
Published as a conference paper at COLM 2025

Efficient Construction of Model Family through
Progressive Training Using Model Expansion

Kazuki Yano†, Sho Takase†,‡, Sosuke Kobayashi†, Shun Kiyono‡, Jun Suzuki†.
†Tohoku University
‡SB Intuitions
yano.kazuki@dc.tohoku.ac.jp

Abstract

As Large Language Models (LLMs) gain widespread practical applica-
tion, offering model families with varying parameter sizes has become
standard practice to accommodate diverse computational requirements.
Traditionally, each model in the family is trained independently, incurring
computational costs that scale additively with the number of models. In
this work, we propose an efficient method for constructing model families
via progressive training, where smaller models are incrementally expanded
to larger sizes to create a complete model family. Through extensive ex-
periments on a model family ranging from 1B to 8B parameters, we show
that our approach reduces total computational cost by approximately 25%
while maintaining comparable performance to independently trained mod-
els. Moreover, by strategically adjusting the maximum learning rate based
on model size, our method outperforms the independent training across
various metrics. Beyond these improvements, our approach also fosters
greater consistency in behavior across model sizes.

1 Introduction

As Large Language Models (LLMs) gain widespread practical application, providing models
with (i) a consistent architecture and (ii) varying parameter sizes (hereafter referred to as a
model family) has become standard practice in the NLP community. For instance, Llama
3.1 includes models with 8B, 70B, and 405B parameters (AI@Meta, 2024), while Gemma 3
provides 1B, 4B, 12B, and 27B parameter variants (GemmaTeam, 2025) . Similarly, Qwen2.5
offers a model family with 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters (Yang et al.,
2024b).

Such model families are designed to address a wide range of computational constraints and
application scenarios. Smaller models offer faster inference and lower resource consumption,
making them suitable for daily tasks and deployment in resource-constrained environments
such as smartphones and edge devices (Abdin et al., 2024). In contrast, larger models
are deployed for scenarios requiring advanced reasoning capabilities and complex task
processing, typically on large-scale servers (Wei et al., 2022).

The standard approach to constructing a model family involves training each model inde-
pendently from scratch. However, training large-scale models demands extensive resources,
e.g., thousands of GPU days (Touvron et al., 2023). The total computational cost of con-
structing a model family poses a significant burden on its builders. (Figure 1 (Top)). This
motivates us to explore more efficient methods for model family construction.

We identify model expansion as a potential approach to more efficiently constructing model
families, including large-scale models. Model expansion leverages the parameters of pre-
trained smaller models as initialization for training larger models (Chen et al., 2022; Du
et al., 2024). However, prior work on model expansion has primarily aimed at producing a
single final model, with limited focus on the potential utility of intermediate models.

1

Published as a conference paper at COLM 2025

Model Expansion

2B 4B 8B

Model Expansion

Training
Training

Training

Training
Training

Training

Total Computational Cost
of Independent Training

Total Computational Cost
of Progressive Training

Figure 1: Comparison of approaches for constructing a model family. (Top): Conventional
approach, where each model in the family (2B, 4B, 8B) is trained independently from scratch.
The total computational cost is the sum of the training costs for all individual models.
(Bottom): Proposed progressive training utilizes model expansion, where smaller models are
expanded to initialize larger ones. The total cost equals only that of the largest model (8B).

In this work, we empirically explore model expansion as a means to efficiently construct a
model family. Specifically, we propose a method that repeatedly applies model expansion
to construct models from smaller to larger sizes, namely progressive training, thereby
reducing the total training cost of constructing a model family (Figure 1 (Bottom)).

Through our experiments with a model family ranging from 1B to 8B parameters, we
demonstrate that the proposed method reduces the total computational cost of constructing
a complete model family by approximately 25% compared to training each model inde-
pendently1. Moreover, by adjusting the maximum learning rate based on model size, our
method consistently achieves superior performance across a range of benchmark tasks rela-
tive to independently trained models. We also found that progressive training yields greater
behavioral consistency across the model family, as indicated by lower Kullback-Leibler (KL)
divergence between models’ output distributions.

2 Task Definition and Notation Rules

We consider a model family consisting of models with monotonically increasing sizes and
consistent architecture. Formally, we define this model family as a sequence of models
of sizes [X1, X2, . . . , Xn] and corresponding sequence of model parameters [θ1, θ2, . . . , θn],
where θi ∈ RXi denotes the parameters of the i-th model. For each model of size Xi, let
Ti represent the number of training tokens used to train the corresponding model. The
computational cost (FLOPs) required to train a given model is determined by the model
size Xi and the number of tokens Ti. Following Brown et al. (2020), we define FLOPs as:
FLOPs(Xi, Ti) = 6XiTi. Note that our analysis does not depend on this specific formulation
and can be generalized to other reasonable cost approximations (Hoffmann et al., 2022).

Let Tscratch
i denote the number of tokens for training a randomly initialized model of size

Xi from scratch. The total computational cost of constructing the entire model family
is then given by ∑n

i=1 FLOPs(Xi, Tscratch
i). The task of this work is to reduce the overall

computational cost while preserving the performance of each model. Formally, we aimt to

1This 25% reduction corresponds to savings of approximately 3.2K GPU hours in our experimental
setup.

2

Published as a conference paper at COLM 2025

construct each model under the following constraint:

n

∑
i=1

FLOPs(Xi, Tscratch
i) >

n

∑
i=1

FLOPs(Xi, Tprog
i), (1)

where Tprog
i denotes the number of tokens used to train the model of size Xi under the

progressive training approach (Section 3).

3 Method: Progressive Training

We propose a method for constructing language models of varying sizes more efficiently
than the common practice, i.e., training each model independently from scratch. In the
common approach, the cost of training a model of size Xi from scratch using Tscratch

i tokens2

is FLOPs(Xi, Tscratch
i), leading to a total cost of ∑n

i=1 FLOPs(Xi, Tscratch
i) for the entire model

family. A simple strategy to satisfy Equation (1) is to reduce the number of training tokens
for each model by selecting Tprog

i such that Tscratch
i > Tprog

i for i > 1. However, naively
reducing the number of training tokens typically results in degraded performance if other
factors remain unchanged. Instead, we initialize the i-th model of size Xi for i > 1 by using
a better initialization than random, which is obtained by applying model expansion to the
previously trained model sizesize Xi−1. We refer to this process as progressive training.

Specifically, our progressive training begins by training an initial model of size X1 using
Tscratch

1 tokens. At each subsequent stage, we initialize the next model using a model
expansion method f ,

θinit
i+1 = f (θi; Xi+1) (i ≥ 1), (2)

where f (·; Xi+1) : RXi → RXi+1 is an off-the-shelf model expansion method. The expanded
parameters θinit

i+1 serve as an effective initialization for training the subsequent model.

There exists a wide range of possible token allocation patterns [Tprog
1 , Tprog

2 , ..., Tprog
n] that

satisfy the constraint in Equation (1)’s condition regarding the total computational cost. In
this work, we determine each Tprog

i+1 such that the overall computational cost matches that of
training the largest model Xn from scratch:

FLOPs(Xn, Tscratch
n) =

n

∑
i=1

FLOPs(Xi, Tprog
i). (3)

Specifically, we set Tprog
i+1 to satisfy the following FLOPs constraint:

FLOPs(Xi+1, Tprog
i+1) = FLOPs(Xi+1, Tscratch

i+1)−
i

∑
j=1

FLOPs(Xj, Tprog
j). (4)

Intuitively, we allocate the computational cost of training a model of size Xi+1 from scratch,
subtracting the computational cost already used in previous stages. Through this procedure,
we can obtain an entire model family from size X1 to Xn with a total computational cost
equal FLOPs(Xn, Tscratch

n).

How we choose f . In this work, we adopt bert2BERT (Chen et al., 2022) as our model
expansion method for the following reason. Unlike approaches that focus solely on depth
expansion (such as stacking (Du et al., 2024)), bert2BERT allows us to increase both the
width and depth dimensions of Transformer models (Vaswani et al., 2017), offering greater

2Note that the choice of Tscratch
i is arbitrary depending on available resources, though most re-

searchers follow the Chinchilla law (Hoffmann et al., 2022) as a principled approach to determine the
compute-optimal number of training tokens. Our experimental setup also adopts the Chinchilla law
(Section 4.2).

3

Published as a conference paper at COLM 2025

flexibility3. Specifically, for width expansion, bert2BERT increases the hidden dimensions
by duplicating the weights of linear layers; for depth expansion, it stacks additional layers
by duplicating pre-trained ones4. This flexibility to expand along both dimensions is
particularly valuable as we repeatedly apply model expansion in progressive training.

4 Experiment

To evaluate the effectiveness of progressive training, we pre-train and compare two model
families: one with independently training each model from scratch (Independent) and the
other with progressive training (Progressive). Specifically, we demonstrate that progressive
training improves computational efficiency over independent training, and the performance
of the two model families is comparable.

4.1 Experimental Setup

We used FineWeb-Edu (Penedo et al., 2024) as the training data for pre-training and adopted
the GPT-2 (Radford et al., 2019) tokenizer for tokenization. While progressive training
can accommodate any parameter size increase, in this work, we adopted a configuration
where the parameter count doubles at each stage. Specifically, we construct a model
family with sizes [X1 = 1B, X2 = 2B, X3 = 4B, X4 = 8B]5. All models follow the Llama
architecture (Touvron et al., 2023) with a maximum input sequence of 1024 tokens. Each
model was trained using a cosine learning rate scheduler, with a maximum learning rate of
3.0 × 10−4.

To evaluate each pre-trained model in the family, we measured perplexity on the validation
data (Valid) from FineWeb-Edu and WikiText (Merity et al., 2017). To more comprehensively
assess the performance of pre-trained models, we also evaluated zero-shot performance
across multiple downstream tasks. Specifically, we include tasks including language model-
ing (LAMBADA (Paperno et al., 2016)), commonsense reasoning (WinoGrande (Sakaguchi
et al., 2021), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019)), and question answering
(ARC-e, ARC-c (Clark et al., 2018), OBQA (Mihaylov et al., 2018)).

4.2 Training Data Size and Computational Cost

We prepare the following two data sizes, (i) Chinchilla law (Hoffmann et al., 2022) and (ii)
2x Chinchilla law, to determine the number of training tokens Tscratch

i for each model in a
model family. Chinchilla law provides the optimal FLOPs required to achieve a specific loss.
The guideline is to use 20 tokens per model parameter for training (Hoffmann et al., 2022).
2x Chinchilla law is used to simulate the case such that the amount of training data greatly
exceeds the optimal values indicated by the Chinchilla law. In fact, exceeding the Chinchilla
law has become a standard practice in recent LLM literature (Sardana et al., 2024).

In the progressive training approach, we determine the number of training tokens Tprog
i

for each model to satisfy the constraint defined in Equation (4), ensuring it matches the
total computational cost equals that of training the largest model from scratch. Under the
2x Chinchilla law setting, this constraint yields the following token allocations: Tprog

1 =

40B, Tprog
2 = 60B, Tprog

3 = 120B, Tprog
4 = 240B6.

One of the key advantages of progressive training is its ability to obtain models of multiple
sizes efficiently. As defined in Section 2, the computational cost is calculated as FLOPs =

3Although recent methods such as LEMON (Wang et al., 2024b) have emerged, LEMON builds
upon the foundation of bert2BERT with only minor modifications to its core mechanisms. We choose
bert2BERT for its simplicity and ease of implementation.

4The original bert2BERT paper (Chen et al., 2022) introduces two expansion variants: AKI and FPI.
In this work, we exclusively adopt the AKI

5The specific width and depth settings for each model are detailed in Appendix A.
6For the Chinchilla law setting, Tprog

i is shown in Appendix B.

4

Published as a conference paper at COLM 2025

Perplexity ↓ Accuracy ↑

Valid Wikitext LAMBADA ARC-e ARC-c Winogrande PIQA OBQA HellaSwag

1B Independent 13.14 22.81 39.3 59.3 31.7 54.0 70.5 35.6 46.9

2B Independent 11.30 18.57 45.5 65.2 37.7 55.3 72.1 38.8 54.3
Progressive 11.29 18.74 45.1 63.6 36.6 57.4 72.7 39.2 54.7

4B Independent 9.91 15.46 49.5 68.8 41.1 57.2 75.1 43.8 60.5
Progressive 9.87 15.12 51.0 69.4 40.0 58.6 75.1 40.6 61.2

8B Independent 8.65 12.24 53.9 71.8 43.1 62.4 76.2 42.6 65.8
Progressive 8.61 11.98 55.4 73.5 45.1 62.1 76.6 45.6 67.5

Table 1: Evaluation results of pre-trained models under the Chinchilla law setting. For each
model size, we compare the performance of models trained independently from scratch
(Independent) versus those built using progressive training (Progressive).

Perplexity ↓ Accuracy ↑

Valid Wikitext LAMBADA ARC-e ARC-c Winogrande PIQA OBQA HellaSwag

1B Independent 12.04 20.56 42.0 62.3 34.6 55.5 72.0 35.0 51.6

2B Independent 10.44 17.11 48.5 66.9 38.4 56.6 75.3 41.6 58.0
Progressive 10.43 16.94 50.3 70.0 38.1 58.5 73.8 41.4 59.0

4B Independent 9.18 13.99 51.7 71.7 43.2 59.2 76.7 40.8 63.3
Progressive 9.00 13.63 51.9 72.6 43.9 61.0 76.1 43.0 65.6

8B
Independent 7.85 10.23 55.2 74.5 47.4 62.4 77.0 46.4 67.9
Progressive 7.74 10.21 57.8 75.3 46.7 64.6 77.3 44.6 70.2
+Fixed Data 7.73 10.22 56.2 74.8 47.8 63.1 77.8 45.2 70.4

Table 2: Evaluation results of pre-trained models under the 2x Chinchilla law setting. Perfor-
mance is compared between models trained independently from scratch (Independent) and
those built using progressive training (Progressive). Progressive+Fixed Data indicates
training on a fixed dataset of 320B tokens.

6XT, where X denotes the number of model parameters and T is the number of training
tokens. For instance, independently training each model in the family [1B, 2B, 4B, 8B] under
the 2x Chinchilla law would require FLOPs of [0.24Z, 0.96Z, 3.84Z, 15.4Z] respectively. Thus,
constructing the entire model family would require 20.4ZFLOPs in total.

In contrast, with progressive training, the total computational cost required to construct the
entire model family is equivalent to the computational cost required to train the largest-size,
i.e., 8B, model. Therefore, the computational cost is 15.4ZFLOPs. Compared to training each
model independently, progressive training can reduce computational cost by approximately
25%. This demonstrates that progressive training improves the computational efficiency of
constructing a model family.

4.3 Results

Model Performance. Tables 1 and 2 present the evaluation results of pre-trained models
in the Chinchilla law and 2x Chinchilla law settings, respectively. Our progressive training
approach (Progressive) achieves performance comparable to or better than models that
are independently trained from scratch (Independent) across different parameter sizes in
both settings. Notably, for the largest model (8B), Progressive shows improvements in
perplexity and most downstream tasks.

Computational Cost. In Figure 2 (Left), for a given computational budget, i.e., ZFLOPs,
Progressive consistently outperforms Independent. In addition, Progressive reaches the
same training loss as Independent while reducing the total FLOPS by 26%.

5

Published as a conference paper at COLM 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
ZFLOPs

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Tr
ai

n
lo

ss

26% FLOPs reduction

1B Independent
2B Independent
4B Independent
8B Independent
2B Progressive
4B Progressive
8B Progressive

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
ZFLOPs

Tr
ai

n
lo

ss

31% FLOPs reduction

1B Independent
2B Independent
4B Independent
8B Independent
2B Progressive
4B Progressive
8B Progressive

Figure 2: Train loss curves comparing models trained by Independent versus Progressive
approach with the 2x Chinchilla law setting. (Left): Models trained with fixed maximum
learning rate, achieving 26% FLOPs reduction. (Right): Models trained with maximum
learning rate adjustment, from 1.5 × 10−3 (1B) to 3.0 × 10−4 (8B), achieving 31% FLOPs
reduction.

Number of Training Tokens for 8B Model 320BT

Progressive Training

Independent Training

Progressive Training
+ Fixed Data

140BT (Reused Tokens)

40BT 60BT 120BT 100BT

100BT 140BT (New Tokens)

100BT

Figure 3: Comparison of token allocation for the 8B model training. (Top): Independent uses
a standard approach with 320B tokens. (Middle): Progressive uses 240B tokens (100B + new
140B tokens). (Bottom): Progressive+Fixed Data maintains the same 240B total tokens as
Progressive by reusing 140B tokens from previous stages.

Does Progressive Training Exploit More Unique Data? No. For each model size Xi(i > 1)
in our model family, we use fewer tokens in progressive training than independent training
(Tprog

i < Tscratch
i). However, when considering the entire model family construction process,

progressive training consumes more total tokens than training only the largest model from
scratch. As detailed in Section 4.2, the total number of tokens processed in progressive
training is ∑4

i=1 Tprog
i = 460B tokens, which exceeds the Tscratch

4 = 320B tokens used when
training the 8B model independently, even though the total computational cost is the
same (Figure 3, (Top) and (Middle)). Thus, it is possible that progressive training benefits
unfairly from exposure to a larger volume of unique training data. To isolate this factor, we
introduced a controlled setting denoted as Progressive+Fixed Data, in which total amount
of unique data is capped at 320B tokens – the same amount used when independently
training the 8B model. Once the 320B tokens were consumed during the training of the 8B
model, the remaining 460 − 320 = 140B tokens are reused, i.e., the second epoch begins, as
illustrated in Figure 3 (Bottom).

The result is shown in Table 2, in which 8B Progressive+Fixed Data achieves comparable
performance. This confirms that the observed improvements from progressive training are
not attributable to access to a greater quantity of unique data.

4.4 Effectiveness of Maximum Learning Rate Adjustment

In LLM pre-training, selecting an appropriate learning rate requires a careful balance
between optimization efficiency and training stability. Higher learning rates can accelerate
convergence and potentially lead to better final model performance (Takase et al., 2023),
but they must be tuned carefully, especially with respect to model size. As models scale up,

6

Published as a conference paper at COLM 2025

Perplexity ↓ Accuracy ↑

Valid Wikitext LAMBADA ARC-e ARC-c Winogrande PIQA OBQA HellaSwag

1B Independent 12.04 20.56 42.0 62.3 34.6 55.5 72.0 35.0 51.6

2B Independent 10.44 17.11 48.5 66.9 38.4 56.6 75.3 41.6 58.0
Progressive 10.07 16.17 52.6 71.8 42.2 61.9 75.0 40.8 62.5

4B Independent 9.18 13.99 51.7 71.7 43.2 59.2 76.7 40.8 63.3
Progressive 8.72 13.13 55.7 74.5 47.8 65.2 77.4 45.8 68.1

8B
Independent 7.85 10.23 55.2 74.5 47.4 62.4 77.0 46.4 67.9
Progressive 7.64 10.10 59.0 76.7 48.3 65.8 78.3 46.6 71.0
+Fixed Data 7.64 9.77 58.0 76.1 50.6 64.7 78.2 47.2 71.2

Table 3: Evaluation results of pre-trained models with the maximum learning rate ad-
justment strategy described in Section 4.4. Progressive models consistently outperform
Independent models. +Fixed Data indicates training on a fixed dataset of 320B tokens.

they become increasingly sensitive to the learning rate, typically requiring smaller learning
rates to preserve training stability (Touvron et al., 2023; Wortsman et al., 2024). For example,
in our preliminary experiments, we observed that a learning rate of 1.5 × 10−3 enabled
effective and stable training for a 1B model. However, applying the same learning rate to an
8B model resulted in the loss value spikes that ultimately led to training collapse7.

Progressive training method is characterized by starting training from smaller models.
Therefore, it is possible to employ high learning rates to enhance performance during small-
model training while lowering the learning rate for larger models to stabilize training. In
this experiment, we apply this maximum learning rate adjustment under the 2x Chinchilla
law setting, linearly decreasing the maximum learning rate from 1.5 × 10−3 for the 1B
model to 3.0 × 10−4 for the 8B model, in accordance with the increase in model size, while
maintaining a cosine decay schedule during training for all models8.

Table 3 presents the results of our maximum learning rate adjustment strategy. Progressive
consistently outperforms the Independent counterparts, with more substantial improve-
ments than those observed with no learning rate adjustments (Table 2). As illustrated
in Figure 2 (Right), our maximum learning rate adjustment facilitated more efficient con-
vergence during training, achieving 31% FLOPs reduction compared to 26% reduction
observed without learning rate adjustment. These results demonstrate the effectiveness of
our progressive training approach and show that appropriate learning rate adjustments can
further enhance performance9.

5 The Consistency across Model Family

In this section, we investigate the consistency of model behaviors across different sizes in
our progressively trained model family. We first discuss the advantages of maintaining
consistent behaviors across the model family (Section 5.1). We then present empirical
analyses of consistency through probability distribution and speculative decoding. Our
findings show that models trained using the progressive training approach exhibit higher
consistency compared to independently trained models.

5.1 The Potential Effectiveness of Consistency across Model Family

Ensuring consistent behavior across a model family offers several practical benefits. First,
it simplifies deployment flexibility by ensuring that switching between different parame-

7A visualization of this training instability with the 8B model is provided in the Appendix C.
8The learning rates for each model size are described in Appendix D.
9Moreover, as shown in Appendix E the benefits of our approach persist under post-training setups

(SFT+DPO), confirming its robustness for practical applications.

7

Published as a conference paper at COLM 2025

Model Pair Training Approach DKL(PXi ||PXi+1)

1B→2B
Independent 0.2821
Progressive 0.2162

Progressive+LR adjustment 0.2538

2B→4B
Independent 0.3087
Progressive 0.2265

Progressive+LR adjustment 0.2542

4B→8B
Independent 0.4584
Progressive 0.3378

Progressive+LR adjustment 0.3518

Table 4: KL divergence between adjacent model sizes in the different model families. Lower
values indicate greater consistency. Results are shown for models trained from scratch
(Independent), models built through progressive training (Progressive), and models built
with maximum learning rate adjustment (Progressive+LR adjustment).

ter sizes does not lead to large, sudden shifts in model outputs or user experience. This
is particularly valuable when developers need to adapt a model size to varying compu-
tational budgets or runtime constraints, as they can easily scale up or down (e.g., from
a smaller to a larger model) without retraining users or extensively revalidating system
performance (Srivastava et al., 2020; Echterhoff et al., 2024).

Second, such consistency enables more efficient incremental improvements or patches across
the entire model family. For instance, if developers collect preference data or build a reward
model based on the outputs of one model (e.g., by annotating the specific texts that this
member tends to generate), they typically face a distribution mismatch when applying those
artifacts to other models. In a consistent model family, however, differences in generation
patterns are small enough examples or learned preference remain effective for other mod-
els (Guo et al., 2024; Zhou et al., 2024a; Tajwar et al., 2024). Likewise, implementations such
as safety or content filters calibrated for one model will likely transfer to others with only
minimal adjustments (Inan et al., 2023).

Third, consistency across models of different sizes benefits speculative decoding (Leviathan
et al., 2023), a technique that accelerates inference by allowing a smaller model to generate
“draft” outputs, which the larger model then either accepts or refines. When the smaller and
larger models produce similar probability distributions, the larger model is more likely to
accept the drafts, reducing the frequency of rejections and subsequent regenerations (Zhou
et al., 2024b). Consequently, consistent behavior across a range of model sizes further
contributes to more efficient and user-friendly deployments in real-world applications.

5.2 Probability Distribution Consistency across Model Family

The consistency of the underlying probability distributions across the model family offers
deeper insights into how knowledge and behaviors are propagated. Such consistency
indicates that models rely on similar internal mechanisms when generating text.

Experimental Setup. To evaluate the probability distribution consistency across our model
family, we measured the KL divergence between adjacent model sizes. KL divergence
quantifies how one probability distribution differs from another reference distribution, with
lower values indicating greater similarity. For this analysis, we used 10,000 examples from
the FineWeb-Edu validation dataset. We calculated the KL divergence DKL(PXi ∥ PXi+1)
between adjacent models by examining their next-token prediction distributions, where PXi

represents the probability distribution over the vocabulary given by model of size Xi
10. We

conducted this analysis for three different model families: (i) Models trained independently
from scratch, (ii) Models built through progressive training, (iii) Models built through
progressive training with maximum learning rate adjustment.

10The detailed calculation method for KL divergence is described in Appendix F．

8

Published as a conference paper at COLM 2025

Draft Model Generator Model DKL(Pdraft ∥ Pgenerator) Acceptance Generation
(4B) (8B) Rate (%) Time (s)

Progressive Progressive 0.3378 93.20 7.02
Independent Progressive 0.4281 87.20 8.24

Table 5: Speculative decoding performance with different draft-generator configurations.
Progressive draft models demonstrate lower KL divergence with the generator, resulting in
higher acceptance rates and faster generation times.

Results. Table 4 presents the KL divergence between adjacent model sizes for our three
different model families. We found that, across all model pairs, models trained via progres-
sive training demonstrate substantially lower KL divergence compared to independently
trained models, indicating higher consistency in their probability distributions. This trend
is consistent across all adjacent model pairs (1B→2B, 2B→4B, 4B→8B).

This finding provides evidence that our progressive training produces a more coherent
model family with consistent internal behavior. The lower KL divergence suggests that
progressively trained models share similar probability distributions and decision-making
processes, offering practical advantages for techniques like speculative decoding, where
alignment between smaller and larger models is crucial.

5.3 Validating Consistency Benefits through Speculative Decoding

We empirically assess whether this consistency translates into practical benefits for specula-
tive decoding, as discussed in Section 5.1.

Experimental Setup. In speculative decoding, a smaller “draft” model proposes multiple
tokens that a large “generator” model subsequently accepts or rejects. For our experiments,
we fixed the 8B model by Progressive training as the generator and paired it with 4B draft
models trained using either Progressive or Independent training. Since the effectiveness
of speculative decoding depends on how well the draft model’s predictions align with
the generator’s distribution, this setup validates whether the distributional consistency
yields practical benefits. Each draft model was configured to propose 8 speculative tokens.
To evaluate speculative decoding performance, we measured three key metrics on 1,000
prompts sampled from the FineWeb-Edu validation dataset. First, we computed the KL
divergence DKL(PXdraft ∥ PXgenerator) between the draft and generator models’ output distri-
butions. Second, we tracked the acceptance rate, which is the percentage of draft tokens
accepted by the generator model. This metric directly reflects the efficiency of speculative
decoding. Finally, we recorded the average generation time across all prompts to quantify
the practical speedup.

Results. Table 5 presents the speculative decoding performance with different draft-
generator configurations. The results demonstrate the practical advantages of employing a
draft model constructed through Progressive Training. The pairing of a 4B Progressive draft
model with an 8B Progressive generator model (Prog-Prog) exhibited superior performance,
underpinned by greater consistency between the two models. This enhanced consistency
is quantified by a lower KL divergence for the Prog-Prog pair, compared to using an
independently trained model as a drafter (Inde-Prog). This improved alignment in output
distributions directly translated to more effective speculative decoding: the Prog-Prog
configuration achieved a higher acceptance rate of 93.20%, as opposed to 87.2% for the
Inde-Prog setup. Consequently, this led to a reduction in inference time, with the Prog-Prog
pair completing generation approximately 14.8% faster. These findings experimentally
demonstrate that the consistency fostered by Progressive Training offers practical benefits.
The lower KL divergence between progressively trained models leads to more effective
draft proposals in speculative decoding, thereby improving acceptance rates and reducing
inference latency.

9

Published as a conference paper at COLM 2025

6 Related Work

Model Family. Offering models in multiple sizes has become a standard practice in lan-
guage model development to address diverse computational requirements. Major research
labs have released model families with multiple parameter sizes: Llama (Touvron et al., 2023;
AI@Meta, 2024), Qwen (Yang et al., 2024a), Gemma (GemmaTeam, 2024), and others. Scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022) provide the theoretical foundation for these
families, establishing relationships between model size, data, compute, and performance.
Recent research highlights the complementary roles of models of different sizes (Wang et al.,
2024a): while large models excel in zero/few-shot generalization, smaller models offer
advantages for latency-sensitive applications, edge deployments, domain-specific tasks,
and privacy-sensitive contexts. This functional differentiation underscores the importance
of efficient methods for constructing a coherent model family that maintains consistent ca-
pabilities across different parameter sizes. However, the conventional approach of training
each model size independently incurs substantial computational costs that scale additively
with the number of models in the family. Our work addresses this inefficiency by proposing
progressive training that significantly reduces the total computation required to construct a
complete and coherent model family.

Model Expansion. Model expansion has emerged as an approach to reduce computational
costs when training large-scale models. These methods leverage parameters of smaller,
pre-trained models to initialize larger ones, accelerating training. The bert2BERT (Chen et al.,
2022) adapted function-preserving methods to Transformers, reducing pre-training costs by
approximately 45% for BERT models. LEMON (Wang et al., 2024b) refined this approach
with an optimized learning rate scheduler for larger models. For scaling LLMs, Du et al.
(2024) identified depthwise stacking as particularly effective, achieving 54.6% speedup for
7B-parameter models. Alternative approaches combine knowledge distillation with model
expansion. Qin et al. (2022) introduced Knowledge Inheritance (KI), using knowledge
distillation during pre-training to achieve approximately 27% computational cost reduction.
However, these methods typically focus on the efficient training of a single, final model
rather than the training of an entire model family. For example, many methods demonstrate
the effectiveness of the expansion in a single-shot manner, i.e., applying model expansion
only once. In addition, these methods do not take the performance of intermediate model(s)
into account. In contrast, we propose progressive training and demonstrate that the off-
the-shelf model expansion methods can be used to efficiently train a model family. The
progressive training can incorporate emerging novel model expansion techniques, further
enhancing efficiency.

7 Conclusion

In this paper, we proposed an efficient approach for constructing a model family via
progressive training, wherein smaller models are incrementally expanded to larger sizes.
Through comprehensive experiments on a model family ranging from 1B to 8B parameters,
we demonstrated that our method significantly reduces the total computational cost required
to construct a complete model family by approximately 25% compared to training each
model independently. Our method, particularly when combined with maximum learning
rate adjustments tailored to each model size, not only matches but exceeds the performance
of independently trained models. Furthermore, models built through our progressive
approach demonstrate greater consistency across different sizes, as evidenced by lower KL
divergence between probability distributions.

This work offers researchers and practitioners with a computationally efficient approach
to constructing a high-performing, coherent model family, offering particular value in
resource-constrained environments where training multiple models at different scales is
desirable.

10

Published as a conference paper at COLM 2025

Acknowledgements

This work was supported by the JST Moonshot R&D Grant Number JPMJMS2011-35 (fun-
damental research).

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan,

Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3
technical report: A highly capable language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

AI@Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Yonatan Bisk, Rowan Zellers, Ronan bras, Jianfeng Gao, and Choi Yejin. Piqa: Reasoning
about physical commonsense in natural language. Proceedings of the AAAI Conference on
Artificial Intelligence, 34:7432–7439, 04 2020. doi: 10.1609/aaai.v34i05.6239.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2BERT: Towards reusable pretrained language mod-
els. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2134–2148, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.151. URL https://aclanthology.org/2022.acl-long.151/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge, 2018.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guo-
tong Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK:
Boosting language models with scaled AI feedback. In Forty-first International Conference
on Machine Learning, 2024. URL https://openreview.net/forum?id=BOorDpKHiJ.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 3029–3051,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.183. URL https://aclanthology.org/2023.emnlp-main.183/.

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo,
and Jie Fu. Stacking your transformers: A closer look at model growth for efficient
LLM pre-training. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=FXJDcriMYH.

Jessica Maria Echterhoff, Fartash Faghri, Raviteja Vemulapalli, Ting-Yao Hu, Chun-Liang Li,
Oncel Tuzel, and Hadi Pouransari. MUSCLE: A model update strategy for compatible
LLM evolution. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 7320–7332, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.430. URL https://aclanthology.org/2024.findings-emnlp.430/.

GemmaTeam. Gemma: Open models based on gemini research and technology. arXiv
preprint arXiv:2403.08295, 2024.

GemmaTeam. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025.

11

https://arxiv.org/abs/2407.21783
https://aclanthology.org/2022.acl-long.151/
https://openreview.net/forum?id=BOorDpKHiJ
https://aclanthology.org/2023.emnlp-main.183/
https://openreview.net/forum?id=FXJDcriMYH
https://aclanthology.org/2024.findings-emnlp.430/

Published as a conference paper at COLM 2025

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares,
Alexandre Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model
alignment from online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc,
Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William
Rae, and Laurent Sifre. An empirical analysis of compute-optimal large language model
training. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=iBBcRUlOAPR.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning
Mao, Michael Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama
guard: LLM-based input-output safeguard for Human-AI conversations. arXiv preprint
arXiv:2312.06674, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pp. 19274–19286.
PMLR, 2023.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with
a reference-free reward. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=3Tzcot1LKb.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of ar-
mor conduct electricity? a new dataset for open book question answering. In Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pp. 2381–2391, Brus-
sels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1260. URL https://aclanthology.org/D18-1260.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The
LAMBADA dataset: Word prediction requiring a broad discourse context. In Katrin
Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1144.
URL https://aclanthology.org/P16-1144.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting
the Web for the finest text data at scale. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/
forum?id=n6SCkn2QaG.

Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su, Zhiyuan
Liu, Peng Li, Maosong Sun, and Jie Zhou. Knowledge inheritance for pre-trained language
models. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 3921–3937, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.288. URL https://aclanthology.org/2022.naacl-main.288/.

12

https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=3Tzcot1LKb
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/D18-1260
https://aclanthology.org/P16-1144
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://aclanthology.org/2022.naacl-main.288/

Published as a conference paper at COLM 2025

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=HPuSIXJaa9.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-
optimal: Accounting for inference in language model scaling laws. In Forty-first Inter-
national Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
0bmXrtTDUu.

Megha Srivastava, Besmira Nushi, Ece Kamar, Shital Shah, and Eric Horvitz. An empirical
analysis of backward compatibility in machine learning systems. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20,
pp. 3272–3280, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450379984. doi: 10.1145/3394486.3403379. URL https://doi.org/10.1145/3394486.
3403379.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie,
Stefano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of LLMs should
leverage suboptimal, on-policy data. In Proceedings of the 41st International Conference on
Machine Learning, 2024.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. Spike no more: Stabilizing
the pre-training of large language models. arXiv preprint arXiv:2312.16903, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu, Tzuhao Mo, Qiuhao Lu, Wanjing
Wang, Rui Li, Junjie Xu, Xianfeng Tang, et al. A comprehensive survey of small language
models in the era of large language models: Techniques, enhancements, applications,
collaboration with LLMs, and trustworthiness. arXiv preprint arXiv:2411.03350, 2024a.

Yite Wang, Jiahao Su, Hanlin Lu, Cong Xie, Tianyi Liu, Jianbo Yuan, Haibin Lin, Ruoyu
Sun, and Hongxia Yang. LEMON: Lossless model expansion. In The Twelfth International
Conference on Learning Representations, 2024b. URL https://openreview.net/forum?id=
3Vw7DQqq7U.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large
language models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi,
Ben Adlam, John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jef-
frey Pennington, Jascha Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and
Simon Kornblith. Small-scale proxies for large-scale transformer training instabili-
ties. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=d8w0pmvXbZ.

13

https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=0bmXrtTDUu
https://openreview.net/forum?id=0bmXrtTDUu
https://doi.org/10.1145/3394486.3403379
https://doi.org/10.1145/3394486.3403379
https://openreview.net/forum?id=3Vw7DQqq7U
https://openreview.net/forum?id=3Vw7DQqq7U
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=d8w0pmvXbZ

Published as a conference paper at COLM 2025

Configuration 1B 2B 4B 8B

Hidden dimension 2048 2560 3200 4096
FFN dimension 7168 8960 11200 14336

Layers 18 22 27 33
Heads 16 20 25 32

Batch size 960 1920 3840 7680
The number of updates 40700 40700 40700 40700

learning rate warmup fraction 0.01 0.01 0.01 0.01
Learning rate decay style cosine cosine cosine cosine

Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.95 0.95 0.95 0.95

Gradient clipping 1.0 1.0 1.0 1.0
Weight decay 0.1 0.1 0.1 0.1

Precision bfloat16 bfloat16 bfloat16 bfloat16

Table 6: Experimental configuration for each model size

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin
Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui
Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu
Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang,
Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao
Fan. Qwen2 technical report, 2024a. URL https://arxiv.org/abs/2407.10671.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and
Ion Stoica. Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
URL https://openreview.net/forum?id=uccHPGDlao.

Wenxuan Zhou, Ravi Agrawal, Shujian Zhang, Sathish Reddy Indurthi, Sanqiang Zhao,
Kaiqiang Song, Silei Xu, and Chenguang Zhu. WPO: Enhancing RLHF with weighted
preference optimization. In Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, November 2024a. doi: 10.18653/v1/2024.emnlp-main.475.
URL https://aclanthology.org/2024.emnlp-main.475/.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Ros-
tamizadeh, Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improv-
ing speculative decoding via knowledge distillation. In The Twelfth International Conference
on Learning Representations, 2024b. URL https://openreview.net/forum?id=rsY6J3ZaTF.

A Details of Experimental Configurations

In our experiments (Section 4), we constructed models with 1B, 2B, 4B, and 8B parameters
based on the Llama architecture. Table 6 shows the specific experimental configurations for

14

https://arxiv.org/abs/2407.10671
https://aclanthology.org/P19-1472
https://openreview.net/forum?id=uccHPGDlao
https://aclanthology.org/2024.emnlp-main.475/
https://openreview.net/forum?id=rsY6J3ZaTF

Published as a conference paper at COLM 2025

Model Size Tscratch
i (Independent) Tprog

i (Progressive)

1B 20B 20B
2B 40B 30B
4B 80B 60B
8B 160B 120B

Table 7: Training token allocation for Independent and Progressive the Chinchilla law
setting.

Model Size Tscratch
i (Independent) Tprog

i (Progressive)

1B 40B 40B
2B 80B 60B
4B 160B 120B
8B 320B 240B

Table 8: Training token allocation for Independent and Progressive the 2x Chinchilla law
setting.

each model size. As the model expands, we gradually increase the hidden dimension, FFN
dimension, number of layers, and number of heads.

B Data Size for (2x) Chinchilla Law Setting

As described in Section 4.2, we determined the number of training tokens for each model
size according to Hoffmann et al. (2022). We report token allocations for each model in
Table 7 (Chinchilla law setting) and Table 8 (2x Chinchilla law setting).

C 8B Model Loss Visualization

Figure 4 illustrates the training loss curves for 8B models trained from scratch with different
learning rates: 3.0 × 10−4 and 1.5 × 10−3. While the lower learning rate of 3.0 × 10−4 results
in stable training, the higher learning rate of 1.5 × 10−3 causes significant loss spikes during
training.

D Specific Configurations in the Learning Rate Adjustment Strategy

In our learning rate adjustment strategy (Section 4.4), we decrease the maximum learning
rate as the model size increases. We apply maximum learning rates of 1.5× 10−3, 1.1× 10−3,
7.0 × 10−4, and 3.0 × 10−4 for the 1B, 2B, 4B, and 8B models, respectively. This gradual
reduction accommodates the increasing sensitivity of larger models to high learning rates.

E Experiment: Model Family Post-Training

This experiment verifies whether the trends observed in pre-training experiments in Sec-
tion 4 are also seen in post-training. We examine whether models built using progressive
training with fixed learning rates can achieve comparable performance to models trained
from scratch. In addition, we confirm that performance improvements observed with
maximum learning rate adjustments in pre-training also extend to post-training.

E.1 Experimental Setup

We evaluate the effectiveness of progressive training by conducting post-training on the
model family constructed in Section 4. We adopted the settings from Meng et al. (2024) for

15

Published as a conference paper at COLM 2025

0 2 4 6 8 10 12 14 16
ZFLOPs

2

4

6

8

10

12

14

Tr
ai

n
lo

ss
lr = 3.0e-4
lr = 1.5e-3

Figure 4: Training loss curves comparing 8B models trained from scratch with different
learning rates. The model trained with a learning rate of 3.0 × 10−4 (blue line) shows stable
training, while the model trained with a higher learning rate of 1.5 × 10−3 (orange line)
exhibits severe loss spikes indicating training instability.

Size Training Approach
Adjusted LR

Chinchilla 2x Chinchilla 2x Chinchilla
MT-Bench ↑ MT-Bench ↑ MT-Bench ↑

2B Independent 1.61 2.04 2.04
Progressive 2.03 2.46 3.22

4B Independent 2.78 3.02 3.02
Progressive 2.87 3.01 3.63

8B
Independent 3.42 3.45 3.45
Progressive 3.28 3.21 3.96

Progressive+Fixed Data 3.32 3.41 3.98

Table 9: MT-Bench evaluation results after post-training (SFT+DPO) for models trained with
different approaches. We compare models trained from scratch (Independent) versus those
built using our progressive training approach (Progressive) under both fixed maximum
learning rate and learning rate adjustment (Adjusted LR) strategies. For the fixed learning
rate, results are shown for both the Chinchilla law and 2x Chinchilla law settings. For the
models with learning rate adjustments, the maximum learning rates are decreased from
1.5 × 10−3 for 1B to 3.0 × 10−4 for 8B as the model size increases.

post-training. Specifically, we performed Supervised Fine-Tuning (SFT) using the UltraChat-
200k dataset (Ding et al., 2023), followed by DPO (Rafailov et al., 2023) using the Ultrachat
Feedback dataset (Cui et al., 2024).

The maximum learning rate was set to 3.0 × 10−5 for SFT and 5.0 × 10−7 for DPO, stan-
dardized across all models. We evaluated the response quality of each model using MT-
Bench (Zheng et al., 2023) using gpt-4-0613 as an evaluator. For comparison, we prepared
models (2B, 4B, 8B) independently trained from scratch and conducted the same post-
training.

16

Published as a conference paper at COLM 2025

E.2 Results

Table 9 presents the MT-Bench evaluation results after post-training across different training
approaches. With fixed learning rates, models trained with progressive training perform
comparably to models trained from scratch, with some variation across model sizes.

When applying our maximum learning rate adjustment, progressive training consistently
outperforms from-scratch training across all model sizes, with substantial improvements
observed. The models with maximum learning rate adjustment significantly outperform
those with fixed maximum learning rates for progressive training.

These results indicate that our progressive training approach, particularly when combined
with maximum learning rate adjustment, can deliver both computational efficiency and
enhanced model performance after post-training.

F KL Divergence Computation

To simplify the computation, at each token position, we computed DKL(PXi ∥ PXi+1) =

∑v∈V PXi (v) · (log PXi (v)− log PXi+1(v)), where V is the vocabulary and PXi (v) is the prob-
ability assigned to vocabulary token v by model Xi. We first averaged these KL divergence
values across all token positions within each example, then computed the final KL diver-
gence by averaging across all 10,000 examples from the FineWeb-Edu validation dataset, as
described in Section 5.2.

17

	Introduction
	Task Definition and Notation Rules
	Method: Progressive Training
	Experiment
	Experimental Setup
	Training Data Size and Computational Cost
	Results
	Effectiveness of Maximum Learning Rate Adjustment

	The Consistency across Model Family
	The Potential Effectiveness of Consistency across Model Family
	Probability Distribution Consistency across Model Family
	Validating Consistency Benefits through Speculative Decoding

	Related Work
	Conclusion
	Details of Experimental Configurations
	Data Size for (2x) Chinchilla Law Setting
	8B Model Loss Visualization
	Specific Configurations in the Learning Rate Adjustment Strategy
	Experiment: Model Family Post-Training
	Experimental Setup
	Results

	KL Divergence Computation

