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ABSTRACT

Multi-Source Domain Generalization (DG) is the task of training on multiple
source domains and achieving high classification performance on unseen target
domains. Recent methods combine robust features from web-scale pretrained
backbones with new features learned from source data, and this has dramati-
cally improved benchmark results. However, it remains unclear if DG finetuning
methods are becoming better over time, or if improved benchmark performance
is simply an artifact of stronger pre-training. Prior studies have shown that per-
ceptual similarity to pre-training data correlates with zero-shot performance, but
we find the effect limited in the DG setting. Instead, we posit that having per-
ceptually similar data in pretraining is not enough; and that it is how well these
data were learned that determines performance. This leads us to introduce the
Alignment Hypothesis, which states that the final DG performance will be high if
and only if alignment of image and class label text embeddings is high. Our ex-
periments confirm the Alignment Hypothesis is true, and we use it as an analysis
tool of existing DG methods evaluated on DomainBed datasets by splitting evalu-
ation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all
evaluated DG methods struggle on DomainBed-OOP, while recent methods excel
on DomainBed-IP. Put together, our findings highlight the need for DG methods
which can generalize beyond pretraining alignment.

1 INTRODUCTION

Domain Generalization (DG) addresses the challenge of enabling AI models to generalize from
known domains to unseen ones, a critical task given the inevitable distribution shifts between train-
ing and real-world deployment (Saenko et al., 2010). DG pipelines typically consist of three stages:
pretraining a model on a large, general dataset; finetuning the model with one or more source do-
mains; and finally evaluating the model on target domains that are distinct from source domains.
More and more, DG methods rely on huge-scale foundation models for initialization. Simultane-
ously, finetuning has increasingly incorporated regularization to prevent catastrophic forgetting. As
a result, it remains unclear whether DG adaptation methods are genuinely improving or if enhanced
benchmark performance is simply due to stronger pre-training combined with regularization, or even
the presence of target domains within the hundred million-scale pre-training data.

In this work, we examine the reliance of recent DG methods on pre-trained features. We focus on
CLIP-based models, as they are used in all state-of-the-art DG methods (Addepalli et al., 2024;
Cho et al., 2023; Shu et al., 2023; Mao et al., 2024); we believe extensions to pure vision models
represent interesting future work. While prior studies (Mayilvahanan et al., 2024) have shown that
perceptual similarity to pre-training data explains zero-shot performance—referred to as the Image
Similarity Hypothesis—we find this relationship to be limited in the DG setting. Despite evidence
of target domains being present in pre-training (Figure 4), perceptual similarity alone does not fully
explain accuracy in the DG context. We propose that it is not just the presence of similar data
in pre-training that matters, but also how well this data was learned. To this end, we introduce the
Alignment Hypothesis, which states that pre-trained alignment between image and class embeddings
is still predictive of DG performance even after source finetuning. We find that, performance for
low alignment samples can be almost 0, while performance for high alignment samples is close to
perfect. These results confirm the Alignment Hypothesis. We note that we do not make assumptions
of how or why alignment arose. As illustrated in Figure 1, these findings suggest that current DG
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Figure 1: An overview of desired and actual behaviour of DG methods. 1) DG methods are ini-
tialized with foundation models like CLIP. Pre-trained embeddings are relatively well aligned with
ground truth labels on both source and target data for most samples (In-Pretraining, IP), but some
samples are not well aligned (Out-of-pretraining, OOP). 2) An ideal DG method would strengthen
alignment for both OOP and IP data with ground truth labels. 3) Our analysis shows that DG meth-
ods only result in strong alignment for IP data, leaving OOP data misaligned (Figure 2).

methods largely fail to learn new, general features from the source data when the pretraining does
not already provide a strong alignment.

The confirmation of the Alignment Hypothesis gives us a tool to separate aligned and well learned
in-pretraining (IP) data from misaligned and poorly learned out-of-pretraining (OOP) data for a
particular backbone, and we do so for five DG datasets with OpenCLIP-ViT/B-16. We call the
resulting splits DomainBed-IP and DomainBed-OOP. Evaluating on DomainBed-IP/OOP offers a
view of where current DG methods fail and where they succeed. We find that all methods, including
those considered state-of-the-art, perform poorly on OOP data, i.e. data that the pretrained backbone
hadn’t already aligned well. Furthermore, recent state-of-the-art methods do not outperform older
methods on OOP data. For example, CLIPood (Shu et al., 2023) slightly under performs a combina-
tion of older methods (MIRO (Cha et al., 2022) + MPA (Arpit et al., 2022)) on DomainBed-OOP. At
the same time, existing DG methods show exceptional performance on DomainBed-IP, sometimes
even outperforming an oracle model trained on the target domain. These results suggest that future
research should aim to enhance DG methods on low-alignment data while preserving the already
strong performance on high-alignment data. In summary, we make the following contributions:

• Introduce the Alignment Hypothesis: We demonstrate that pre-training alignment be-
tween image and class text embeddings is a stronger predictor of Domain Generalization
(DG) success than the previously proposed Image Similarity Hypothesis (Mayilvahanan
et al., 2024). Based on this, we define In-Pretraining (IP) as data well-aligned with pre-
trained embeddings, and Out-of-Pretraining (OOP) as data with weaker alignment.

• Propose a new IP/OOP evaluation framework: We demonstrate that splitting target
data by its alignment with the pre-trained backbone can effectively test Out-of-Pretraining
(OOP) generalization. We will release IP/OOP splits for the DomainBed dataset to support
future research.

• Expose strengths and limitations of state-of-the-art DG methods: Using DomainBed-
IP/OOP we find that leading DG methods perform well on data well-aligned by pre-training
but struggle on misaligned samples, emphasizing the need for methods that move beyond
reliance on pre-training.
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2 RELATED WORK

Multi-Source Domain Generalization: Domain Generalization aims to mitigate the impacts of
domain shifts between source (training) and target (deployment) domains. These can include sub-
population shifts where all testing subpopulations are present in the training data but in different
proportions(Dehdashtian et al., 2024), or it could be the case we consider in this work where the
testing subpopluation is not at all present in the training subpopulation. One standard approach is
domain-invariant feature learning, which leverages domain labels to learn domain-invariant fea-
tures. CORAL (Sun & Saenko, 2016) aligns second-order statistics, while DANN (Ganin et al.,
2016) uses an adversarial loss. Gulrajani & Lopez-Paz (2020) show that ERM, which does not
align features between domains, can outperform most prior work while being easier to tune. An-
other common approach is domain-aware data augmentation to expand the training domain to
become closer to or even overlap the target domain. Inter-domain mixup (Yan et al., 2020) blends
images from different domains. Similarly, style transfer can diversify training images (Zhong et al.,
2022). Deep ensembles are effective for domain generalization (Arpit et al., 2022). Since they
are computationally inefficient for inference, many recent works average model weights from either
multiple finetuning runs or from a single training trajectory (Cha et al., 2021; Arpit et al., 2022;
Rame et al., 2022; Jain et al., 2023; Li et al., 2023; Shu et al., 2023). More recently, several methods
perform regularized finetuning towards the initialization of a pretrained model. This works under
the assumption that pretrained features are useful for target data, and should not be unlearned. The
general idea can be applied to weight space (L2SP (Xuhong et al., 2018)), feature space (MIRO (Cha
et al., 2022)), or output space (CAR-FT (Mao et al., 2024),CLIPood (Shu et al., 2023)).

Large-Scale Pretraining for DG: Recent DG literature (Cho et al., 2023; Cha et al., 2022; Adde-
palli et al., 2024; Mao et al., 2024; Arpit et al., 2022) leverages large-scale pretrained initializations
stronger than ImageNet (Russakovsky et al., 2015), and CLIP (Radford et al., 2021) is the most
common choice. CLIP leverages a cross-domain contrastive loss to align images and captions. Due
to the large scale of training data (typically at least 400 million samples) and the free-form nature of
the text, CLIP enables effective zero-shot classification and learns features that generalize very well.
Other choices for very strong pretraining include SWAG (Singh et al., 2022) and DinoV2 (Oquab
et al., 2023). SWAG uses supervision from Instagram hashtags, while DinoV2 is trained without
text supervision and instead relies on augmentation-based alignment. While our analysis focuses
on image-text models like CLIP due to its popularity, the concept of alignment can extend to other
types of pretraining models. We leave the exploration of this extension to future work.

Impact of Data on Model Performance: Several recent studies have explored the influence of pre-
training data on model performance. Mayilvahanan et al. (2024) investigated how the presence of
perceptually similar images in CLIP (Radford et al., 2021) pretraining affects performance, intro-
ducing the Similarity Hypothesis, which posits that nearest neighbor similarity is strongly correlated
with zero-shot accuracy. Udandarao et al. (2024) demonstrated that concept frequency in pretraining
is correlated with zero-shot performance and introduced a dataset focusing on infrequent concepts.
Fang et al. (2022) found that diversity in pretraining data is critical for improving performance
on benchmarks such as ImageNetV2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2021),
ImageNet-Sketch (Wang et al., 2019), and ObjectNet (Barbu et al., 2019). However, these studies
focus on the zero-shot setting, where models are evaluated without further training. In contrast,
we examine the domain generalization setting, where pre-trained models are fine-tuned on source
domains and tested on held-out target domains. Yu et al. (2024) recommend using self-supervised
pre-training to avoid data leakage. In contrast we study DG model behaviour in the more realistic
setting of CLIP-pretraining. Our findings suggest that comparing target images to pre-trained im-
ages, as proposed by Mayilvahanan et al. (2024), is less predictive of final DG performance than
directly measuring the alignment between the image and its class embedding.

3 ANALYZING THE ROLE OF PRETRAINING IN DOMAIN GENERALIZATION

This work explores Multi-Source Domain Generalization for classification, where samples from
multiple source domains (e.g., sketches, product photos) and a held-out target domain (e.g., wildlife
camera images) are annotated with both domain and class labels. We construct a training dataset by
aggregating all sample-label pairs from all training domains d ∈ {d1, . . . , dn}, denoted as

D = {(Xd1 , Y d1), . . . , (Xdn , Y dn)}.
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a.) b.)

Figure 2: Comparing the Predictive Power of the Alignment and Image Similarity Hypotheses
for Domain Generalization (DG). a.) Alignment Hypothesis: The cosine similarity between im-
age and ground truth text-label embedding after pre-training (Alignment Score) is highly predictive
of model accuracy after fine-tuning on five DG datasets, with Alignment Score distributions shown
in the colored histograms. This suggests that image-text pairs well-aligned during pre-training result
in better performance on target tasks. b.) Image Similarity Hypothesis: In contrast, the cosine
similarity between a test image and its closest match from the pre-training set (Perceptual Similarity
Score) shows weaker predictive power for accuracy, implying that visual resemblance alone is less
indicative of downstream performance.

We initialize a classifier f with a contrastively pre-trained vision-language model (e.g., CLIP) and
finetune it on D. The scale of pre-training datasets is many orders of magnitude larger than that of
source datasets. Most methods fully fine-tune f , though LP-FT (Kumar et al., 2021) fine-tunes the
linear probe before the main network and Attention Tuning (Teterwak et al., 2023; Touvron et al.,
2022) only tunes attention layers. The performance is then evaluated on a held-out testing domain
dtest. The key assumption is that dtest has a different distribution from the source domains.

We aim to analyze how reliant existing DG methods are on pre-training. A recent analysis of CLIP
proposed the Image Similarity Hypothesis (Mayilvahanan et al., 2024), which supposes that high
CLIP performance on a given test sample is a result of highly similar nearest-neighbor images in
pre-training, and tested it on zero-shot classification tasks. They found a strong correlation between
nearest-neighbor similarity and zero-shot classification performance, but did not analyze OOD per-
formance after fine-tuning. Therefore, we apply an equivalent testing setup for the DG setting, where
a pre-trained model is fine-tuned on a source distribution and tested on a different target distribution.
We find only a limited influence of image similarity in Section 3.1. To better understand the role
of pretraining in domain generalization, we introduce the Alignment Hypothesis, which we explore
in detail in Section 3.2. We later use the Alignment Hypothesis to split DG datasets and analyze
existing DG methods (Section 4).

3.1 TESTING THE IMAGE SIMILARITY HYPOTHESIS

The Image Similarity Hypothesis (Mayilvahanan et al., 2024) posits that test performance im-
proves when there are perceptually similar images in the pre-training dataset. The PerceptualSim-
ilarityScore measures perceptual similarity and is defined as the cosine similarity between a target
image I and its nearest neighbor Ik in pre-training:

PerceptualSimilarityScore(I, Ik) =
⟨fI(I), fI(Ik)⟩

∥fI(I)∥ · ∥fI(Ik)∥
(Eq. 1)

where ⟨·, ·⟩ denotes the dot product, and∥ · ∥ denotes the Euclidean norm (magnitude). To evaluate
the Image Similarity Hypothesis, we group held-out target domain samples from five DomainBed
datasets based on their PerceptualSimilarityScore and compute the accuracy of a Domain Gener-
alization (DG) adaptation method. Specifically, we build a histogram using Perceptual Similarity
Score as described Algorithm 1, and visualize it in Figure 2. The PerceptualSimilarityScore is com-
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Algorithm 1 Evaluating the Image Similarity Hypothesis

Require: Target domain samples Dtarget, trained DG model M , image encoder fI ,
1: for each sample I ∈ Dtarget do
2: Retrieve nearest neighbor of I in Laion-400M, assign to Ik
3: Compute PerceptualSimilarityScore(I, Ik) using Equation Eq. 1,
4: Record correctness of M(I)
5: end for
6: Bin samples based on PerceptualSimilarityScore
7: Compute DG accuracy within each bin
8: return Accuracy for each bin

puted using approximate nearest neighbors over the LAION-400M dataset (Schuhmann et al., 2021)
with the CLIP-retrieval library (Beaumont, 2022).

We evaluate the recent, high-performing VL2V-SD (Addepalli et al., 2024) method. The results
are shown in Figure 2 (b). While the Image Similarity Hypothesis is somewhat predictive of DG
performance, its influence is not very strong. This suggests that perceptually similar pretraining
data alone may not guarantee high DG performance; additional factors, such as how effectively the
pretraining data were learned, may also be significant.

3.2 INTRODUCING THE ALIGNMENT HYPOTHESIS

To find a stronger predictor of DG accuracy than perceptual similarity, we focus on how effectively
pre-training captures the relationship between an image and its label. This leads us to propose the
Alignment Hypothesis, which states that if an input image and its corresponding text label (e.g.,
‘A photo of a {cls}’) are well-aligned in the embedding space, final DG performance will be high.
Crucially, alignment is measured before source fine-tuning while DG performance is measured after
adaptation. This allows us to isolate the contribution of fine-tuning. Since models like CLIP opti-
mize image-text pairs using a contrastive loss, cosine similarity between image and text embeddings
is an alignment measure well coupled to their training objective. Therefore, we use it as our metric
of pre-training generalization. More formally:

AlignmentScore(I, T ) =
⟨fI(I), fT (T )⟩

∥fI(I)∥ · ∥fT (T )∥
(Eq. 2)

where fI(I) is the embedding of the image before finetuning on source, and fT (T ) is the embedding
of the text.

We verify the Alignment Hypothesis similarly to the Image Similarity Hypothesis, by binning sam-
ples using the AlignmentScore and computing accuracy for each bin using VL2V-SD. We provide
the same analysis for many more DG methods in the Appendix Figure 10. In Figure 2 a.), we can
see that the Alignment Hypothesis explains DG performance after source finetuning, significantly
more strongly than for the Image Similarity Hypothesis in Figure 2 b.) This finding suggests that
source fine-tuning in DG, which aims to achieve high performance across all target samples, only
succeeds on those with high initial alignment.

4 RE-THINKING DOMAIN GENERALIZATION BENCHMARKING USING THE
ALIGNMENT HYPOTHESIS

Knowing that the Alignment Hypothesis holds for contrastively trained image-text models (Section
3), we can now use it as a tool to probe the performance of DG methods across different levels of
pre-training alignment. We apply this approach to five widely-used DomainBed (Gulrajani & Lopez-
Paz, 2020) DG datasets: VLCS (Fang et al., 2013), PACS (Li et al., 2017), OfficeHome (Ganin et al.,
2016), TerraIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019). This section dis-
cusses how we create new splits for existing DG datasets using AlignmentScore. We start by com-
puting AlignmentScore for all samples in 5 DG datasets (Figure 3). Based on our observation that
some samples are mislabeled, we perform dataset cleaning (4.1). Finally, we find an AlignmentScore
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Dataset

AlignmentScore
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N/A N/A

Person Giraffe House Elephant

N/A

Chair Dog Person Car

N/A

Candles Monitor Bike Knives Clipboard

Figure 3: Representative DomainBed dataset samples and their labels at various AlignmentScore
values. At very low AlignmentScores, most labels (red boxes) are incorrect. At very high Align-
mentScores, text present in the image corresponds to the label.

threshold to split DG datasets into In-Pretraining (IP) and Out-of-Pretraining (OOP) evaluation sub-
sets (Section 4.2), which we later use for evaluating DG methods (Section 5). In order to connect
the AlignmentScore with the DG method, we use the same backbone both for splitting the datasets
into IP and OOP subsets and for training DG methods. To facilitate further research, we make the
DomainBed-IP/OOP dataset splits available to the research community.

4.1 DATA EXPLORATION AND CLEANING

We start by visualizing the data of all the datasets at various AlignmentScore values. We show some
representative samples in Figure 3. At very low scores, we find that a large fraction of labels are
incorrect (red boxes in Figure 3).

As a result, we divide the data into AlignmentScore intervals (e.g., 0.00-0.05, 0.05-0.10, and so on,
up to 0.2) and randomly sample 100 instances from each interval for every dataset. This allows
us to systematically analyze the relationship between AlignmentScore and label accuracy across
different score ranges. For each interval, we then count the fraction of mislabelled samples to better
understand how low AlignmentScores are associated with labeling errors. We find that below an
AlignmentScore of 0.15, label noise is unacceptably high, with all datasets suffering the most from
mislabelling (Table 5 in Appendix). Therefore, we discard all samples with AlignmentScore less
than 0.15 in DomainBed-IP/OOP. As shown in Table 1, we observe that the percentage of discarded
samples due to mislabeling varies across datasets, with VLCS and DomainNet having the highest
rates at 12.41% and 7.64%, respectively.

Furthermore, on the right side of Figure 3, we observe that at very high AlignmentScores (greater
than 0.4), the images often contain text directly related to the label. Since our goal is to evaluate
visual recognition rather than text recognition (OCR), and CLIP is known to have strong OCR
abilities (Fort, 2021), we exclude all samples above AlignmentScore of 0.4 from DomainBed-
IP/OOP. As shown in Table 1, although only a small portion of data is removed due to OCR filtering
(0.00-0.15% across datasets), this issue may become more significant in future studies.
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Table 1: Percentage of discarded samples due to mislabeling or label text in the image (OCR).

Dataset Dropped - Mislabelled Dropped - OCR
OfficeHome 0.92% 0.15%
PACS 3.05% 0.00%
TerraIncognita 0.22% 0.00%
DomainNet 7.64% 0.03%
VLCS 12.41% 0.00%

4.2 DATA SPLITTING

After filtering, we focus on determining a threshold to split the dataset into In-Pretraining (IP) and
Out-of-Pretraining (OOP) subsets. We select 0.21 as the threshold, based on the trends observed
in Figure 2 (a.)), as this is the point where performance begins to improve significantly, indicating
that existing methods become more effective. While this threshold represents a somewhat subjective
choice informed by observed patterns, we provide AlignmentScores in the released data, allowing
researchers the flexibility to experiment with their own thresholds.

Figure 16 in the Appendix illustrates how this split impacts the size and composition of each dataset.
Certain domains naturally fall into the IP subset. For example, in DomainNet, the clipart domain is
predominantly categorized as IP, likely due to its frequent presence on the internet and therefore the
web-scraped pre-training data. On the other hand, TerraIncognita-OOP has relatively more balanced
domains, but exhibits substantial class shift between IP and OOP splits (Figure 17), meaning some
classes are better aligned than others during pre-training. More dataset statistics are in the Appendix.

5 EXPERIMENTS

5.1 TRAINING AND EVALUATION PROTOCOL

We aim to evaluate how well Domain Generalization (DG) methods perform across both pretraining-
aligned(IP) and pretraining-misaligned(OOP) data. We adhere to the DomainBed evaluation
methodology, where one domain is chosen as the target, and the remaining domains act as source
domains. To maintain a sufficient amount of training data, we train all DG methods on the origi-
nal, unsplit datasets. We use hyper-parameter values recommended by the original implementation
authors for each method.

After training, models are evaluated separately on the IP and OOP subsets, as well as the original,
unsplit test domain. This approach allows us to measure how well each method generalizes to both
pretraining-aligned and pretraining-misaligned data.

We follow the literature’s standard practice of computing performance per target domain and av-
eraging the results across all domains. This method ensures that any domain imbalances do not
disproportionately influence the final performance metrics.

5.2 ALGORITHMS

Explicit Regularization towards Pretraining: Several recent DG methods leverage explicit reg-
ularization towards the initialization. These methods generally operate either in weight space (by
regularizing or freezing model parameters) or in feature space (by aligning internal feature repre-
sentations with those of the pretrained model).

• MIRO (Cha et al., 2022): Minimizes the Mutual Information between DG model interme-
diate features and CLIP intermediate features.

• Attention Tuning (Teterwak et al., 2023; Touvron et al., 2022): Freezes all parameters
except those in the Multiheaded-Attention Layers.

• VL2V-SD (Addepalli et al., 2024): Self-distills a linear combination of CLIP vision and
text outputs into a model.

7
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Table 2: Benchmarking DG methods on DB-IP/OOP

DomainBed-IP DomainNet OfficeHome PACS TI VLCS Average

OpenCLIP ZS 74.9 89.0 98.5 36.8 95.9 79.0

CORAL (Sun & Saenko, 2016) 63.3 76.1 84.3 42.9 86.5 70.6
SAGM (Wang et al., 2023) 64.3 79.5 90.1 44.0 88.0 73.2
ERM* (Gulrajani & Lopez-Paz, 2020) 63.1 78.1 87.1 42.0 85.3 71.1
LP-FT (Kumar et al., 2021) 64.4 78.5 90.3 40.9 86.0 72.0
SWAD (Cha et al., 2021) 72.3 84.8 94.6 52.7 88.5 78.6
MIRO (Cha et al., 2022) 72.4 88.8 97.6 58.9 91.0 81.7
VL2V-SD (Addepalli et al., 2024) 78.1 91.4 98.0 48.1 92.4 81.6
Attn Tune (Teterwak et al., 2023) 69.2 84.8 96.4 53.0 88.7 78.4
MPA (Arpit et al., 2022) 73.6 85.1 95.4 54.4 90.7 79.8
CLIPOOD (Shu et al., 2023) 78.9 90.9 97.7 63.5 92.5 84.7

MIRO + SWAD 77.0 90.5 97.6 62.1 91.1 83.6
MIRO + MPA 78.2 90.7 98.1 62.6 91.0 84.1

Upper Bound (Target Finetune) 81.6 88.5 97.8 93.4 93.8 91.0
(a) Samples with high AlignmentScore values, indicating good pretraining alignment.

DomainBed-OOP DomainNet OfficeHome PACS TI VLCS Average

OpenCLIP ZS 26.8 48.1 81.4 4.5 80.1 48.2

CORAL (Sun & Saenko, 2016) 22.3 42.6 74.1 16.0 74.0 45.8
SAGM (Wang et al., 2023) 23.0 44.5 74.2 19.3 73.3 46.9
ERM* (Gulrajani & Lopez-Paz, 2020) 22.3 42.9 76.9 16.5 76.4 47.0
LP-FT (Kumar et al., 2021) 22.7 43.4 78.6 23.1 70.7 47.7
SWAD (Cha et al., 2021) 28.6 49.9 79.1 21.0 77.0 51.1
MIRO (Cha et al., 2022) 28.4 56.6 84.7 18.5 73.7 52.4
VL2V-SD (Addepalli et al., 2024) 31.8 56.6 85.0 15.9 79.1 53.7
Attn Tune (Teterwak et al., 2023) 26.8 51.4 84.2 20.3 76.1 51.8
MPA (Arpit et al., 2022) 29.6 51.0 82.7 22.2 79.5 53.0
CLIPOOD (Shu et al., 2023) 33.9 63.9 87.2 19.9 80.7 57.1

MIRO + SWAD 32.0 59.0 85.4 21.1 78.9 55.3
MIRO + MPA 33.1 60.0 87.8 24.9 80.3 57.2

Upper Bound (Target Finetune) 48.8 61.9 92.9 83.2 92.4 75.8
(b) Samples with lower AlignmentScore values, representing cases where pretraining alignment is weak.

DomainBed-All DomainNet OfficeHome PACS TI VLCS Average

OpenCLIP ZS 59.6 85.4 97.0 33.2 82.4 71.5

CORAL (Sun & Saenko, 2016) 50.6 73.2 83.2 39.6 78.5 65.0
SAGM (Wang et al., 2019) 51.5 76.4 87.5 41.0 80.4 67.3
ERM* (Gulrajani & Lopez-Paz, 2020) 50.5 75.0 85.2 39.0 77.9 65.5
LP-FT (Kumar et al., 2021) 51.3 75.5 88.4 38.5 78.0 66.3
SWAD (Cha et al., 2021) 57.9 81.8 92.4 49.0 80.1 72.2
MIRO (Cha et al., 2022) 57.5 85.8 96.4 54.3 81.1 75.0
VL2V-SD (Addepalli et al., 2024) 62.0 88.3 96.9 44.4 82.7 74.9
Attn Tune (Teterwak et al., 2023) 55.4 81.9 95.4 49.1 81.8 72.7
MPA (Arpit et al., 2022) 58.9 82.0 94.3 50.7 82.3 73.6
CLIPOOD (Shu et al., 2023) 63.6 88.3 96.8 58.5 83.4 78.1

MIRO + SWAD 61.4 87.6 96.6 57.4 82.0 77.0
MIRO + MPA 62.4 87.9 97.2 58.2 82.8 77.7

Upper Bound (Target Finetune) 70.4 86.2 97.2 92.4 87.9 86.8
(c) Performance of DG methods on unsplit DomainBed
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• CLIPood (Shu et al., 2023): Regularizes both weights and output features. Weights are
averaged between the pre-trained CLIP model and the fine-tuned model, and outputs are
regularized using a loss that incorporates information from the pre-trained text encoder.

• Linear Probe - Fine Tuning (LP-FT) (Kumar et al., 2021): Freezes the backbone, trains
a linear probe, and then performs full finetuning. An untrained linear probe can cause
finetuning to update the frozen backbone needlessly, potentially unlearning discriminative
features. This biases the model towards pre-trained weights with smaller gradient updates.

Domain Invariance: A classic idea for Domain Generalization is Domain Invariance in the feature
space, where the model learns only class-discriminative features shared among all training/source
domains. CORAL (Sun & Saenko, 2016) matches the second moments of features across different
domains and has been shown to be highly effective (Gulrajani & Lopez-Paz, 2020).

Flat Optima: Studies by Izmailov et al. (2018) and Cha et al. (2021) have shown that flat minima
generalize better than sharp minima, as they make loss values less sensitive to perturbations in the
loss surface, resulting in smaller increases in loss during domain shifts.

• SWAD (Cha et al., 2021): Averages model parameters during training, determining the
interval over which to average using validation loss over source domain.

• Model Parameter Averaging (MPA) (Arpit et al., 2022): Starts averaging model parame-
ters after a number of burn-in steps to find flat minima.

• SAGM (Wang et al., 2023): An optimizer that explicitly optimizes for flat minima.

Baseline and Oracle: We also train a baseline and oracle model for lower-bound and upper-bound
reference. The baseline model is an Empirical Risk Minimization (ERM) model that is finetuned
on source domains and evaluated on target domains, and has been found to be effective for the
DG task (Gulrajani & Lopez-Paz, 2020). The oracle model is trained on an 80% training split
of all domains and evaluated on a 20% test split. The oracle model removes the OOD aspect of
generalization and provides a reasonable upper bound for DG methods.

5.3 RESULTS

We show results in Table 2 for DomainBed-OOP, DomainBed-IP, and standard DomainBed datasets.
Underlined results represent the best performance of any single method (excluding method combi-
nations), while the bold numbers show the highest performance overall, excluding the upper bound.

DG methods perform well on DomainBed-IP: In most datasets within DomainBed-IP, domain
generalization approaches achieve excellent performance.On three out of five datasets (DomainNet,
OfficeHome, and PACS), the best DG method even outperforms the oracle! A notable exception
is TerraIncognita, where CLIPood scores only 63.5%, far below the oracle’s 93.4%, highlighting
this dataset as a challenging outlier. Interestingly, all three datasets where performance exceeds the
oracle have an average IP AlignmentScore of 0.28, while the others have a lower average Align-
mentScore of around 0.26. Therefore, the underperformance of TerraIncognita may be partially
explained by its lower IP AlignmentScore, suggesting that alignment plays a significant role in DG
performance, even within the IP case. Another interesting observation is that on the IP subset, the
zero-shot model can achieve performances greater than the finetuned models (for PACS and VLCS).
This means that, for IP-data, DG finetuning sometimes causes more catastrophic forgetting than
learning of new features from source!

DG Methods leave much to be desired on DomainBed-OOP, but are still stronger than ERM:
In DomainBed-OOP, we observe that even the top-performing DG methods struggle with low-
alignment data. For example, CLIPood achieves 57.1% accuracy, which is a significant drop com-
pared to its performance on DomainBed-IP (84.7%) and DomainBed-All (78.1%). Despite this,
DG methods still outperform Empirical Risk Minimization (ERM), which scores only 47.0% on
DomainBed-OOP. Therefore DG methods are better equipped to handle domain shifts than ERM,
possibly due to weak transfer of knowlegdge from pre-trained features. Nevertheless, there is still
substantial room for improvement on low-alignment samples.

State-of-the-Art methods do not consistently outperform older methods on OOP data: While
CLIPood (Shu et al., 2023) clearly outperforms other methods on DomainBed-All with 78.1%
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accuracy, it performs comparably to older methods on DomainBed-OOP. For instance, MIRO +
MPA (Cha et al., 2022; Arpit et al., 2022) achieves 57.2% on DomainBed-OOP, which is nearly
the same as CLIPood’s 57.1%. This suggests that CLIPood’s primary advantage comes from well-
aligned samples in DomainBed-IP, where it reaches 84.7% accuracy, half a percent better than the
next-best method.

Model Parameter Averaging (MPA) boosts performance on OOP data: MPA performs signifi-
cantly better than ERM on DomainBed-OOP, achieving 53.0% compared to ERM’s 47.0%. This is
half a percent better than MIRO on OOP data, despite being 2% worse than MIRO on IP data. When
combined with MIRO, MPA delivers the best performance on DomainBed-OOP, scoring 57.2%,
slightly surpassing CLIPood. This suggests that MPA can complement other regularization-based
methods like MIRO. On DomainBed-IP, MIRO + MPA scores 84.1%, close to CLIPood’s 84.7%,
demonstrating versatility across both high- and low-alignment data. Interestingly, SWAD underper-
forms MPA on DomainBed-OOP by 2%, despite being conceptually similar. We attribute this to
selecting the averaging interval on the source data, which introduces overfitting to source domains.

6 DICUSSION

As an increasing number of works in the Domain Generalization sub-field leverage pre-trained CLIP
models for Domain Generalization benchmarks, it is important to better characterize the impacts of
pre-training on DG. We leave the reader with the following takeaways:

Pre-training Alignment Predicts DG Performance: Our study demonstrates that pre-training
alignment, measured as the cosine similarity between image and text embeddings, is a robust predic-
tor of DG performance. This holds true even after source fine-tuning, highlighting that the quality
of alignment achieved during pre-training has a significant impact on the generalization capability
of models.

Current DG Methods Exploit Pre-training Rather Than Learning New Features: Our findings
reveal a large difference in the performance of DG methods between pretraining-aligned (IP) and
pretraining-misaligned (OOP) data. While state-of-the-art methods achieve near-oracle performance
on IP data, they struggle significantly on OOP data. This indicates that current methods primarily
leverage on pre-trained features rather than learning new, generalizable features from source data.
Consequently, their success is heavily tied to the quality of pre-training, rather than the efficacy of
the fine-tuning process itself.

Benchmarks Should Reflect Pre-training Reliance: The reliance on pre-trained alignment calls
for a reevaluation of DG benchmarks. Existing benchmarks often aggregate results across all target
data, masking the limitations of DG methods on low-alignment samples. To address this, we propose
splitting evaluation datasets into In-Pretraining (IP) and Out-of-Pretraining (OOP) subsets. This
provides a clearer picture of where DG methods succeed and where they fail. We hope that our
proposed DomainBed-IP/OOP splits will guide the development of future methods that are better
equipped to handle low-alignment data while maintaining performance on high-alignment samples.

7 CONCLUSION

In this paper, we systematically explore how Domain Generalization (DG) methods rely on pre-
trained feature alignment from models like CLIP. We hypothesize that the alignment between im-
age and text embeddings during pre-training strongly predicts DG performance. Our experiments
confirm this, showing that methods perform well on high-alignment samples (DomainBed-IP) but
struggle on low-alignment data (DomainBed-OOP). While we focus on multi-source DG, we ex-
pect similar results in single-source finetuning due to the foundational role of pre-trained alignment.
Notably, state-of-the-art methods like CLIPood perform near oracle-level on aligned data but see
significant drops on misaligned samples. This suggests current DG methods rely on pre-trained fea-
tures and fail to learn new, generalizable features from source domains. Moving forward, two paths
emerge: developing DG methods that better learn generalizable features, or focusing on improving
pre-trained backbones. While foundation models will continue to advance, there will always be spe-
cialized distributions where they fail. We hope these findings inspire further research into improving
generalization on low-alignment data, pushing DG beyond reliance on pre-trained alignment.
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A APPENDIX

A.1 TRAINING AND EVALUATION DETAILS

Code is zipped in the supplementary.

We use a slightly modified MIRO Cha et al. (2022) codebase for training and evaluation. We use
leave-one-out evaluation, where a model is trained on all domains except the evaluation domain.
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We emphasize that we use DomainBed-IP and DomainBed-OOP as evaluation data only, models are
trained on full datasets.

For training, we use an OpenCLIP-ViT-B/16 Ilharco et al. (2021) trained on LAION-400M Schuh-
mann et al. (2021). We use default hyper-parameters as defined by Cha et al. (2022). This includes
a learning rate of 5e-5, weight decay of 0.0, a batch size of 32 per-domain, an Adam Optimizer, and
no dropout for all methods.

For evaluation, unlike DomainBed, we consider the entire test domain instead of an 80% random
split. Following standard practice, we first compute accuracy for each domain, then average those ac-
curacies to get dataset level statistics, and finally compute overall averages averaging across datasets.

For benchmarked methods, we also use hyper-parameters found to be best in respective papers. For
SWAD, we use an optimum patience parameter value of 3, overfit patience parameter value of 6,
and tolerance ratio of 6. For MIRO, we use use regularizer loss weight of 1.0. For CORAL, we use
a CORAL regularizer weight of 1.0, following Cha et al. (2021). For LP-FT, we train the linear
probe for 600 steps before unlocking the full backbone. For Model Parameter Averaging, we burn
in the training for 600 steps before averaging iterates. For VL2V-SD and CLIPood, we directly use
the author’s implementation and hyper-parameters, except initializing with OpenCLIP Ilharco et al.
(2021).

A.2 TRAINING COMPUTE

Each run uses an A6000 48GB GPU, trained for up to 12 hours per domain-dataset combination.

B ADDITIONAL RESULTS

B.1 ALIGNMENTSCORE VS ACCURACY

In Figure 10, we plot all benchmarked methods from the main paper, with x-axis corresponding to
AlignmentScore, and the y-axis corresponding to the Top-1 Accuracy. We normalize for dataset
size, so that no dataset dominates the count. In Figures 11 through 15, we plot these statistics
independently per dataset, and find the trends consistent across datasets.

B.2 PER-DATASET BENCHMARKING RESULTS

We expand Table 2 in the main paper into per-dataset results in Table 6 through 20.

B.3 SIMILARITY OF TARGET TO PRE-TRAINING

To evaluate the Image Similarity Hypothesis, we retrieve the nearest neighbors from the Laion-400M
dataset Schuhmann et al. (2021). This raises the question of how similar the target domains are to
the pre-training data and whether the source domains might be even more similar. To investigate
this, we compute Maximum Mean Discrepancy (MMD) distances between PACS domains and their
nearest neighbors from Laion-400M, as shown in Figure 5. Our results indicate that target domains
are, in fact, more similar to the pre-training data than source domains. We inspect nearest neighbors
manually, and find even exact duplicates (Figure 4). Interestingly, while we found not only domain-
level duplicates but also exact matches in the pre-training data, the Image Similarity Hypothesis is
ultimately less predictive than the Alignment Hypothesis.

B.4 OTHER BACKBONES

We benchmark 2 additional backbones(DINOv2 (Oquab et al., 2023) and OpenAI CLIP) using the
MIRO + MPA Domain Generalization method, which we found to be the strongest in our paper, on
two datasets (OfficeHome and PACS). This consistency is likely due to the similar nature of the pre-
training datasets, both sourced from web scraping and of comparable scale. These findings reinforce
that the usefulness of the DomainBed-IP/OOP split is not confined to a specific backbone.
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PACS

OfficeHome

DomainNet TerraIncognita

VLCS

Query Retrieved Query Retrieved

Query RetrievedQuery RetrievedQuery Retrieved

Figure 4: Nearest neighbors of target images in pre-training LAION data.

Figure 5: MMD between pre-training and target, source and target, and target and target for PACS.
Target is more similar to pre-training than source. Despite this, Alignment is a better predictor of
DG performance than perceptual similarity.

Backbone OfficeHome - IP PACS - IP OfficeHome - OOP PACS - OOP
OpenCLIP-ViT/B 16 90.7 98.1 60.0 87.8
CLIP-ViT/B 16 88.1 97.6 57.0 86.9
DinoV2 87.4 97.1 58.9 85.0

Table 3: Benchmark results of different backbones on OfficeHome and PACS datasets.

B.5 SPLITTING DOMAINBED USING PERCEPTUALSIMILARITYSCORE

In Figure 2 b.), we show that the slope of the relationship of Top-1 Accuracy vs Perceptual Similarity
Score is positive but shallow. This suggests that using PerceptualSimilarityScore as an alternative to
AlignmentScore for splitting DomainBed would not be very effective. To further prove this point,
we split at a PerceptualSimilarityScore value of 0.86 in Table 4. We can see the differences are not
very large between OOP and IP, indicating that AlignmentScore is a better thresholding metric.

B.6 COMPARISNG ALIGNMENTSCORE WITH ZERO-SHOT CLASSIFICATION CONFIDENCE
SCORE
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Table 4: Splitting DomainBed by PerceptualSimilarityScore. The differences between IP and OOP
with this split are much lower than with Alignment Score.

Dataset PACS VLCS TerraIncognita OfficeHome DomainNet
Perceptual IP 97.2 74.8 60.6 86.8 61.4
Perceptual OOP 95.6 77.4 42.9 78.3 55.3

Figure 6: Top-1 DG Accuracy vs calibrated alignment: We use the confidence of the zero-shot
classifier formed by the pre-trained CLIP models an alignment measure. Although the score predicts
generalization for both OfficeHome and DomainNet, the scores have different scales for different
datasets.

We also consider an alignment score which takes into account uncertainties, and compute a score
using the confidence of the zero-shot classifier formed by the pre-trained CLIP model for each
sample. Specifically, for a sample with ground truth class c, we calculate the softmax over the logits
output by the zero-shot classifier, and use the resulting probability p(c) as the score. We refer to
this as the Calibrated AlignmentScore and show the results in Figure 6. Although the score predicts
generalization for both OfficeHome and DomainNet, the scores have different scales for different
datasets. In contrast out AlignmentScore does align across datasets to a greater degree (Figure 7)

B.7 COMBINING PERCEPTUALSIMILARITY SCORE AND ALIGNMENTSCORE

We explore the effect of averaging PerceptualSimilarityScore and AlignmentScore in Figure 8. We
can see that there is not much of a compositional effect, so therefore we stick with AlignmentScore
as our generalization predictor.

B.8 IMAGE SIMILARITY HYPOTHESIS FOR SOURCE DATA

The main drawback of the Image Similarity hypothesis is that it does not consider how well the
nearest perceptual neighbor is learned during pre-training. One reason for a sample being poorly
learned during pre-training is that the pre-training caption is not very relevant to the DG task. Source
data is unlikely to have this issue, since source and target domains share labels. Therefore it is
interesting to ask how strongly correlated the PerceptualSimilarityScore is with DG accuracy when
measured between source and target. Indeed , as seen in Figure 9, there is a strong correlation.
However, simply using source-data to compute the PerceptualSimilarity results in an incomplete
understanding of the relationship between target data and the training procedure, due to the lack of
consideration of the pre-training. In fact, zero-shot models with NO learning from source are very
performant (Table 2)
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Figure 7: Top-1 DG Accuracy vs AlignmentScore: The AlignmentScore introduced in our work
have scales which are comparable across different datasets.

Figure 8: Combining PerceptualSimilarity Score and AlignmentScore: We explore the effect of
averaging PerceptualSimilarityScore and AlignmentScore. There is no visible additional signal from
averaging. We therefore stick with AlignmentScore as our generalization predictor.

C ADDITIONAL DOMAINBED-(IP/OOP) STATISTICS AND ANALYSIS

C.1 CONSTITUENT DATASETS

We split 5 datasets in DomainBed-(IP/OOP),( VLCS Fang et al. (2013), DomainNet Peng et al.
(2019), OfficeHome Ganin et al. (2016), PACS Li et al. (2017), and TerraIncognita Beery et al.
(2018)). Here we provide basic statistics of each.

VLCS has 5 classes and 4 domains: Caltech101, LabelME, SUN09, and VOC2007, with 10729
samples. The domain shift is dataset source.

DomainNet contrains 345 classes and 6 domains: clipart, infograph, quickdraw, real, and sketch. It
has a total of 586,575 samples. The dataset shift is style.

OfficeHome has 65 classes and 4 domains: art, clipart, product, and real. The dataset shift is style.

TerraIncognita has 10 classes of wildlife cameras. There are 4 domains of different cameras and
24788 samples. The dataset shift is camera location.

PACS has 9991 sampes and 4 domains: arts, cartoon, photo, and sketch. There are 7 classes. The
dataset shift is style.
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Figure 9: PerceptualSimilarity to Source for OfficeHome. DG performance is correlated with simi-
larity to source images.

Table 5: Mislabeling rates across different AlignmentScore ranges.

Dataset 0.0-0.05 0.05-0.10 0.10-0.15 0.15-0.20

OfficeHome 100% 45% 28% 12%
PACS - 46% 5% 0%
TerraIncognita - 55% 34% 23%
DomainNet 65% 35% 33% 11%
VLCS 33% 14% 9% 3%

C.2 MISLABELING RATES

In Table 5 we present the mislabelling rates at various AlingmentScore values.

C.3 CLASS DISTRIBUTION OF DOMAINBED-(IP/OOP):

In Figures 18 through 32, we provide class distribution statistics of different datasets before splitting
and in our IP and OOP splits. We find some interesting patterns. For example, in Office-Home, the
OOP class is dominated by marker and toys, while the IP split has a much more uniform distri-
bution. Similarly, both PACS (DomainBed-OOP) and VLCS (DomainBed-OOP) are dominated by
person.
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Figure 10: Plotting AlignmentScore vs Top-1 Accuracy for all benchmarked methods, for all
datasets together. Although some methods are stronger than others, all follow the same trend of
increasing accuracy with increased AlignmentScore.

Figure 11: Plotting AlignmentScore vs Top-1 Accuracy on the PACS dataset.

Table 6: Per-domain breakdown for OfficeHome (DomainBed-OOP)

Method Art Clipart Product Real Avg

CORALSun & Saenko (2016) 33.0 29.4 50.0 58.0 42.6
SAGMWang et al. (2023) 36.8 30.7 51.7 58.7 44.5
ERM*Gulrajani & Lopez-Paz (2020) 36.0 28.1 51.3 56.0 42.9
LP-FTKumar et al. (2021) 37.2 29.7 52.0 54.7 43.4
SWADCha et al. (2021) 43.9 37.1 56.0 62.7 49.9
MIRO Cha et al. (2022) 49.4 39.6 62.7 74.7 56.6
VL2V-SD Addepalli et al. (2024) 56.4 39.3 65.3 65.3 56.6
Attn. Tune Teterwak et al. (2023); Touvron et al. (2022) 46.0 36.1 59.7 64.0 51.4
Model Parameter Averaging (MPA) Arpit et al. (2022) 46.0 36.4 55.7 66.0 51.0
CLIPOOD (Shu et al., 2023) 60.3 44.4 73.3 78.0 63.9
MIRO + SWAD 55.2 44.7 63.3 72.7 59.0
MIRO + MPA 53.5 44.1 65.7 76.7 60.0
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Figure 12: Plotting AlignmentScore vs Top-1 Accuracy on the DomainNet dataset.

Figure 13: Plotting AlignmentScore vs Top-1 Accuracy on the OfficeHome dataset.

Table 7: Per-domain breakdown for OfficeHome (DomainBed-IP)

Method Art Clipart Product Real Avg

CORAL 71.6 62.9 85.8 84.0 76.1
SAGM 75.7 70.8 87.0 84.5 79.5
ERM* 74.1 67.4 86.7 84.1 78.1
LP-FT 75.2 66.9 88.9 83.0 78.5
SWAD 81.4 77.8 91.8 88.2 84.8
MIRO 88.3 81.1 93.7 92.1 88.8
VL2V-SD 91.0 83.8 96.7 94.2 91.4
Attn. Tune 86.0 75.1 89.5 88.7 84.8
Model Parameter Averaging (MPA) 83.6 77.1 91.1 88.5 85.1
CLIPOOD (Shu et al., 2023) 92.3 81.3 96.0 94.2 90.9
MIRO + SWAD 90.4 83.2 95.5 92.8 90.5
MIRO + MPA 90.6 83.9 95.4 92.9 90.7
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Figure 14: Plotting AlignmentScore vs Top-1 Accuracy on the TerraIncognita dataset.

Figure 15: Plotting AlignmentScore vs Top-1 Accuracy on the VLCS dataset.

Table 8: Per-domain breakdown for OfficeHome (DomainBed-All)

Method Art Clipart Product Real Avg

CORAL 66.6 60.1 83.0 83.0 73.2
SAGM 70.7 67.1 84.3 83.6 76.4
ERM* 69.2 63.9 83.9 83.1 75.0
LP-FT 70.3 63.6 86.0 82.0 75.5
SWAD 76.6 74.3 89.0 87.2 81.8
MIRO 83.2 77.5 91.2 91.4 85.8
VL2V-SD 86.4 79.7 94.1 93.1 88.3
Attn. Tune 80.8 71.7 87.2 87.8 81.9
Model Parameter Averaging (MPA) 78.7 73.4 88.4 87.6 82.0
CLIPOOD (Shu et al., 2023) 87.9 77.8 94.1 93.6 88.3
MIRO + SWAD 85.6 79.9 93.0 92.1 87.6
MIRO + MPA 85.6 80.5 93.0 92.3 87.9
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Table 9: Per-domain breakdown for TerraIncognita (DomainBed-OOP)

Method L100 L38 L43 L46 Avg

CORAL 13.9 8.1 21.1 21.1 16.0
SAGM 17.2 7.8 20.2 32.2 19.3
ERM* 13.1 9.6 22.9 20.5 16.5
LP-FT 16.7 5.1 25.6 44.9 23.1
SWAD 20.7 8.2 26.9 28.2 21.0
MIRO 19.4 6.6 30.0 17.9 18.5
VL2V-SD 9.3 5.6 20.2 28.4 15.9
Attn. Tune 20.5 10.7 24.8 25.3 20.3
Model Parameter Averaging (MPA) 21.7 8.6 30.9 27.6 22.2
CLIPOOD (Shu et al., 2023) 37.9 11.3 21.6 8.9 19.9
MIRO + SWAD 22.5 5.9 30.3 25.9 21.1
MIRO + MPA 24.8 9.6 32.5 32.8 24.9

Table 10: Per-domain breakdown for TerraIncognita (DomainBed-IP)

Method L100 L38 L43 L46 Avg

CORAL 46.4 35.3 56.9 32.8 42.9
SAGM 55.1 38.7 52.5 29.5 44.0
ERM* 37.4 38.0 55.2 37.5 42.0
LP-FT 50.7 36.5 58.1 18.2 40.9
SWAD 60.1 41.7 65.7 43.5 52.7
MIRO 69.5 50.2 69.7 46.1 58.9
VL2V-SD 52.8 38.4 57.6 43.8 48.1
Attn. Tune 52.4 44.0 68.0 47.5 53.0
Model Parameter Averaging (MPA) 63.8 41.4 67.9 44.7 54.4
CLIPOOD (Shu et al., 2023) 77.7 56.4 69.0 51.0 63.5
MIRO + SWAD 68.9 54.8 73.4 51.2 62.1
MIRO + MPA 69.4 55.9 73.6 51.4 62.6

Table 11: Per-domain breakdown for TerraIncognita (DomainBed-All)

Method L100 L38 L43 L46 Avg

CORAL 43.6 32.7 50.4 31.8 39.6
SAGM 51.9 35.8 46.6 29.7 41.0
ERM* 35.3 35.3 49.3 36.0 39.0
LP-FT 47.8 33.5 52.1 20.5 38.5
SWAD 56.7 38.5 58.6 42.2 49.0
MIRO 65.2 46.0 62.4 43.7 54.3
VL2V-SD 49.1 35.3 50.8 42.5 44.4
Attn. Tune 49.7 40.8 60.1 45.6 49.1
Model Parameter Averaging (MPA) 60.1 38.3 61.1 43.2 50.7
CLIPOOD (Shu et al., 2023) 74.3 52.1 60.4 47.4 58.5

MIRO + SWAD 64.9 50.1 65.5 49.0 57.4
MIRO + MPA 65.6 51.5 66.0 49.8 58.2
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Table 12: Comparison of Methods for DomainNet Dataset (DomainBed-OOP)

Method Clp Inf Pnt Qkdr Real Skt Avg

CORAL 34.9 19.2 26.9 5.7 24.6 22.8 22.3
SAGM 36.4 19.4 25.1 6.1 26.8 24.2 23.0
ERM* 36.2 19.0 23.4 5.4 26.6 23.4 22.3
LP-FT 34.7 20.9 25.2 6.1 25.9 23.2 22.7
SWAD 42.5 28.3 33.4 7.6 30.2 29.5 28.6
MIRO 42.5 37.0 27.9 3.5 33.5 25.8 28.4
VL2V-SD 43.0 43.2 34.8 3.0 37.1 29.5 31.8
Attn. Tune 40.4 29.1 29.2 4.3 31.3 26.6 26.8
Model Parameter Averaging (MPA) 42.3 30.9 34.9 7.4 31.6 30.7 29.6
CLIPOOD (Shu et al., 2023) 39.2 50.2 39.5 2.1 40.9 31.3 33.9
MIRO + SWAD 46.1 40.4 34.0 4.4 35.2 31.7 32.0
MIRO + MPA 46.2 42.6 36.0 4.4 36.0 33.3 33.1

Table 13: Comparison of Methods for DomainNet Dataset (DomainBed-IP)

Method Clp Inf Pnt Qkdr Real Skt Avg

CORAL 80.3 52.3 71.1 33.2 71.7 71.2 63.3
SAGM 81.7 52.8 70.2 34.5 73.4 73.1 64.3
ERM* 80.6 53.4 69.0 31.3 73.0 71.6 63.1
LP-FT 80.0 56.5 70.5 34.0 73.9 71.5 64.4
SWAD 85.5 67.1 80.2 41.3 80.1 79.8 72.3
MIRO 85.4 77.7 79.1 34.6 83.2 74.2 72.4
VL2V-SD 88.3 85.6 84.6 38.0 88.3 84.0 78.1
Attn. Tune 83.5 66.1 77.3 32.6 80.3 75.5 69.2
Model Parameter Averaging (MPA) 85.8 69.7 81.6 41.4 81.4 81.4 73.6
CLIPOOD (Shu et al., 2023) 86.6 85.4 87.6 38.0 91.0 84.7 78.9
MIRO + SWAD 88.2 81.7 83.9 40.8 85.8 81.9 77.0
MIRO + MPA 88.1 83.7 85.5 41.3 86.5 84.0 78.2

Table 14: Comparison of Methods for DomainNet Dataset (DomainBed-All)

Method Clp Inf Pnt Qkdr Real Skt Avg

CORAL 72.7 27.1 58.0 20.1 67.1 58.8 50.6
SAGM 74.1 27.4 56.9 20.9 68.9 60.6 51.5
ERM* 73.1 27.4 55.7 19.0 68.5 59.3 50.5
LP-FT 72.4 29.3 57.1 20.7 69.2 59.2 51.3
SWAD 78.0 36.0 66.1 25.2 75.2 66.7 57.9
MIRO 78.0 42.9 64.0 20.0 78.3 61.7 57.5
VL2V-SD 80.5 47.8 69.5 21.6 83.1 69.8 62.0
Attn. Tune 76.1 36.0 63.0 19.2 75.4 62.9 55.4
Model Parameter Averaging (MPA) 78.3 37.9 67.4 25.2 76.5 68.2 58.9
CLIPOOD (Shu et al., 2023) 78.4 52.9 72.6 21.2 85.9 70.7 63.6
MIRO + SWAD 80.8 45.6 68.8 23.7 80.7 68.7 61.4
MIRO + MPA 80.7 47.2 70.4 23.9 81.4 70.6 62.4

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 15: Per-domain breakdown for VLCS (DomainBed-OOP)

Method Caltech101 LabelMe SUN09 VOC2007 Avg

CORAL 93.3 54.6 72.9 75.3 74.0
SAGM 80.0 58.8 76.5 78.0 73.3
ERM* 100.0 57.1 73.3 75.3 76.4
LP-FT 80.0 55.4 71.8 75.7 70.7
SWAD 100.0 51.2 79.1 77.7 77.0
MIRO 86.7 52.6 82.9 72.7 73.7
VL2V-SD 100.0 55.0 80.4 81.1 79.1
Attn. Tune 86.7 61.0 77.9 79.0 76.1
Model Parameter Averaging (MPA) 100.0 53.6 83.6 80.9 79.5
CLIPOOD (Shu et al., 2023) 100.0 55.0 84.9 82.8 80.7
MIRO + SWAD 100.0 56.7 84.7 79.9 80.3
MIRO + MPA 100.0 54.6 83.4 77.4 78.9

Table 16: Per-domain breakdown for VLCS (DomainBed-IP)

Method Caltech101 LabelMe SUN09 VOC2007 Avg

CORAL 98.2 83.5 84.5 79.8 86.5
SAGM 95.9 84.3 86.3 85.5 88.0
ERM* 96.9 83.7 86.1 74.6 85.3
LP-FT 97.1 83.2 82.8 80.7 86.0
SWAD 97.9 82.9 88.4 84.8 88.5
MIRO 98.9 83.3 93.5 88.2 91.0
VL2V-SD 99.5 83.9 91.8 94.6 92.4
Attn. Tune 98.0 84.7 85.7 86.5 88.7
Model Parameter Averaging (MPA) 98.4 83.0 92.6 88.8 90.7
CLIPOOD (Shu et al., 2023) 98.9 83.6 93.5 94.0 92.5
MIRO + SWAD 97.6 83.4 92.6 90.6 91.1
MIRO + MPA 98.0 83.2 92.9 90.1 91.0

Table 17: Per-domain breakdown for VLCS (DomainBed-All)

Method Caltech101 LabelMe SUN09 VOC2007 Avg

CORAL 98.2 66.2 72.7 77.0 78.5
SAGM 95.8 68.8 76.2 80.8 80.4
ERM* 96.9 67.8 73.0 73.9 77.9
LP-FT 97.0 66.4 71.4 77.4 78.0
SWAD 98.0 64.5 77.7 80.3 80.1
MIRO 98.7 65.3 81.2 79.3 81.1
VL2V-SD 99.5 66.6 78.8 86.0 82.7
Attn. Tune 97.9 70.3 77.2 81.9 81.8
Model Parameter Averaging (MPA) 98.4 65.7 81.3 83.7 82.3
CLIPOOD (Shu et al., 2023) 98.9 66.7 81.6 86.6 83.4
MIRO + SWAD 97.6 66.4 81.6 82.6 82.0
MIRO + MPA 98.0 67.4 82.2 83.6 82.8
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Table 18: Per-domain breakdown for PACS (DomainBed-OOP)

Method Art Cartoon Photo Sketch Avg

CORAL 80.4 84.3 89.5 42.2 74.1
SAGM 74.4 78.1 89.5 54.7 74.2
ERM* 75.9 86.8 91.6 53.2 76.9
LP-FT 74.2 85.9 97.9 56.3 78.6
SWAD 84.6 81.6 95.8 54.3 79.1
MIRO 94.2 94.1 97.9 52.8 84.7
VL2V-SD 93.5 96.5 97.9 52.2 85.0
Attn. Tune 94.0 91.4 95.8 55.7 84.2
Model Parameter Averaging (MPA) 94.0 88.9 97.9 50.2 82.7
CLIPOOD (Shu et al., 2023) 96.0 96.8 97.9 58.3 87.2
MIRO + SWAD 96.0 94.9 100.0 50.7 85.4
MIRO + MPA 95.3 95.4 100.0 60.3 87.8

Table 19: Per-domain breakdown for PACS (DomainBed-IP)

Method Art Cartoon Photo Sketch Avg

CORAL 83.3 89.8 91.8 72.1 84.3
SAGM 89.7 93.0 94.7 82.9 90.1
ERM* 88.7 93.0 91.5 75.2 87.1
LP-FT 85.3 93.7 97.9 84.2 90.3
SWAD 96.4 93.0 97.8 91.0 94.6
MIRO 99.2 96.7 99.9 94.4 97.6
VL2V-SD 99.6 98.9 99.9 93.6 98.0
Attn. Tune 97.3 97.6 98.9 91.7 96.4
Model Parameter Averaging (MPA) 98.6 95.8 98.2 89.2 95.4
CLIPOOD (Shu et al., 2023) 99.4 99.3 99.9 92.0 97.7
MIRO + SWAD 99.1 97.9 99.9 93.3 97.6
MIRO + MPA 99.0 98.5 100.0 94.7 98.1

Table 20: Per-domain breakdown for PACS (DomainBed-All)

Method Art Cartoon Photo Sketch Avg

CORAL 81.4 89.2 91.7 70.5 83.2
SAGM 83.4 90.4 94.6 81.4 87.5
ERM* 83.0 92.1 91.5 74.0 85.2
LP-FT 80.5 92.7 97.9 82.7 88.4
SWAD 91.5 91.2 97.8 89.0 92.4
MIRO 97.1 96.4 99.8 92.2 96.4
VL2V-SD 97.7 98.5 99.9 91.3 96.9
Attn. Tune 96.4 96.5 98.8 89.7 95.4
Model Parameter Averaging (MPA) 97.2 94.8 98.2 87.1 94.3
CLIPOOD (Shu et al., 2023) 98.2 98.8 99.8 90.2 96.8
MIRO + SWAD 98.0 97.4 99.9 91.0 96.6
MIRO + MPA 97.8 98.0 99.9 92.9 97.2
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Figure 16: DomainBed-(IP/OOP) Statistics: Breakdown of DomainBed-IP and DomainBed-OOP
counts, by dataset and domain. Overall, DomainNet and VLCS have the largest fraction of samples
falling into DomainBed-OOP.

TerraIncognita-IP TerraIncognita-OOP

Figure 17: Class-distribution shift: TerraIncognita’s class distribution differs between DB-IP and
DB-OOP, indicating that some classes were better aligned during pretraining.

Figure 18: Class distribution of DomainNet-IP. Zoom in on pdf for best viewing.
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Figure 19: Class distribution of DomainNet-OOP. Zoom in on pdf for best viewing.

Figure 20: Class distribution of DomainNet before splitting. Zoom in on PDF before viewing.

Figure 21: Class distribution of OfficeHome-IP. Zoom in on pdf for best viewing.
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Figure 22: Class distribution of OfficeHome-OOP. Zoom in on pdf for best viewing.

Figure 23: Class distribution of OfficeHome before Splitting. Zoom in on pdf for best viewing.
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Figure 24: Class distribution of PACS-IP.

Figure 25: Class distribution of PACS-OOP.
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Figure 26: Class distribution of PACS before splitting.

Figure 27: Class distribution of TerraIncognita-IP
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Figure 28: Class distribution of TerraIncognita-OOP

Figure 29: Class distribution of TerraIncognita before splitting.
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Figure 30: Class distribution of VLCS-IP

Figure 31: Class distribution of VLCS-OOP
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Figure 32: Class distribution of VLCS before splitting.
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