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1. Introduction

A standard approach for learning a deep generative model is to adopt the principle of maximum
likelihood, where we attempt to find the model parameters that maximize the probability of the
observed data, also called model evidence. Unfortunately, model evidence and its gradient are
difficult to compute precisely for most deep generative models. Overcoming this difficulty has been
the topic of active research in the ML and statistics communities, which resulted in techniques for
optimizing computationally-tractable lower or upper bounds of model evidence (Ranganath et al.,
2014; Kingma and Welling, 2014; Burda et al., 2016), as well as techniques for optimizing model
evidence directly using sample-based estimates of its gradient (Bornschein and Bengio, 2015; Ou
and Song, 2020).

Our goal is to make further progress in the second group of techniques, which are less explored
than the ones in the first but are known to work well with discrete latent variables. In this paper,
we report our preliminary results based on the recent work by Ou and Song (2020). Instead of
following the traditional approach of approximating the gradient of model evidence using impor-
tance sampling (IS), Ou and Song (2020) proposed to use Markov Chain Monte Carlo (MCMC)
for the gradient estimation. Their algorithm employs a non-stationary Markov chain that approxi-
mately generates samples for a moving target distribution, namely, the posterior of the model that
changes throughout the gradient-based optimization. Since MCMC is known to perform better than
IS for high-dimensional models, the algorithm is expected to work better for high-dimensional deep
generative model than IS-based alternatives. In fact, the experiments in Ou and Song (2020) show
improvement over the Reweighted-Wake-Sleep algorithm (RWS) (Bornschein and Bengio, 2015)
(the best known among the IS-alternatives) for training deep generative models with discrete latent
variables, such as Helmholtz Machine (Dayan et al., 1995).

We focus on one particular yet important problem of Ou and Song (2020)’s algorithm, which we
call non-stationary kernel problem. Intuitively, the problem asks for an effective strategy to decide
when we should reset a Markov chain used in the algorithm. The transition kernel of this chain is
not fixed, because its target distribution keeps getting updated via the gradient ascent. The algorithm
thus has to decide if the sample of the chain for the model before the gradient-ascent step should be
used to generate a sample after the step, or if it should be discarded and the next sample should be
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generated from scratch. Although getting this decision right is crucial to get good results, Ou and
Song (2020) do not provide an algorithmic solution for it; in their experiments, they used an ad-hoc
strategy of always resetting the chain (i.e., generating the next sample from scratch) up until a fixed
number of gradient-update steps, after which running the chain without interruption.

We present an automatic strategy for addressing this non-stationary kernel problem. Our strat-
egy estimates the amount of change in a generative model and its accompanying approximate pos-
terior and, in proportion to this estimate, decides whether or not to reset the chain and generate the
next sample from scratch (using the approximate posterior). In doing so, it exploits the fact that if
the model and the approximate posterior do not change much, the previous sample is likely to help
produce a better sample. Our experimental analysis with Sigmoid Belief Networks (SBNs) (Saul
et al., 1996) confirms this exploitation, and shows that our strategy gives results comparable to or
slightly better than Ou and Song (2020), while avoiding their nontrivial requirement of manually
choosing an appropriate threshold.

2. Setup and Background

We consider the problem of learning a model pθ(x,h) and an approximate posterior qφ(h|x) from
observed data D. Here x and h represent observed and hidden variables, respectively, and D is the
multiset {x1, . . . , xN} of the observed values of x. Let pd be the uniform distribution over D. A
popular approach for learning pθ(x,h) and qφ(h|x), which we focus on in the paper, is to optimize
the following objectives: the maximization of Epd(x)[log pθ(x)] over θ, and the minimization of
the average Kullback-Leibler (KL) divergence Epd(x)[KL(pθ(h|x)||qφ(h|x))] over φ. The approach
optimizes both objectives by gradient ascent or decent, based on the following characterizations of
the gradients:

∇θEpd(x)[log pθ(x)] = Epd(x)[Epθ(h|x)[∇θ log pθ(x,h)]],

∇φEpd(x)[KL(pθ(h|x)||qφ(h|x))] = −Epd(x)[Epθ(h|x)[∇φ log qφ(h|x)]].
(1)

Note that the inner expectations are taken with respect to the true posterior pθ(h|x) from which it is
difficult to generate samples, particularly because we have a limited computation budget for a single
gradient update step. MCMC, for instance, is not a viable option here, because it takes a while to
mix. Different strategies for overcoming this challenge have been developed and materialized into
different learning algorithms.

The standard strategy is to estimate the expectations in (1) using the self-normalizing importance
sampler. The representative example is RWS (Bornschein and Bengio, 2015), which uses, as the
proposal of the sampler, the approximate posterior qφ(h|x) that is being updated throughout the run
of the algorithm. The next formulas for each x ∈ D describe the core of the algorithm:1

Epθ(h|x)[∇θ log pθ(x,h)] '
K∑

k=1

ω̃k∇θ log pθ(x,hk),

Epθ(h|x)[∇φ log qφ(h|x)] '
K∑

k=1

ω̃k∇φ log qφ(hk|x),

(2)

1. Strictly speaking, we are describing the wake-wake version of the algorithm.
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where h1, . . . ,hK i.i.d.
∼ qφ( · |x) and ω̃k =

ωk∑K
k′=1 ωk′

for ωk =
pθ(x,hk)
qφ(hk |x) . Note that the gradient estimates

in (2) are biased. For the instances where pθ(h|x) and qφ(h|x) tend not to match well, as in the case
of high-dimensional models and datasets, the qualities of these estimates deteriorate due to their
biases, the variances of weights ωk, and also the algorithm’s failure to learn reasonable model and
approximate posterior.

Algorithm 1: Joint Stochastic Approximation (JSA).
Inputs: Training setD of size N, mini-batch size B, total number of epochs T with T0 to stop resetting,

number of MCMC steps M, learning rates {αt}t≥1 and {βt}t≥1.
Outputs: Parameters (θ, φ) for pθ(x,h) and qφ(h|x).

Initialize θ, φ, and {h0
x}x∈D;

for t = 1 to T do
for s = 1 to N/B do

Sample a mini-batch B = {xi}
B
i=1 of size B from the datasetD;

{h0
x}x∈B ← Initialize(B, {h0

x}x∈B, t, T0);
for x ∈ B do

for m = 1 to M do
Sample h̃ ∼ qφ( · |x) and u ∼ Uniform([0, 1]);

if
(
u < pθ(x,h̃)qφ(hm−1

x |x)
pθ(x,hm−1

x )qφ(h̃|x)

)
then

{
hm

x ← h̃;
}

else
{

hm
x ← hm−1

x ;
}

end
end
h0

x ← hM
x ;

end
θ ← θ + αt

MB
∑

x∈B
∑M

m=1 ∇θ log pθ(x,hm
x );

φ← φ +
βt

MB
∑

x∈B
∑M

m=1 ∇φ log qφ(hm
x |x);

end
end

PROCEDURE Initialize(B, {h0
x}x∈B, t, T0)

if (t ≥ T0) then { return {h0
x}x∈B; } end

for (x ∈ B) do { Sample h̃x ∼ qφ( · |x); } end
return {h̃x}x∈B;

Joint Stochastic Approximation (JSA) (Ou and Song, 2020) is a recent alternative to the importance-
sampling-based approach, which uses MCMC to generate approximate posterior samples. It is an
instance of the Stochastic Approximation Procedure (Robbins and Monro, 1951), which has been
shown to work well for training large-scale Markov Random Fields (Salakhutdinov, 2008, 2009;
Salakhutdinov and Hinton, 2009; Tieleman, 2008) and deep energy-based models (Xie et al., 2016;
Nijkamp et al., 2019).

JSA with a particular Metropolis-Hastings kernel is shown in Algorithm 1. To estimate the
inner expectations in (1) for x ∈ D, JSA uses a Markov chain with a non-stationary transition
kernel Kθ,φ,x(h′|h), which depends on the parameters θ and φ that change throughout the run of the
algorithm. More precisely, JSA stores a sample h0

x for every x ∈ D and, at each epoch, it generates
new samples h1

x, . . . ,hM
x for each x in a mini-batch of D (where M is typically ≤ 4) by running

the Markov chain of the kernel Kθ,φ,x from the stored h0
x. The generated samples are then used to

estimate gradients in (1), and the last sample hM
x serves as the initial state of the chain at the next

epoch, despite the fact that the kernel Kθ,φ,x at the next epoch will be different from the one used to
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Figure 1: (a) Test NLLs for different epochs for stopping reset. For instance, “resetting up until 300 epochs“
means that if the current epoch t is less than 300, the algorithm resets the chain at this epoch and draws its
initial state h0

x from qφ(h|x), and if not, it uses the sample hM
x generated at some previous epoch t′ < t. In

both cases, the chain is run for M steps at the epoch t. (b) A diagram that shows how resetting works in the
non-stationary kernel problem.

generate hM
x . As the algorithm optimizes θ and φ, the kernel Kθ,φ,x changes in a way to ensure that

the posterior pθ(h|x) at the current θ is an invariant distribution of the kernel Kθ,φ,x. The maintenance
of this relationship between the kernel and the posterior guarantees that θ and φ converge to local
optimums of the marginal-log-likelihood and KL objectives.2

3. Non-stationary Kernel Problem and Our Solution

Problem. Although the constant change of the kernel Kθ,φ,x(h′|h) and the posterior pθ(h|x) through-
out the run of the JSA algorithm does not break theoretical convergence guarantee, in practice, it
significantly affects the performance of the algorithm. Without a proper counter-measure for this
change, the algorithm does not perform well. Figure 1(a) shows the test negative log likelihood
(NLL) of running JSA for the binarized MNIST dataset with or without such counter-measures.
The blue line labeled “no resetting” is the result without any counter-measure, and shows the poor
performance in this setup.

We refer to the problem of finding an effective counter-measure as non-stationary kernel prob-
lem. A solution for this problem should be able to interact well with other components of the JSA
algorithm, in particular, the mini-batch method, which widens the gap between the target posteriors
for the previous h0

x and the current h1
x for each observation x and effectively increases the amount

of change of the kernel.
Ou and Song (2020) tackles this non-stationary kernel problem by resetting the Markov chain

(determined by the kernel Kθ,φ,x). For all epochs before a manually-chosen epoch T0, they let JSA
abandon the previous state h0

x of the Markov chain and reset the chain with a sample h̃x newly
drawn from the current approximate posterior qφ(h̃x|x). The algorithm then executes the transition
kernel Kθ,φ,x(h1

x|h̃x) on h̃x, and generates the next sample h1. From the epoch T0 onward, they stop
resetting altogether and generate samples by running the chain uninterrupted across epochs. See
Algorithm 1 for the detail. Figure 1(b) shows a conceptual illustration highlighting the benefit of
resetting.

2. For this convergence result to hold, the learning rates αt and βt for θ and φ have to satisfy the condition
∑∞

t=0 αt = ∞

and
∑∞

t=0 α
2
t < ∞.
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Algorithm 2: Adative resetting strategy for JSA.
Inputs: A mini-batch B of size B and samples {h0

x}x∈B from the previous epoch.
Outputs: Initial set of samples for the current Markov chain.

PROCEDURE AdaptiveInitialize(B, {h0
x}x∈B)

for (x ∈ B) do { Sample h̃x ∼ qφ( · |x); } end

R̂← 1
B
∑

x∈Bmin
{
0, log pθ(x,h̃x)qφ(h0

x |x)
pθ(x,h0

x)qφ(h̃x |x)

}
; Sample d ∼ Bernoulli(tanh(−γ · R̂));

if (d = 1) then { return {h̃x}x∈B; } else { return {h0
x}x∈B; } end

However, Ou and Song (2020)’s approach is incomplete. Its effectiveness crucially depends
on the right choice of T0, but the approach is silent about how to make such a choice. Also, the
approach is inflexible in the use of resetting; it never attempts to reset the chain after the threshold
T0, while doing so may bring further improvement in accuracy.

Our goal is to overcome these shortcomings. Next we present our strategy that automatically
decides when to reset the non-stationary Markov chain of the JSA algorithm.

Adaptive Strategy for Resetting the Markov Chain of JSA. We replace the statement {h0
x}x∈B ←

Initialize(. . .) of Algorithm 1 by the following procedure call: {h0
x}x∈B ← AdaptiveInitialize(B, {h0

x}x∈B).
The procedure AdaptiveInitialize is defined in Algorithm 2, and it implements our adaptive reset-
ting strategy.

Our strategy works as follows. At each epoch, we monitor the acceptance probability values
and reset the chain when it exhibits low acceptance ratio. Recall that pd is the uniform distribution
over the training set D. Let t be the current epoch number. For each x ∈ D, let h0

x be the value of
the latent variable generated at some previous epoch but currently stored for x. Then at the current
epoch t, we compute the following quantity,

Epd(x)

Eqφ(h̃x |x)

log min
{
1,

pθ(x, h̃x)qφ(h0
x|x)

pθ(x,h0
x)qφ(h̃x|x)

} ≈ 1
B

∑
x∈B

min
{
0, log

pθ(x, h̃x)qφ(h0
x|x)

pθ(x,h0
x)qφ(h̃x|x)

}
=: R̂, (3)

where B is a mini-batch of size B uniformly sampled fromD, and θ and φ are the parameter values
at the current epoch t. This ratio inside the log is the one used to compute the acceptance probability
in the Metropolis-Hastings kernel of the JSA algorithm; see Algorithm 1. Based on the estimate R̂,
we decide whether or not to reset the chain via the Bernoulli trial, d ∼ Bernoulli(tanh(−γ · R̂)),
where γ is a hyperparameter to be specified.

Note that d being close to one, meaning that the chain is more likely to reset, happens when the
estimate R̂ is small. This itself usually happens when the acceptance probability of the Metropolis-
Hastings kernel of JSA tends to be small, indicating that the Markov chain is not mixing well. This
slow mixing is particularly problematic in JSA because JSA does not run a full Markov chain at
each epoch but only draws a few number of samples M ∈ [2, 4]. As a result, for a Markov chain
simulated by JSA, when showing low acceptance ratio, the effective sample size drawn at each
epoch is close to one, and so the JSA update cannot effectively update the parameters. For such
cases, our strategy encourages the resetting of the Markov chain by increasing the chance of d being
1. See Algorithm 2 for detail.
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Method NLL (M = 2) NLL (M = 4)

RWS 96.5±0.2* 95.2±0.2
VIMCO 95.8±0.1* 95.2±0.1
JSA 95.3±0.1* 94.9±0.1
Ours 95.2±0.1 94.6±0.2

Table 1: Test NLLs of different methods for
learning a two-layer SBN model and its ap-
proximate posterior for the binarized MNIST.
Here * indicates the results taken from Ou and
Song (2020). JSA resets the chain up until 600
epoch. The reported mean and standard devia-
tion are computed over five independent runs.
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M = 4
JSA
Ours

Figure 2: Test NLLs of JSA with the original reset-
ting approach and our approach during the learning
of two-layer SBN and approximate posterior over the
binarized MNIST dataset. We set M = 4, i.e., the
Markov chain is run for four steps for each x in the
mini-batch at each epoch.

4. Experiments

We report the preliminary evaluation of the JSA with our resetting strategy against the baselines.
We used the binarized MNIST dataset (Salakhutdinov and Murray, 2008), with 50K-10K-10K splits
for training, validation, and test, respectively. Following the setting in Yin and Zhou (2019); Ou
and Song (2020), we compared ours to RWS (Bornschein and Bengio, 2015), VIMCO (Mnih and
Rezende, 2016), and JSA (Ou and Song, 2020) on learning a discrete generative model pθ(x,h) with
an approximate posterior qφ(h|x) where both pθ(x,h) and qφ(h|x) are constructed as SBNs with two
hidden layers. For training, we used the ADAM (Kingma and Ba, 2015) with a learning rate 0.0003
and a batch size 50. We tested two settings with different numbers of Monte-Carlo samples for the
gradient approximation (M = 2 or 4). The hyperparameter γ in Algorithm 2 was fixed to 0.05.

We measured the test negative log-likelihood (NLL) of each model for every 5 epochs and report
the value when the validation NLL reached a minimum within 2, 000 epochs. To estimate NLLs, we
used importance sampling with 1, 000 samples drawn from qφ(h|x), as in Bornschein and Bengio
(2015). Table 1 shows the test NLLs of our approach and the baselines. The learning curves of
JSA with our resetting strategy and the original JSA are shown in Figure 2. These curves and test
NLLs show that our strategy leads to the accuracy comparable with or slightly better than that of
the original JSA algorithm, while, more importantly, letting us avoid the manual selection of an
appropriate epoch threshold T0 of the algorithm.

5. Conclusion

In this paper, we proposed a way to improve JSA, an MCMC-based learning algorithm for deep
generative models. In particular, we highlighted the non-stationary kernel problem in JSA and
proposed a solution to resolve it where Markov chains are adaptively reset according to the estimates
of average acceptance probabilities. Our experimental results demonstrate the effectiveness of our
approach, but we think that there is still plenty of room for improvement. One interesting future
work is to design a better proposal distribution instead of the one based on the approximate posterior
qφ(h|x).
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