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Unify Graph Learning with Text:
Unleashing LLM Potentials for Session Search

Anonymous Author(s)∗

ABSTRACT
Session search involves a series of interactive queries and actions
by a user to fulfill a complex information need. Current strategies
typically prioritize sequential modeling for deep semantic under-
standing, often overlooking the graph structure in interactions.
On the other hand, while some approaches focus on capturing
structural behavior data, they use a generalized representation for
documents, neglecting the nuanced word-level semantic model-
ing. In this paper, we propose a model named Symbolic Graph
Ranker (SGR), which aims to take advantage of both text-based and
graph-based approaches by leveraging the power of recent Large
Language Models (LLMs). Concretely, we first introduce a method
to convert graph structure data into text using symbolic grammar
rules. This allows integrating session search history, interaction
process, and task description seamlessly as inputs for the LLM.
Moreover, given the natural discrepancy between LLMs pre-trained
on textual corpora, and the symbolic text we produce using our
graph-to-text grammar, our objective is to enhance LLMs’ ability
to capture graph structures within a textual format. To achieve
this, we introduce a set of self-supervised symbolic learning tasks
including link prediction, node content generation, and generative
contrastive learning, to enable LLMs to capture the topological in-
formation from coarse-grained to fine-grained. Experiment results
and comprehensive analysis on two benchmark datasets, AOL and
Tiangong-ST, confirm the superiority of our approach. Our para-
digm also offers a novel and effective methodology that bridges the
gap between traditional search strategies and modern LLMs1.

CCS CONCEPTS
• Information systems → Retrieval models and ranking..
ACM Reference Format:
Anonymous Author(s). 2024. Unify Graph Learning with Text: Unleashing
LLM Potentials for Session Search. In Proceedings of Make sure to enter the
correct conference title from your rights confirmation emai (ACM WWW ’24).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
To address intricate information requirements, users often engage
in multiple rounds of interaction with search engines to obtain
results that better align with their search intent. This series of user
1https://anonymous.4open.science/r/SGR-A6E5/
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(a) Sequence Modeling

…

…

(b) Graph Modeling

(c) Symbolic Graph Modeling

<click>

<click>

<transfer>

<transfer>

Search Session

Query

Document

Vector

Figure 1: Comparing paradigms for session search: (a) sequen-
tial, (b) graph-based, and (c) our symbolic sequencemodeling.
Our method takes advantage of the benefits of both sequen-
tial modeling (for enhanced semantic encoding) and graph
modeling (to capture structural user behavior).

activities such as issuing queries and clicking on items within a
compact time interval is often denoted as a search session. The
contextual information in search sessions, including sequences of
queries and user click behaviors, can be harnessed to enhance the
efficacy of search systems [8, 34, 36, 51, 58].

A series of studies view a user’s search session as a sequential be-
havior. In this approach, all the queries and documents in a session
are alternatively concatenated using a pre-trained language model,
such as BERT [14], to produce the ultimate search results [6, 34, 56],
as shown in Figure 1(a). These techniques are adept at capturing
the semantic meaning of user queries since the information flows
throughout the input at a fine-grained word level. However, these
studies often overlook that a search session is a dynamic interaction
process with rich user engagement data, not just mere linguistic
text. More recently, another line of research seeks to better harness
the structural data within the search session through graph model-
ing. In this approach, the queries and documents within a session
form a heterogeneous graph [26, 43] as in Figure 1(b). Nevertheless,
the nodes in the graph offer one overall and coarse representation
of each document or query, as they overlook the detailed nuances
at the word level.

To address the aforementioned challenge andmerge the strengths
of both techniques, an intuitive way is to transform the heteroge-
neous structural information into text that can be understood by
language models. In this way, the word-level information can fully
flow throughout the language model while keeping the graph struc-
ture information. However, this process requires the model to have
profound language comprehension and reasoning capabilities, for
capturing the graph’s structural nuances from text and for assessing
the relevance between the query and the document - a challenge

1
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that might hinder previous research. Fortunately, with the advent
of LLMs, their impressive proficiencies have been showcased across
numerous NLP and IR tasks [32, 38, 39]. They provide deep con-
textual insights, precise semantic understanding, and hold great
promise in modeling content across various modalities [53, 54].
Thus, we are optimistic about leveraging LLMs to interpret graph
structures linguistically, enabling a comprehensive exploration of
both semantic and structural information within a search session.

Concretely, we first create a heterogeneous graph, distinguishing
between query and document as the primary node types. To capture
the diversity of user interactions, we also integrate three distinct
edge types click on, query transition, and document transition. Then,
to represent the rich heterogeneous information from a search
session, we transform the explicit structural details of the graph
into text conforming to a specific symbolic textual format. We
integrate the graph and task instructions into our prompt design,
which serves as input to the LLM. The prediction distributions of
the answer tokens are used as relevance probabilities for ranking. In
this way, we formulate the session search task as the link prediction
between the document node and the query node of a session graph,
all in text format. Note that while LLMs are pretrained on pure text,
we come up with new symbolics to represent graphs. Hence, it is
necessary to augment the LLM’s comprehension of these symbols.
Correspondingly, we propose a set of pre-training tasks including
link prediction, generation of node text attributes, and generative
contrastive learning with graph augmentation. These tasks reflect
the topological information of a session graph from coarse-grained
to fine-grained, heuristically guiding the LLMs to understand the
heterogeneous session graph structure. By pre-training LLMs on in-
domain datasets, we equip them with domain-specific knowledge.
This becomes particularly useful when a query or a document
recurs across multiple sessions, as this global graph information is
stored within the LLM’s parameters. Consequently, these LLMs not
only capture an inter-session perspective but also enhance their
comprehension of the intra-session context.

Experiment results on two public search log datasets, AOL and
Tiangong-ST, show that our proposed method outperforms the
existingmethods with relatively little training data.We also conduct
extensive experiments to verify the effectiveness of our symbolic
graph representation, and showcase how our symbolic learning
tasks enhance LLMs’ comprehension of graphs.

Our contributions in this paper can be summarized as follows:

• We aim to integrate structural information in session search
with textual data, ensuring that both semantic meaning and
topological knowledge from the search session are fully
explored and utilized to yield better search results.

• To accomplish this, we harness the capabilities of LLMs, con-
verting graph data into text using a series of symbolic rules.
Recognizing the disparity between LLMs and graph-based
symbols, we devise a range of self-supervised pretraining
tasks to better adapt the LLM for our purpose.

• Our experimental findings, derived from two widely recog-
nized search log datasets (AOL and Tiangong-ST), indicate
that our proposed technique surpasses existing methods,
especially when training data is limited.

2 RELATEDWORK
2.1 Session Search
Contextual information in sessions is considered conducive to infer
users’ search intent, providing retrieval results that better align
with users’ information needs. Early studies extract statistical and
rule-based features from users’ search history so as to better charac-
terize their search intent [37, 44, 46]. With the development of deep
learning approaches, a series of works have emerged that model
user behavior sequences to obtain semantically dense representa-
tions for session search tasks. For instance, Ahmad et al. [1] utilize
a hierarchical neural structure with RNNs to model the session
sequence and achieve competitive performance in both document
ranking and query suggestion. Taking one step further, the atten-
tion mechanism is introduced to existing RNN-based architecture
and yields better results [2]. As Pre-trained Language Models have
demonstrated their capabilities in various NLP and IR tasks, em-
ploying a PLM as backbone has become a new paradigm that treats
each search session as a natural language sequence [6, 34, 43, 56].

Recent works suggest that modeling search sessions as sequences
may ignore the topological interactions between queries and doc-
uments, while the session history can be regarded as a graph for
interaction modeling. For example, Ma et al. [26] regard session
search as a graph classification task on a heterogeneous graph
that represents the search history in each session, and Wang et al.
[43] propose a heterogeneous graph-based model with a session
graph and a query graph. However, previous Graph Neural Network
(GNN)-based studies tend to solely focus on the session structure
while neglecting the importance of node semantic modeling, where
they only use one vector to represent the whole document in the
interaction process. In our work, we explore the potential of LLMs
to integrate the benefits of the two approaches, i.e., modeling the
nuance of semantic meaning as well as the user behavior structure.
Concretley, we flatten the session graph in structural language into
prompts and design symbolic pre-training tasks to help the LLM
understand and reason over the graph.

2.2 Pre-training on Graphs
To enable more effective learning on graphs, researchers have ex-
plored how to pre-train GNNs for node-level representations on
unlabeled graph data. Inspired by pre-training techniques in natural
language processing [21] and computer vision [50], recent studies
have been proposed to pre-train GNNs with self-supervised infor-
mation [47]. This approach aims to tackle the issue of limited labels
by employing self-supervised learning on the same graph [20],
or to bridge the disparity in optimization objectives and training
data between self-supervised pre-training activities and subsequent
tasks [17, 25]. The representative tasks include link prediction, node
classification, and contrastive learning. etc. For instance, Hu et al.
[19] introduce a method based on graph generation factorization
to guide the foundational GNN model in reconstructing both the
attributes and structure of the input graph, and Qiu et al. [33] put
forward a contrastive pre-training model devised to capture univer-
sal and transferable structural patterns from multiple input graphs.
Different from previous works that achieve these tasks in vector
space, we transform the task into text format by a set of symbolic
grammars.

2
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2.3 Large Language Model For Graph Learning
Existing works have demonstrated the outstanding performance of
LLM in natural language processing tasks. Recent studies suggest
the use of graph data to create heuristic natural language prompts,
aiming to augment the proficiency of large language models. For
example, in the field of job recommendations, Wu et al. [45] propose
using a meta-path prompt constructor to fine-tune a large language
model recommender to understand user behavior graphs. In the
domain of molecular property prediction, Zhao et al. [52] introduce
a unified language model for both graph and text data, eliminating
the need for additional graph encoders to learn graph structures.
Through instruction pre-training on molecular tasks, the model
effectively transfers to awide range of tasks. Different from previous
works, our approach structures historical conversation graphs into
natural language prompts to fully exploit the advantages of LLM.

3 METHODOLOGY
3.1 Task Formulation
Before introducing our proposed methodology, we first state some
notations and briefly formulate the task of session search. We
denote the historical queries of a user’s search session as 𝑄 =

{𝑞1, 𝑞2, . . . , 𝑞𝑀 }, where each query is the text that the user sub-
mitted to the search engine and has been ordered by their issued
timestamp.𝑀 is the history length Given the query 𝑞𝑖 , its candidate
documents list is denoted as 𝐷𝑖 = {𝑑𝑖,1, 𝑑𝑖,2, . . . , 𝑑𝑖,𝑁 }, and each
document has a binary click label 𝑦𝑖, 𝑗 , indicating if user clicks the
document. The session search task aims to re-rank the candidate
document set 𝐷𝑖 considering the in-session contextual informa-
tion and the issued query 𝑞𝑖 . In our paper, we denote the session
context as the sequence of the historical queries, the clicked doc-
uments and the current query. Formally, the session context 𝑆𝑖 of
𝑞𝑖 is formulated as {(𝑞1, 𝐷+

𝑗
), (𝑞2, 𝐷+

𝑗
), . . . , (𝑞𝑖−1, 𝐷+

𝑗
), 𝑞𝑖 }, where

𝐷+
𝑖
= {𝑑𝑖, 𝑗 |𝑦𝑖, 𝑗 = 1} is the clicked documents of query 𝑞𝑖 .

3.2 Overview
Our model is illustrated in Figure 2. We first establish a heteroge-
nous session graph that stores the user query and interaction infor-
mation, which is then translated into symbolic text following our
specific graph-to-text symbolic grammars. This symbolic depiction,
along with the task description, is directly fed into the LLM to gener-
ate the ultimate search result. To enhance the LLM’s understanding
of the symbolic, we come up with three sub-tasks centered around
the symbolic text. These sub-tasks require comprehension of the
existing graph structure, thus eliminating the need for additional
annotations. Finally, we formulate the document ranking task in
the search session as a link prediction task, which is also based on
the symbolic prediction token.

3.3 Session Graph Construction
3.3.1 Graph Schema. A search session includes user queries, can-
didate documents, and user click activities. Intuitively, the queries
and documents can be regarded as nodes in a graph, with an edge
forming between a query-document pair when a user selects the
document for a given query. Beyond this, transitions also exist

within queries and documents themselves. As such, a search ses-
sion naturally fits a heterogeneous graph scenario, where multiple
sessions sharing common documents and queries weave into a
comprehensive global graph.

Formally, the definition of a graph is𝐺 (𝑉 , 𝐸), where𝑉 , 𝐸 denote
the sets of the nodes and edges respectively. Our graph is hetero-
geneous since it contains multiple types of nodes and edges. In
the following, we detail the process of constructing our behavior
graph for each session. We consider both queries and documents
as nodes, i.e.,𝑉 = {𝑞1, ..., 𝑞𝑖 , 𝑑1,1, ...𝑑𝑖, 𝑗 }. For these nodes, we define
three types of edges:

Query-query. Users typically engage in multiple interactions
with a search engine to meet their evolving and ambiguous infor-
mation needs. Consequently, understanding the transition between
queries can be beneficial for discerning user search intent. Pre-
vious work [43] propose to connect all query pairs in the same
session, where a previous query will also be connected to all future
queries. Herein, we assume that linking all query pairs could poten-
tially dilute the distinct progression of user intents and introduce
unnecessary noise into the session. Therefore, we opt for a more
streamlined approach, connecting only adjacent queries denoted
as query transition, e.g., 𝑒𝑖 = (𝑞 𝑗 , 𝑞 𝑗+1).

Query-document. In large-scale search logs, click-through data
is often leveraged as an indicator of the relevance between queries
and documents [43]. As a result, we consider the click relation click
on between queries and their clicked documents, e.g, 𝑒𝑖 = (𝑞 𝑗 , 𝑑 𝑗,𝑘 ),
where 𝑦 𝑗,𝑘 = 1. Liu et al. [23] link queries to their top returned
results to enrich relevance signals, addressing the sparsity of click-
through in comprehensive search logs. However, we assume this
approach might undermine the significance of the click relationship
and inadvertently incorporate unrelated documents. To provide
more nuanced signals to the model, we resort to the pre-training
tasks which will be introduced in §3.4.

Document-document. Until now, the constructed edges are
centered around the queries. Nevertheless, within the context of
session search, documents also hold significant importance. While
queries are typically brief and ambiguous outlines, documents pro-
vide detailed and specific information related to the query. We
believe that transitions between clicked documents can also shed
light on the evolution of a user’s intent, complementing the insights
gained from query transitions. Correspondingly, we construct a
fully connected graph, named document transition, for the clicked
document pairs of the given query, exemplified by edges such as
𝑒𝑖 = (𝑑 𝑗,𝑘 , 𝑑 𝑗,𝑙 ), where 𝑦 𝑗,𝑘 = 1 and 𝑦 𝑗,𝑙 = 1. Note that the query-
query and query-document edges are asymmetrical, each bearing
distinct implications. Conversely, the document-document edges be-
tween documents are symmetrical, owing to their shared attribute.

3.3.2 Symbolic Graph Construction. Traditional works use neural
networks for graph modeling [27, 40]. However, the dense vector
format is not easily understood by language models. Therefore, our
objective is to transform the graph structure into a task-specific
symbolic language that’s understandable by LLMs. The benefits are
twofold. First, LLMs are renowned for their profound contextual
insights and accurate semantic understanding, attributes invaluable
for text-based session search. Second, symbolic inference ensures
transparency and trustworthiness; the reasoning is grounded in

3
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Instruction:
Your	task	is	to	predict	the	link	
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Figure 2: Overall architecture of our model, which consists of three parts: (1) Session Graph Construction: this part organizes
the interaction process as a heterogeneous global graph. (2) Symbolic Learning: we design three self-supervised subtasks to
enhance the understanding of LLM on the symbolic representation of the session graph. (3) Symbolic Link Prediction: the LLM
is fine-tuned for the document ranking task reframed as symbolic link prediction.

symbolically represented knowledge and adheres to well-defined
inference rules consistent with logical principles [29].

Formally, we transform the session graph 𝐺 into symbolic lan-
guage following setting a few symbolic grammars:

• Nodes: the node 𝑣 ∈ 𝑉 is either a query 𝑞𝑖 or a document
𝑑𝑖, 𝑗 . Each node has its node type, index, and text content. Thus, the
symbolic representation of a node can be formulated as:

𝑆𝐺𝐶𝑣 (𝑣) = ([type][id], [text]). (1)

For example, a third query asking about the MacBook price is
denoted as (𝑞3, MacBook Price?), and the corresponding fifth
document candidate is represented as (𝑑5, $1,999).

• Edges: in our symbolic grammar, we define two kinds of edges.
Firstly, we retain the original click on relationship to represent the
direct interaction between a query and its selected documents. Sec-
ondly, we include both the query transition and document transition
under the umbrella term transfer to. This is because our preliminary
experiments indicate that differentiating between query-to-query
and document-to-document transitions didn’t significantly benefit
our model’s performance. By unifying these transitions under the
term transfer to, we not only simplify the graph representation but
also ensure a more streamlined interpretation for the LLM.

Formally, for the edge 𝑒 that links the node 𝑣1 with 𝑣2, the sym-
bolic representation of an edge can be formulated as:

𝑆𝐺𝐶𝑒 (𝑒) = 𝑆𝐺𝐶𝑣 (𝑣1) <edge_type> 𝑆𝐺𝐶𝑣 (𝑣2).

For example, an edge between the above query node and the docu-
ment node is denoted as:

𝑆𝐺𝐶𝑣 (𝑞3, 𝑑5) = (𝑞3, MacBook Price?) <click on> (𝑑5, $1,999) .

• Session Graph: As we have contained the node information
in the symbolic representation of the edge, the translation of the
session graph 𝐺 (𝑉 , 𝐸) into a symbolic language prompt can be
represented as the concatenation of the edges in chronological
order.

𝑆𝐺𝐶 (𝐺) = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑆𝐺𝐶𝑒 (𝑒1), 𝑆𝐺𝐶𝑒 (𝑒2), . . . , 𝑆𝐺𝐶𝑒 (𝑒 |𝐸 | )).
An example of the symbolic session graph is in Figure 2.

3.4 Symbolic Learning
We’ve developed a unique set of grammars to convert graph struc-
tures into symbolic text. This allows LLMs to interpret and analyze
them. To further ensure that LLMs are adept at understanding this
symbolic representation, we introduce a series of pre-training tasks
tailored to familiarize the LLM with the nuances and intricacies of
the transformed text.

3.4.1 Link Prediction. Link prediction has traditionally been a cor-
nerstone task in self-supervised graph pretraining [4, 49]. It is based
on predicting connections between nodes, leveraging the inherent
structure and attributes within a graph. This method not only har-
nesses the topological patterns of the graph but also serves as an
effective approach to capture and represent the latent relationships
between nodes in a graph-based model. While previous methods
computed the similarity based on the embeddings of each node,
we have re-envisioned the task into a textual question format, re-
lying on the capabilities of the LLM to discern the nuances and
relationships.

Specifically, edges connecting nodes serve as positive samples,
while non-connected edges are treated as negative samples. Given
two nodes 𝑣1 and 𝑣2 that we aim to predict a link for, and the graph

4
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Figure 3: Three self-supervised symbolic learning tasks to
bridge the gap between LLMs and symbolic representations.

without the target link information 𝐺𝑙𝑖𝑛𝑘 , the input presented to
the LLM is structured as follows:

𝑋 = [task_instruction]𝑆𝐺𝐶 (𝐺𝑙𝑖𝑛𝑘 ) (2)
𝑆𝐺𝐶𝑣 (𝑣1)<edge_type>𝑆𝐺𝐶𝑣 (𝑣2) . (3)

The task instruction example is in Figure 2.
We use 𝑝 (𝑋 ) to denote the logits of the answer token predicted

by the model, which is considered as the link probability. Thus, the
optimization goal is:

L𝑙𝑖𝑛𝑘 = −𝑧 · log𝑝 (𝑋 ) + (1 − 𝑧) · log𝑝 (𝑋 ),

where 𝑧 is the link label. If 𝑧 is 1 (corresponding to the ‘yes’ class),
the loss function aims to minimize (− log𝑝 (𝑋 )), pushing the pre-
dicted probability for the positive class closer to 1. If 𝑧 is 0 (corre-
sponding to the ‘no’ class), the loss function aims to minimize the
negative log likelihood of the prediction being the negative class,
pushing the predicted probability for the positive class closer to 0.

3.4.2 Node Content Generation. Traditional graph modeling typi-
cally offers just one overall representation for each node [23, 43, 55].
As a result of this simplification, earlier pre-training tasks on graphs
have been largely confined to predicting node attributes, often re-
stricted to a handful of class labels. In contrast, our approach em-
phasizes preserving the concrete semantic meaning of each node.
We achieve this by retaining word-level information for both query
and document nodes. Building on this foundation, in this study, we
elevate the challenge by requiring the LLM to predict the context
within each node, be it the query or the document content.

Specifically, as shown in Figure 3(b), we randomly mask a node
𝑣2 in the session graph, denoting the resulting graph as𝐺𝑛𝑜𝑑𝑒 . The

input to the LLM is then given by:

𝑋 = [task_instruction] 𝑆𝐺𝐶 (𝐺𝑛𝑜𝑑𝑒 ) (4)
𝑆𝐺𝐶𝑣 (𝑣1) <edge_type>. (5)

The training objective of the content generation task is to recon-
struct the target node content:

L𝑛𝑜𝑑𝑒 = −∑ |𝑆𝐺𝐶 (𝑣2 ) |
𝑖=1 log𝑝 (𝑆𝐺𝐶 (𝑣2)𝑖 |𝑋, 𝑆𝐺𝐶 (𝑣2)<𝑖 ),

where 𝑆𝐺𝐶 (𝑣2)<𝑖 represents the words in 𝑆𝐺𝐶 (𝑣2) preceding the
𝑖-th word. Note that we let the LLM predict both the content and
the index of the target node, drawing inspiration from existing
recommendation works that are based on IDs [16].

3.4.3 Generative Contrastive Learning. Contrastive learning is a
traditional pre-training task for graphs, as highlighted in studies
such as [11–13]. The core objective of this approach is to ensure that
the representations of adjacent nodes are similar while distancing
those of non-adjacent nodes. Drawing inspiration from this, we
present a new paradigm, a generative contrastive learning task
tailored for symbolic graph representation. The basic concept is to
emphasize the LLM’s awareness of the session history. As a result,
this method could furnish models with a deeper understanding of
context, allowing them to adapt more efficiently to evolving graph
structures over time.

Specifically, as in Figure 3(c), we consider two distinct scenarios
for inputs: In the first scenario, the LLM predicts the content of
the target node with access to the search history, represented as
𝑋 = 𝑆𝐺𝐶 (𝐺)𝑆𝐺𝐶𝑣 (𝑣1)<click on>. In the second scenario, the
LLM lacks this access, denoted by 𝑋𝑠 = 𝑆𝐺𝐶𝑣 (𝑣1)<click on>. Our
objective is for the performance with history to surpass that of the
model without it.

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠 =
∑ |𝑆𝐺𝐶𝑣 (𝑣2 ) |
𝑖=1 log 𝑝 (𝑆𝐺𝐶𝑣 (𝑣2)𝑖 |𝑋, 𝑆𝐺𝐶𝑣 (𝑣2)<𝑖 ) (6)

−∑ | |𝑆𝐺𝐶𝑣 (𝑣2 ) |
𝑖=1 log 𝑝 (𝑆𝐺𝐶𝑣 (𝑣2)𝑖 |𝑋𝑠 , 𝑆𝐺𝐶𝑣 (𝑣2)<𝑖 ). (7)

3.5 Symbolic Document Ranking
Our ultimate objective for session search is to provide a sequence
of related documents. This approach shares similarities with the
link prediction task discussed in Section § 3.4.1, but it differs in
that it involves returning either a single result or multiple results.
Consequently, the optimization function also varies. For a given
query node 𝑞 and a candidate document 𝑑 𝑗 from the candidate sets
within a user session graph 𝐺 , the input presented to the LLM is
formulated as:

𝑋 𝑗 = [task_instruction]𝑆𝐺𝐶 (𝐺) (8)
𝑆𝐺𝐶𝑣 (𝑞)<click_on>𝑆𝐺𝐶𝑣 (𝑑 𝑗 ) . (9)

The logits of the ‘yes’ answer token 𝑝 (𝑋 𝑗 ) is regarded as the rank-
ing score of document 𝑑 𝑗 . To optimize the model, we employ the
negative log-likelihood loss for learn-to-rank as follows:

L𝑟𝑎𝑛𝑘 = − log
𝑒𝑝 (𝑋+ )∑
𝑋 𝑗

𝑒𝑝 (𝑋 𝑗 )
,

where 𝑋+ denotes the related positive documents. This loss tries
to push the positive document’s score higher than those of other
documents.
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Table 1: The statistics of the two datasets used in our paper.
The number in parentheses is the average number of relevant
documents.

AOL Training Validation Test

# Sessions 219,748 34,090 29,369
# Queries 566,967 88,021 76,159
Avg.# Query per Session 2.58 2.58 2.59
# Candidate per Query 5 5 50
Avg. Query Len 2.86 2.85 2.9
Avg. Document Len 7.27 7.29 7.08
Avg. # Clicks per Query 1.08 1.08 1.11

Tiangong-ST Training Validation Test

# Sessions 143,155 2,000 2,000
# Queries 344,806 5,026 6,420
Avg.# Query per Session 2.41 2.51 3.21
# Candidate per Query 10 10 10
Avg. Query Len 2.89 1.83 3.46
Avg. Document Len 8.25 6.99 9.18
Avg. # Clicks per Query 0.94 0.53 (3.65)

4 EXPERIMENT SETUP
4.1 Research Questions
We list four research questions that guide the experiments:
•RQ1 (See § 5.1):What is the overall performance of SGR compared
with different kinds of baselines?
• RQ2 (See § 5.2): What is the effect of each module in SGR? Is
the performance improvement attributed to the symbolic graph
representation we propose?
• RQ3 (See § 5.3): Is our method robust with session lengths?
• RQ4 (See § 5.4): How does our model scale with data?
•RQ5 (See § 5.5): How does SGR perform in the pre-training stage?

4.2 Dataset and Evaluation Metrics
4.2.1 Dataset. Following previous studies [43], we conduct exper-
iments on two large-scale search log datasets, i.e., AOL [30] and
Tiangong-ST-click [9].

We use the AOL dataset provided by Ahmad et al. [2]. It con-
tains numerous search logs grouped as sessions. Specifically, five
candidate documents are provided for each query in both training
and validation sets. In the test set, for each session query, we utilize
50 documents retrieved by BM25 [35] as candidates. Every query
in this dataset has a minimum of one corresponding click. When
multiple clicked documents exist for a query, we construct the user
behavior sequence using the first document from the list.

For the Tiangong-ST dataset, the session data are extracted from
an 18-day search log provided by a Chinese search engine, and
each query has ten candidate documents. Our setting follows [56].
In training and validation sets, we use the click-through labels as
relevant signals. In this test set, only prior queries—excluding the
last one—and their associated candidate documents are used. As
with the AOL dataset, documents in this test scenario are labeled
either ‘click’ or ‘unclick’. The model’s objective is to rank clicked
documents as highly as possible. Note that queries without any

clicked documents are excluded from testing. The statistics of both
datasets are shown in Table 1.

4.2.2 Evaluation Metrics. Following the earlier studies, we em-
ploy the Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), and Normalized Discounted Cumulative Gain at position
𝑘 (NDCG@𝑘 , 𝑘 = 1, 3, 5, 10) as metrics. All evaluation results are
computed by the TREC’s official evaluation tool (trec_eval) [42].

4.3 Baseline
In our experiment, we compare our methods with two kinds of
baselines including (1) ad-hoc ranking methods, and (2) context-
aware ranking methods.

(1) Ad-hoc ranking. These methods focus on the matching be-
tween the issued query and candidate documents, neglecting the
information from the search context.

• BM25 [35] is a traditional probabilistic model, which models
the relevance of a document to a query as a probabilistic function.
We use the pyserini [22] tool in our work to calculate the BM25
scores.

• MonoT5 [28] is a sequence to-sequence re-ranker that uses
T5 to calculate the relevance score. In our paper, we use the trained
checkpoint on Ms Marco [3] on HuggingFace.

(2) Context-aware ranking methods These methods employ ei-
ther sequential modeling to process historical queries or graph-
based modeling to represent user behavior.

• RICR [5] is an RNN-based method that uses the history repre-
sentation to enhance the representation of queries and documents
on word-level.

•COCA [57] pre-trains a BERT encoder with data augmentation
and contrastive learning for better session representation.

• ASE [7] designs three generative tasks to help the encoding of
the session sequence. In contrast to other multi-task approaches
that consider only the subsequent query generation as the auxiliary
task, it further takes the succeeding clicked document and a similar
query as generation targets.

• HEXA [43] proposes graph modeling user behavior in session
search. It constructs two heterogeneous graphs, a session graph,
and a query graph, to capture user intent from global and local
aspects respectively.

4.4 Implementation Details
We use PyTorch [31] to implement our model. Specifically, LLaMa-
7B [41] and BaiChuan-7B [48] are used as the backbone LLMs for
AOL and Tiangong-ST, respectively. To facilitate lightweight fine-
tuning, we employ LoRA [18] to train our model, which freezes
the pre-trained model parameters and introduces trainable rank
decomposition matrices into each layer of the Transformer archi-
tecture. We adopt AdamW optimizer [24] to train our model. The
learning rate is set as 2e-5 with a cosine decay. We train our model
by 2 epochs and the batch size is set as 8. Due to computational
constraints, we randomly selected 1,000 sessions from the AOL
test set for evaluation. All hyperparameters are tuned based on
the performance of the validation set. For further implementation
details, please refer to our code2.

2https://anonymous.4open.science/r/SGR-A6E5/
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Table 2: The overall results of our model and compared baselines on two datasets. The best performance are in bold. “†” and “‡”
indicate our model achieves significant improvements over all existing methods in paired t-test with p-value < 0.01 and p-value
< 0.05 respectively (with Bonferroni correction).

AOL Tiangong-ST-Click

Model MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

ad-hoc ranking:
BM25 0.2703 0.2799 0.1608 0.2410 0.2693 0.3063 0.2845 0.2997 0.1475 0.1983 0.2447 0.4527
MonoT5 0.3741 0.3856 0.2415 0.3496 0.3816 0.4308 0.3306 0.3447 0.1494 0.2465 0.3315 0.4939

context-aware ranking:
RICR 0.5506 0.5628 0.4084 0.5442 0.5823 0.6154 0.7472 0.7697 0.6401 0.7450 0.7822 0.8174
ASE 0.5667 0.5788 0.4081 0.5732 0.6073 0.6319 0.7410 0.7637 0.6277 0.7381 0.7790 0.8130
COCA 0.5649 0.5743 0.4149 0.5655 0.6010 0.6301 0.7481 0.7696 0.6386 0.7445 0.7858 0.8180
HEXA 0.5700 0.5819 0.4165 0.5744 0.6097 0.6372 0.7427 0.7660 0.6352 0.7378 0.7790 0.8141

SGR 0.5859† 0.5972† 0.4349† 0.5907† 0.6225† 0.6509† 0.7553‡ 0.7782‡ 0.6503 0.7514‡ 0.7913‡ 0.8239†

Improv.over HEXA +2.79% +2.63% +4.42% +2.84% +2.10% +2.15% +1.70% +1.60% +2.38% +1.84% +1.58% +1.20%

5 RESULTS AND ANALYSIS
5.1 Overall Results
Addressing RQ1, in Table 2, SGR consistently surpasses other tech-
niques, underscoring our approach’s effectiveness. Based on the
results, we can make the following observations.

(1) Context-aware ranking methods consistently outperform ad-
hoc models. While ad-hoc models like BM25 and MonoT5 primarily
focus on immediate query-document matching, they overlook the
wealth of information embedded in the user’s session history. On
the other hand, context-aware methods, such as RICR, COCA, ASE,
and HEXA, effectively harness sequential or graph-based represen-
tations to model user behavior over time. This not only provides
a deeper understanding of user intent but also captures evolving
search nuances. The superiority of context-aware methods in the
results suggests that in a dynamic and interactive search session,
understanding the broader context is crucial for achieving higher
relevance and accuracy in rankings.

(2) Our LLM-based SGR model significantly outperforms the state-
of-the-art method HEXA (in paired t-test at 𝑝-value < 0.01). While
both models integrate session data into their respective graphs,
ours does so with better performance. On the other hand, HEXA’s
heterogeneous graph constructs more edges compared to our model,
as discussed in §3.3. Additionally, HEXA introduces both a query
and session graph, whereas our model is founded on a singular
graph structure. The positive results from our model suggest that
LLMs can be effective in graph information modeling when paired
with a well-designed pretraining task. Additionally, the potential of
our approach is substantial and can grow alongside the evolution
of LLM technologies.

5.2 Ablation Study
(1) The effects of various symbolic learning pre-training tasks.
For RQ2, we initiated ablation studies to delve into the impacts of
different symbolic learning pre-training tasks. The findings of these
studies are presented in Table 3. The term ’None’ indicates the use
of the baseline LLM for document ranking without incorporating
our suggested symbolic learning phase.

Notably, the full deployment of SGR strategies yields the best
results across all metrics, underscoring the comprehensive strength

Table 3: Ablation performance of SGR on the AOL dataset
with different symbolic learning tasks.

MAP MRR NDCG@1 NDCG@5 NDCG@10

SGR (Full) 0.5859 0.5972 0.4349 0.6225 0.6509
None 0.5580 0.5701 0.4050 0.5925 0.6242
Link 0.5783 0.5907 0.4282 0.6146 0.6443
Node 0.5747 0.5876 0.4247 0.6097 0.6410
Contras 0.5740 0.5863 0.4177 0.6150 0.6398
Link + Node 0.5846 0.5966 0.4349 0.6206 0.6490
Link + Contras 0.5809 0.5925 0.4259 0.6197 0.6469
Node + Contras 0.5782 0.5916 0.4294 0.6151 0.6433

Table 4: Performance of SGR on the AOL dataset with differ-
ent symbolic strategies. SG denotes ‘symbolic graph’ and SL
denotes ‘symbolic learning task’.

MAP MRR NDCG@1 NDCG@3 NDCG@10

SGR (Full) 0.5859 0.5972 0.4349 0.5907 0.6509
SGR w/o SG 0.5191 0.5295 0.3594 0.5184 0.5891
SGR w/o SLT 0.5580 0.5701 0.4050 0.5612 0.6242

of a holistic approach.When breaking down combinations, the ‘Link
+ Node’ performs the best. However, as strategies are decoupled or
used singly, there’s a noticeable dip in performance, with the ‘None’
configuration highlighting the least effectiveness. This gradient in
results underlines the criticality of integrative symbolic learning
in refining sequence representation and optimizing for superior
outcomes.

(2) The effects of our symbolic graph representation method.
While our SGR demonstrates impressive results, it’s crucial to de-
termine whether the improvements come solely from the text in
the search history or from the symbolic graph structure. Hence, we
design an experiment presented in Table 4.

Our experiment comprises three distinct scenarios: (1) SGR w/o
SG (symbolic graph): In this configuration, we omit graph infor-
mation, which encompasses nodes and edges. Instead, the text is
represented by sequences strung together with delimiters. (2) SGR
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w/o SL (symbolic learning): While we incorporate the symbolic
graph text in this setup, it is directly fine-tuned, bypassing the
symbolic learning pre-training phase. (3) Full SGR model: Here, we
seamlessly integrate both the symbolic graph input and symbolic
learning tasks.

The outcomes indicate that excluding either SG or SL severely
impairs the model’s performance. Specifically, when we only keep
the text while dismissing the graph information (SGR w/o SG), we
observe a noticeable decline in MAP and MARR scores. This under-
scores that the mere inclusion of session history text isn’t enough
to improve performance. Moreover, pretraining tasks are also im-
portant for LLM to understand the graph structure (SGR w/o SLT).
This highlights the efficacy of our symbolic graph representations
in aiding large language models to grasp and leverage this concept.
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Figure 4: Comparison of MAP and NDCG@3 performance
across varying session lengths for COCA, HEXA, and SGR.

5.3 Impact of Session Lengths
The session length plays a pivotal role in determining the richness of
contextual information, thereby influencing the efficacy of context-
aware rankingmodels. ForRQ3, to analyze this effect, we categorize
the test sessions into three groups: short sessions with a length of 2
or fewer, medium sessions with a length of 3 or 4, and long sessions
where the length exceeds 4.

Figure 4 illustrates the superior performance of SGR when com-
pared to multiple baselines, with the 𝑦-axis representing the MAP
score. SGR consistently surpasses all baseline models, highlighting
its robustness regardless of session length variations. There is a dis-
tinct trend, i.e., the longer the session length, the more pronounced
SGR’s advantage becomes. This demonstrates the proficiency of the
LLM in handling long contexts and intricate behavioral relations.
These findings not only validate the efficacy of symbolic graphs in
capturing session behaviors but also emphasize the critical role of
session search logs in the ranking mechanism.

5.4 Impact of Amount of Training Data
Recent research [10, 15] has highlighted the significant influence of
the data volume on downstream tasks, such as document ranking
in our scenario. To delve deeper into this aspect and address RQ4,
we trained our model using varying data proportions. Note that
due to computational limitations, we only sampled a portion of the
corresponding dataset for training and testing.
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Figure 5: (Left) The performance of SGR with different train-
ing data amounts. (Right) Perplexity of SGR along the train-
ing process.

In the graph presented on the left in Figure 5, we examine the
performance metrics of twomodels: SGR and COCA, across varying
data scales ranging from 2% to 25%. Two key performance indica-
tors, MAP and NDCG@10, were considered. It’s evident that our
SGR consistently outperforms COCA across all data amounts in
both MAP and NDCG@10 metrics. Specifically, SGR outperforms
fully-trained COCA with only 10% of training data, which demon-
strates the impressive efficiency of the SGR model. The consistent
performance elevation of SGR reiterates its robustness and scalabil-
ity in handling larger datasets, making it a more reliable choice for
tasks requiring adaptive search results to data scale variations.

5.5 Performance of SGR in Pre-training Stage
For RQ5, while our earlier experiments were primarily centered
around our core session search task, it’s important to note that our
model is initially pre-trained on symbolic learning tasks. Hence,
apart from the previous experiments that implicitly demonstrate
the effectiveness of the pre-training stages, we here examine di-
rectly the performance of SGR in the pre-training phase. On the
right of Figure 5, we present the perplexity (PPL) scores during
the symbolic learning task. Notably, the PPL exhibits a downward
trend, indicating substantial improvements in model training. This
observation serves as evidence that SGR excels in comprehending
symbolic graph grammar during the pre-training phase, success-
fully capturing the underlying graph structures.

6 CONCLUSION
In this paper, we introduced the Symbolic Graph Ranker (SGR), a
novel approach that combines the strengths of sequential and struc-
tural modeling for session searches, using the prowess of Large
Language Models (LLMs). By transforming graph data into text
through symbolic grammar rules, and implementing self-supervised
pre-training tasks, we effectively bridged the gap between tradi-
tional session search methods and LLMs. Our results on AOL and
Tiangong-ST datasets validated the superiority of SGR, marking a
promising step forward in the realm of session search. Moving for-
ward, we aim to further explore the integration of multi-modal data
and refine the self-supervised tasks to enhance SGR’s adaptability
across diverse search environments.
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