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Abstract
Neural operators have emerged as a promising
approach for high-dimensional partial differen-
tial equations (PDEs). However, existing neural
operators often have difficulty in dealing with
constrained PDEs, which is a practical setting
where the solution must satisfy additional equal-
ity or inequality constraints beyond the govern-
ing equations. To close this gap, we propose a
novel neural operator, Hyper Extended Adaptive
PDHG (HEAP) for constrained high-dim PDEs,
where the learned operator evolves in the param-
eter space of PDEs. We first show that the evo-
lution operator learning can be formulated as a
quadratic programming (QP) problem, then un-
roll the adaptive primal-dual hybrid gradient (A-
PDHG) algorithm as a QP-solver into the neural
operator architecture. It allows to improve effi-
ciency while retaining theoretical guarantees of
the constrained optimization. Empirical results
on a variety of high-dim PDEs show that HEAP
outperforms the state-of-the-art neural operator
model.

1. Introduction
Partial differential equations (PDEs) are widely used across
various disciplines in science, engineering, economics, and
finance (Strauss, 2007; Folland, 2020). Since many PDEs
lack analytical solutions, numerical techniques like finite
element methods (Huebner et al., 2001) and recently neural
network-based solvers (Blechschmidt & Ernst, 2021) have
been developed. Although these approaches have witnessed
significant progress, they face the curse of dimensionality,
where the number of required data points grows exponen-
tially as the dimension d of the independent variables in-
creases (Bellman, 1966).

*Equal contribution 1Sch. of Computer Science & Sch. of
Artificial Intelligence, Shanghai Jiao Tong University, China. Cor-
respondence to: Junchi Yan <yanjunchi@sjtu.edu.cn>. This work
was partly supported by NSFC (62222607, 623B1009). Code avail-
able at GitHub.
Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

To tackle the dimensionality challenge, recent advances
in learning-based solvers often try to leverage the specific
structure of PDE (Han et al., 2017; Wang et al., 2022; Yu
et al., 2018) and develop memory-efficient training tech-
niques (Hu et al., 2024; Shang et al., 2023). These methods
have shown empirical success on a variety of PDEs. How-
ever, they are designed to handle specific instances, meaning
that they require expensive retraining from scratch when-
ever there are changes in the initial or boundary conditions.
Neural operators (Gaby et al., 2024; Gaby & Ye, 2024) over-
come these issues by learning the evolution operator of the
solution function. The training is solely based on the PDE
residual loss, no needing spatial discretization or solving the
PDE directly. Once trained, the model (ideally) generalizes
to new initial conditions with a single inference pass.

Despite such progress, a notable bottleneck (we also note
the early efforts date back to (Lagaris et al., 1998)) to neural
PDE solvers is the (in)equality constraints, which are com-
mon in both real-world scenarios and numerical modeling,
e.g. heat diffusion with temperature bounds and the Euler
equation with entropy conditions. Simple methods incor-
porating these constraints can result in unstable training,
slow convergence, and violation of the constraints (Wang
et al., 2021). While more advanced techniques have been
proposed to handle constraints in either soft penalty (Wang
et al., 2024) or hard encoding (Lu et al., 2021b), these
methods come with either significant computational costs
or network architecture restrictions and are limited to low-
dimensional PDEs as discussed in (Feng et al., 2025).

In this work, we propose a novel quadratic programming-
based neural operator, HEAP, for constrained high-
dimensional PDEs, which can efficiently handle constraints
in high-dimensional PDEs beyond existing SOTA neural
operators. We first show that the evolution operator in the
parameter space of constrained PDEs can be formulated as
a QP problem, where the QP constraints correspond to the
quadratic linear constraints in the original space. We then
unroll the adaptive primal-dual hybrid gradient (A-PDHG)
algorithm into the neural operator architecture to improve
computational efficiency. Moreover, we theoretically prove
the approximation capability of the proposed method and
provide empirical results on a variety of high-dim PDEs to
demonstrate that HEAP outperforms existing SOTA neural
operator model. The contributions are as follows:
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• First time to identify and formulate the evolution operator
in the parameter space of constrained high-dimensional
PDEs as a QP optimization problem.

• Propose a hyper-extended A-PDHG operator architecture
for QP problem end-to-end learning and solving, with
theoretical justification.

• Solve various types of PDEs on 5-20 dimensions with
various constraints accurately and stably, generalizing
across initial conditions.

2. Related Work and Preliminaries
Recent neural PDE solvers have shown the potential to
overcome the limitations of traditional numerical solvers,
especially for high-dim and constrained problems.

2.1. From Low-dim to High-dim Neural PDEs Solvers

The neural-network-based approaches for low dimensional
PDEs can be mainly divided into two categories: physics-
informed network and data-driven operator(Karniadakis
et al., 2021). Specifically, Physics-Informed Neural Net-
works (PINNs) (Raissi et al., 2019) leverage neural networks
to approximate the solution of a PDE and enforce boundary
loss and PDE residual loss at a few selected points. This ap-
proach has various extensions such as weak form (De Ryck
et al., 2024), adaptive sample weight (McClenny & Braga-
Neto, 2020), and integral loss (Saleh et al., 2023). These
methods may suffer from slow convergence and re-training
requirements for new initial conditions. Alternatively, Deep-
ONet (Chen & Chen, 1995; Lu et al., 2021a) leverages the
universal approximation theorem of infinite-dimensional
operators and directly fits the PDE solution operators in a
data-driven manner, solving a family of PDEs with a single
model. However, this approach requires a large amount of
data for training and may not generalize well to new ini-
tial conditions. Physics-informed neural operators (PINO)
(Li et al., 2024) is a hybrid approach incorporating data
and PDE residuals in the loss function. There exist many
neural operators with other architectures, such as Fourier
transform layer (Li et al., 2020), and graph neural networks
(GNNs)(Alet et al., 2019). The existing GNN-based models
describe irregular spacial grids and their relative position
as graph (Lötzsch et al., 2022; Horie & Mitsume, 2022;
Bryutkin et al., 2024).

For high-dimensional PDEs, the curse of dimensionality
poses a challenge, and specialized methods are designed
which mainly fall in the physics-informed category. (Han
et al., 2018; 2017) proposed the DeepBSDE, reforming a
special class of hyperbolic PDEs as backward stochastic dif-
ferential equations (BSDEs) by the Feynman-Kac formula.
The deep Ritz method (Yu et al., 2018) solves high-dim
variation PDEs by minimizing the energy functional of the

PDE. For general form PDEs, Zang et al. (2020) proposed
an adversarial network that solves PDEs. Hu et al. (2024)
designed stochastic dimension gradient descent to reduce
memory. Shi et al. designs an efficient amortized algorithm
for differential operations in solving high-dim PDEs.

Another approach is to learn the solution operator, e.g. the
mapping from initial conditions to the solution functions.
The pioneering work is (Gaby et al., 2024), which learns
the high-dimensional PDE solution operator by reducing
the solution operator to the evolution of the parameters of
a reduced-order model (a neural network) and introduces
another network to learn the evolution in discrete time steps
by minimizing PDE residual. The second work (Gaby &
Ye, 2024) extends the first work to continuous evolution
by adapting a Neural ODE (NODE) (Chen et al., 2018)
framework, improving the sample efficiency. We follow this
line of work and propose a novel neural operator that can
handle constraints in high-dimensional PDEs.

2.2. Neural PDE Solvers with Constraints

When a PDE admits multiple weak or classical solutions,
additional constraints—either equalities or inequalities—act
as regularisers that single out the physically (or financially)
meaningful branch of the solution manifold.

Initial and boundary conditions are the most common equal-
ity constraints, yet they may be partially unknown or insuf-
ficient to guarantee uniqueness. In such cases inequality
constraints can still be derived from first principles. A cel-
ebrated example is the three–dimensional Navier–Stokes
equation, whose uniqueness remains a Millennium Prize
Problem; imposing an upper bound on the total kinetic
energy is one standard way to discard non-physical blow-
up solutions (Fefferman, 2006). Similarly, the multi–asset
Black–Scholes equation lacks a unique solution in prac-
tice; no-arbitrage bounds on the option’s theta restore well-
posedness and are routinely used in quantitative finance
(Hull & Basu, 2016). We visualise this effect in Fig. 3,
where distinct constraint sets lead to markedly different
Black–Scholes solution surfaces.

A few recent AI4PDE studies have begun to encode in-
equality information, e.g. derivative bounds or convex con-
straints, into physics–informed losses (Hoshisashi et al.,
2024; Moro & Chamon, 2025). However, these methods rely
on dense spatial discretisation and have only been demon-
strated on low–dimensional (d≤ 3) problems. Scalability
to the high–dim regime (d≥ 10) targeted in this work re-
mains open; HEAP addresses this gap by reformulating the
constraint enforcement as a differentiable QP layer and un-
rolling an adaptive PDHG solver inside the neural operator.

Previous works incorporate constraints into neural solvers
in two ways: soft and hard. Soft methods introduce penalty
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terms into the objective. For instance, physics-informed
neural networks (PINNs) (Raissi et al., 2019) apply initial
and boundary conditions as penalty terms. Other examples
include enforcing turbulence models (List et al., 2022), com-
plex geometries (Wang et al., 2024), and spectral represen-
tation (Du et al., 2023). However, in many real-world cases,
the constraints need to be strictly enforced which is also the
focus of this paper. Hard constraints can be implemented
in various ways, e.g. encoding structure of constraints into
network architecture (Lu et al., 2021b; Richter-Powell et al.,
2022), using an implicit constraint layer (Négiar et al., 2022),
incorporating numerical solvers into the network (Saad et al.,
2022; Chalapathi et al., 2024). However, these methods are
limited to low-dim PDEs and do not scale well to high-dim
problems. In our work, we propose the first soft-constrained
end-to-end neural solver for high-dimensional PDEs.

2.3. Genreal Formulation of Constrained PDEs

We consider a nonlinear PDE initial value problem with
linear constraints in its general form:


∂tu(x, t) = F [u](x, t), x ∈ Ω, t ∈ (0, T ],

u(x, 0) = g(x), x ∈ Ω,

H[u](x, t) ≥ 0 x ∈ ΩH , t ∈ (0, T ]

(1)

where u(x, t) is the solution function, F is a possible non-
linear operator, g(x) is the initial condition, Ω ⊂ Rd is
the spatial domain, and T is the time horizon. In addi-
tion to the PDE, we have inequality constraints H[u] ≥ b,
where H is a linear operator. The constraints are defined
on the subdomain ΩH . The constraints might be rooted in
the multi-solution nature of some PDEs, associated with
physical laws, or numerical stability requirements.

3. Methods
3.1. Problem Formulation

Evolution Operator in the Parameter Space. Under the
high-dimensional settings, it is usually infeasible to numeri-
cally calculate the PDE solution u directly. In this paper, we
approximately surrogate the solution function u(·, t) with
a neural network ansatz uθ(·), and learn the evolution of
the parameters θ starting from an initial parameter θ0. The
evolution is governed by a hyper-operator Vw, which takes
the current parameter θt and outputs its temporal derivative,
i.e. θ̇t = Vw(θt). In the definition of the constraint PDEs,
we use the formulation in Equation. 1.

The overall target is to fit the hyper-operator Vw minimizing
the expected PDE residual over a distribution D of θ0 and
under the constraints. Formally, we drive the following

models for solving:

min
w

E
θ0∼D

∫ T

0

∥∥∥∇θuθt · θ̇t − F [uθt ]
∥∥∥2
L2(Ω)

dt

s.t. H[uθt ](x, t) ≥ 0, x ∈ ΩH , t ∈ (0, T ],

θ̇t = Vw(θt), t ∈ (0, T ].

(2)

In this formulation, the PDE operator learning is converted
to the parameter evolution operator learning, which is a
linearly constrained nonlinear optimization problem.

Approximated QP Operator. To design the architecture of
Vw in a principled way, we exploit the quadratic structure of
Eq. 2 and approximately reformulate Vw as a QP problem
w.r.t. θ̇t. A general QP problem can be formulated as:

min
x∈[l,u]

1

2
x⊤Qx+ c⊤x, s.t. Ax ≥ b, (3)

where Q is a symmetric, positive semi-definite matrix. Vw

can be implemented as a QP solver, after three approxima-
tion steps. Firstly, the L2(Ω) norm in the objective function
and ΩA in the constraint are approximated by a Monte Carlo
sampling, i.e. evaluation over sets of randomly sampled
points X,XH from Ω,ΩH respectively. Secondly, uθt in
constraint A is replaced by its first-order Taylor expansion
with small time step ∆t, i.e. uθt +∇θuθt · θ̇t∆t. Finally,
we add lower and upper bounds l,u of θ̇t to the constraints
to enhance the numerical stability. The resulting operator,
termed as V QP

w , leads to a new optimization problem:

V QP
w (θt) = argmin

θ̇t∈[l,u]

∥∥∥∇θuθt(X)θ̇t − F [uθt ](X)
∥∥∥2

s.t. H[uθt +∇θuθt · θ̇t∆t](XH) ≥ 0.

(4)

The problem above is a QP instance, by keeping the bound
(l,u) and assembling the components (Q,A,b, c) as:

Q = ∇θuθt(X)⊤∇θuθt(X),

A = H[∇θuθt∆t](XH),

c = −F [uθt ](X)⊤∇θuθt(X),

b = −H[uθt ](XH).

(5)

Adaptive primal-dual hybrid gradient (PDHG) Algo-
rithm for QP. The QP problem in Eq. 3 can be solved by
various classic algorithms, e.g. matrix-factorization-based
methods including interior-point and simplex, and first-
order methods based on matrix-vector production including
PDHG and ADMM. Considering the high-dimensional na-
ture, we choose PDHG for its simplicity and scalability. It
converts the QP problem into a saddle-point problem:

min
x∈[l,u]

max
y≥0

1

2
x⊤Qx+ c⊤x− y⊤(Ax− b), (6)
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Algorithm 1 A-PDHG embodiment for solving QP in Eq. 3
1: Input: Step-size {(τk, σk, βk, γk)}, initial points

(x0,y0), QP instance (Q,A,b, c, l,u)
2: Initialize x̄0 = x0

3: for k = 0, 1, 2, . . . do
4: xk

md = (1− βk)x̄
k + βkx

k

5: xk+1 = Projx[l,u]{xk − τk(Qxk
md + c−A⊤yk)}

6: yk+1
md = yk + σk(b−A(γk(x

k+1 − xk) + xk+1))

7: yk+1 = ProjyR+
{yk+1

md }
8: x̄k+1 = (1− βk)x̄

k + βkx
k+1

9: if(xk,yk) converges then break
10: Output: Solution xk;

and iteratively updates the primal and dual variables
x,y from initial guesses, leveraging gradient information.
Among the variants of PDHG, the momentum-accelerated
PDHG (A-PDHG) (Lu & Yang, 2023) is chosen for its fast
convergence, as summarized in Algorithm 1.

The Advantages of A-PDHG. Prior high–dim neural op-
erators cast parameter evolution as an unconstrained least-
squares fit or treat it as a black-box regression, making it
impossible to encode hard safety or no-arbitrage rules. By
rewriting the evolution step as a quadratic programming
(QP) we can natively embed linear inequality information
and thus extend to a broader spectrum of constrained PDEs.

A vanilla A-PDHG solver typically needs 100+ primal–dual
iterations on our largest QP instances—prohibitively expen-
sive during back-propagation. HEAP truncates the algo-
rithm to K=3 steps and learns step sizes, momentum and
expansion weights from data, retaining algorithmic priors
while reducing compute time by two orders of magnitude.
Table 6 confirms that K≤3 already matches, or surpasses,
the accuracy of the full A-PDHG loop.

3.2. Unroll A-PDHG into Neural Architecture

Despite the fast theoretical convergence rate of A-PDHG, it
still suffers long-tail convergence in practice, partially due
to the difficulty in tuning the hyperparameters. In our PDE
evolution operator settings, the long iterations lead to slow
and unstable backpropagation. To address this issue, we
truncate and extend A-PDHG into a hyper-network archi-
tecture, termed as Hyper-Extended A-PDHG (HEAP), with
the following modifications:

1) Truncate the iterations to a fixed number K. This is
motivated by the observation that the A-PDHG algorithm
converges quickly in the first few iterations.

2) Extend the computation to a learnable latent space, com-
pensating for the inaccuracy due to truncation. The latent
space is parameterized by linear expansion weights {W}

Algorithm 2 Hyper-Extended A-PDHG (i.e. HEAP)
1: Input: ansatz parameter θt, hypernet Nw, iteration K
2: Assemble QP instance (Q,A,b, c, l,u) from Eq. 5
3: Estimate initial points (X0,Y0), step-sizes and expan-

sion weights {W} by Nw(θt)
4: Encode X0 = x0(1+We

x)
⊤,Y0 = y0(1+We

y)
⊤

5: Initialize X̄0 = X0

6: for k = 0, 1, 2, . . . ,K − 1 do
7: Xk

md = (1− βk)X̄
k + βkX

k

8: Xk
md = Xk − τk(QXk

mdW
k
md + c−A⊤YkWk

y)

9: Xk+1 = Clamp [l,u](X
k
md)

10: Yk+1
md = Yk + σk(b − A(γk(X

k+1 − Xk) +
Xk+1)Wk

x)
11: Yk+1 = ReLU(Yk+1

md )
12: X̄k+1 = (1− βk)X̄

k + βkX
k+1

13: Decode xK = (XK − x0We
x)1

⊤

14: Output: Parameter evolution estimation θ̇t = xK

on intermediate variables.

3) Estimate the initial points (x0,y0), step-sizes and ex-
pansion weights {W} by a hypernetwork Nw(θt). The
hypernetwork weights w are trainable.

4) Convert the projection operators to differentiable func-
tions, e.g. ReLU, Clamp, to enable end-to-end training.

The HEAP is shown in Algorithm 2, with the modifications
marked as blue, and the workflow is illustrated in Fig. 1.

Training and Testing. The training loss is the accumulated
residual rt along the time horizon, whose increment ṙt is
the weighted sum of the PDE residual ṙt,pde, the physical
constraint violation ṙt,pc, and the numerical constraints ṙt,nc.

ṙt,pde =
∥∥∥θ̇t⊤Qθ̇t + c⊤θ̇t

∥∥∥2
ṙt,pc =

∥∥∥min(Aθ̇t − b, 0)
∥∥∥2/∥∥∥Aθ̇t

∥∥∥2
ṙt,nc =

∥∥∥min(θ̇t − l,u− θ̇t, 0)
∥∥∥2/∥∥∥θ̇t∥∥∥2

ṙt = λpdeṙt,pde + λpcṙt,pc + λncṙt,nc,

(7)

where the {λ} are tunable scalar weights. The forward pass
is the NeuralODE (Chen et al., 2018) integration of both the
residual rt and the ansatz parameter θt:

rT =

∫ T

0

rt dt

θT = θ0 +

∫ T

0

V HEAP
w (θt) dt

(8)

All operations in the HEAP model are differentiable, and
the gradients are computed by backpropagation via the ad-
joint method (Chen et al., 2018). The adjoint method is
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Figure 1. The PDE evolution is embedded into the ansatz parameter space, approximated as a QP operator and solved by the HEAP. Its
operator is unrolled from the A-PDHG algorithm, with the iterations truncated and extended to a learnable latent space. The hypernetwork
Nw estimates the initial points, step sizes, and expansion weights. The projection operators are replaced by differentiable functions.

an efficient technique for computing gradients by solving
backward equations, which propagate gradient information
from the output to the input.

In inference, first the initial parameters θ0 are obtained by
fitting the ansatz with the initial function. Then θ0 is fed to
the trained HEAP model to get the solution function. The
test metric is the PDE relative residual at the final time T :

L2REpde = ∥uθT − uref∥/∥uref∥. (9)

Intuitive view. A-PDHG algorithm. Adaptive PDHG alter-
nates a primal descent on θ (reducing mismatch) with a dual
ascent on the Lagrange multipliers y (penalising violations).
Each update is projected onto the feasible set.

HEAP network. HEAP unrolls a fixed number K of
A-PDHG iterations into a feed-forward network. Pri-
mal and dual variables are lifted from vectors to matri-
ces—effectively solving K QP steps in parallel—and the
lifting weights are produced by a hyper-network that per-
ceives the current PDE state. The entire construct is end-to-
end differentiable.

3.3. Theoretical Analysis

We provide our theoretical study as follows.

Alignment with A-PDHG Algorithm. Firstly, we prove
HEAP’s alignment with A-PDHG, i.e. there exists a HEAP
that could replicate the primal-dual sequence generated by
A-PDHG. A stricter expression is provided as follows, and
the proof of this theorem is given in Appendix A.

Theorem 3.1. [Existence of HEAP] Given any QP instance
M = (Q,A, b, c, l, u), HyperNet N , and its corresponding
primal-dual sequence (xk, yk)k≤K generated by the PDQP
algorithm within K iterations, there exists a K-layer HEAP
with parameter assignment ΘHEAP that can output the
same iterative solution sequence.

Approximation Capability. Secondly, we verify the ap-
proximation capacity of HEAP. The proof of this theorem is
given in Appendix A.

Theorem 3.2. [Linear Convergence] Given an approxima-
tion error bound ϵ, there exists a K-layer HEAP with O( 1ϵ )
neurons that exhibits linear convergence, i.e. for any QP
instance M = (Q,A, b, c, l, u) and (x, y) ∈ Rn × Rm

≥0

satisfying l ≤ x ≤ u, it follows that

L(XK , y;M)− L(x, Y K ;M) < ϵ (10)

4. Experiments
All experiments were conducted on a machine with 1TB
memory, 144 cores Intel Xeon Platinum 8352V CPU, and 8
GPUs (NV GeForce RTX 4090).

4.1. PDEs Selection

We benchmark HEAP on four prototype equations, each
tested in both an unconstrained form (suffix -UC) and
a constrained form (suffix -C). For -C cases we en-
force inequality constraints that must hold everywhere in
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space–time; for -UC we drop those constraints but keep
the same governing PDE. What’s more, the numerical
constraints which are applied in both -C and -UC cases
are the bound l,u of parameters θt, which is chosen as
l = −1,u = 1. Unless noted otherwise, all experiments
use spatial dimension d∈{5, 10, 15, 20}.

Heat Equation.

∂tu = ∆xu, x∈ [−1, 1]d, t∈ (0, T ],

u(x, 0) = gheat(x) = α

d∏
i=1

sin(πxi),

∂tu ≤ λheat (only for Heat-C). (17)

where α ∈ [0, 1] is a tunable parameter.

Burgers Equation.

∂tu = 1
2σ

2∆xu+
(
u− 2+d

2d

) d∑
i=1

∂xi
u,

u(x, 0) = gburg(x) = 1− 1

1 + exp
(
k · t+ 1

d

∑
i xi

) ,
∂tu ≤ λburg (only for Burgers-C). (18)

where k ∈ [0.8, 1.3] is the the adjustable coefficient.

Reaction–Diffusion (RD) Equation.

∂tu = 1
2∆xu+min{1, f2(t, x, u)},

f(t, x, u) = u− κ− 1− sin
(
λ

d∑
i=1

xi

)
e

λ2d
2 (t−T ),

u(x, 0) = grd(x) = 1 + κ+ sin
(
λ

d∑
i=1

xi

)
,

∂tu ≤ λrd (only for RD-C). (19)

where λ = 1/
√
d is a constant representing the wave fre-

quency, κ ∈ [0.5, 1.5] is the tunable parameters.

Black–Scholes (BS) Equation.

∂tu =

d∑
i=1

µxi ∂xi
u+

1

2
σ2

d∑
i=1

x2
i ∂

2
xi
u

−
[
(1− δ)Q(u) + r

]
u,

Q(u) = ReLU
(
ReLU(u− vh)

γh − γl
vh − vl

+ γh − γl

)
+ γl,

u(x, 0) = gbs(x) = kmin
i

xi,

∂tu ≥ r u (T1, only for BS-C),

∂tu ≥ r u− λbs

d∑
i=1

∂2
xi
u (T2, only for BS-C).

(20)

Table 1. Hyper-parameters for CSO on Burgers; HEAP uses iden-
tical values. T represents the time range of the equation, steps
denotes the number of iterations of the equation in time.

dim T steps input dim dropout learning rate
5 0.2 10 1921 0.30 5× 10−5

10 0.2 10 2121 0.30 5× 10−5

15 0.2 20 2321 0.30 2× 10−4

20 0.2 20 2521 0.30 3× 10−4

Parameters µ, σ, r denote drift, volatility and the risk-free
rate; δ, vh, vl, γh, γl are calibration constants. k ∈ [0.5, 1.5]
is the the adjustable coefficient. Constraints (T1)–(T2) en-
code standard no-arbitrage bounds on the option’s theta.

4.2. Experiments Implementation Details

Setup. The extended dimension of HEAP is 20; the itera-
tion is 3, and the hypernetwork Nw is a 5-layer ResNet with
1000 hidden units. The HEAP is trained with Adam opti-
mizer, default batch size 64, and 100 epochs. E.g., Table 1
summarises the settings used for CSO on our Burgers type
equation experiments; HEAP employs the same configura-
tion. The ODE is integrated with the Runge-Kutta (Butcher,
1996) with a time step 1/10 of the time horizon.

Sampling of initial parameters. The training set consists
of 150K randomly generated θ from normal distribution,
and the test set is 250 randomly generated θ from another
normal distribution with slightly different mean and vari-
ance. Unless otherwise noted, the initial ansatz parameters
θ0 are drawn i.i.d. from a Gaussian distribution with mean 0
and standard deviation

√
0.5 for training, and from a wider

N (0, 1) for test; this encourages robustness to distribution
shift while keeping the training residual numerically stable.

Composite loss weights. The accumulated residual ṙt (see
Eq. (7)) is a weighted sum of three terms: (i) PDE residual,
(ii) physical constraint violation, and (iii) numerical box-
constraint violation. To balance their magnitudes during
optimisation we set λpde = 10−2, λpc = 1, and λnc = 10,
respectively, for all experiments. The same coefficients are
applied to the baseline CSO to ensure fair comparison.

4.3. Peer Methods and Protocols

To our best knowledge, only a handful of neural–operator
models can handle high–dimensional PDEs, and none of
them explicitly target strong inequality constraints. We thus
adopt the recently proposed Control-based Solution Opera-
tor (CSO) (Gaby & Ye, 2024) as the SOTA baseline. CSO
parametrises the parameter trajectory θ̇t with a black–box
network; for fair comparison we reuse HEAP’s hypernet-
work backbone, identical optimiser settings, batch size and
training horizon across all tasks.

6



HEAP: Hyper Extended A-PDHG Operator for Constrained High-dim PDEs

Table 2. PDE residual L2REpde on unconstrained equations com-
parison between the strong and recently proposed SOTA baseline
CSO (Gaby & Ye, 2024) and our proposed HEAP on various PDEs.

Eqn Heat

Dim d=5 d=10 d=15 d=20

CSO 0.0222 0.0218 0.0218 0.0273
HEAP 0.0041 0.0068 0.0106 0.0141
Eqn Burgers type

CSO 0.0028 0.0058 0.0093 0.0095
HEAP 0.0020 0.0032 0.0079 0.0089
Eqn Reaction Diffusion

CSO 0.0028 0.0024 0.0076 0.0021
HEAP 0.0021 0.0016 0.0024 0.0020
Eqn Black-Scholes Equation

CSO 0.0329 0.0439 0.0391 0.0494
HEAP 0.0270 0.0308 0.0340 0.0433

Metrics with ground-truth reference.
For those PDEs whose exact or high–fidelity reference solu-
tions are available (Heat-UC/C, Burgers-UC, RD-UC, BS-
UC), we report the L2 relative error of the PDE residual
defined in Eq. (9). References are analytical for Heat,
and produced by a high-resolution DeepBSDE solver for
Burgers, RD and BS.

Metrics without ground-truth reference.
For Burgers-C, RD-C and BS-C the reference solution is
unknown; we therefore adopt the accumulated residual ṙt
(see Eq. (7)), which jointly measures the physics error and
constraint mismatch along the trajectory.

Constraint satisfaction.
In every constrained task we additionally report the nor-
malised terminal-time physical constraint violation ṙt,pc
(Eq. (7)), irrespective of the availability of ground truth.

4.4. Results and Discussion

Results for Unconstrained Equations. The PDE residual
on unconstrained equations (Heat-UC, Burgers-UC, RD-
UC, BS-UC) are compared in Table 2. The L2RE of PDE
of HEAP is consistently lower than that of CSO, indicating
better accuracy and generalization.

Results for Constrained Equations. The PDE residual on
constrained equations (Heat-C, Burgers-C, RD-C, BS-C-T1,
BS-C-T2) are compared in Table 3. As mentioned in 4.1.1,
we set some reasonable constraints for each type of equation,
where the Black-Scholes equation contains two relatively
more complex no-arbitrage constraints. The L2RE of PDE
of HEAP is consistently lower than that of CSO, indicating
better accuracy and generalization. By comparison with

Table 3. PDE residual L2REpde (Only for Heat-C) and accumu-
lated PDE residual ṙt for (Others) on constrained equations com-
parison between the strong and recently proposed SOTA baseline
CSO (Gaby & Ye, 2024) and our proposed HEAP on various PDEs.

Eqn Constrained Heat

Dim d=5 d=10 d=15 d=20

CSO 0.0030 0.0187 0.0136 0.0407
HEAP 0.0025 0.0044 0.0092 0.0169
Eqn Constrained Burgers Type

CSO 0.9798 0.9125 0.9764 0.9529
HEAP 0.7377 0.6281 0.6926 0.8778
Eqn Constrained Reaction Diffusion

CSO 0.3560 0.4746 0.5687 0.5102
HEAP 0.3560 0.3768 0.4730 0.3900
Eqn Constrained Black-Scholes Type 1

CSO 0.9462 0.8649 0.9145 1.000
HEAP 0.7022 0.5667 0.5232 0.4756
Eqn Constrained Black-Scholes Type 2

CSO 0.9570 0.8625 0.9260 1.0000
HEAP 0.6046 0.4241 0.4617 0.4670

Table 2, it can be found that under constrained conditions,
the improvement of the HEAP to CSO is more significant,
demonstrating the effectiveness of HEAP in solving high-
dimensional PDEs with constraints.

The normalized terminal-time physical constraint violation
ṙt,pc on constrained equations are also compared in Table 4.
Experimental results show that the Heap performs excel-
lent in satisfying the physical constraints of the equation.
Especially in the Black-Scholes equation with more com-
plex constraints, Heap significantly reduces the physical
constraint violation compared with the CSO, showing the
potential of Heap to solve complex linear constraints.

To intuitively show the advantages of the Heap over the CSO
baseline, we visualized the solution and resisual of the con-
strained 10-dimensional Black-Scholes equation on Fig.2.
We changed two of the dimensions and set the other dimen-
sions to 0, and performed a grid solution on a [0, 1]2 plane.
The image indicate that the accumulated PDE residual of
the Heap is significantly smaller than that of CSO.

Time and Space Usage. The table 5 shows the performance
indicators of Heap and CSO methods for Dim=5, 10, 15,
20, 50, 100, include time consumption, CPU memory us-
age(CMem), and GPU memory usage(GMem). Without any
optimization applied, the HEAP costs 1.6x GPU memory
and about 2x training/inference time compared to the base-
line CSO. The time and memory usage are nearly linearly
increasing with the dimension, thus HEAP is scalable to
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Table 4. physical constraint violation L2REcon comparison be-
tween CSO and HEAP on constrained PDEs. The best is marked.

Eqn Constrained Heat

Dim d=5 d=10 d=15 d=20

CSO 0.2944 0.2843 0.0080 1.58× 10−4

HEAP 0.2540 0.2234 0.0168 3.21× 10−5

Eqn Constrained Burgers Type

CSO 0.4544 0.5606 0.4335 0.4098
HEAP 0.4224 0.4603 0.5948 0.3345
Eqn Constrained Reaction Diffusion

CSO 0.2556 0.7593 0.6725 0.6936
HEAP 0.2555 0.2585 0.2359 0.1794
Eqn Constrained Black-Scholes Type 1

CSO 0.6368 0.9386 0.6837 0.694
HEAP 0.2843 0.1932 0.3310 0.2231
Eqn Constrained Black-Scholes Type 2

CSO 0.7466 0.7919 0.6546 0.6936
HEAP 0.5595 0.3865 0.0719 0.0165

Figure 2. The predict solution (Pred u) and accumulated PDE
residual (Res) of Heap and CSO in Black-Scholes Equation (dim-
10) with constraint type 2.

higher dimensions in terms of computation.

Ablation Experiment for the hypernetwork. The number
of unrolling layers and extended dimension in the hyper-
network are the core hyperparameters of the Heap method.
We show the results of the ablation experiment on these
two hyperparameters in Table 6 (taking the 15-dimensional
Black-Scholes equation as an example), whose metrics value
is also the accumulated residual ṙt (see Eq. (7)). The results
show that both unrolling layers = 1,2,3,4 and extended di-
mension = 5,10,20 in the hypernetwork have a significant
impact on final accuracy and constraint satisfaction. How-

Table 5. Comparison of runtime (sec.) and memory usage (MB)
for CSO and HEAP on Burgers-type equations. The test time is
evaluated with 1 batch, and the training time is calculated with 3
and 156 batches (156 batches is approximately correspond to 1
epoch). The batchsize is set as 64. The symbol * indicates that
training was not completed due to GPU memory overflow.
Dim Method CMem GMem T test

1 T train
3 T train

156

5 CSO 4.47 12336 0.90 24.12 596
5 HEAP 4.50 15865 2.94 67.48 1071

10 CSO 4.21 14157 1.21 32.06 699
10 HEAP 4.15 18696 3.52 79.63 1136

15 CSO 4.44 16075 1.97 42.02 902
15 HEAP 4.57 21927 4.31 97.87 1668

20 CSO 4.15 18085 2.31 53.44 1119
20 HEAP 4.22 25405 4.92 112.83 1896

50 CSO 4.39 32166 4.85 109.90 /
50 HEAP 4.50 51654 11.19 198.46 /

100* CSO 4.05 71958 11.54 / /
100* HEAP 4.29 80000* 25.46 / /

Table 6. Ablation study on the number of unrolling layers and
extened dims in HEAP on BS equation with constraint type 1. The
PDE residuals are normalized by a constant scale.

Unrolling Layers

Extended Dim Residual 1 2 3 4

5 PDE 0.9630 0.5205 1.7511 4.5298
Con 0.5084 0.1163 0.4339 0.3460

10 PDE 0.8557 0.5246 0.5857 1.5917
Con 0.5869 0.3310 0.7472 0.6787

20 PDE 0.9181 0.4298 0.5283 1.5857
Con 0.3455 0.1203 0.2708 0.6474

ever, K = 3 is a relatively robust choice across different
PDE families.

5. Conclusion
We propose a novel neural operator for Constrained High-
dim PDEs and devise the HEAP architecture for end-to-end
training. We theoretically prove the approximation capabil-
ity and provide empirical results on a variety of high-dim
PDEs to demonstrate that it outperforms existing state-of-
the-art neural operator models and shows better constraint
satisfaction and generalization.

Impact Statement
This paper presents the work that aims to advance the field
of Machine Learning for Science (ML4Sci). There are many
potential societal consequences of our work, none of which
we feel must be specifically highlighted here.
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A. Theorem Proof
Proof of Theorem 3.1. We use mathematical induction.

Base Step. At iteration k = 0, both APDQP and HEAP are
initialized by hypernet Nw, and the base case holds trivially.

Inductive Step. Assume that for some k ≥ 0, Xk = xk and
Y k = yk. We now show that Xk+1 = xk+1 and Y k+1 =
yk+1 for a suitable choice of parameters in ΘHEAP .

For the APDQP update, we know:

xk+1 = Projx[l,u](x
k − τk(Qxk

md + c−A⊤yk))

yk+1 = Projy(yk + σk(b−A(γk(x
k+1 − xk) + xk+1)))

(11)

The corresponding HEAP updates are:

Xk+1 = Clamp[l,u](X
k − τk(QXk

mdW
k
x + c−A⊤Y kW k

y ))

Y k+1 = ReLU(Y k + σk(b−A(γk(X
k+1 −Xk)

+Xk+1)W k
x ))

(12)
By setting W k

x = W k
y = I , and ensuring that τk, σk and γk

in HEAP match the corresponding step sizes in APDQP, it
can be verified that:

Xk+1 = xk+1 and Y k+1 = yk+1 (13)

Thus, by induction, HEAP can exactly replicate the primal-
dual sequence generated by the APDQP algorithm, indicat-
ing HEAP’s expressivity.

Proof of Theorem 3.2. Firstly, we introduce a proposition
that describes A-PDHG’s convergence rate.

Proposition A.1. (Chambolle & Pock, 2016) Let
(xk, yk)k≥0 be the primal-dual variables generated by the
PDHG algorithm for the QP problem M = (Q,A, b, c, l, u).
If the step sizes τ, σ satisfy τσ∥A∥22 < 1, then for any
(x, y) ∈ Rn × Rm satisfying l ≤ x ≤ u, the primal-dual
gap satisfies

L(x̄k, y;M)− L(x, ȳk;M)

≤ 1

2k

(
∥x− x0∥2

τ
+

∥y − y0∥2

σ
− (y − y0)⊤A(x− x0)

)
(14)

where x̄k =
Σk

j=1x
j

k , ȳk =
Σk

j=1y
j

k and L(x, y;M) =
1
2x

⊤Qx+ c⊤x− y⊤(Ax− b).

We can conclude from the proposition above that A-PDHG
converges linearly under appropriate conditions. Hence, if
we set τ, σ to satisfy τσ∥A∥22 < 1 in both APDQP and
HEAP, according to Thm. 3.1, the primal-dual series of

HEAP exhibit linear convergence, i.e.

L(XK , y;M)− L(x, Y K ;M)

= L(x̄k, y;M)− L(x, ȳk;M)

≤
1
2k (

∥x−x0∥2

τ + ∥y−y0∥2

σ − (y − y0)⊤A(x− x0))

2K(ϵ)
(15)

Since 1
2k

(
∥x−x0∥2

τ + ∥y−y0∥2

σ − (y − y0)⊤A(x− x0)
)

is

a constant given a pair of (x, y), we can take K(ϵ) = [Cϵ ]+1
to obtain:

L(XK , y;M)− L(x, Y K ;M) ≤ ϵ

2
< ϵ. (16)

Because the network width is a fixed number, the number of
neurons at each layer is bounded by a constant Cnum. Thus,
the number of neurons in HEAP is bounded by CnumK(ϵ),
which is of O( 1ϵ ).

B. PDE Solutions under Different Constraints
As discussed in Section 2.3, the solution to the multi-asset
Black-Scholes equation may not always be unique in prac-
tice. Constraints can be employed to obtain the desired
solution. In Figure 3, we compare the convergence of the
solution under different constraint conditions (using the
Black-Scholes equation from Equation 20, with no con-
straints and with constraint T2 at varying values of λbs).
The comparison reveals that, even after excluding the in-
fluence of solution residuals, the equation yields different
solutions in certain regions.

C. The Converge of Learnable Step Sizes
As outlined in Algorithm 2, the A-PDHG method adaptively
learns the update step sizes for the X and Y layers (τ and η)
to ensure effective training. Through experiments in Figture
6, we have verified that the update step sizes are indeed
adjusted during training and converge to a fixed value after
approximately 60 batches.

D. Training Trajectory
The training trajectory is visualized in Figures 4 and 5,
where we record the PDE residuals at training checkpoints.
These figures show that HEAP converges faster and more
stably than CSO. Our method’s advantage in these bench-
marks arises from its principled design and theoretical
soundness, particularly through the elegant incorporation
of constraints into the neural networks. In contrast, CSO
incorporates constraints as a penalty term in the objective,
which may lead to constraint violations on the test set.

Although our method demonstrates improvements, we ac-
knowledge that constrained high-dimensional PDEs remain
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Figure 3. Visualization of predict solution (Pred u) and accumu-
lated PDE residual (Res) of Heap and CSO in Black-Scholes Equa-
tion (dim-10) with no constraints (c0) and two different instances
of constraints T2.

Figure 4. Constrained Heat L2REpde comparison between CSO
and our HEAP during the training. Our methods quickly achieve
stable (relative) loss over the test set.

challenging due to their inherent nonlinearity. Learning
methods still face the risk of overfitting to the training set,
which highlights the need for further refinement. It is also
worth noting that, to date, we have not extensively fine-tuned
the hyperparameters for each specific case.

Figure 5. Burgers L2REpde comparison between CSO and our
HEAP during the training. The CSO model oscillates and even
collapses on the test set.

Figure 6. During the training of the 10-dimensional Reaction Dif-
fusion equation, the iteration of the adaptive step size parameter
(τ and η) finally converges to a certain value.
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