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Abstract—Backdoor attacks have emerged as one of the major
security threats to deep learning models as they can easily
control the model’s test-time predictions by pre-injecting a
backdoor trigger into the model at training time. While backdoor
attacks have been extensively studied on images, few works have
investigated the threat of backdoor attacks on time series data.
To fill this gap, in this paper we present a novel generative
approach for time series backdoor attacks against deep learning
based time series classifiers. Backdoor attacks have two main
goals: high stealthiness and high attack success rate. We find
that, compared to images, it can be more challenging to achieve
the two goals on time series. This is because time series have
fewer input dimensions and lower degrees of freedom, making it
hard to achieve a high attack success rate without compromising
stealthiness. Our generative approach addresses this challenge
by generating trigger patterns that are as realistic as real-time
series patterns while achieving a high attack success rate without
causing a significant drop in clean accuracy. We also show that
our proposed attack is resistant to potential backdoor defenses.
Furthermore, we propose a novel universal generator that can
poison any type of time series with a single generator that allows
universal attacks without the need to fine-tune the generative
model for new time series datasets.

I. INTRODUCTION

Time series captures a sequence of observations with mea-
surable quantities indexed by timestamps. It is amongst the
most ubiquitous data types in a wide range of industries, such
as finance [1], heavy industry [2], and healthcare [3], [4].
Similar to the computer vision field, deep neural networks
(DNNs) are often used in time series analysis to achieve state-
of-the-art performance [5], [6], [7]. However, DNNs are known
to be vulnerable to backdoor attacks where the adversary
aims to control the model’s test-time prediction behaviors by
implanting a backdoor trigger into the model at training time
[8], [9]. This has raised security concerns with the deployment
of DNN models in safety-critical applications.

Backdoor attacks represent one type of training-time vul-
nerabilities of DNNs, which are different from test-time ad-
versarial attacks [10], [11], [12]. To implant the backdoor
trigger into a target model, the adversary can either poison
a small fraction of the training data with a trigger pattern
[8] or directly manipulate the training procedure [9]. The
former could occur during the data collection process, while
the latter could happen to outsourced model training or the use
of pre-trained models downloaded from untrusted sources. A
backdoored model predicts the correct classes on clean test

inputs yet will constantly predict the backdoor class whenever
the trigger pattern appears.

Backdoor attacks have been extensively studied on images
with DNN-based image classifiers, however, few works have
investigated the potential backdoor vulnerability of DNN-
based time series models. The two main objectives of backdoor
attacks, namely high attack success rate (ASR) and high
stealthiness, have been achieved on images as demonstrated by
many existing works [8], [13], [14], [9], [15]. The effectiveness
of backdoor attacks is closely associated with their trigger
patterns, which are often designed to be fixed patterns or
dynamic but sparsely distributed patterns for images. However,
unlike images, time series are generally of lower dimensions
(e.g., univariate) and fewer degrees of freedom (e.g., limited
window length). It thus makes fixed patterns more noticeable
(less stealthy) on time series. In fact, it is still unclear whether
fixed patterns are effective on time series. Moreover, time
series are of diverse types, such as stock prices, temperature
readings, weather data, and heart rate monitoring, to name a
few. As such, fixed patterns can hardly be effective on all types
of time series.

In this paper, we present a novel generative approach for
generating stealthy and sample-specific trigger patterns for
effective time series backdoor attacks. By leveraging genera-
tive adversarial networks (GANs), our approach can generate
backdoored time series (the original time series plus the trigger
pattern) that are as realistic as real-time series, while achieving
a high attack success rate. Furthermore, by training the trigger
pattern generator on multiple types of time series, we can
obtain a universal generator. The universal trigger generator
demonstrates high flexibility in performing backdoor attacks
on different types of time series across different domains,
revealing the significant threat of backdoor attacks to time
series analysis. Our work provides a practical solution to
stealthy and effective time series backdoor attacks, and reveals
the potential backdoor vulnerability of DNN-based time series
classification models.

In summary, our main contributions are:

• We study the problem of backdoor attacks on time series
and propose a novel generative approach for crafting
stealthy sample-specific backdoor trigger patterns. We
also reveal the unique challenge of time series backdoor



attacks posed by the inherent properties of time series,
(i.e., low dimension and limited degrees of freedom).

• We empirically show that our proposed attack can gener-
ate stealthy and effective backdoor attacks against state-
of-the-art DNN-based time series models and is resistant
to potential backdoor defenses. The attacked models also
have minimal clean accuracy drop on both univariate and
multivariate datasets.

• We present a novel universal backdoor attack that is
capable of crafting sample-specific backdoor triggers for
different types of time series across a wide range of
domains. With a one-time training on a combination of
time series datasets, the proposed universal attack can
succeed 70% of the time under the poison-label setting.

II. RELATED WORK

In this section, we briefly review existing works in backdoor
attack and defense that are most relevant to our work.

A. Backdoor Attack

A backdoor attack implants a backdoor trigger into the
victim model by injecting the trigger pattern into a small
proportion of the training data. It preserves the model’s
performance on benign (clean) inputs but can manipulate the
model to constantly predicts the attacker-specified backdoor
class whenever the trigger pattern appears in a test input.

1) BadNets: BadNets [8] is the first backdoor attack
that was designed for image classification models. With an
attacker-specified backdoor label yt, BadNets first stamps a
pre-designed backdoor trigger onto a benign image x to
generate a poisoned sample x′ and changes its ground-truth
label to yt. It then trains a backdoored model on the poisoned
training data of which a small portion of the samples are
poisoned following the above procedure. At inference time,
the attacked model performs well on benign test samples, yet
consistently predicts the backdoor label yt for any test samples
with the trigger pattern attached. Using a simple checkerboard
pattern, BadNets can achieve an attack success rate (i.e.,
the ratio of poisoned test samples that are predicted as the
backdoor class) of 99% on MNIST dataset by poisoning only
10% of the training data. In Section IV-A, we will propose a
simple BadNets-equivalent baseline attack for time series.

2) Invisible patterns: Following BadNets, a number of
backdoor attacks have been proposed in computer vision
applications with images. [13] first discussed the stealthiness
of backdoor attacks in regard to the invisibility requirement of
trigger patterns. They suggested that poisoned images should
be indistinguishable from their benign counter-part to evade
human inspection. Accordingly, they proposed a blending
strategy that generates poisoned images by blending the back-
door trigger with benign images, instead of direct stamping. A
small-amplitude random noise is then added to further reduce
the risk of being detected. After [13], a series of works have
been proposed to generate invisible trigger patterns, which
include [9], [14], [15], [16]. All these works were proposed for
images. In [17], a video backdoor attack was proposed against

video recognition models. It leverages universal adversarial
perturbations to tackle the higher dimension challenge posed
by videos. Backdoor attacks have also been extended to other
vision tasks such as crowd counting [18] and visual object
tracking [19]. In this work, we will also limit our patterns to
be invisible, but address the lower dimension challenge posed
by time series.

3) Sample-specific patterns: The above-mentioned back-
door attacks all use a fixed pattern at a fixed location of the im-
age as the trigger pattern, which could potentially be defended
and removed easily. To address this problem, [20] proposed
an input-aware backdoor attack to generate different backdoor
trigger patterns for different input samples, enforcing each
trigger pattern to be only functional for one particular input
sample. Similarly, [21] proposed LIRA that can generate the
optimal trigger while successfully poisoning the classifier in
computer vision applications. Most recently, inspired by DNN-
based image steganography, [22] proposed another sample-
specific backdoor attack via encoding an attacker-specified
string into benign images, which generates sample-specific
additive noises as backdoor triggers. For stealthiness, in this
paper, we are also interested in sample-specific backdoor
attacks.

4) Time series attacks: [23] studied backdoor attacks
against transfer learning on both image and time series
data. Particularly, they proposed to manipulate the pre-trained
teacher models to generate customized student models that
make the wrong predictions. However, the times series (e.g.
ECG signals) were transformed into 1D or 2D images and
attacked based on image backdoor attacks. [24] proposed
TrojanFlow to perform backdoor attacks against network
traffic classification models. By poisoning the traffic flow
in a stealthy manner, this attack achieves high ASRs on
both flow-based and payload-based classifiers. More recently,
[25] proposed a backdoor attack TimeTrojan on time series
classifiers. TimeTrojan proposes a multi-objective optimiza-
tion framework to help the model learn a strong correlation
between the trigger pattern and the target class.

There are also backdoor attacks that are not realized via data
poisoning but direct modifications of the model parameters
[26], [27] or structures [28], [29], [30]. These attacks are
independent of poisoning-based attacks and can be performed
even after a poisoning-based attack. In this paper, we will
focus on data poisoning-based attacks and leave other types
of manipulations to future work. Particularly, we propose
a generative approach for time series backdoor attacks that
produce both realistic and effective sample-wise backdoor
triggers.

B. Backdoor Defense

A large number of defense methods have been proposed
to mitigate the backdoor threat via detection or purification.
Neural Cleanse [31] presented the first solution to detect
poisoned models. It first computes potential trigger patterns
for each class that could convert any clean image to that
class. Then, it detects among these candidates and selects the



abnormally smaller ones as backdoor indicators. Following
[31], improved detection techniques were introduced in [32],
[33]. Fine-Pruning [34] purifies a backdoored model by elim-
inating neurons that are dormant on clean inputs. Knowledge
distillation (KD) [35] techniques were also leveraged in [36]
and [37] to remove backdoors from infected DNNs. However,
applying Fine-Pruning and KD could degrade the clean ac-
curacy when only limited clean data are available [38]. [39]
proposed to remove neurons with high activation values from
the final convolutional layer. More recently, a robust training
strategy was proposed in [40] to train backdoor-free models
on the poisoned dataset. [41] introduces an effective backdoor
removal method Adversarial Neuron Pruning (ANP) to prune
adversarially sensitive neurons to purify the model.

In this paper, we present a novel generative time series
backdoor attack that can produce backdoor samples that are
not detectable by either human inspectors or strong backdoor
defenses.

III. TIME SERIES BACKDOOR ATTACK

In this section, we introduce our proposed Time Series Back-
door Attack (TSBA) in the context of time series classification
(TSC). We first define our threat model and overview the attack
pipeline, then introduce the details of the proposed trigger
generator and its training procedure. Finally, we introduce how
to train a universal trigger generator to craft sample-specific
backdoor triggers for any type of time series.

A. Problem Formulation

Let D = {(xi, yi)}Ni=1 denote the benign training set of N
i.i.d. samples, where each xi represents one time series sample
and yi is its corresponding ground-truth label. A classification
model f learns the function f : X → Y that maps the input
space to the label space. This is typically done by minimizing
the model’s classification error on D as follows:

min
θ

E(x,y)∈DLCE(f(x), y), (1)

where LCE is the commonly used cross-entropy loss and θ
are the model parameters.

A backdoor adversary poisons the training data D into a
poisoned dataset D′ with a trigger pattern p such that the
model trained on D′ will become a backdoored model f ′.
With the trigger pattern p, a poisoned sample can be crafted
by x′ = x⊙p where ⊙ represents any stamping method, such
as addition, subtraction, or replacement. The adversary aims
to achieve two goals with the backdoored model f ′. First, the
model should predict the correct label for benign inputs, i.e.,
f ′(x) = y for any test input x ∈ Dtest. Second, the model
should predict the backdoor class yt for any stamped test input
with the trigger pattern, i.e., f ′(x′) = yt for any backdoored
test input x′.

B. Threat Model

Existing threat models from the adversary’s perspective can
be categorized into three main categories: 1) training manipu-
lation where the adversary not only poisons the training data

but also controls the training procedure [15], [20], [42]; 2) data
poisoning where the adversary can only poison the training
data with the trigger pattern [8], [13]; and 3) post-training
injection where the adversary does not poison the training
data nor control the training procedure, but directly modifies
the parameters of a cleanly-trained model [43]. Unlike most
image backdoor attacks that only consider one of the above
three threat models, in this paper we design and evaluate our
Time Series Backdoor Attack (TSBA) under two different threat
models that fall into categories 1) and 2) stated above, denoted
as TSBA-A and TSBA-B:

TSBA-A: This threat model simulates real-world scenarios
where the victim users directly download and deploy pre-
trained DNNs models from untrusted sources. Under this threat
model, the adversary has full access to the training data D with
complete control over the training procedure. Accordingly,
the adversary purposely trains a backdoored model f ′ with
the poisoned training data D′ which contains a small portion
of poisoned samples by sample-wise trigger pattern p. After
downloading the backdoored model f ′, the victim user is
expected to inspect the model’s performance on its own
validation data Dval which is unknown to the adversary.

TSBA-B: This threat model assumes the victim users
have full control over the training procedure but accidentally
collected a few poisoned samples into its training set. The
adversary may have knowledge of the network architecture
adopted by the victim, and can poison a small number of
training samples. The adversary can thus add sample-wise
trigger patterns to a few samples and then injects the samples
into the training set. The victim trains a backdoored model
f ′ on the poisoned dataset D′. Meanwhile, the victim may
inspect the poisoned dataset D′ via either visual inspection or
certain backdoor defense techniques to remove the backdoored
samples.

C. Proposed Attack Pipeline
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90%
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Fig. 1: Overview of the proposed TSBA attack. Top: training
the TSBA trigger pattern generator; Bottom: inference with the
backdoored model on clean vs poisoned samples.

As illustrated in Figure 1, our proposed TSBA attack trains a
trigger generator network to generate sample-specific backdoor
trigger patterns for poisoned samples. The adversary randomly
selects 10% of training data for backdoor poisoning, and trains
a time series classifier on both the poisoned and clean training
samples. To achieve both a high attack success rate and high
clean accuracy, the two components of TSBA, namely the
trigger generator and the classifier, are trained iteratively via
specific procedures described in Section III-D. At inference



time, the backdoored classifier will predict the adversary-
specified class (backdoor class yt) for poisoned samples, while
recognizing correct classes for clean samples.

Under the TSBA-A threat model, the adversary directly
releases the backdoored classifier to the victim user, while
privately keeping the trained trigger generator to perform
backdoor attacks at inference time, i.e., as our TSBA is a
sample-specific attack, the adversary will need the trigger
generator to produce backdoor samples at inference time.

Under the TSBA-B threat model, the adversary will leverage
the trigger generator to perform data poisoning, i.e., poisoning
a small proportion (e.g. 10%) of the training samples using the
trigger generator. The victim user then trains a classifier on
the poisoned training set following a typical model training
procedure. The victim user will use the trained classifier to
perform inference on either clean or backdoored test samples.
The inference procedure is the same as in TSBA-A.

Algorithm 1: Training Procedure of TSBA

1 Let f be the classifier, g be the trigger generator
2 Let clipξ(x⊙ k) limit x bounded by [k − ξ,k + ξ]
3 Let Gξ(x) = clipξ(g(x)⊙ x)
4 Given a target class yt, a training dataset D, the

backdoor poison rate γ
5 Tclean: clean training epochs; Tbackdoor: backdoor

training epochs
6 Initialize f, g
7 # warm start f
8 for i in range(Tclean) do
9 for (x, y) in D do

10 f ← argminf LCE(f(x), y)
11 end
12 end
13 # simultaneous training of g and f
14 D′ ← random sampleγ(D)
15 for i in range(Tbackdoor) do
16 for (x′, yt) in D′ do
17 g ← argming LCE(f(Gξ(x

′)), yt)
18 end
19 D′ ← D ∪ {Gξ(x), yt}
20 for (x′, y′) in D′ do
21 f ← argminf LCE(f(x

′), y′)
22 end
23 end
24 return f , g

The core component of TSBA is the trigger generator which
uses a simple DNN architecture suited for both univariate and
multivariate time series. The detailed model structure is shown
in Table VII. The trigger generator takes a time series sample
as an input and generates a sample-specific trigger pattern for
the sample. Test the trigger pattern is of the same size as
the original sample. Then, the generated pattern is added to
the original sample to craft a poisoned sample. Given that
the trigger patterns are dynamic (sample-specific) and stealthy

(ensured by the generator), it is difficult for the victim user to
identify which samples are backdoored [20], [22]. Moreover,
even if the victim user has detected the trigger patterns for
several samples, they could not remove the trigger pattern for
other samples without the trigger generator. This is in sharp
contrast to fixed-pattern based backdoor attacks, where the
fixed pattern can be easily removed once detected.

D. Training the Trigger Generator

The training procedure of the trigger generator is described
in Algorithm 1. which iteratively trains the trigger generator g
and the backdoored classifier f to achieve both a high attack
success rate and high clean accuracy.

Trigger
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Fig. 2: The training procedure of the trigger generator g (top)
and the backdoor classifier f (bottom)

To address the cold start problem of generator training, we
first pre-train the time series classifier f for Tclean epochs on
all clean samples from D until it has a steady drop in the cross-
entropy loss LCE . This corresponds to lines 7-11 in Algorithm
1. After this pre-training, we train the trigger generator g and
the partially trained classifier f simultaneously for Tbackdoor

epochs. Both networks are progressively updated in each
iteration following a similar process: 1) training g on the
poisoned samples (initialized to be randomly sampled clean
samples at line 13) to minimize the classification loss with
respect to the backdoor class yt (line 15-17); 2) generating
poisoned dataset D′ using g (line 18); and 3) training f on the
poisoned dataset D′ with the poisoned samples are relabeled
to yt (line 19-21). Note that during the entire process, the
backdoor trigger pattern is clipped to be within 10% of the
signal amplitude, i.e., 0.1 ∗ (xmax − xmin), to strengthen
stealthiness (line 2). This process is further illustrated in Figure
2. This training procedure encourages the trigger generator g to
explore the most effective patterns that can alter f ’s predictions
towards the target class yt.

Unlike the image backdoor training where the backdoor
samples are generated before model training, we refresh the
sample-specific trigger for each backdoor sample using the
updated trigger generator g. Likewise, the time series classifier
f is backdoor trained to minimize the CE loss on the partially-
poisoned training data. Thus, it enables the classifier to rec-
ognize the backdoor pattern induced by the trigger generator,
while maintaining clean accuracy with clean training samples.
How TSBA works? In TSBA, the generator is designed to
progressively generate stronger (and more realistic) trigger
patterns, while the classifier simultaneously learns the corre-
lation between the trigger patterns and the target class. This



design is motivated by our observation in Section IV-D that
simple trigger patterns cannot be easily learned into the model.
I.e., establishing the backdoor correlation is relatively hard
in time series models. The clean signals tend to overwhelm
the backdoor noise during the training process. As such, the
generator and the classifier need to learn together to explore
stronger triggers. Beyond time series backdoors, our design
could also be useful for scenarios where backdoor triggers are
generally hard to inject.

E. Training a Universal Trigger Generator

The above generator needs to be re-trained or fine-tuned for
a new type of time series. Here, we further train a universal
trigger generator to generate sample-specific triggers for any
type of time series without the need to fine-tune the generator
for unseen datasets. The universal generator has a similar
architecture as the dataset-specific trigger generator used in the
above TSBA algorithm, but with one additional convolutional
layer and revised parameters to provide more generalization
capacities for multiple time series datasets. The detailed model
architecture can be found in Table VIII.

Algorithm 2: Universal Trigger Generator Training

1 Let g be the universal trigger generator
2 Given a set of distinct time series datasets
S = {S1,S2, ...,Sn}

3 Let C = {1, 2, ..., n} be a class set
4 Initialize g
5 for i in range(Tu) do
6 S ′ ← random sample(S)
7 yt ← random select(C)
8 g ← TSBA(g,S ′, yt) ▷ following Algorithm 1
9 end

10 return g

As described in Algorithm 2, it generally follows the train-
ing procedure of TSBA with several extra steps. The generator
is trained with samples from a combination of time series
datasets which are merged with all class labels re-organized.
In each iteration, the generator is refreshed with randomly
selected training samples and target classes. Accordingly, the
generator is optimized to create the trigger pattern according
to the style of the time series input to perturb samples from
unseen datasets. Thus, it simplifies and automates the proce-
dure of trigger pattern selection by removing the necessity
for manual selection or training a dataset-specific trigger
generator. More detailed training setup can be found in Section
IV.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
TSBA and the universal trigger generator. We first introduce
three simple baseline attacks and describe our experimental
setup. We then discuss the experimental results and show the
differences between image vs. time series backdoor attacks.

Following that, we demonstrate the stealthiness of the back-
doored samples generated by TSBA, as well as its resistance
to backdoor defenses.

A. Simple Baseline Attacks

In this work, we also propose three image-equivalent meth-
ods of time series backdoor attacks. Due to the lack of prior
research on time series backdoor attacks, we use them as the
baseline attacks. The attacked waveforms by the 3 baseline
attacks are illustrated in Figure 3. The first two baselines are
the two versions of a vanilla backdoor attack: 1) adding a
fixed pattern at the beginning of the time series, or 2) covering
the peaks (or troughs) in the time series by a fixed pattern.
Here we set the fixed pattern to be the min/max value of
the entire time series, as they are the most salient signals.
Both baseline attacks randomly choose and alter 5% of the
time series dimensions alternatively to their maximum and
minimum signal values.

The third baseline attack, named static noise, uses static
powerline noise as the trigger pattern. This idea was moti-
vated by the observation in recent research that powerline
noises caused by the signal capture device commonly exist
in Electrocardiogram (ECG) signals [44], [45]. The noise
is tiled (repeated) to the same length as the original time
series and applied to all time-dependent dimensions. Also, it
is standardized with its size set to be 10% of the amplitude
(xmax−xmin), which is of the same amplitude as the patterns
generated by our TSBA.

B. Experimental Setup

We evaluate our TSBA under both threat models TSBA-A
and TSBA-B (introduced in Section III-B) on 13 time series
datasets, where 8 of them are univariate datasets from the
UCR Archive, and the rest 5 are multivariate datasets from
the MTS Archive. Statistics of the 13 datasets can be found
in Appendix A. Due to the small number of instances and
the non-typical train-test split for most datasets, we apply 10-
fold cross-validation for all of our experiments and report the
average clean accuracy (CA) and attack success rate (ASR).

The poisoning rate for all attacks is set to be 10%. For
better stealthiness, the backdoor trigger pattern is clipped to be
10% of the signal amplitude (xmax−xmin) for each sample.
For TSBA-A and the three baseline methods, we directly take
the backdoored classifier as the final classifier. For TSBA-B,
the final classifier is trained with the 10%-poisoned training
dataset by the trained trigger pattern generator. We select the
first class of each dataset as the backdoor class. Details of all
network architectures can be found in Appendix A. We first
warm start the time series classifier by training it for 20 epochs
with purely clean samples. Then, we train each model for
500 epochs and apply early stopping to avoid overfitting. The
training is terminated when the backdoored classifier achieves
an optimal ASR and CA on the validation set according to the
10-fold cross validation.



0 100 200 300 400 500
2

1

0

1

2
Original Signal

0 100 200 300 400 500
2

1

0

1

2
Vanilla Backdoor (Fixed Position)

0 100 200 300 400 500
2

1

0

1

2
Vanilla Backdoor (Random Position)

0 100 200 300 400 500
2

1

0

1

2
Static Noise

Fig. 3: Waveforms of the original and attacked signals by 3 baseline attacks. The clean signal is taken from (D1) BirdChicken.

TABLE I: Experiment results of poison-label backdoor attacks on 13 datasets in terms of clean accuracy (CA) and attack
success rate (ASR). Both TSBA-A and TSBA-B threat models are tested. D1 to D8 are univariate datasets from the UCR
Archive, while D9 to D13 are multivariate datasets from the MTS Archive. The accuracy of clean model (without backdoor
training) is provided in the 3rd column (Clean).

Dataset Classifier Clean
Vanilla (Fixed) Vanilla (Random) Static Noise TSBA-A (Ours) TSBA-B (Ours)

CA ASR CA ASR CA ASR CA ASR CA ASR

(D1) BirdChicken
TCN 96.0% 88.0% 52.0% 86.0% 56.0% 90.0% 79.0% 94.0% 100.0% 92.0% 94.0%

ResNet 92.0% 86.0% 48.0% 83.0% 49.0% 85.0% 80.0% 90.0% 100.0% 86.0% 94.0%
LSTM 94.0% 85.0% 49.0% 83.0% 48.0% 88.0% 72.0% 91.0% 100.0% 88.0% 92.0%

(D2) ECG5000
TCN 94.6% 88.2% 56.1% 85.0% 55.9% 89.6% 76.2% 92.7% 100.0% 89.5% 89.0%

ResNet 93.9% 88.9% 55.6% 85.2% 55.8% 89.8% 75.9% 92.3% 100.0% 89.0% 86.2%
LSTM 94.1% 86.9% 55.2% 85.1% 54.7% 88.5% 74.7% 92.0% 99.5% 89.1% 84.1%

(D3) Earthquakes
TCN 72.5% 66.9% 51.7% 63.9% 55.8% 66.6% 72.1% 71.4% 100.0% 66.9% 81.1%

ResNet 71.7% 66.9% 53.9% 65.8% 54.0% 66.5% 74.6% 70.3% 99.7% 66.3% 78.4%
LSTM 72.2% 64.6% 53.3% 64.8% 56.9% 68.1% 70.4% 68.8% 100.0% 66.0% 76.8%

(D4) ElectricDevices
TCN 72.3% 65.9% 47.1% 63.6% 49.7% 66.9% 76.1% 70.7% 100.0% 67.1% 82.5%

ResNet 73.4% 66.3% 47.8% 66.4% 48.9% 68.3% 75.8% 71.8% 99.8% 68.6% 81.6%
LSTM 70.8% 64.9% 46.5% 63.7% 44.2% 64.8% 71.9% 68.9% 99.4% 65.9% 81.9%

(D5) Haptics
TCN 50.2% 46.4% 44.5% 45.0% 49.1% 46.1% 69.0% 49.3% 99.0% 46.5% 86.7%

ResNet 51.6% 48.5% 45.7% 47.2% 46.7% 47.7% 66.8% 50.8% 99.7% 48.4% 88.2%
LSTM 54.0% 48.1% 46.3% 47.0% 48.6% 48.9% 67.2% 52.8% 99.6% 49.6% 88.6%

(D6) PowerCons
TCN 88.2% 79.7% 59.1% 76.1% 62.0% 80.6% 76.4% 84.6% 100.0% 81.7% 79.1%

ResNet 89.7% 82.6% 58.2% 79.1% 61.2% 82.9% 75.2% 85.7% 100.0% 84.3% 78.2%
LSTM 86.4% 76.8% 56.7% 72.7% 61.7% 78.2% 73.9% 81.3% 100.0% 79.3% 75.6%

(D7) ShapeletSim
TCN 72.4% 64.0% 56.9% 61.3% 58.2% 64.3% 77.9% 69.0% 100.0% 66.5% 84.7%

ResNet 77.9% 70.8% 57.0% 65.2% 56.7% 69.9% 79.4% 73.8% 100.0% 71.5% 85.2%
LSTM 68.5% 62.1% 55.3% 55.3% 56.9% 61.8% 76.2% 63.7% 99.2% 60.4% 84.4%

(D8) Wine
TCN 59.6% 55.5% 52.6% 52.5% 54.1% 56.2% 74.0% 57.5% 98.4% 56.5% 80.7%

ResNet 74.5% 66.1% 50.1% 66.3% 52.7% 71.3% 76.2% 71.6% 96.9% 71.9% 76.9%
LSTM 66.8% 59.9% 48.5% 58.9% 53.4% 64.0% 73.7% 64.4% 95.8% 64.1% 78.2%

(D9) ArabicDigits
TCN 99.4% 92.8% 52.4% 90.6% 56.8% 93.5% 68.7% 97.1% 96.1% 94.2% 77.4%

ResNet 99.6% 92.5% 56.7% 90.2% 58.4% 94.2% 65.2% 96.6% 98.2% 94.2% 78.9%
LSTM 94.2% 89.2% 55.3% 86.3% 56.1% 88.1% 64.9% 91.8% 94.5% 88.2% 75.0%

(D10) ECG
TCN 87.4% 82.5% 59.1% 80.5% 59.0% 82.3% 79.2% 85.5% 100.0% 82.8% 81.6%

ResNet 86.2% 82.0% 62.4% 79.0% 61.2% 81.0% 80.1% 84.8% 100.0% 81.5% 83.7%
LSTM 86.8% 83.7% 58.6% 82.0% 60.5% 81.4% 77.4% 84.7% 100.0% 83.0% 80.5%

(D11) KickvsPunch
TCN 54.0% 51.1% 55.1% 48.8% 55.4% 50.9% 74.1% 53.2% 98.4% 51.0% 77.1%

ResNet 51.3% 47.9% 54.3% 46.4% 56.9% 48.5% 75.9% 50.4% 97.1% 48.7% 75.8%
LSTM 51.1% 49.3% 52.7% 47.5% 53.1% 49.1% 76.0% 50.0% 97.6% 48.8% 75.4%

(D12) NetFlow
TCN 89.4% 83.7% 48.9% 79.7% 49.6% 83.7% 79.4% 86.3% 100.0% 84.5% 82.4%

ResNet 77.5% 72.6% 51.1% 69.4% 50.8% 72.3% 80.6% 75.1% 100.0% 72.9% 84.5%
LSTM 88.6% 82.2% 50.4% 80.4% 50.1% 82.1% 78.5% 85.4% 100.0% 83.4% 84.9%

(D13) UWave
TCN 93.4% 87.0% 43.7% 83.2% 46.7% 87.5% 66.7% 90.4% 98.0% 87.3% 72.5%

ResNet 92.2% 85.5% 46.2% 80.8% 48.9% 86.0% 68.5% 88.8% 99.1% 86.5% 76.7%
LSTM 84.1% 78.9% 42.5% 74.3% 46.5% 79.0% 64.3% 81.3% 96.4% 78.7% 69.4%
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Fig. 4: Example waveform and frequency domain of the original and backdoor time series. The two examples are taken from
(D2) ECG5000 dataset and (D3) Earthquake dataset, respectively.

C. Main Results

The attack performance of different attacking methods is
reported in Table I. It is clear that our proposed TSBA-A
and TSBA-B attacks achieved the best attack performance
among all the baseline attacks, in terms of both ASR and
CA. Specifically, TSBA-A achieves 100% ASR in 19 out of
the 39 experiments, while an average ASR of 98.2% in the
rest of the 20 experiments. The average clean accuracy drop
is around 2.45% and 2.25% for univariate and multivariate
datasets, respectively. For TSBA-B, it is less powerful than
TSBA-A but can still achieve an average ASR of 81.6%. It
causes an average clean accuracy drop of 5.09% and 4.63% for
univariate and multivariate datasets, respectively. Surprisingly,
as a weaker attack, the CA performance of TSBA-B is no
better than TSBA-A. We suspect this is because TSBA-B has
zero control over the training procedure and does not have the
benign counterparts of the poisoned samples in the training set.
Compared with static noise, our TSBA-B achieves significantly
higher ASR in all experiments while maintaining similar clean
accuracy in most cases. These results confirm the attack
effectiveness of our proposed TSBA attacks.

D. Time Series vs. Images

As shown in Table I, directly applying image-equivalent
backdoor attacks (i.e., the two variants of vanilla backdoor) on
time series data fails to deliver strong attack performance as
in the image domain. This is because time series are generally
of lower input dimensions and fewer degrees of freedom than
images, making fixed trigger patterns less effective. The fast
and steep shifts induced by the vanilla backdoor patterns may
not be sensitive to the classifier and could be suppressed
by the clean peak or trough signals. Even for the variant
that randomly applies the trigger pattern to cover one or
more peaks (or troughs), it could only improve the ASR
by an average of 1.63% while reducing the clean accuracy
by an average of 2.53%. In fact, effective trigger patterns
should produce smooth transitions across the entire signal. By

simply adding the static powerline noise with a small 10%
(standardized) amplitude, it achieves significantly higher ASRs
and CAs compared with the vanilla backdoor. Our TSBA
attacks present a more advanced version of the static noise
that can generate more smooth and persisting trigger patterns,
and more importantly, be adaptive to each input time series.

E. Stealthiness Analysis

We use the root mean square (RMS) of the trigger patterns
to measure their stealthiness. We apply the trained trigger
generator to create sample-specific trigger patterns for all
samples in each of the 13 datasets, then report their mean
RMS values within each dataset as well as the average overall
13 datasets. To simplify the results, this experiment was
conducted under the TSBA-A threat model based on the FCN,
one most commonly used model architectures for time series
classification. The results are reported in Table II.

TABLE II: The RMS of the generated trigger patterns by
TSBA. All RMS values are normalized with respect to the
magnitude of each sample. RMSTop 1% only computes the
highest 1% portion sorted by the absolute signal values.

D1 D2 D3 D4 D5 D6 D7

RMSAll 0.014 0.011 0.008 0.017 0.021 0.016 0.012
RMSTop 1% 0.056 0.044 0.061 0.072 0.049 0.064 0.039

D8 D9 D10 D11 D12 D13 Avg.

RMSAll 0.029 0.031 0.017 0.032 0.024 0.036 0.021
RMSTop 1% 0.052 0.087 0.068 0.047 0.059 0.084 0.060

It is evident that our TSBA attack introduces very small
variations to the original signal, only incurring an average of
2.1% of the amplitude for all samples across the 13 datasets,
although we allow up to 10% perturbation of each sample’s
amplitude. It is worth mentioning that the static noise incurs an
average of 10% of the amplitude, which is much higher than
TSBA. The low top 1% RMS values indicate that only a small
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Fig. 5: Waveforms and Grad-CAM attention maps under different attack settings. The example is taken from (D1) BirdChicken
dataset. The original (blue) and backdoor (orange) signals are plotted together as a comparison.

portion of each sample is heavily perturbed, while the rest
are insignificantly modified. However, such small but sample-
specific perturbations can achieve remarkably high ASR with
similar clean accuracy.

Figure 4 shows that the backdoor samples and their benign
counterparts are imperceptibly different from their clean coun-
terparts in both the time domain (i.e., waveform) and frequency
domain (obtained via Fourier transformation). Figure 5 shows
the different trigger patterns crafted by different attacks. The
trigger patterns generated by our attack are very smooth and
visually more natural compared to other baselines. Note that
the vanilla backdoor attack creates a high variation block
at the beginning of the signal, while the static noise causes
a suspicious sawtooth effect across the entire signal. This
confirms the high stealthiness of TSBA and the benefit of
our generative approach. Our proposed TSBA attacks are
capable of generating stealthy backdoor triggers owing to their
generative design.

F. Grad-CAM Visualization

To help understand the working mechanism of the trigger
patterns generated by TSBA, we visualize the Grad-CAM
[46] attention map in Figure 5 for the trigger patterns crafted
by different attacks and their boosted versions. The boosted
triggers can help visualize the differences. For the vanilla
backdoor with a fixed pattern position (at the beginning), we
double its perturbation magnitude from 5% to 10%. For the
static noise, we directly double the amplitude of the added
noise pattern. For our TSBA-A, we retrain the model with
a doubled clipping rate ξ, from 10% to 20%. Amongst all
six backdoored samples (with their corresponding models),
only our TSBA-A and its boosted version have successfully
performed the backdoor attack. Unsurprisingly, the trigger for
the vanilla backdoor does not activate the hidden backdoor
as its attention map is very similar to that of the original

signal. For the static noise, there is no obvious region of the
altered attention map that can cause incorrect prediction. For
the enhanced version of the above baseline attacks, more less-
focused regions are shown in the attention map (i.e., more blue
regions and less yellow or red regions), indicating that those
trigger sequences divert the attention of the classifier. Yet, they
are not strong enough to mislead the model’s prediction. By
contrast, with small-amplitude triggers, our TSBA can produce
more disputing regions in the classifier’s attention map.

G. Resistance to Backdoor Defenses

Here, we show that our TSBA attack can easily evade
state-of-the-art backdoor defense methods, including Neural
Cleanse (NC) [31], Fine-Pruning (FP) [34] and Adversarial
Neuron Pruning (ANP) [41]. The results of our TSBA-A/B
and the three baselines are reported in Table III.

1) Evading NC: NC [31] can not only detect whether
a DNN has been backdoored but also recover and mitigate
the backdoor trigger via reverse engineering and unlearning.
Here, we apply NC with unlearning that allows the model to
decide which weights are problematic and should be updated
through training. This defense can significantly eliminate the
two Vanilla baseline attacks, reducing their ASR by 42%-62%.
However, it fails on the other 3 attacks due to its limitation
on detecting static trigger patterns that are not applied to the
entire input. Since our TSBAs use sample-specific triggers,
NC can only reduce their ASRs by 1%-6%.

2) Evading FP: FP [34] exploits the advantages of both
pruning and fine-tuning, and progressively removes the dor-
mant neurons that are conditioned on clean images to mitigate
the backdoor. We apply FP with the default hyperparameters
on the backdoored classifiers trained by our TSBA attacks. We
set the pruning rates to 30%. Our TSBA demonstrates high
resistance to the FP defense with less than 5% and 9% ASR
drop for TSBA-A and TSBA-B, respectively. This implies that



TABLE III: Performance deviation of the baselines and our TSBA attacks against three backdoor defenses. All models use
FCN as the time series classifier. The ∆CA and ∆ASR are calculated based on the results from Table I.

Dataset Defense
Vanilla (Fixed) Vanilla (Random) Static Noise TSBA-A (Ours) TSBA-B (Ours)

∆CA ∆ASR ∆CA ∆ASR ∆CA ∆ASR ∆CA ∆ASR ∆CA ∆ASR

(D1) BirdChicken
NC +1.0% -52.0% +2.0% -56.0% -1.0% -27.0% 0.0% -1.0% -1.0% -3.0%
FP -1.0% -51.0% -1.0% -47.0% -1.0% -71.0% -2.0% -3.0% -0.5% -6.0%

ANP -0.0% -52.0% -0.5% -56.0% -1.0% -76.0% -1.0% -6.0% -1.0% -7.0%

(D2) ECG5000
NC +1.5% -56.1% +2.1% -55.4% -1.4% -32.2% -0.4% -1.1% -3.7% -5.2%
FP -1.1% -55.2% -0.8% -48.9% -1.0% -66.4% -2.1% -2.9% -1.7% -6.1%

ANP -0.8% -56.1% -0.6% -55.9% -0.7% -70.1% -1.4% -6.8% -1.5% -8.4%

(D3) Earthquakes
NC +0.5% -51.7% -0.1% -53.7% +0.1% -30.2% -0.1% -0.8% -1.7% -5.4%
FP -0.9% -50.4% -1.2% -48.1% -2.1% -61.9% -2.7% -2.6% -2.2% -7.7%

ANP -0.2% -51.7% -0.4% -55.8% -1.2% -71.3% -1.2% -5.9% -1.4% -6.9%

(D4) ElectricDevices
NC +1.9% -47.1% +1.5% -48.1% -0.9% -29.7% -1.0% -1.9% -2.2% -4.7%
FP -0.1% -47.2% -0.6% -49.1% -1.1% -69.6% -3.4% -1.8% -2.7% -5.6%

ANP -1.4% -47.7% -1.0% -49.7% -2.4% -74.1% -1.9% -6.4% -1.7% -8.7%

(D5) Haptics
NC +0.1% -44.5% +0.4% -48.1% -0.3% -33.4% -0.6% -1.5% -0.8% -3.4%
FP -1.1% -39.8% -0.8% -42.7% -1.5% -61.2% -1.9% -2.7% -2.1% -4.9%

ANP -1.0% -44.0% -1.2% -49.0% -1.8% -67.1% -0.9% -4.9% -1.7% -6.4%

(D6) PowerCons
NC +1.0% -57.9% +0.3% -62.0% -1.4% -35.9% -0.2% -0.4% -0.7% -1.5%
FP -0.6% -51.6% -0.8% -53.4% -1.7% -67.6% -3.0% -2.4% -2.7% -3.1%

ANP -0.4% -58.3% -0.7% -61.6% -1.0% -73.8% -2.1% -6.4% -2.0% -8.2%

(D7) ShapeletSim
NC +1.8% -54.8% -1.6% -56.9% -3.4% -41.6% +0.3% -0.2% -0.4% -1.7%
FP -1.2% -49.7% -0.5% -52.6% -3.1% -68.9% -2.4% -1.9% -2.6% -2.9%

ANP -0.2% -56.3% -0.3% -57.3% -1.9% -74.5% -1.2% -7.1% -1.8% -6.8%

(D8) Wine
NC -0.1% -51.3% +0.4% -52.0% -0.9% -39.9% -0.1% -1.1% -1.2% -2.0%
FP -1.0% -46.7% -0.7% -46.9% -1.2% -67.5% -1.2% -2.6% -2.4% -4.9%

ANP -0.6% -52.6% -0.4% -53.7% -0.9% -71.6% -1.0% -5.0% -2.1% -7.1%

(D9) ArabicDigits
NC +1.4% -52.1% +1.9% -55.0% -1.4% -28.4% -0.8% -1.1% -1.6% -1.4%
FP -0.2% -48.2% -0.8% -51.9% -1.0% -60.1% -4.6% -3.5% -3.8% -3.4%

ANP -0.7% -52.4% -0.4% -56.1% -0.9% -65.2% -2.4% -7.8% -3.7% -8.2%

(D10) ECG
NC +2.2% -58.9% +1.5% -56.3% -2.1% -29.8% -0.9% -2.4% -1.1% -3.1%
FP -0.7% -53.6% -0.8% -52.1% -1.7% -64.2% -3.8% -4.1% -3.9% -4.7%

ANP -0.1% -58.4% -0.2% -58.1% -0.9% -76.9% -2.0% -9.0% -3.2% -8.1%

(D11) KickvsPunch
NC +1.7% -53.1% +2.4% -53.6% -2.4% -39.2% -3.1% -1.6% -3.0% -4.1%
FP -0.9% -51.2% -0.4% -52.0% -2.2% -66.1% -2.5% -2.9% -2.1% -7.9%

ANP -0.5% -55.1% -0.6% -53.9% -1.4% -70.7% -1.6% -8.6% -2.6% -9.1%

(D12) NetFlow
NC +0.1% -47.6% +0.3% -47.6% -2.6% -25.2% -0.7% -2.9% -1.2% -2.4%
FP -0.2% -38.3% -0.9% -41.8% -2.4% -73.5% -2.9% -4.3% -2.8% -3.8%

ANP -0.4% -48.9% -0.1% -48.8% -1.0% -77.4% -1.5% -8.1% -1.7% -7.6%

(D13) UWave
NC +0.8% -42.1% +1.9% -45.1% -3.1% -38.7% -1.7% -3.0% -2.1% -2.4%
FP -1.0% -38.9% -1.3% -41.2% -2.0% -58.8% -3.6% -3.7% -4.4% -4.2%

ANP -0.4% -43.7% -0.8% -46.4% -1.4% -62.3% -2.2% -7.7% -3.0% -8.1%

the trigger patterns generated by TSBAs are deeply mixed into
the clean signals in the representation space, making it hard
to be removed by either neuron pruning or clean-data based
fine-tuning.

3) Evading ANP: ANP [41] is a recent defense method that
removes potential backdoors by pruning the most susceptible
neurons to adversarial perturbations. ANP demonstrates state-
of-the-art defense performance against a number of backdoor
attacks. Here, we apply ANP to all backdoored models with a
perturbation budget ϵ = 0.4, trade-off coefficient α = 0.2, and
constant learning rate 0.2. All neuron masks are optimized us-

ing Stochastic Gradient Descent (SGD). ANP can significantly
eliminate the two Vanilla attacks (i.e., Fixed and Random),
reducing their ASRs to <2%. For the static noise attack, ANP
brings its ASR down to less than 10% on all datasets. Our
TSBA attacks are fairly robust against this strong defense with
ASR drops by < 9%.

The ASRs of the three baseline attacks are all below 10%
under the backdoor defenses. However, the ASRs of our TSBA
attacks drop only by less than 10% across all 3 defenses and
13 datasets, which are still above 80%. This proves that, even
under strong backdoor defenses, our attacks can still pose high



threats. It is also worth mentioning that, since our triggers
are dynamic and sample-specific, existing defense techniques
designed for static patterns may not apply to our attacks.

V. UNIVERSAL TRIGGER GENERATOR

To evaluate the attack performance of our proposed univer-
sal trigger generator, here we train the model on a combined
dataset of 10 new univariate datasets from UCR Archive,
namely the first 11 datasets except for D1 BirdChicken (as D1

are selected in our experiments). The training of the generator
is early stopped when an optimal ASR (on the training set) is
achieved. Then, we use the obtained universal trigger generator
to create poisoned training set for each of the 13 datasets used
in our previous experiments, with a poison rate of 10%. For
multivariate datasets, we apply the universal generator to each
time-dependent variable separately. Each backdoored classifier
was trained following the same training procedure and setting
under our TSBA-B threat model (stated in Section IV-B).

As shown in Table IV, the universal trigger generator
exhibits strong performance on all 13 datasets. The clean
accuracy is generally higher than our non-universal TSBA-B
attack, while the attack success rate drops by less than 4%.
Note that this attack performance still outperforms the static
noise, the strongest baseline attack. The sample-wise trigger
patterns generated by the universal generator are still dynamic
and equally stealthy as those generated by TSBA-A and TSBA-
B. Moreover, compared with universal adversarial noises that
can be effectively detected and erased by several defense
techniques, our universal trigger patterns on time series data
are robust to existing image-based backdoor defenses. Our
universal trigger generator provides a cheap but extremely
effective approach for attacking any type of time series, posing
severe threats to deep learning based time series classification.

VI. CONCLUSION

In this paper, we proposed a novel generative approach
called Time Series Backdoor Attack (TSBA) for backdoor
attacks on time series. TSBA is capable of generating highly
stealthy and sample-specific trigger patterns for time series
backdoor attacks under two different threat models. We stud-
ied the difference between image backdoors vs. time series
backdoors via three proposed baseline attacks with fixed
patterns. We found that the low dimension and fewer degrees
of freedom (due to time dependence) nature of time series
data make fixed patterns hardly work as backdoor trigger
patterns. We empirically show on 13 representative datasets
that our proposed TSBA attacks can achieve high ASRs
with small drops in clean accuracy, outperforming all three
proposed baseline attacks. We analyzed the stealthiness of our
attacks as well as their resistance to state-of-the-art backdoor
defense methods. We also demonstrate the strong robustness of
TSBA to several advanced backdoor defenses. Moreover, our
proposed universal trigger generator was also demonstrated
to be as effective as dataset-specific TSBA attacks, posing
serious threats to deep learning based time series models.
Although there are still many unknowns to explore in time

TABLE IV: Performance of our universal trigger generator.
The differences in CA and ASR are calculated versus TSBA-
B.

Dataset Classifier Clean CA ASR ∆CA ∆ASR

D1

TCN 96.0% 94.0% 92.0% +2.0% -2.0%
ResNet 92.0% 90.0% 92.0% +4.0% -2.0%
LSTM 94.0% 89.0% 88.0% +1.0% -4.0%

D2

TCN 94.6% 90.1% 87.5% +0.6% -1.5%
ResNet 93.9% 90.2% 85.5% +1.2% -0.7%
LSTM 94.1% 88.8% 82.2% -0.3% -1.9%

D3

TCN 72.5% 69.9% 78.6% +3.0% -2.5%
ResNet 71.7% 68.5% 75.7% +2.2% -2.7%
LSTM 72.2% 67.7% 73.2% +1.7% -3.6%

D4

TCN 72.3% 69.2% 80.6% +2.1% -1.9%
ResNet 73.4% 71.0% 78.5% +2.4% -3.1%
LSTM 70.8% 68.9% 79.5% +3.0% -2.4%

D5

TCN 50.2% 50.6% 86.1% +4.1% -0.6%
ResNet 51.6% 50.6% 87.1% +2.2% -1.1%
LSTM 54.0% 51.0% 84.9% +1.4% -3.7%

D6

TCN 88.2% 82.3% 79.3% +0.6% +0.2%
ResNet 89.7% 84.1% 76.4% -0.2% -1.8%
LSTM 86.4% 80.4% 75.0% +1.1% -0.6%

D7

TCN 72.4% 67.8% 83.6% +1.3% -1.1%
ResNet 77.9% 72.3% 83.5% +0.8% -1.7%
LSTM 68.5% 63.0% 81.0% +2.6% -3.4%

D8

TCN 59.6% 61.1% 81.8% +4.6% +1.1%
ResNet 74.5% 73.2% 75.3% +1.3% -1.6%
LSTM 66.8% 67.2% 75.9% +3.1% -2.3%

D9

TCN 99.4% 96.9% 75.8% +2.7% -1.6%
ResNet 99.6% 95.7% 76.7% +1.5% -2.2%
LSTM 94.2% 90.6% 72.1% +2.4% -2.9%

D10

TCN 87.4% 83.3% 79.9% +0.5% -1.7%
ResNet 86.2% 80.6% 83.5% -0.9% -0.2%
LSTM 86.8% 84.8% 77.0% +1.8% -3.5%

D11

TCN 54.0% 52.5% 79.7% +1.5% +2.6%
ResNet 51.3% 52.5% 76.7% +3.8% +0.9%
LSTM 51.1% 51.2% 76.5% +2.4% +1.1%

D12

TCN 89.4% 86.0% 82.6% +1.5% +0.2%
ResNet 77.5% 76.0% 83.9% +3.1% -0.6%
LSTM 88.6% 87.1% 83.5% +3.7% -1.4%

D13

TCN 93.4% 89.9% 69.4% +2.6% -3.1%
ResNet 92.2% 87.7% 75.1% +1.2% -1.6%
LSTM 84.1% 80.7% 68.6% +2.0% -0.8%

series backdoor attacks, our work provides a strong baseline
and a good starting point for future research in this area. For
future work, we aim to expand our current research and design
advanced backdoor defense techniques for time series.
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APPENDIX A
DETAILS OF THE DATASETS AND NETWORK

ARCHITECTURES

TABLE V: Statistics of the selected univariate datasets from
the UCR Archive.

Dataset Data
Type

#Class Frame
Length

Training
Samples

Test
Samples

(D1) BirdChicken Image 2 512 20 20
(D2) ECG5000 ECG 5 140 500 4500
(D3) Earthquakes Sensor 2 512 322 139
(D4) ElectricDevices Device 7 96 8926 7711
(D5) Haptics Motion 5 1092 155 308
(D6) PowerCons Power 2 144 180 180
(D7) ShapeletSim Simulated 2 500 20 180
(D8) Wine Spectro 2 234 57 54

TABLE VI: Statistics of the selected multivariate datasets from
the MTS Archive.

Dataset #Class #Var. Frame
Length

Training
Samples

Test
Samples

(D9) ArabicDigits 10 13 4–93 6600 2200
(D10) ECG 2 2 39–152 100 100
(D11) KickvsPunch 2 62 274–841 16 10
(D12) NetFlow 2 4 50–997 803 534
(D13) UWave 8 3 315 200 4278



TABLE VII: Architectures of the trigger generator network,
where “L” denotes the length of the time series input, and
“D” denotes the number of time-dependent variables of the
time series input.

Layers (Activation) Kernel size # Kernels Output size

Input - - (L, D)
Conv1D (ReLU) 15*1 128*D (L, 128*D)
Conv1D (ReLU) 21*1 512*D (L, 512*D)

FC (ReLU) - 256 (L, 256*D)
FC (tanh) - D (L, D)

TABLE VIII: Architecture of the universal noise generator.

Layers (Activation) Kernel size # Kernels Output size

Input - - (L, D)
Conv1D (ReLU) 15*1 128*D (L, 128*D)
Conv1D (ReLU) 21*1 512*D (L, 512*D)
Conv1D (ReLU) 8*1 1024*D (L, 1024*D)

FC (ReLU) - 512 (L, 512*D)
FC (tanh) - D (L, D)
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