language model prediction and
compression [42] and establish that compression performance represents intelligence linearly [43].

C Assumptions and Proofs

Definition C.1 (Inverse Alignment). Given an initial language model pθ0
, for any ϵ, after aligning it

on dataset Da to obtain the aligned model pθ1
, we use dataset Db (where |Db| ≪ |Da|) to perform an

operation on pθ1 . This process yields an inverse-aligned model pθ′
0
, such that ρ(pθ′

0
, pθ0) ≤ ϵ for a

given metric function ρ (which can be viewed as a measure of behavioral and distributional proximity
between two models). We define the transition from pθ1 back to pθ0 as inverse alignment.
Remark C.2 (Pruning of the TRT). For a pruned node S of a TRT, the pruning operation is as follows:
remove the pruned node and all its children, then add the probability of the node S to its parent’s EOS
node. The pruning operation decreases the depth and the number of nodes in the TRT while the sum
of the probability of all EOS nodes remains constant at 1.
Remark C.3 (z’s meaning). Since model compression for datasets involves both pre-training and SFT
processes, z represents different meanings in these two processes. During pre-training, z represents
a complete sequence of text segments; whereas during SFT, z represents a complete sequence of
questions and corresponding answers in the dataset.
Assumption C.4 (Scale of T is Monotone with Model Size). Consider a parameterized model pθ (·),
the dataset D and D’s TRT TD. Due to the finite size of model parameters θ, the model pθ can only
represent a limited portion of D, which corresponds to a finite pruning of the tree TD. Let’s assume
that the depth of the pruned tree T ′

D is monotonically increasing with the size of θ.
Theorem C.5 (Ideal Code Length with Finite-parameter Model). Consider a finite parameter
model pθ (·) which is training on dataset D, the ideal code length Lpθ

(x) of a random response x
compressed by pθ can be expressed as follows,

E [Lpθ
(x)] =

⌈∣∣x∣∣
d

⌉−
d∑

i=1

2i−1∑
j=1

pij log pij

 (3)

where d represents the depth of the TD after pruning under Definition 2.4 protocol, pij represents the
probability values of the EOS nodes for the j-th node at the i-th layer.

Proof. When
∣∣x∣∣ ≤ d, the compression protocol defined in Definition 2.4 can perfectly compress x.

Hence, the expectation of the ideal code length Lpθ
(x) satisfies:

E [Lpθ
(x)] =

−
d∑

i=1

2i−1∑
j=1

pij log pij

 (4)
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where d represents the depth of the pruned tree T ′
D and pij represents the probability values of the

EOS nodes for the j-th node at the i-th layer.

Now consider sd ≤
∣∣x∣∣ ≤ (s + 1)d. Let us suppose that x = (x1 · · ·xsxs+1), where |xk| = d,

for k ∈ {1, . . . , s} and |xs+1| ≤ d. In this case, x cannot be perfectly compressed by the model.
Hence, the compression of x needs to be performed in segments, and the length of each segment is
not greater than d.

Ex [Lpθ
(x)] = Ex1

[Lpθ
(x1)] + Ex1

E(x2...xs+1)

[
Lpθ

((x2 . . .xs+1))
∣∣x1

]
(5)

= Ex1 [Lpθ
(x1)] +

∑
x1

p(x1)
∑

(x2...xs+1)

p(x2 . . .xs+1

∣∣x1) · Lpθ
((x2 . . .xs+1))

(6)

= Ex1
[Lpθ

(x1)] +
∑

(x1...xs+1)

p(x1 . . .xs+1) · p(x1)

p(x1)
· Lpθ

((x2 . . .xs+1)) (7)

= Ex1
[Lpθ

(x1)] +
∑

(x2...xs+1)

p(x2 . . .xs+1) · Lpθ
((x2 . . .xs+1)) (8)

= Ex1
[Lpθ

(x1)] + E(x2...xs+1) [Lpθ
((x2 . . .xs+1))] (9)

=

s+1∑
k=1

Exk
[Lpθ

(xk)] (10)

=

⌈∣∣x∣∣
d

⌉−
d∑

i=1

2i−1∑
j=1

pij log pij

 (11)

thus the proof is completed.

Definition C.6 (Compression Rate of Finite-parameter Model). Consider a finite parameter model
pθ (·) which is training on dataset D that follows the distribution pD, the reciprocal of the data
compression rate γpθ

of the model pθ is defined as follows,

γpθ
= Ex

[
Ex [Lpθ

(x)]∣∣x∣∣
]

(12)

= Θ

−
∑d

i=1

∑2i−1

j=1 pij log pij

d

 , (13)

where pij , d share the same definition as in Theorem 2.5.

Assumption C.7 (Leaf Node Probability Concentration). Consider the TRT of dataset D. Due to the
high proportion of long texts in the dataset , we assume that the probability density of the pruned tree
T ′
D with depth d is concentrated at the leaf nodes. Let the EOS token probabilities at the leaf nodes of

T ′
D be denoted as p1, · · · , p2d−1 , the assumption implies that,

2d−1∑
i=1

pi = 1 (14)

Theorem C.8 (The Validity of Assumption 2.2). Considering a token table with k different tokens,
where k > 2. In the sense of compression, the average encoding length E[Lk,pθ

(x)] for a random
response x has the following relationship with the average encoding length E[L2,pθ

(x)] of a token
table with only binary tokens.

E[Lk,pθ
(x)] = Θ

(
E[L2,pθ

(x)]

log2 k

)
(15)

Proof. When compressing a random response x using a token table with k tokens, consider the
following alternative: Suppose the k tokens are 0, 1, · · · , k − 1. Write these k tokens in binary and
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replace the original k tokens’ ToT (Definition 2.3) with a ToT that uses only binary tokens. We now
compute the difference in average encoding length between these two setups:

E[Lk,pθ
(x)] = Θ

⌈∣∣x∣∣
d

⌉−
kd−1∑
j=1

pij log pij


 (16)

= Θ

∣∣vx∣∣
(
−
∑2⌈log2 k⌉d−1

j=1 pij log pij

)
d

 (Due to Assumption C.4) (17)

= Θ

∣∣x∣∣
(
−
∑2⌈log2 k⌉d−1

j=1 pij log pij

)
⌈log2 k⌉ ∗ d

⌈log2 k⌉

 (18)

= Θ

⌈ ∣∣x∣∣
d

⌈log2 k⌉

⌉ ⌈−∑2⌈log2 k⌉d−1

j=1 pij log pij

⌉
log2 k

 (19)

= Θ

(
E[L2,pθ

(x)]

log2 k

)
(20)

where d represents the depth of the original ToT.

Definition C.9 (Joint Compression of Multiple Datasets). Consider using a finite parameter model to
compress N pairwise disjoint datasets D1, · · · ,DN . For the TRT of the jointly compressed dataset
D =

⋃N
k=1 Dk, in the context of joint compression, the node weights relate to the node weights of

each compressed dataset Dk as follows.

pDi =

∑N
k=1 p

Dk
i

∣∣Dk

∣∣∑N
k=1

∣∣Dk

∣∣ , (21)

where pDi stands for the probability value for the node in TD while pDk
i stands for the probability value

for the node in TDk
. The finite parameter joint compression process for D1, · · · ,DN is essentially

the process of compressing D according to Definition 2.4.

Definition C.10 (Compression Rate for Specific Dataset). For N pairwise disjoint datasets
D1, · · · ,DN and a finite parameter model pθ compressing D =

⋃N
k=1 Dk, the reciprocal of the

compression rate γDi
pθ

for a particular dataset Dk is defined as follows.

γDi
pθ

= Ex∼Pi

[
Ex∼Pi

[
LDi
pθ
(x)
]∣∣x∣∣
]

(22)

= Ex∼Pi

 1∣∣x∣∣
⌈∣∣x∣∣

d

⌉−
d∑

i=1

2i−1∑
j=1

pDk
ij log pDij


 (23)

= Θ

−
∑d

i=1

∑2i−1

j=1 pDk
ij log pDij

d

 , (24)

where pDk
ij represents the probability values of the EOS nodes for the j-th node at the i-th layer in T ′

k .

Definition C.11 (Mass Distribution in TRT). Consider the sample space Ω consisting of all responses
in dataset D. The probability distribution PD of all subtrees at the d-th level nodes of TD is a mapping
from Ω to [0, 1]. Let XD be the random variable representing the probability value taken at each leaf.
The mass distribution Pmass represents the probability that XD takes the corresponding probability
value. According to the definition of Pmass, E[XD] = 1

Remark C.12 (Mixture of Mass Distribution). For independently and differently distributed datasets
D1, . . . ,DN , D =

⋃N
i=1 Di is a mixture of these datasets. According to Definition C.9, for the
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pruned trees T1, . . . , TN of these datasets with depth d, the random variables of their leaf nodes
satisfy the following relationship:

XD =

∑N
k=1

∣∣Dk

∣∣XDk∑N
k=1

∣∣Dk

∣∣ (25)

where XDk
follows the mass distribution Pk

mass. For XDk1
and XDk2

from different datasets, XDk1

and XDk2
are independent of each other.

Lemma C.13 (Entropy of Mass Distribution). Consider the pruned trees T ′ and T ′
k of dataset D

and D =
⋃N

i=1 Di, both with depth d. Denote that the response distribution of the leaf nodes of T ′ is
PD, and the mass distribution is Pmass. Similarly, the response distribution of the leaf nodes of T ′

k

is PD
k , and the mass distribution is Pk

mass. When d is sufficiently large, the Shannon entropy of the
response distribution can be rewritten as follows.

Ex∼Pk

[
−pDk log pD

]
= EXDk

∼Pk
mass,XD∼Pmass

[−XDk
logXD] + log 2d−1 (26)

where pD, pDk stand for the probability of the leaf nodes of T ′,T ′
k while XDk

, XD stand for the
random variables of the probability of the leaf nodes of T ′,T ′

k .

Proof. Let M = 2d−1 be the number of leaf nodes of T ′ with depth d. According to the definitions of
the response distribution P and mass distribution Pmass, we have MpDj = XDj

,∀j ∈ {1, . . . , N}.
Therefore,

Ex∼Pk

[
−pDk log pD

]
=

M∑
i=1

−pDk
i log pDi (27)

=

M∑
i=1

−Xi,Dk

M
log

Xi,D

M
(28)

=

M∑
i=1

− 1

M
Xi,Dk

logXi,Dk
+ logM (29)

= EXDk
∼Pk

mass,XD∼Pmass
[−XDk

logXD] + log 2d−1 (30)

Remark C.14. In Lemma C.13, XDk
are assumed to be independent. However due to

∑M
i=1 p

Dk
i = 1,

the XDk
are not actually independent. Considering that d is sufficiently large in our subsequent

analysis, we can regard the independence of XDk
as a good approximation.

Assumption C.15 (Introduction of Pareto Distribution). We assume that the mass distribution of the
segment follows a heavy-tailed Pareto distribution, with supporting evidence from [45, 46]. In this
paper, we assume that the mass distribution of the pruned trees T ′ of the same depth d from different
datasets follows a Pareto distribution with the same parameters.

pX(x) =

{
αCα

xα+1 x ≥ C,

0 x < C.
(31)

where α,C are parameters of the Pareto distribution. Here we assume that α is sufficiently large due
to the lighter heavy-tailed nature of the mass distribution.
Definition C.16 (Normalized Compression Rate). For N pairwise disjoint datasets D1, · · · ,DN

and a finite parameter model pθ compressing D =
⋃N

k=1 Dk, the normalized reciprocal of the
compression rate γ

Dk/D
pθ for a particular dataset Dk is defined as:

γDk/D
pθ

=
γDk
pθ

− 1
d log 2

d−1

γD
pθ

− 1
d log 2

d−1
, (32)

where d is the depth of the pruned tree T ′
k of dataset Dk. Here, 1

d log 2
d−1 is the reciprocal of the

compression rate for a uniform distribution while γD
pθ

represents the reciprocal of the compression
rate for D.
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Theorem C.17 (Elasticity of Language Models). Consider datasets D1, D2, D3 each with a Pareto
mass distribution (Assumption C.15), and the model pθ (·) trained on D = D1 ∪ D2 ∪ D3. When
dataset D3’s data volume |D3| changes, the normalized reciprocal of the compression ratio γ

D1/D
pθ ,

γ
D2/D
pθ of the model for D1 and D2 satisfies:

dγ
D2/D
pθ

d l
= Θ

(
k
dγ

D1/D
pθ

d l

)
(33)

dγ
D1/D
pθ

d l
> 0 (34)

dγ
D2/D
pθ

d l
> 0 (35)

where l = |D3|
|D2| ≪ 1, k = |D1|

|D2| ≫ 1.

Proof. For the sake of convenience in calculations, we first use Lemma C.13 to replace the Shannon
entropy of response distribution.

dγ
Dj/D
pθ

d l
=

d

(
Ex∼Pj [−pDj log pD]−log 2d−1

Ex∼P [−pD log pD]−log 2d−1

)
d l

(36)

=

d

(
E
XDj

∼Pj
mass,XD∼Pmass

[−XDj
logXD]

EXD∼Pmass,XD∼Pmass [−XD logXD]

)
d l

. (37)

According to Assumption C.15, XDj
follows a Pareto distribution with the same parameters α and c.

Hence,

EXDj
∼Pj

mass,XD∼Pmass

[
−XDj

logXD
]

(38)

= −
∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3αxj∏3
i=1 x

α+1
i

log

∑3
i=1

∣∣Di

∣∣xi∑3
i=1

∣∣Di

∣∣ dx1dx2dx3 (39)

= −
∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3αxj∏3
i=1 x

α+1
i

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3 (40)

EXD∼P,
massXD∼Pmass

[−XD logXD] (41)

= −
∫ +∞

c

∫ +∞

c

∫ +∞

c

α3c3α∏3
i=1 x

α+1
i

· kx1 + x2 + lx3

k + l + 1
log

kx1 + x2 + lx3

k + l + 1
dx1dx2dx3, (42)

where j = 1, 2, 3. Therefore,
dγD1/D

pθ

d l and
dγD2/D

pθ

d l can be written as:

dγ
D1/D
pθ

d l
=

dS1

d l H − dH
d l S1

H2
(43)

dγ
D2/D
pθ

d l
=

dS2

d l H − dH
d l S2

H2
, (44)

where

H =

∫ +∞

c

∫ +∞

c

∫ +∞

c

kx1 + x2 + lx3

xα+1
1 xα+1

2 xα+1
3 (k + l + 1)

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3 (45)

S1 =

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα
1x

α+1
2 xα+1

3

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3 (46)

S2 =

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα+1
1 xα

2x
α+1
3

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3. (47)
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Proving that
dγD2/D

pθ

d l = Θ

(
k
dγD1/D

pθ

d l

)
is equivalent to proving:

lim
k→+∞, l→0

k ·
dγD1/D

pθ

d l

dγ
D2/D
pθ

d l

= C (48)

where C is a constant. By substituting (43) and (44) into (48), we have

lim
k→+∞, l→0

k ·
dγD1/D

pθ

d l

dγ
D2/D
pθ

d l

=
limk→+∞, l→0 k

(
dS1

d l H − dH
d l S1

)
limk→+∞, l→0

dS2

d l H − dH
d l S2

(49)

Now calculate the values of S1, S2, H and dS1

d l , dS2

d l , dH
d l respectively in the case of k → +∞, l → 0.

lim
k→+∞, l→0

S1

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα
1x

α+1
2 xα+1

3

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3 (50)

=

∫ +∞

c

∫ +∞

c

lim
k→+∞, l→0

∫ δ(kx1+x2)

c

1

xα
1x

α+1
2 xα+1

3

log
kx1 + x2 + lx3

k + l + 1
dx3dx1dx2 (51)

=

∫ +∞

c

∫ +∞

c

lim
k→+∞, l→0

∫ +∞

c

1

xα
1x

α+1
2 xα+1

3

log
θ1(kx1 + x2)

k + l + 1
dx1dx2dx3 (52)

where θ1 ∈ (1, 1 + δ)

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα
1x

α+1
2 xα+1

3

log
θ1(kx1 + x2)

k + 1
dx1dx2dx3 (53)

lim
k→+∞, l→0

S2

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα+1
1 xα

2x
α+1
3

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3 (54)

=

∫ +∞

c

∫ +∞

c

lim
k→+∞, l→0

∫ δ(kx1+x2)

c

1

xα+1
1 xα

2x
α+1
3

log
kx1 + x2 + lx3

k + l + 1
dx3dx1dx2 (55)

=

∫ +∞

c

∫ +∞

c

lim
k→+∞, l→0

∫ +∞

c

1

xα+1
1 xα

2x
α+1
3

log
θ2(kx1 + x2)

k + l + 1
dx3dx1dx2 (56)

where θ2 ∈ (1, 1 + δ)

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα+1
1 xα

2x
α+1
3

log
θ2(kx1 + x2)

k + 1
dx1dx2dx3 (57)

lim
k→+∞, l→0

H

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

kx1 + x2 + lx3

xα+1
1 xα+1

2 xα+1
3 (k + l + 1)

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3

(58)

=

∫ +∞

c

∫ +∞

c

lim
k→+∞, l→0

∫ δ(kx1+x2)

c

kx1 + x2 + lx3

xα+1
1 xα+1

2 xα+1
3 (k + l + 1)

log
kx1 + x2 + lx3

k + l + 1
dx3dx1dx2

(59)

=

∫ +∞

c

∫ +∞

c

lim
k→+∞, l→0

∫ +∞

c

θ(kx1 + x2)

xα+1
1 xα+1

2 xα+1
3 (k + 1)

log
θ(kx1 + x2)

k + l + 1
dx3dx1dx2 (60)

where θ ∈ (1, 1 + δ)

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

θ(kx1 + x2)

xα+1
1 xα+1

2 xα+1
3 (k + 1)

log
θ(kx1 + x2)

k + 1
dx1dx2dx3 (61)
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lim
k→+∞, l→0

dS1

d l

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

(k + 1)x3 − kx1 − x2

xα
1x

α+1
2 xα+1

3 (k + l + 1)(kx1 + x2 + lx3)
dx1dx2dx3 (62)

=
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c

∫ +∞
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3 (k + 1 + l)
dx1dx2dx3 (63)

=
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c
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k→+∞, l→0
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c
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c
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c

1

xα
1x

α+1
2 xα+1

3 (k + 1 + l)
dx1dx2dx3 (64)

where θ′1 ∈ (1, 1 + δ)

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα
1x

α+1
2 xα

3 θ
′
1(kx1 + x2)

dx1dx2dx3

− lim
k→+∞, l→0

1

(k + 1)α2(α− 1)c3α−1
(65)

lim
k→+∞, l→0

dS2

d l

= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c
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dx1dx2dx3 (66)

=
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∫ +∞
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k→+∞, l→0
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c

∫ +∞

c

∫ +∞

c

1
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1 xα

2x
α+1
3 (k + 1 + l)

dx1dx2dx3 (67)

=

∫ +∞

c

∫ +∞

c
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1 xα
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α+1
3 (k + 1 + l)

dx1dx2dx3 (68)

where θ′2 ∈ (1, 1 + δ)

= lim
k→+∞, l→0

∫ +∞
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∫ +∞
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1
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1 xα
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lim
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dH
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= lim
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∫ +∞
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∫ +∞
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= lim
k→+∞, l→0
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c

∫ +∞
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log
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k + l + 1
dx1dx2dx3
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∫ +∞

c

∫ +∞

c

∫ +∞

c

kx1 + x2 + lx3
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1 xα+1

2 xα+1
3 (k + l + 1)2

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3

(71)

=

∫ +∞

c

∫ +∞

c

lim
k→+∞, l→0

∫ δ(kx1+x2)

c

1

xα+1
1 xα+1

2 xα
3 (k + l + 1)

log
kx1 + x2 + lx3

k + l + 1
dx1dx2dx3
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∫ +∞

c

∫ +∞

c
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∫ δ(kx1+x2)
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1 xα+1
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log
kx1 + x2 + lx3
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= lim
k→+∞, l→0

∫ +∞

c

∫ +∞

c

∫ +∞
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1

xα+1
1 xα+1

2 xα
3 (k + 1)

log
θ′(kx1 + x2)

k + 1
dx1dx2dx3
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∫ +∞

c

∫ +∞

c

∫ +∞

c

θ′(kx1 + x2)

xα+1
1 xα+1

2 xα+1
3 (k + 1)2

log
θ′(kx1 + x2)

k + 1
dx1dx2dx3 (73)

where θ′ ∈ (1, 1 + δ)

Taking δ → 0, we have θ = θ1 = θ2 = θ′ = θ′1 = θ′2 = 1.

Therefore, the above formula can be simplified to:

lim
k→+∞, l→0

S1 (74)

= lim
k→+∞

∫ +∞

c

∫ +∞

c

∫ +∞

c

1

xα
1x

α+1
2 xα+1

3

log
kx1 + x2

k + 1
dx1dx2dx3 (75)

= lim
k→+∞

∫ +∞

c

∫ +∞

c

∫ +∞

c

log x1

xα
1x

α+1
2 xα+1

3

dx1dx2dx3 (76)

=
(α− 1) log c+ 1

α2(α− 1)2c3α−1
(77)

lim
k→+∞, l→0

S2 (78)

= lim
k→+∞

∫ +∞
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∫ +∞
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3

log
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c

∫ +∞
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α3(α− 1)c3α−1
(81)
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lim
k→+∞, l→0
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d l
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c
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c

1
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1
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lim
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c
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c
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c

1
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c
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c
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c

(kx1 + x2)

xα+1
1 xα+1

2 xα+1
3 (k + 1)2

log
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= lim
k→+∞

α log c− 1

(k + 1)(α− 1)α3c3α−1
− k((α− 1) log c− 1)

(k + 1)2α2(α− 1)2c3α−1
(94)

=
1

(k + 1)2
· α log c− 1

(α− 1)2α2c3α−1
, (95)

when α is sufficiently large. As a result, Equation 49 can be written as:

lim
k→+∞, l→0

k ·
dγD1/D

pθ

d l

dγ
D2/D
pθ

d l

(96)

= lim
k→+∞

k ·
(

1
k2α2(α−1)c3α−1 − α log c−1

k2α2(α−1)2c3α−1

)
· (α−1) log c+1
α2(α−1)2c3α−1

1
kα2(α−1)2(α+1)c3α−1 · (α−1) log c+1

α2(α−1)2 c3α−1
(97)

=α(α+ 1)(1− log c) (98)

where α(α+ 1)(1− log c) is a constant. Thus, the proof is completed.

Next, we prove that
dγD1/D

pθ

d l > 0,

dγ
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d l
(99)

=
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·
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dS1
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d l
S1

)
(100)
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− α log c− 1
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· α(1− log c)
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· (α− 1) log c+ 1
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By Definition C.11, we have c = 1−α
α . Therefore, we have

dγ
D1/D
pθ

d l
> 0 (103)

Similarly, because k is sufficiently large,

dγ
D2/D
pθ

d l
(104)

=
1

kα2(α− 1)2(α+ 1)c3α−1
· (α− 1) log c+ 1

α2(α− 1)2
c3α−1 (105)

− α log c− 1

(k + 1)2(α− 1)2α2c3α−1
· α log c+ 1

α3(α− 1)c3α−1
(106)

=
1

kα2(α− 1)2(α+ 1)c3α−1
· (α− 1) log c+ 1

α2(α− 1)2
c3α−1 (107)

>0. (108)

D Experiment Details

D.1 Experiments Setup

Tasks and Datasets. We select two tasks: positive generation and single-turn safe conversation. For
the former, we use the data classified as positive or negative in the IMDb dataset [19]. Referring to
[8], we use the first 2-8 tokens of each complete text as a prompt for LLMs to generate the subsequent
content. For the latter, we use the data classified as safe and unsafe in PKU-SafeRLHF [4]. We
organize the positive sample sizes into {1000, 2000, 5000, 10000}, while the negative sample sizes,
being fewer in number, were divided into {100, 200, 500, 1000, 2000}.

Model Training and Inference. We first verify elasticity in popular pre-trained LLMs, Gemma-2B
[20] and Llama2-7B [7]. Subsequently, we examine the relationship between elasticity and model
size using Qwen models [21] across sizes of 0.5B, 4B, and 7B. Finally, to analyze the connection
between elasticity and the amount of pre-training data, we conduct further experiments on the 2.0T,
2.5T, and 3.0T slices of TinyLlama [22].

Evaluation and Metrics. We collect the model’s responses on the reserved test prompts. Then we
use score models provided by existing research to complete the performance evaluation. For positive
style generation, we refer to [8] and use the Sentiment Roberta model [47] to classify the responses,
taking the proportion of all responses classified as positive as the model score. For single-turn safe
dialogue, we use the cost model provided by [12] to score the safety of each response, using the
average score of all responses as the model score.

D.2 Experiments Results

To further verify the existence of model elasticity and the generality of its relationship with model
size and pre-training data amount, we conducted experiments with different fine-tuning algorithms
(DPO [8]), broader scales of pre-training data amount, and larger sizes of pre-trained models.

DPO Finetuning Experiments on LLMs Elasticity. We used the RLHF algorithm [9], specifically
DPO [8], to fine-tune large language models in order to observe the elasticity of the models. The
experimental procedure consists of the following two steps: 1) Perform SFT on the pre-trained model
using various levels of positive sample data. 2) Use various levels of negative sample data, where
negative samples are used as chosen responses and positive samples as rejected responses, to apply
DPO for inverse alignment on the positively aligned model.

The experimental results are shown in Figure 5 and Figure 6. The results indicate that under DPO
fine-tuning, LLMs continue to exhibit elasticity in style generation tasks. Additionally, as the model
size and the amount of pre-training data increase, the model’s elasticity shows an enhancing trend,
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which is consistent with the conclusions in Figures 3 and Figure 4. This suggests that differences in
fine-tuning alignment algorithms do not affect the elasticity of language models.
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Figure 5: DPO Finetuning Experiments on IMDb. Each subfigure from left to right shows the changes
in LLMs with parameter sizes of 0.5B, 4B, and 7B.
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Figure 6: DPO Finetuning Experiments on IMDb. Each subfigure from left to right shows the changes
in pre-training data sizes of 2.0T, 2.5T, and 3.0T.

Reverse Finetuning Experiments on LLMs Elasticity. To eliminate the influence of positive data
on model elasticity experimental results, we adopted a reverse experimental setup: we use negative
data during SFT stage and use positive data during inverse alignment stage. The experimental results
are shown in Figure 7. The results indicate that elasticity in language models is still observed in
the reverse experiments, showing a trend where larger model sizes correspond to greater elasticity,
consistent with the results in Figure 3.
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Figure 7: Reverse Fine-tuning Results on IMDb. Each subfigure from left to right shows the changes
in LLMs with parameter sizes of 0.5B, 4B, and 7B, respectively.

Pre-training Data Amount Experiments on LLMs Elasticity. We present the experimental results
for a broader range of pre-training data volumes in Figure 8. When the pre-training data volume
is 0.1T, 0.5T, and 1.0T, the model still demonstrates the phenomenon that elasticity increases with
the volume of pre-training data, which is consistent with the results reported in Figure 4, where the
pre-training data sizes range from 2.0T to 3.0T.
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Figure 8: Experimental Results on IMDb. Each subfigure from left to right shows the changes in
pre-training data sizes of 0.1T, 0.5T, and 1.0T.
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Figure 9: Experimental Results on IMDb with Qwen1.5
72B.

Model Size Scale Experiment on
LLMs Elasticity. To examine
whether the elasticity phenomenon
in language models is independent of
model parameter size, we conducted
experiments on the larger parameter-
scale model, Qwen1.5 72B[21]. The
experimental results are shown in
Figure 9. The results indicate that even
models with larger parameter sizes
still exhibit the elasticity phenomenon,
demonstrating that the presence of
elasticity is not dependent on the size of
the model parameters.

E Comparison between Inverse Alignment and Forward Alignment

The implicit resistance of language models to alignment raises another issue worth investigating: Is
inverse alignment easier than forward alignment? In this section, we extract several sliced models
during the fine-tuning process and construct twin datasets to perform inverse operations on models at
different stages. We aim to verify the behavioral differences between forward and inverse alignment.

E.1 Experiment Setup

Tasks and Datasets. During the experiment, we select three tasks for extensive testing, including
instruction-following [48], TruthfulQA [49], and PKU-SafeRLHF [4]. These tasks correspond to the
widely accepted 3H standards (Helpful, Harmless, and Honest) [50] for LLMs. We divide the dataset
into four equal parts to obtain four sliced models during the fine-tuning process. In the Harmless
and Honest experiments, we pre-fine-tune the model with the 52K Alpaca [48] instruction-following
dataset to equip the base model with conversational capabilities.

Model Training and Inference. We consider Llama2-7B, Llama2-13B [7] and Llama3-8B [51] as
the base model θ0. We adopt the AdamW optimizer with β1 = 0.99, β2 = 0.95, and weight dacay
= 0.01 in all experiments. All models are trained on 8×A800 GPUs. During inference, we use the
parameters of top-k:30, top-p:0.9, and temperature:0.1.

E.2 Experiment Design

As shown in Figure 10,starting from an pretrained model parameter θk and a fune-tuning dataset D,
we divide the dataset D into several portions of the same size, D1, D2, D3 . . . Dm, using them to
fine-tune model θk sequentially, i.e.,

θk+j
(Dj)7−−−→ θk+j+1

Without loss of generality, we consider two sliced models, θk+1 and θk+2 during the fine-tuning
process. Measuring the transition from model θk+1 to model θk+2 is straightforward, considering
factors such as data volume, update steps, and parameter distribution. However, measuring the
transition from model θk+2 to model θk+1, i.e., inverse alignment, is difficult. To address this
challenge, we design the following experiment: we fine-tune models based on θk+1 and θk+2 to
derive θ†k+1 and θ†k+2, which we designate as path A and path B, respectively. Specifically, we use a
shared query set Q for paths A and B.

Figure 10: Parameter evaluation over slice models.

Path A. Responses generated by θk+1

based on Q are used to form Q −
Aθk+1 pairs for path A’s inverse align-
ment.

Path B. Similarly, responses gener-
ated by θk+2 based on Q are used to
form Q − Aθk+2 pairs for path B’s
forward alignment.
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Given that paths A and B have identical training hyper-parameters and query set, we can assess the
differences between θ†k+1 and θk+1 (represented by δk+1), and between θ†k+2 and θk+2 (represented
by δk+2), utilizing the same training steps. If δk+2 is consistently greater than δk+1, it suggests that
θ†k+1 aligns more closely with θk+1. Consequently, inverse alignment proves more effective with
the same training step than forward alignment. We use cross-entropy as the distance metric when
calculating δk+1 and δk+2.

E.3 Experiment Details

Specifically, we chose Alpaca52k dataset[48], 52k safe alignment dataset[4] and 72k truthful align-
ment dataset[4] as experiment datasets D and divided each experiment dataset into four parts:
D1, D2, D3 and D4. As shown in Figure 1, for the first three parts of the experiment data, we
performed sequentially fine-tuning on the base models to obtain models θ1,θ2,θ3. And for the safe
and truthful dataset, we first used Alpaca52k[48] fine-tuning on the base models to endow them with
instruction-following abilities, followed by relay fine-tuning on these models.
Next, we had these three models generate data on the D4 dataset, resulting in the dataset required
for inverse alignment and forward alignment. Using these datasets, we performed inverse alignment
and forward alignment on three sets of models (θ1,θ2), (θ2,θ3), and (θ1,θ3). Based on the above
training, we obtained three sets of models (θ′

12,θ
′
21), (θ

′
23,θ

′
32), and (θ′

13,θ
′
31).

We used cross entropy to compare the differences between the original models and the models
generated by inverse alignment and forward alignment. For instance, for models θ2 and θ′

12, we
compared their cross entropy H(θ2,θ

′
12), as shown in Table 2.

In the actual experiment, we calculated the cross-entropy of two models by disabling loss backprop-
agation during a fine-tuning stage. This fine-tuning stage used test data generated by the model
corresponding to the first parameter of the cross-entropy comparison. Specifically, the question of test
data used came from a general field question set, and the fine-tuned model was the one whose param-
eter is the second parameter in the cross-entropy comparison. All the experiment hyper-parameters
were in the Table 1

Table 1: Hyper-parameters of Experiment E.

Training Type Datasets Epoch Learning rate Lr schedule
Type

Alpaca52k Fine-tuning Alpaca52k 3 1e-5 cosine

Sequential Fine-tuning All Dataset 1 1e-5 constant

Inverse Fine-tuning &
Forward Fine-tuning Alpaca52k 2 3e-6 constant

Inverse Fine-tuning &
Forward Fine-tuning

Safe Dataset &
Truthful Dataset 1 3e-6 constant

E.4 Experiment Results

Table 2: Comparsion between Inverse Alignment and Forward Alignment.
Datasets Base Models H(pθ1 , pθ†

21
) vs. H(pθ2 , pθ†

12
) H(pθ2 , pθ†

32
) vs. H(pθ3 , pθ†

23
) H(pθ1 , pθ†

31
) vs. H(pθ3 , pθ†

13
)

Instruction-Following
Llama2-7B 0.1589 vs. 0.2018 0.1953 vs. 0.2143 0.1666 vs. 0.2346
Llama2-13B 0.1772 vs. 0.1958 0.2149 vs. 0.2408 0.1835 vs. 0.2345
Llama3-8B 0.2540 vs. 0.2573 0.2268 vs. 0.3229 0.2341 vs. 0.2589

Truthful
Llama2-7B 0.1909 vs. 0.2069 0.1719 vs. 0.1721 0.2011 vs. 0.2542
Llama2-13B 0.1704 vs. 0.1830 0.1544 vs. 0.1640 0.1825 vs. 0.2429
Llama3-8B 0.2118 vs. 0.2256 0.2100 vs. 0.2173 0.2393 vs. 0.2898

Safe
Llama2-7B 0.2730 vs. 0.2809 0.2654 vs. 0.2691 0.2845 vs. 0.2883
Llama2-13B 0.2419 vs. 0.2439 0.2320 vs. 0.2327 0.2464 vs. 0.2606
Llama3-8B 0.2097 vs. 0.2156 0.2008 vs. 0.2427 0.2277 vs. 0.2709

As shown in Table 2, the experimental results show that δk+1 is smaller than δk+2 across all
three dimensions of the three types of models with all three types datasets. In addition to the
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comparisons mentioned in the experimental design, to eliminate the influence of model differences
on the comparison between inverse alignment and forward alignment, we also compare θ1 with θ3,
whose difference corresponds to δk+1 and δk+3 in the experimental design. The results are also
as expected. All experimental results demonstrate that inverse alignment is easier than forward
alignment across diverse models and datasets.
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