
Is Self-Supervised Contrastive Learning More Robust Than
Supervised Learning?

Yuanyi Zhong * 1 Haoran Tang * 2 Junkun Chen 1 Jian Peng 1 Yu-Xiong Wang 1

Abstract
Self-supervised contrastive learning is a power-
ful tool to learn visual representation without la-
bels. Prior work has primarily focused on the
recognition accuracy of contrastive pre-training
algorithms, but has overlooked other behavioral
aspects. In addition to accuracy, distributional
robustness plays a critical role in the reliability of
machine learning models. We design and conduct
a series of robustness tests to quantify the behav-
ioral differences between contrastive learning and
supervised learning. These tests leverage data
corruptions at multiple levels, ranging from pixel-
level gamma distortion to patch-level shuffling
and to dataset-level distribution shift. Our tests un-
veil intriguing robustness behaviors of contrastive
and supervised learning. On the one hand, under
downstream corruptions, we generally observe
that contrastive learning is surprisingly more ro-
bust than supervised learning. On the other hand,
under pre-training corruptions, we find contrastive
learning vulnerable to patch shuffling and pixel
intensity change, yet less sensitive to dataset-level
distribution change. We attempt to explain these
results through the role of data augmentation and
feature space properties. Our insight has implica-
tions in improving the downstream robustness of
supervised learning.

1. Introduction
In recent years, self-supervised contrastive learning (CL) has
demonstrated tremendous potential in learning generalizable
representations from unlabeled datasets (Chen et al., 2020a;

*Equal contribution 1University of Illinois at Urbana-
Champaign 2University of Pennsylvania. Correspon-
dence to: Yuanyi Zhong <yuanyiz2@illinois.edu>,
Haoran Tang <thr99@seas.upenn.edu>, Junkun Chen
<junkun3@illinois.edu>, Jian Peng <jianpeng@illinois.edu>,
Yu-Xiong Wang <yxw@illinois.edu>.

First Workshop of Pre-training: Perspectives, Pitfalls, and Paths
Forward at ICML 2022, Baltimore, Maryland, USA, PMLR 162,
2022. Copyright 2022 by the author(s).

ΔSL
𝑃 < ΔCL

𝑃 ΔSL
𝐷 > ΔCL

𝐷

Local Shuffling Class Imbalance

map

Gamma Distortion

Pr. Pr.

Global Shuffling

Original

֜
𝑝

֜
𝑝

֜
𝛾

Synthesized Data

Micro-level Macro-level

ΔSL
𝑃 > ΔCL

𝑃

ΔSL
𝑃 > ΔCL

𝑃ΔSL
𝑃 < ΔCL

𝑃 ΔSL
𝐷 > ΔCL

𝐷 ΔSL
𝑃 < ΔCL

𝑃 ΔSL
𝐷 > ΔCL

𝐷

Figure 1: We conduct a series of robustness tests based on data
distribution corruptions, spanning from micro to macro level, to
study the behavior of contrastive and supervised learning beyond
accuracy. Our results reveal that contrastive learning is usually
more robust than supervised learning to downstream corruptions
(∆D

CL < ∆D
SL), while shows opposite behaviors to pre-training

dataset-level corruptions (∆P
CL < ∆P

SL) and pre-training pixel- and
patch-level corruptions (∆P

CL > ∆P
SL), where ∆ is the accuracy

drop from uncorrupted settings.

He et al., 2020; Grill et al., 2020; Caron et al., 2020; Chen &
He, 2021; Zhong et al., 2021b). Current state-of-the-art CL
algorithms can learn representations from ImageNet (Deng
et al., 2009) that match or even exceed the accuracy of their
supervised learning (SL) counterparts in terms of ImageNet
linear evaluation and downstream task performance (Chen
et al., 2020a; He et al., 2020; Grill et al., 2020; Caron et al.,
2020; Chen & He, 2021).

However, beyond accuracy, relatively less attention is paid
on analyzing other behavioral differences between con-
trastive learning and supervised learning. Robustness is an
important aspect to evaluate machine learning algorithms.
For example, robustness to long-tail or noisy training data
allows the learning algorithm to work well in a wide vari-
ety of imperfect real-world scenarios (Wang et al., 2017).
Robustness of the model output across training iterations
enables anytime early-stop (Hu et al., 2019) and smoother
continual learning (Shen et al., 2020). Robustness to input
corruptions at test-time plays an important role in reliable
deployment of trained models in safety-critical applications,
as signified by the existence of adversarial examples (Good-
fellow et al., 2015; Salman et al., 2020) and the negative
impact of domain shift (Zhao et al., 2019).

In this paper, we investigate whether CL and SL behave
robustly to data distribution changes. In particular, how
does the change in data affect the behavior of algorithms?

Do SL and CL behave similarly? To this end, we design a
wide-spectrum of corruptions as shown in Figure 1 to alter
data distribution and conduct comprehensive experiments,
with different backbones, CL algorithms and datasets. The
corruptions are carefully selected to be multi-level, cor-
rupt different structural information (not necessarily human-
recognizable), and are rooted in prior literature.

Our main results consist of two sets of experiments: The first
investigates the downstream robustness of pre-trained mod-
els towards corruptions of downstream data. The second
studies the robustness under pre-training data corruptions.
We deliver a set of intriguing new discoveries. We gen-
erally observe that CL is consistently more robust than SL
to downstream corruptions. On the other hand, contrastive
learning on corrupted pre-training data leads to diverging
observations depending on the corruption type: CL is more
robust to dataset-level corruption than SL, but less so to
pixel- and patch-level corruptions.

To explain why CL models are more robust to downstream
corruptions, our analysis of the learning dynamics through
feature space metrics reveals that CL yields larger overall
and steadily-increasing per-class feature uniformity (Wang
& Isola, 2020) and higher stability than SL. An immediate
consequence is an improvement to supervised pre-training’s
downstream robustness by adding a uniformity regulariza-
tion term to explicitly promote intra-class variance. As
for CL’s vulnerability to pre-training data corruption types
such as patch shuffling, we hypothesize that the interference
with random crop augmentation is the main culprit, as we
find switching the order of data corruption and standard
augmentations recovers a substantial amount of robustness.

We summarize our contributions as follows. (1) We design
extensive robustness tests to study the behavioral differences
of CL and SL systematically. (2) We discover diverging ro-
bustness behaviors between CL and SL, and even among
different CL algorithms. (3) We offer initial analyses and
explanations for such observations, and show a simple way
to improve the downstream robustness of supervised learn-
ing by encouraging uniformity. We claim our paper as an
empirical study. We hope our findings can serve as an initial
step to fully understand CL’s behaviors beyond accuracy and
inspire more future studies to explore such aspects through
larger-scale experiments and theoretical analysis.

2. Method
2.1. Robustness Tests

Robustness Test I: Downstream data corruption. In this
test, the pre-training algorithm is run on the clean version
of the pre-training dataset. For a given downstream dataset,
we evaluate the pre-trained model’s accuracy on its original
version and various corrupted versions. This assesses the

robustness of the algorithm by looking at the pre-trained
model’s robustness behaviors.

Robustness Test II: Pre-training data corruption. This
assesses the algorithm’s robustness to pre-training data cor-
ruptions. We run the pre-training algorithm on the corrupted
version of the dataset, and then evaluate the final model’s
accuracy on either the corrupted test set or the original test
set. The test set can be in-domain or out-domain to the train
set. Since data corruption destroys certain information by
design, the model pre-trained on corrupted data is expected
to yield degraded performance than the model pre-trained
on the uncorrupted dataset.

Robustness Metric. In both cases, the robustness is mea-
sured by the degradation in accuracy caused by certain data
corruption. An algorithm is more robust if the degradation is
smaller. Denote Doriginal as the original dataset and Dcorrupted
as the corrupted dataset. We use the same notation for both
pre-training and downstream corruptions. For an algorithm
Alg ∈ {CL,SL}, we define

∆(Alg) =
Acc(Alg,Doriginal)− Acc(Alg,Dcorrupted)

Acc(Alg,Doriginal)
.

(1)

We use two methods to obtain the test accuracy in the above
equation. The first is linear evaluation, where we train a
linear classifier on top of the representation learned by the
pre-training algorithm on the train split, and then evaluate
the classifier on the test split. The second is KNN evalua-
tion. We use the weighted KNN classifier from Wu et al.
(2018), where the prediction is the exponential-distance
weighted average of the K nearest neighbors in the train
split of any test data point, measured by the normalized
feature vectors. The KNN evaluation effectively leverages a
non-parametric classifier, therefore no classifier training is
required. Depending on the context, we use either linear or
KNN evaluation in our experiments. The essential question
we would like to ask is whether ∆(CL) is consistently larger
or smaller than ∆(SL) across different data corruptions.

2.2. Types of Data Corruption

There is a natural hierarchy of data corruptions ranging con-
ceptually from micro-level to macro-level. We will describe
the several variations illustrated in Figure 1. Note that our
data corruption is different from data augmentation. In data
augmentation, the corruption is applied randomly on a per-
image basis. In our case, a fixed random transformation
(e.g., the gamma in gamma distortion or the permutation
order in shuffling) is decided first then applied consistently
across all the images. We effectively transform the entire
train or test dataset with the corruption method.

Pixel-Level Corruption. The pixel intensity distribution
is altered, but neither the spatial layout of each image nor

the overall data distribution is changed. The popular color
jittering augmentation randomly modifies the brightness,
contrast, saturation, and hue of training images. Here, we
deliberately pick gamma distortion, as it is not already part
of the conventional data augmentation pipeline.

• Gamma distortion: Gamma distortion remaps each
R,G,B pixel intensity (∈ [0, 255]) according to x →
⌊255 × (x/255)γ⌋, where γ > 0 is a tunable parameter.
γ = 1 recovers the original intensity. Larger or smaller γ
shifts the intensities darker or brighter, respectively. Due
to quantization error, there will be part of the intensity
information lost during the process.

Patch-Level Corruption. Pixel-level corruption does not
change the spatial layout of pixels. The next type of corrup-
tion in the hierarchy is at patch level. Inspired by prior work
(Zhang et al., 2017), we employ global and local shuffling.
Note that pixel shuffling is not commonly used in the stan-
dard augmentation pipeline of visual recognition training
(He et al., 2016). We are curious what kind of behaviors
CL and SL will exhibit under the patch-level shuffling data
corruption.

• Global shuffling: Global shuffling breaks down the im-
age into patches and shuffles the patches according to a
fixed random order. Specifically, suppose the image size
is s× s and the size of each patch is p× p, and then the
image is divided into s/p × s/p patches. Global shuf-
fling destroys the global spatial structure of an image but
preserves the local structure. The image becomes less
structured with a smaller patch size.

• Local shuffling: Inversely to global shuffling, local shuf-
fling randomly permutes the pixels inside each local p×p
patch by a fixed random order, but keeps the global or-
dering of patches. It damages the local image structure
while preserving the overall global structure. The image
becomes less structured with a larger patch size.

Dataset-Level Corruption. Finally, we consider corrup-
tions happening at the whole dataset distribution level. The
previous two types of corruptions change the images, but
not the distribution of the images.

• Synthesized data: Synthesized data is popularizing (e.g.,
DALL·E 2 (Ramesh et al., 2022)) and studied to re-
place real data (Jahanian et al., 2021). We utilize gen-
erative methods such as a conditional GAN (Karras et al.,
2020) to generate a synthesized dataset DGAN and replace
Doriginal. We can then measure and compare ∆(Alg) be-
tween these two datasets of different distributions. Often-
times, the generated distribution is not perfectly aligned
with the real distribution; therefore, training with the gen-
erative data source may lead to degradation in accuracy
of clean data or downstream performance.

• Class imbalance: Real-world data often follows a long-
tail distribution of semantic classes, where head classes
have many examples while tail classes have few examples
(Kang et al., 2020; Samuel & Chechik, 2021). How-
ever, benchmark datasets such as CIFAR and ImageNet
are curated and class-balanced. We consider the widely-
used variant of ImageNet, ImageNet-LT (long-tail) (Liu
et al., 2019), with maximally 1280 images and mini-
mally 5 images per class. For comparison, we construct
ImageNet-UF (uniform) which is a class-balanced subset
of ImageNet that contains the same number of images as
ImageNet-LT (115K). Then we test whether moving from
pre-training on ImageNet-UF to ImageNet-LT leads to
different behaviors between CL and SL.

2.3. Experiment Setup

Datasets. We pre-train on CIFAR-10 (Krizhevsky & Hin-
ton, 2009) and ImageNet (Deng et al., 2009) variants to eval-
uate the robustness differences between CL and SL methods
subject to pre-training data corruptions. We use CIFAR-
10/100 (Krizhevsky & Hinton, 2009), STL-10 (Coates et al.,
2011), and two fine-grained classification datasets, Cars
(Krause et al., 2013) and Aircrafts (Maji et al., 2013), to
analyze the performance of the pre-trained models on the
corrupted downstream tasks. For comparable results, we fix
the data augmentation for all settings that involve training.

Models and Algorithms. We benchmark a variety of
self-supervised contrastive algorithms. These methods are
carefully-sampled to be representative. They include con-
trastive learning with negatives (SimCLR-v2 (Chen et al.,
2020a;b), MoCo-v2 (He et al., 2020; Chen et al., 2020d)),
without negatives (SimSiam (Chen & He, 2021), and the mo-
mentum counterpart, BYOL (Grill et al., 2020)), with redun-
dancy reduction (BarlowTwins (Zbontar et al., 2021)), and
contrasting clustering assignments (DeepCluster-v2 (Caron
et al., 2020), SwAV (Caron et al., 2020)). We test both
CNN (standard ResNet-18/50 (He et al., 2016)) and Vision
Transformer (ViT) (Dosovitskiy et al., 2021) backbones. For
transformer, we leverage pre-trained models on ImageNet
(Deng et al., 2009) from ViT (Dosovitskiy et al., 2021),
DeiT (Touvron et al., 2021), DINO (Caron et al., 2021),
MoCo-v3 (Chen et al., 2021b), and MAE (He et al., 2022).

3. Results
3.1. CL is more robust to downstream data corruption

We conduct downstream robustness tests on various datasets
with frozen pre-trained ResNet-50 (He et al., 2016) in Ta-
ble 1 and ViT (Dosovitskiy et al., 2021). The fully fine-tuned
ResNet-50 results and the ViT results are deferred to the
appendix as the observations are similar. The model check-
points are obtained from VISSL (Goyal et al., 2021b) and

Table 1: Robustness to downstream pixel- and patch-level corruption with frozen ResNet-50 backbones. ‘IN Acc’ shows their reference
ImageNet Val accuracy. Suffix ‘-a/b’ denotes two models of the same algorithm, trained with different hyper-parameters. The ∆ numbers
are obtained from KNN evaluation, and are the averages of 5 downstream datasets and 6 corruption settings: gamma distortion γ = 0.2, 5,
patch global shuffle and local shuffle (p = 4 and p = image size/4). Darker shade means larger ∆. Please refer to the appendix for the
detailed results. CL models generally show lower accuracy drops and therefore higher downstream robustness than SL models.

Pre-train Alg Sup-a Sup-b BYOL SimSiam MoCo-v2-a MoCo-v2-b SimCLR-v2 BarlowTwins DeepCluster-v2 SwAV-a SwAV-b
IN Acc 76.1 75.5 72.3 68.3 66.4 71.1 71.0 73.5 75.2 72.0 74.9
Avg ∆ ↓ 39.8% 40.7% 35.6% 34.4% 32.8% 35.7% 36.5% 34.7% 36.0% 33.9% 34.5%

Table 2: Robustness to pre-training pixel- and patch-level corrup-
tion of CIFAR10, with ResNet-18 backbones and linear evaluation.
We pre-train four CL methods and SL with p = {4, 8} patch shuf-
fle and γ = 0.2 gamma distortion corruptions, and discover that
SL is more robust than CL in this scenario.
CIFAR10 Orig γ0.2 G4x4 G8x8 L4x4 L8x8 Avg ∆ ↓
Sup 89.53 87.36 (2.4%) 76.06 (15.0%) 65.88 (26.4%) 65.94 (26.3%) 77.49 (13.4%) 16.7%
MoCo-v2 88.73 85.84 (3.3%) 67.18 (24.3%) 60.51 (31.8%) 63.35 (28.6%) 76.90 (13.3%) 20.3%
BYOL 88.39 82.72 (6.4%) 67.47 (23.7%) 60.63 (31.4%) 62.64 (29.1%) 75.15 (15.0%) 21.1%
Barlow 88.89 80.49 (9.4%) 68.34 (23.1%) 61.13 (31.2%) 62.53 (29.7%) 75.28 (15.3%) 21.7%
DINO 84.75 69.27 (18.3%) 64.26 (24.2%) 55.83 (34.1%) 58.57 (30.9%) 68.96 (18.6%) 25.2%

Table 3: Robustness to pre-training pixel and patch-level corrup-
tion of ImageNet100. SL still shows higher robustness to the
pixel-level and patch-level corruptions than CL, as in Table 2.
IN100 Orig γ0.2 γ5 G2x2 G4x4 G8x8 L128x128 L64x64 L32x32 Avg ∆ ↓

Sup 77.08 73.60
(4.5%)

70.28
(8.8%)

67.26
(12.7%)

62.84
(18.5%)

58.20
(24.5%)

75.28
(2.3%)

72.68
(5.7%)

68.52
(11.1%) 6.65%

MoCo-v2 74.38 66.80
(10.2%)

62.74
(15.6%)

44.90
(39.6%)

35.84
(51.8%)

30.94
(58.4%)

69.34
(6.8%)

63.68
(14.4%)

54.24
(27.1%) 28.0%

the official code bases. They are pre-trained on the clean
version of ImageNet. We employ pixel-level and patch-level
corruptions in these tests.

The CL methods have demonstrated higher robustness
(lower average ∆) than the SL method. Interestingly, not
all CL methods are equally robust; even within the same
method, models trained with different hyper-parameters
(such as epochs) exhibit different levels of robustness (e.g.,
comparing SwAV-a and SwAV-b). With ResNet-50, we no-
tice that SimSiam, SwAV, and BarlowTwins behave slightly
more robust than others.

3.2. CLs and SL expose different degrees of robustness
to different types of pre-training data corruption

Pixel-Level and Patch-Level Corruption. Table 2
demonstrates the impacts of gamma distortion and patch
global/local shuffling during pre-training. The drop of ac-
curacy of SL due to gamma distortion is 2.4%, which is
smaller than all the tested CL methods. In terms of ro-
bustness to pre-training patch shuffling corruption, all CL
methods behave similarly and less robustly than SL, except
for the L8x8 case.

The same observation carries over to the larger-scale
ImageNet-100 experiment result in Table 3, where we com-
pare MoCo-v2 (since it appears to be the most robust on
CIFAR-10) and Sup in a total of 8 corruption settings.
MoCo-v2 on average yields a 28.0% degradation, while
Sup only degrades 6.65%.

Dataset-Level Corruption. In Table 4, MoCo has shown
more robustness on average to dataset-level corruption

Table 4: Robustness to pre-training dataset-level corruption led
by substituting the real data with GAN synthesized data. KNN
evaluation. MoCo demonstrates much more robustness to the
distribution shift of synthesized data.
Pre-train Alg Pre-train Data C10 Test C10 GAN Test C100 Test Avg ∆ ↓
Sup Orig C10 87.8 88.3 16.08 -

GAN C10 80.0 (8.88%) 82.8 (6.23%) 14.79 (8.02%) 7.71%
MoCo-v2 Orig C10 82.6 85.1 45.47 -

GAN C10 82.2 (0.48%) 85.4 (-0.35%) 44.27 (2.64%) 0.93%

Table 5: Robustness to pre-training class-imbalance corruption.
Linear evaluation. ImageNet-LT is a long-tail subset of ImageNet
(Liu et al., 2019), ImageNet-UF is a uniform subset. MoCo shows
less sensitivity to class imbalance than SL.
Alg Pre-train Top-1 Low Med Many
Sup UF 46.37 44.85 45.88 47.52

LT 44.90 (3.17%) 40.99 (8.61%) 43.48 (5.23%) 48.05 (-1.12%)
MoCo-v2 UF 32.36 30.63 31.66 33.84

LT 32.13 (0.71%) 30.99 (-1.18%) 31.45 (0.66%) 33.36 (1.42%)

caused by an imperfect GAN. We adopt a class-conditional
StyleGAN2-ADA (Karras et al., 2020) generator trained on
CIFAR-10 to synthesize another copy of CIFAR-10. When
training with synthesized data and testing on the original
CIFAR-10, MoCo-v2 only has 2.58% accuracy drop, outper-
forming SL, which drops for 8.44%. Evaluating on a GAN-
synthesized test set yields similar observation – MoCo-v2
shows almost no drop while SL drops 6%. We also conduct
downstream experiments for this corruption: we test the
classification accuracy of the pre-trained representation on
CIFAR-100, and make a similar observation.

Table 5 shows the impact of the other type of dataset-level
corruption – the class imbalance. Although there is a gap
between the baseline top-1 accuracy of MoCo-v2 and SL,
we observe that, the decline of MoCo resulting from pre-
training on the long-tail rather than the uniform version is
much smaller than SL. In fact, the MoCo performance ap-
pears to be insensitive to class balance or imbalance (the top-
1 ∆ is only 0.71%). This is in contrary to SL, which shows
a larger drop. The difference is more salient by looking
at the low-shot (<20 images per class), medium-shot, and
many-shot (>100 images per class) accuracy separately. SL
on ImageNet-LT sacrifices the low-shot accuracy for higher
many-shot accuracy, whereas MoCo shows insignificant dif-
ference among the shots. Our observation is consistent with
a contemporary work (Liu et al., 2022).

4. Analysis
CL and SL behave differently during training. The
robustness discrepancy between CL (e.g., MoCo) and SL

0 50 100 150 200
Epoch

25

50

75

100

Pe
r-C

la
ss

 A
cc

ur
ac

y

= 2.07

MoCo-v2

0 20 40
Epoch

25

50

75

100

= 2.32

Supervised

Figure 2: Class-wise test accuracy (i.e., recall) of MoCo and SL
on original CIFAR-10 during training. MoCo has more steady
class-wise accuracy curves and smaller mean feature semantic
fluctuation (T V) than SL.

is not only reflected in the final trained models, but is in
fact also attributed in the training process. To analyze how
the feature space evolves during training, we measure the
following three metrics.

Feature Semantic Fluctuation. We can monitor the clas-
sification ability of the feature extractor by the accuracy
of a KNN probe. We define feature semantic fluctuation
of class i as the total variation of per-class accuracy of
class i (as a function of epoch t) averaged over all epochs:
T Vi = 1

T−1

∑T−2
t=0 |Acc(i)t+1 − Acc(i)t |. We further define

the mean feature semantic fluctuation as the mean of T Vi

over all classes. Larger semantic fluctuation indicates less
stable feature space.

Feature Uniformity. We can measure the uniformity of
all the features or class-wise features as the log-mean of
Gaussian potentials of the normalized features: U(ft,D) =

− logEx0,x1∼D

[
e−2∥ft(x0)−ft(x1)∥2

2

]
. Here ft is the net-

work at epoch t, D is the dataset, and x0 and x1 are images
sampled from the dataset. The use of this measure to study
contrastive learning is exemplified in Wang & Isola (2020).
Intuitively, a greater U means more uniformly distributed
features on the unit sphere, while a smaller value means
more concentrated features.

Feature Distance. We also measure the average fea-
ture squared ℓ2 distance between two classes. A larger
distance could mean more linear separability. Denot-
ing Di and Dj as feature matrices of two classes,
the feature distance is calculated as: d(ft,Di,Dj) =
Ex0∼Di,x1∼Dj

[
∥ft(x0)− ft(x1)∥22

]
. When Di = Dj , it

actually measures the intra-class variance of class i.

We train ResNet-18 (He et al., 2016) on the original CIFAR-
10 (Krizhevsky & Hinton, 2009) train split and measure
the above metrics on the test split. Figure 3 shows the
dynamics of feature uniformity and distances of MoCo-v2
(He et al., 2020; Chen et al., 2020d), supervised contrastive
(SupCon) (Khosla et al., 2020), and supervised learning. We
are interested in SupCon, because it bridges CL and SL by
leveraging a similar contrastive loss.

As illustrated, the overall feature uniformity of MoCo-v2

0 200 400 600 800

1.0

1.5

2.0

2.5

Fe
at

ur
e

Un
ifo

rm
ity

MoCo-v2

0 50 100 150 200

0.25

0.50

0.75

1.00

1.25

Supervised Contrastive

0 50 100 150 200

0.5

1.0

1.5

2.0

Supervised

0 200 400 600 800
Train Epoch

0.6

0.8

1.0

1.2

1.4

1.6

Fe
at

ur
e

Di
st

an
ce

0 50 100 150 200
Train Epoch

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
Train Epoch

0.5

1.0

1.5

Figure 3: Above: Solid black line refers to the uniformity of the
overall feature space. Dashed lines refer to the class-wise feature
uniformities of the 10 classes. While the overall uniformity of all
methods grows, the uniformity of each class (related to intra-class
variance) of Sup or SupCon is shrinking as training progresses.
In the end, the overall uniformity of MoCo is the largest. Below:
Solid black line refers to d(ft,D0,D0), i.e., the intra-class vari-
ance of class 0. Dashed lines refer to feature distances between
Di(i ̸= 0) and D0. While the distances between classes increase
in all methods, the intra-class variance behavior of MoCo (increas-
ing) is the opposite to that of Sup or SupCon (decreasing).

(Chen et al., 2020d) is greater than 2.5 and approaching 3,
while the overall feature uniformity of SupCon and super-
vised methods ranges from 1.25 to 2.2. This means that
features from contrastive learning methods are more uni-
formly distributed on the unit sphere. By looking at the
class-wise feature uniformity and distance, we notice that
the supervised model tends to compress (and maybe over-
compress) the features of each class. Figure 2 shows that
the accuracy of a KNN probe during supervised learning
also fluctuates more dramatically. We can interpret it as that
the classes are competing with each other, and SL cannot
improve the performance on all classes at the same time like
CL methods. Further analysis on augmentation dependency
and application of uniformity regularization to improve SL’s
performance are included in the appendix.

5. Conclusion
This paper systematically studies the robustness of con-
trastive learning and supervised learning through a diverse
set of multi-level data corruption robustness tests. We dis-
cover diverging robustness behaviors of contrastive learning
to different corruption settings. We hope our findings can
draw more attention towards understanding the behavior
differences of pre-training algorithms beyond accuracy.

Acknowledgement: This work was supported in part
by NSF Grant 2106825, the Jump ARCHES endowment
through the Health Care Engineering Systems Center, the
New Frontiers Initiative, the National Center for Supercom-
puting Applications (NCSA) at the University of Illinois at
Urbana-Champaign through the NCSA Fellows program,
and the IBM-Illinois Discovery Accelerator Institute.

References
Bao, H., Dong, L., and Wei, F. BEiT: BERT pre-training of image

transformers. In ICLR, 2022.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and
Joulin, A. Unsupervised learning of visual features by contrast-
ing cluster assignments. In NeurIPS, 2020.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bo-
janowski, P., and Joulin, A. Emerging properties in self-
supervised vision transformers. In ICCV, 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple
framework for contrastive learning of visual representations. In
ICML, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton,
G. E. Big self-supervised models are strong semi-supervised
learners. In NeurIPS, 2020b.

Chen, T., Liu, S., Chang, S., Cheng, Y., Amini, L., and Wang, Z.
Adversarial robustness: From self-supervised pre-training to
fine-tuning. In CVPR, 2020c.

Chen, T., Luo, C., and Li, L. Intriguing properties of contrastive
losses. In NeurIPS, 2021a.

Chen, X. and He, K. Exploring simple siamese representation
learning. In CVPR, 2021.

Chen, X., Fan, H., Girshick, R., and He, K. Improved base-
lines with momentum contrastive learning. arXiv preprint
arXiv:2003.04297, 2020d.

Chen, X., Xie, S., and He, K. An empirical study of training
self-supervised vision transformers. In ICCV, 2021b.

Chuang, C.-Y., Hjelm, R. D., Wang, X., Vineet, V., Joshi, N.,
Torralba, A., Jegelka, S., and Song, Y. Robust contrastive
learning against noisy views. arXiv preprint arXiv:2201.04309,
2022.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer net-
works in unsupervised feature learning. In AISTATS, 2011.

Cole, E., Yang, X., Wilber, K., Mac Aodha, O., and Belongie, S.
When does contrastive visual representation learning work? In
CVPR, 2022.

da Costa, V. G. T., Fini, E., Nabi, M., Sebe, N., and Ricci,
E. solo-learn: A library of self-supervised methods for vi-
sual representation learning. JMLR, 23(56):1–6, 2022. URL
http://jmlr.org/papers/v23/21-1155.html.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In CVPR,
2009.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G.,
Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth
16x16 words: Transformers for image recognition at scale. In
ICLR, 2021.

Ericsson, L., Gouk, H., and Hospedales, T. M. How well do
self-supervised models transfer? In CVPR, 2021.

Fan, L., Liu, S., Chen, P.-Y., Zhang, G., and Gan, C. When
does contrastive learning preserve adversarial robustness from
pretraining to finetuning? In NeurIPS, 2021.

Ge, S., Mishra, S., Li, C.-L., Wang, H., and Jacobs, D. Robust
contrastive learning using negative samples with diminished
semantics. In NeurIPS, 2021.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. ICLR, 2015.

Goyal, P., Caron, M., Lefaudeux, B., Xu, M., Wang, P., Pai,
V., Singh, M., Liptchinsky, V., Misra, I., Joulin, A., and Bo-
janowski, P. Self-supervised pretraining of visual features in
the wild. arXiv preprint arXiv:2103.01988, 2021a.

Goyal, P., Duval, Q., Reizenstein, J., Leavitt, M., Xu, M.,
Lefaudeux, B., Singh, M., Reis, V., Caron, M., Bojanowski,
P., Joulin, A., and Misra, I. VISSL. https://github.
com/facebookresearch/vissl, 2021b.

Goyal, P., Duval, Q., Seessel, I., Caron, M., Singh, M., Misra,
I., Sagun, L., Joulin, A., and Bojanowski, P. Vision models
are more robust and fair when pretrained on uncurated images
without supervision. arXiv preprint arXiv:2202.08360, 2022.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Pires, B., Guo, Z., Azar, M.,
Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M. Bootstrap
your own latent: A new approach to self-supervised learning.
In NeurIPS, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In CVPR, 2016.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Momentum
contrast for unsupervised visual representation learning. In
CVPR, 2020.

He, K., Chen, X., xie, S., Li, Y., Dollár, P., and Girshick, R. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Hendrycks, D. and Dietterich, T. Benchmarking neural network
robustness to common corruptions and perturbations. In ICLR,
2019.

Hendrycks, D., Mazeika, M., Kadavath, S., and Song, D. Using
self-supervised learning can improve model robustness and
uncertainty. In NeurIPS, 2019.

Hu, H., Dey, D., Hebert, M., and Bagnell, J. A. Learning anytime
predictions in neural networks via adaptive loss balancing. In
AAAI, 2019.

Jahanian, A., Puig, X., Tian, Y., and Isola, P. Generative models
as a data source for multiview representation learning. arXiv
preprint arXiv:2106.05258, 2021.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J.,
and Kalantidis, Y. Decoupling representation and classifier for
long-tailed recognition. In ICLR, 2020.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and
Aila, T. Training generative adversarial networks with limited
data. In NeurIPS, 2020.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P.,
Maschinot, A., Liu, C., and Krishnan, D. Supervised contrastive
learning. In NeurIPS, 2020.

http://jmlr.org/papers/v23/21-1155.html
https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl

Kim, M., Tack, J., and Hwang, S. J. Adversarial self-supervised
contrastive learning. In NeurIPS, 2020.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object repre-
sentations for fine-grained categorization. In ICCV workshops,
2013.

Krizhevsky, A. and Hinton, G. Learning multiple layers of features
from tiny images. 2009.

Liu, H., HaoChen, J. Z., Gaidon, A., and Ma, T. Self-supervised
learning is more robust to dataset imbalance. In ICLR, 2022.

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., and Yu, S. X.
Large-scale long-tailed recognition in an open world. In CVPR,
2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay regulariza-
tion. In ICLR, 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A.
Towards deep learning models resistant to adversarial attacks.
In ICLR, 2018.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi, A.
Fine-grained visual classification of aircraft. arXiv preprint
arXiv:1306.5151, 2013.

Nado, Z., Band, N., Collier, M., Djolonga, J., Dusenberry, M. W.,
Farquhar, S., Filos, A., Havasi, M., Jenatton, R., Jerfel, G., Liu,
J., Mariet, Z., Nixon, J., Padhy, S., Ren, J., Rudner, T. G. J.,
Sbahi, F., Wen, Y., Wenzel, F., Murphy, K., Sculley, D., Laksh-
minarayanan, B., Snoek, J., Gal, Y., and Tran, D. Uncertainty
baselines: Benchmarks for uncertainty & robustness in deep
learning. arXiv preprint arXiv:2106.04015, 2021.

Naseer, M., Khan, S., Hayat, M., Khan, F. S., and Porikli, F. A
self-supervised approach for adversarial robustness. In CVPR,
2020.

Neyshabur, B., Sedghi, H., and Zhang, C. What is being transferred
in transfer learning? In NeurIPS, 2020.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agar-
wal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger,
G., and Sutskever, I. Learning transferable visual models from
natural language supervision. In ICML, 2021.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A.,
Chen, M., and Sutskever, I. Zero-shot text-to-image generation.
In ICML, 2021.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.
Hierarchical text-conditional image generation with clip latents.
arXiv preprint arXiv:2204.06125, 2022.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg,
A. C., and Fei-Fei, L. Imagenet large scale visual recognition
challenge. IJCV, 115(3):211–252, 2015.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry, A.
Do adversarially robust imagenet models transfer better? In
NeurIPS, 2020.

Samuel, D. and Chechik, G. Distributional robustness loss for
long-tail learning. In ICCV, 2021.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh,
D., and Batra, D. Grad-CAM: Visual explanations from deep
networks via gradient-based localization. In ICCV, 2017.

Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J., Studer,
C., Davis, L. S., Taylor, G., and Goldstein, T. Adversarial
training for free! In NeurIPS, 2019.

Shen, Y., Xiong, Y., Xia, W., and Soatto, S. Towards backward-
compatible representation learning. In CVPR, 2020.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., and Fergus, R. Intriguing properties of neural
networks. In ICLR, 2014.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A.,
and Jégou, H. Training data-efficient image transformers &
distillation through attention. In ICML, 2021.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S.
The caltech-ucsd birds-200-2011 dataset. 2011.

Wang, F. and Liu, H. Understanding the behaviour of contrastive
loss. In CVPR, 2021.

Wang, T. and Isola, P. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere.
In ICML, 2020.

Wang, Y.-X., Ramanan, D., and Hebert, M. Learning to model the
tail. In NeurIPS, 2017.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised feature
learning via non-parametric instance discrimination. In CVPR,
2018.

You, Y., Gitman, I., and Ginsburg, B. Large batch training of con-
volutional networks. arXiv preprint arXiv:1708.03888, 2017.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. Barlow
twins: Self-supervised learning via redundancy reduction. In
ICML, 2021.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking generalization.
In ICLR, 2017.

Zhao, H., Des Combes, R. T., Zhang, K., and Gordon, G. On
learning invariant representations for domain adaptation. In
ICML, 2019.

Zhao, N., Wu, Z., Lau, R. W., and Lin, S. What makes instance
discrimination good for transfer learning? In ICLR, 2021.

Zhong, Y., Wang, J., Peng, J., and Zhang, L. Boosting weakly
supervised object detection with progressive knowledge transfer.
In ECCV, 2020.

Zhong, Y., Wang, J., Wang, L., Peng, J., Wang, Y.-X., and Zhang,
L. DAP: Detection-aware pre-training with weak supervision.
In CVPR, 2021a.

Zhong, Y., Yuan, B., Wu, H., Yuan, Z., Peng, J., and Wang, Y.-X.
Pixel contrastive-consistent semi-supervised semantic segmen-
tation. In ICCV, 2021b.

A. Additional Analysis
A.1. Strong dependency on data augmentation may explain CL’s non-robustness to patch shuffling

The different degree of dependency on data augmentation of CL and SL may explain why CL algorithms are less robust to
pixel-level and patch-level pre-training corruptions. Contrastive learning relies heavily on well-defined data augmentation,
while supervised learning can train without data augmentation as Row 1 of Table A.1. The central assumption in using data
augmentation is that the augmented image falls within or close to the natural image statistics, e.g., a random cropped image
is still plausible. However, our data corruption such as patch shuffling destroys the structure of an image and thus renders
the random resize-crop augmentation inappropriate, as the cropped image no longer has the same global structure.

To support our claim, we switch the order of the patch shuffling corruption and the standard augmentation in the MoCo
experiments in Table A.1 (KNN evaluation), since shuffling after crop gives consistent image structure. We find that this
switching reverts much of the accuracy drop, making MoCo comparably robust to Sup.

Table A.1: Additional pre-training corruption with Sup no-augmentation and Sup/MoCo augmentation-then-corrupt variants. SL is able to
learn without data augmentation. Contrary to the corrupt-aug version in previous sections, MoCo and Sup share roughly a similar level of
robustness with the aug-corrupt version.

Pre-training Orig. G4x4 G8x8 L4x4 L8x8 γ0.1
Sup no-aug 87.66 77.37 (11.7%) 71.86 (18.0%) 73.30 (16.4%) 82.34 (6.0%) 86.86 (0.91%)
Sup aug-corrupt 92.23 85.92 (6.8%) 80.58 (12.6%) 83.61 (9.4%) 89.96 (2.5%) -
MoCo corrupt-aug 82.55 65.43 (17.1%) 59.49 (27.9%) 59.62 (27.8%) 70.14 (15.%) -
MoCo aug-corrupt 82.55 77.63 (6.0%) 73.48 (11.0%) 78.12 (5.4%) 81.25 (1.6%) -

A.2. Uniformity regularization improves downstream robustness of supervised pre-training

The analysis above shows that MoCo appears to yield a more uniformly distributed feature space and tends not to compress
the intra-class variance of semantic classes. Could the larger uniformity be one reason behind the higher downstream
robustness of MoCo? We introduce a small uniformity-promoting regularization term in addition to the cross-entropy loss in
SL. This regularization is computed from the mini-batch itself without using the Siamese architecture or memory bank in
MoCo.

In Table A.2, there is no surprise that adding (or subtracting) the uniformity regularization produces a more (or less) uniform
test feature space. We also notice a correlation between the KNN evaluation accuracy and the test set uniformity under
3 corruption conditions. This experiment suggests that we could improve SL by leveraging loss functions from CL and
potentially get the best of both worlds.

Table A.2: Supervised pre-training with uniformity regularization improves test-time robustness (ResNet-18, CIFAR-10, 200 epochs).
The model achieves higher KNN evaluation accuracy on corrupted data while sacrificing little accuracy on the original data. Subtracting
the uniformity promoting term appears to have the opposite effect.

Pre-train Alg Metric Orig γ5 L4x4 G4x4
Sup Acc, Unif 94.18, 1.98 72.85, 1.64 37.85, 0.98 39.70, 0.90
Sup+0.01Unif Acc, Unif 94.21, 2.69 74.47, 2.03 42.22, 1.11 44.34, 1.30
Sup−0.01Unif Acc, Unif 94.56, 1.12 71.50, 0.77 36.15, 0.41 37.88, 0.46

B. Related Work
Supervised Learning (SL). Supervised deep learning, large labeled dataset, and computation have been a success recipe
for cracking many visual recognition problems (Russakovsky et al., 2015; He et al., 2016). Typically, one first collects a
large-scale dataset for the target vision problem and crowdsources labels for the specific task from human annotators. A
machine learning model, e.g., a neural net, is then trained by minimizing a loss function defined on the prediction-label pairs.

Self-Supervised Learning (SSL) and Contrastive Learning (CL). Remarkable progress has been made in self-supervised
representation learning from unlabeled datasets (Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Chen & He, 2021;
Caron et al., 2020). This paper focuses on a particular kind of SSL algorithm, contrastive learning, that learns augmentation
invariance with a Siamese network. To prevent trivial solution, contrastive learning pushes negative examples apart (MoCo
(He et al., 2020; Chen et al., 2020d; 2021b), SimCLR (Chen et al., 2020a;b)), makes use of stop-gradient operation or
asymmetric predictor without using negatives (SimSiam (Chen & He, 2021), BYOL (Grill et al., 2020), DINO (Caron
et al., 2021)), or leverages redundancy reduction (BarlowTwins (Zbontar et al., 2021)) and clustering (DeepCluster-v2 and
SwAV (Caron et al., 2020)). In addition to augmentation invariance, generative pre-training (Ramesh et al., 2021; Bao
et al., 2022; He et al., 2022) and visual-language pre-training (Radford et al., 2021) are promising ways to learn transferable
representations.

There is a growing body of literature on understanding self-supervised learning. Wang & Liu (2021) decomposes the con-
trastive objective into alignment (between augmentations) and uniformity (across entire feature space) terms. Uniformity can
be thought of as an estimate of the feature entropy, which we leverage as a metric to study the feature space dynamics during
training. Wang & Isola (2020) makes connection between uniformity and the temperature parameter in a contrastive loss,
and finds that a good temperature can balance uniformity and tolerance of semantically similar examples. Zhao et al. (2021)
discovers that SSL transferring better than SL can be due to better low- and mid-level features, and the intra-class invariance
objective in SL weakens transferability by causing more pre-training and downstream task misalignment. Ericsson et al.
(2021) studies the downstream task accuracy of a variety of pre-trained models and finds that SSL outperforms SL on many
tasks. Cole et al. (2022) investigates the impact of pre-training data size, domain quality, and task granularity on downstream
performance. Chen et al. (2021a) identifies three intriguing properties of contrastive learning: a generalized version of the
loss, learning with the presence of multiple objects, and feature suppression induced by competing augmentations. Our
work falls into the same line of research that attempts to understand SSL better. However, we investigate from the angle of
robustness behavior comparison between SSL/CL and SL.

Robustness and Data Corruption. The success of learning algorithms is often measured by some form of task accuracy,
such as the top-1 accuracy for image classification (Deng et al., 2009; Krizhevsky & Hinton, 2009; Coates et al., 2011;
Wah et al., 2011), or the mean average precision for object detection (He et al., 2020; Zhong et al., 2020; 2021a). Beyond
accuracy, robustness is another important measure (Hendrycks & Dietterich, 2019), and there are benchmarks and metrics
proposed for SL (Nado et al., 2021). Robustness is more and more studied in SSL settings (Chuang et al., 2022; Goyal et al.,
2022). Chuang et al. (2022) tries to improve CL’s robustness to noisy positive views. Recent large-scale study reveals that
vision models are more robust and fair when pre-trained on uncurated images without supervision (Goyal et al., 2022). We
use “robustness” to refer to the ability of learning algorithms to cope with systematic train or test data corruptions. Under
the supervised setting, deep models are shown to train successfully (albeit not to generalize) under pixel shuffling corruption
and random labels, even though they are not human-recognizable anymore (Zhang et al., 2017).

Adversarial robustness (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018; Shafahi et al., 2019; Chen
et al., 2020c) is a related but different concept, which refers to the model’s ability to defend against adversarial attacks.
An adversarial attack (Szegedy et al., 2014; Goodfellow et al., 2015) is a perceptually indistinguishable perturbation to a
single image that fools the model. Adversarial training (Madry et al., 2018; Shafahi et al., 2019) is a technique to achieve
adversarial robustness. Self-supervised perturbation is explored in adversarial attack and training (Naseer et al., 2020;
Kim et al., 2020). Hendrycks et al. (2019) shows that SSL models possess better adversarial robustness. Fan et al. (2021)
improves the adversarial robustness transferability of CL. Our definition of robustness differs from adversarial robustness
– we use robustness to analyze the tolerance of learning methods to systematic data corruptions (rather than per-image
imperceptible perturbation).

There are many types of data corruptions in prior work. The most common data corruptions, such as random resizing and
cropping, flipping, and color jittering, appear as data augmentation in SL and SSL (He et al., 2016; 2020; Chen et al., 2020a).
The learned representation is encouraged to be invariant to such corruptions. Hendrycks & Dietterich (2019) proposes
a set of corruptions complementary to ours. Block shuffling (our image global shuffling) has been used to study what is
transferred in transfer learning (Neyshabur et al., 2020) and as negative views with diminished semantics in contrastive
learning (Ge et al., 2021). Cole et al. (2022) tampers data quality in SimCLR and SL training by salt-and-pepper noise,
JPEG, resizing, and downsampling, and tests on clean data. We use a different set of data corruptions and test on the
corrupted data as well. A recent work (Jahanian et al., 2021) also studies generative models as an alternative data source for
contrastive learning. They focus on comparison with real data, while we emphasize the behavior difference of SSL and
SL in response to the generative data source. Feature backward-compatibility (Shen et al., 2020) is related to our stability
analysis of feature dynamics. Recently, Goyal et al. (2021a) studies the effectiveness of SSL on uncurated class-imbalanced
data. Liu et al. (2022) also notices that SSL tends to be more robust to class imbalance than SL. We bring extra insights over
them. We consider both pre-training and downstream robustness and compare CL and SL behaviors, while Goyal et al.
(2021a) only focuses on downstream and compares dataset scale. Our investigation suggests that pre-train behavior can be
opposite to downstream. Liu et al. (2022) only studies class imbalance, but we consider broader corruptions.

C. Additional Implementation Details
Table C.3 below lists the experiment configurations for each pre-training robustness table of the main paper. We train our
own ResNets (He et al., 2016) on CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet variants (Deng et al., 2009).

ImageNet-LT/UF are the long-tail and Uniform-subsampled versions. ImageNet-100 is a 100 class subset of full ImageNet-
1K. We mainly list Sup and MoCo-v2 (Chen et al., 2020d) hyper-parameters here. The other CL methods follow their
recommended hyper-parameter values in the Solo-Learn package (da Costa et al., 2022).

Table C.3: Implementation details for the pre-training results in the main paper.
Config Tables 2,4 Table 5 Table 3
Pretrain dataset CIFAR-10 ImageNet-LT/UF ImageNet-100
of categories 10 1000 100
Train image size 32 224 224
Train data size 50K 115K 130K
Network ResNet-18 ResNet-50 ResNet-18
Backbone out dim 512 2048 512
Sup epochs 50 200 50
Sup lr 0.1 cos 0.015 cos 0.015 cos
Sup batch size 512 128 128
MoCo epochs 200 200 200
MoCo lr 0.06 cos 0.015 cos 0.03 cos
MoCo batch size 512 128 256
MoCo dim 128 128 128
MoCo temp. 0.1 0.2 0.2
MoCo momentum 0.99 0.999 0.999
MoCo queue size 4096 65536 65536
Evaluation Linear Linear Linear

Augmentation
crop+flip+

color(.4,p=.8)
+gray(p=.2)

crop+flip+
color(.4,p=.8)+gray(p=.2)+

gauss(.1,.2,p=.5)

D. Additional Results
D.1. Pre-training robustness test with Transformer backbone

In the main paper, we compare pre-training robustness with a CNN backbone, and show Vision Transformer (ViT)
downstream robustness test results. Here, we supplement ViT pre-training robustness test results. Specifically, we leverage
MoCo-v3 (Chen et al., 2021b), the ViT version of MoCo, and Supervised ViT. The results are in Table D.1. We find that
the MoCo-v3 degradation is larger with patch shuffling, but smaller with gamma distortion. Interestingly, the impact of
patch shuffling is much smaller than a CNN (despite the Orig performance gap between ViT and CNN). We suspect this is
due to the unique patching and attention network structure of ViT. Essentially, if we do not take into consideration the data
augmentation, with the right patch size, the shuffling within a small patch does not affect the learning of ViT much, and the
global ordering of patches also does not matter much, because of learned positional embeddings and global attention.

Table D.1: Pre-training robustness with ViT on CIFAR10: MoCo-v3 vs. Sup. For the ViT architecture, since the input size (32x32) is
smaller than that of a standard ViT, we use a customized small ViT (image size=32, patch size=4, dim=512, depth=6, heads=8, mlp
dim=512, dropout=0.1, emb dropout=0.1).

Method Orig G4x4 G16x16 L4x4 L16x16 Avg ∆ γ = 0.1
Sup ViT 50ep 67.92 59.01 47.97 57.76 67.95 - 52.96
∆ - 13.12% 29.37% 14.96% -0.04% 14.35% 22.03%
MoCo-v3 200ep 62.78 53.36 41.58 53.52 61.77 - 51.41
∆ - 15.0% 33.77% 14.75% 1.61% 16.28% 18.11%

D.2. Pre-training robustness test with longer epochs

In Table 2 of the main paper, we mostly report results of short pre-training schedules: Sup 30 epochs and CL 200 epochs,
in order to make the baseline results comparable. We report CIFAR-10 longer training epochs in Table D.2. Training
longer does not change our observation that MoCo appears less robust to patch and pixel-level corruptions than SL during
pre-training on this dataset.

D.3. Downstream robustness test with ResNet-50: detailed KNN accuracy numbers

Table D.3 show the detailed accuracy numbers for computing the summary statistics in Table 1 of the main paper.

Table D.2: Pre-training robustness: Sup 50ep vs. MoCo-v2 400ep, ResNet-18, CIFAR-10.
Method Orig G4x4 G8x8 L4x4 L8x8 Avg ∆ γ = 0.1
Supervised 50ep 92.23 81.14 71.33 71.72 81.95 - 89.11
∆ - 12.02% 22.67% 22.24% 11.15% 17.02% 3.38%
MoCo-v2 400ep 91.43 70.99 64.25 66.56 81.51 - 83.94
∆ - 22.36% 29.73% 27.20% 10.85% 22.54% 8.19%

D.4. Downstream robustness test with ViT backbone

Table D.4: Robustness to downstream pixel- and patch-level corruption with ViT backbone (Dosovitskiy et al., 2021). We show KNN
accuracies and the ∆’s on three datasets. ViT-based CL models are also more robust than the two SL models, especially to gamma
distortion. Comparing the generative method, MAE (He et al., 2022), to contrastive learning, despite being inferior performance on
STL10, it slightly outperforms contrastive methods for patch shuffling on CIFAR10/100, but is more vulnerable to gamma distortion.

STL10 Orig γ0.2 γ2.5 G4x4 G24x24 L4x4 L24x24 Avg ∆

ViT (Sup) 98.85 91.71 (7.2%) 91.39 (7.5%) 88.96 (10.0%) 43.69 (55.8%) 45.95 (53.5%) 70.89 (28.3%) 27.1%
DeiT (Sup) 98.64 97.58 (1.1%) 98.01 (0.6%) 92.92 (5.8%) 46.99 (52.4%) 45.60 (53.8%) 73.22 (25.8%) 23.3%
DINO 98.91 98.31 (0.6%) 98.17 (0.7%) 95.30 (3.7%) 50.36 (49.1%) 52.35 (47.1%) 79.96 (19.2%) 20.1%
MoCo-v3 97.89 97.11 (0.8%) 96.75 (1.2%) 91.24 (6.8%) 48.86 (50.1%) 47.70 (51.3%) 74.88 (23.5%) 22.3%
MAE 90.74 83.54 (7.9%) 87.42 (3.7%) 72.54 (20.1%) 46.35 (48.9%) 46.20 (49.1%) 60.15 (33.7%) 27.2%
CIFAR10 Orig γ0.2 γ2.5 G4x4 G8x8 L4x4 L8x8
ViT (Sup) 94.23 71.42 (24.2%) 82.37 (12.6%) 64.09 (32.0%) 52.58 (44.2%) 52.54 (44.2%) 59.63 (36.7%) 32.3%
DeiT (Sup) 95.37 90.66 (4.9%) 92.78 (2.7%) 73.24 (23.2%) 59.48 (37.6%) 53.10 (44.3%) 59.65 (37.5%) 25.0%
DINO 96.68 92.85 (4.0%) 94.65 (2.1%) 77.99 (19.3%) 64.63 (33.2%) 60.79 (37.1%) 68.04 (29.6%) 20.9%
MoCo-v3 96.16 91.90 (4.4%) 94.17 (2.1%) 75.30 (21.7%) 61.14 (36.4%) 57.60 (40.1%) 64.43 (33.0%) 22.9%
MAE 77.06 71.00 (7.9%) 72.04 (6.5%) 61.25 (20.5%) 55.06 (28.5%) 53.31 (30.8%) 56.99 (26.0%) 20.0%
CIFAR100 Orig γ0.2 γ2.5 G4x4 G8x8 L4x4 L8x8
ViT (Sup) 79.86 48.70 (39.0%) 60.87 (23.8%) 40.95 (48.7%) 29.84 (62.6%) 28.91 (63.8%) 35.31 (55.8%) 49.0%
DeiT (Sup) 78.23 68.98 (11.8%) 73.00 (6.7%) 49.86 (36.3%) 34.81 (55.5%) 29.49 (62.3%) 36.12 (53.8%) 37.7%
DINO 83.88 75.76 (9.7%) 79.21 (5.6%) 56.81 (32.3%) 40.80 (51.4%) 36.62 (56.3%) 44.82 (46.6%) 33.7%
MoCo-v3 82.32 73.25 (11.0%) 77.42 (6.0%) 53.07 (35.5%) 37.75 (54.1%) 33.00 (59.9%) 40.79 (50.4%) 36.2%
MAE 53.70 47.72 (11.1%) 49.46 (7.9%) 37.18 (30.8%) 30.93 (42.4%) 29.36 (45.3%) 34.18 (36.4%) 29.0%

D.5. Downstream robustness test with ResNet-50 and full fine-tuning

Table 1 in the main paper and Table D.3 above are generated with the KNN evaluation protocol. We also experiment
with full fine-tuning on the downstream datasets. The results are in Table D.5. Since different pre-trained checkpoints
are optimized with different optimizers (SGD for Sup, SimSiam (Chen & He, 2021), MoCo-v2 (Chen et al., 2020d), and
SimCLR-v2 (Chen et al., 2020b); LARS (You et al., 2017) for BYOL (Grill et al., 2020), BarlowTwins (Zbontar et al., 2021),
DeepCluster2, and SwAV (Caron et al., 2020)), we use SGD (lr 0.002 cosine) for Sup, SimSiam, MoCo, and SimCLR,
and AdamW (lr 0.001 cosine) (Loshchilov & Hutter, 2019) for others during fine-tuning. All models are fine-tuned for 10
epochs. We find this strategy of using different optimizers is able to make the baseline results on original images comparable
across methods. We note that fine-tuning drastically improves the accuracy on downstream datasets, while the general
observation that CL methods are more robust to downstream corruption than SL still holds, except for BarlowTwins which is
slightly worse than SL. Another interesting observation here is that different CL methods actually yield different robustness
behaviors, although they are all doing some form of contrastive learning and have similar baseline accuracies.

D.6. Variance of pre-training results

We repeat MoCo-v2 on the original CIFAR-10 200ep three times: The KNN evaluation mean and std is 82.44 ± 0.18.
Repeating MoCo-v2 on the global 8x8 shuffling corrupted CIFAR-10 gives KNN evaluation mean and std 59.24± 0.40.
The linear evaluation variance is similar. The randomness has a smaller order than the gap between MoCo and Supervised
results.

Table D.3: Robustness to downstream data corruption with KNN evaluation. This table contains the detailed top-1 accuracy numbers
constituting Table 1 in the main paper. The shades of yellow in the last column indicate the size of the numbers.

Pre-train Alg Dataset Orig γ = 0.2 γ = 5 G-small G-large L-small L-large Avg ∆

Sup cifar10 86.4 76.4 (11.7%) 67.6 (21.8%) 61.2 (29.2%) 49.6 (42.6%) 46.9 (45.7%) 53.6 (38.0%) 31.5%
Sup cifar100 65.1 52.4 (19.6%) 44.1 (32.3%) 37.4 (42.6%) 25.7 (60.5%) 23.4 (64.1%) 30.8 (52.8%) 45.3%
Sup stl10 96.6 92.2 (4.6%) 82.6 (14.5%) 80.8 (16.3%) 40.7 (57.8%) 43.4 (55.1%) 60.3 (37.5%) 31.0%
Sup cars196 26.8 23.3 (13.2%) 18.1 (32.5%) 12.7 (52.7%) 4.4 (83.6%) 4.1 (84.9%) 16.0 (40.4%) 51.2%
Sup aircraft70 40.3 37.9 (6.0%) 38.8 (3.6%) 25.2 (37.4%) 8.0 (80.3%) 10.0 (75.2%) 25.5 (36.7%) 39.9%
Sup-b cifar10 84.9 77.0 (9.3%) 68.9 (18.9%) 57.7 (32.0%) 46.5 (45.2%) 44.0 (48.2%) 51.9 (38.9%) 32.1%
Sup-b cifar100 63.2 53.3 (15.7%) 45.4 (28.1%) 33.0 (47.8%) 21.4 (66.1%) 18.9 (70.0%) 28.0 (55.7%) 47.2%
Sup-b stl10 96.0 92.8 (3.3%) 83.6 (12.9%) 77.9 (18.9%) 36.0 (62.5%) 41.5 (56.7%) 60.4 (37.0%) 31.9%
Sup-b cars196 28.8 26.8 (7.0%) 22.0 (23.8%) 12.1 (58.1%) 1.8 (93.7%) 2.4 (91.6%) 15.8 (45.2%) 53.2%
Sup-b aircraft70 46.9 47.0 (-0.3%) 46.0 (1.9%) 29.8 (36.4%) 7.7 (83.5%) 10.8 (76.9%) 29.8 (36.5%) 39.2%
BYOL cifar10 87.5 80.3 (8.3%) 72.4 (17.3%) 64.0 (26.8%) 50.7 (42.1%) 48.4 (44.7%) 55.6 (36.5%) 29.3%
BYOL cifar100 67.4 58.1 (13.8%) 49.8 (26.0%) 39.7 (41.1%) 26.1 (61.3%) 24.5 (63.6%) 32.1 (52.3%) 43.0%
BYOL stl10 94.9 92.4 (2.6%) 85.0 (10.4%) 78.1 (17.7%) 41.5 (56.3%) 43.8 (53.8%) 63.0 (33.6%) 29.0%
BYOL cars196 22.5 22.3 (0.8%) 18.7 (17.0%) 12.6 (44.1%) 2.5 (88.9%) 2.3 (89.6%) 18.6 (17.2%) 42.9%
BYOL aircraft70 38.2 39.5 (-3.3%) 38.6 (-1.2%) 24.0 (37.2%) 8.0 (79.2%) 10.5 (72.6%) 31.1 (18.5%) 33.8%
SimSiam cifar10 83.6 77.6 (7.2%) 68.7 (17.8%) 61.5 (26.5%) 50.4 (39.8%) 48.4 (42.2%) 55.6 (33.5%) 27.8%
SimSiam cifar100 59.9 52.7 (12.1%) 44.8 (25.1%) 36.1 (39.7%) 24.8 (58.6%) 23.2 (61.2%) 31.1 (48.0%) 40.8%
SimSiam stl10 92.1 89.6 (2.7%) 81.1 (12.0%) 74.2 (19.4%) 39.1 (57.6%) 43.8 (52.5%) 62.7 (31.9%) 29.3%
SimSiam cars196 17.1 15.9 (6.9%) 13.9 (18.5%) 10.3 (39.4%) 2.0 (88.6%) 2.5 (85.2%) 15.3 (10.2%) 41.5%
SimSiam aircraft70 32.8 34.1 (-3.7%) 32.6 (0.8%) 20.9 (36.3%) 6.8 (79.3%) 10.8 (67.2%) 27.6 (15.9%) 32.6%
MoCo cifar10 81.4 74.0 (9.1%) 66.1 (18.9%) 60.2 (26.0%) 49.5 (39.2%) 47.2 (42.0%) 54.0 (33.7%) 28.1%
MoCo cifar100 56.6 48.2 (14.8%) 41.9 (26.0%) 35.3 (37.7%) 23.5 (58.5%) 23.1 (59.3%) 30.0 (46.9%) 40.5%
MoCo stl10 90.1 88.1 (2.2%) 77.5 (13.9%) 73.5 (18.5%) 39.9 (55.7%) 42.8 (52.5%) 60.0 (33.4%) 29.4%
MoCo cars196 13.1 12.8 (2.5%) 11.3 (14.2%) 8.8 (32.9%) 2.3 (82.6%) 2.6 (80.5%) 12.1 (8.2%) 36.8%
MoCo aircraft70 25.2 26.7 (-6.1%) 23.4 (7.2%) 17.3 (31.5%) 8.1 (67.9%) 10.0 (60.2%) 21.2 (15.7%) 29.4%
MoCo-b cifar10 83.6 76.1 (9.0%) 67.1 (19.7%) 57.2 (31.5%) 47.2 (43.5%) 45.6 (45.5%) 51.0 (38.9%) 31.3%
MoCo-b cifar100 59.5 49.9 (16.1%) 42.4 (28.7%) 32.9 (44.7%) 21.4 (64.0%) 21.1 (64.5%) 27.9 (53.0%) 45.2%
MoCo-b stl10 95.3 92.8 (2.6%) 85.1 (10.6%) 76.0 (20.2%) 38.9 (59.2%) 40.4 (57.6%) 60.9 (36.1%) 31.0%
MoCo-b cars196 13.8 13.7 (1.3%) 12.1 (12.8%) 7.9 (42.7%) 1.8 (86.9%) 1.9 (86.3%) 12.7 (8.4%) 39.7%
MoCo-b aircraft70 26.8 28.1 (-4.9%) 26.4 (1.5%) 17.2 (35.8%) 6.9 (74.4%) 8.6 (67.8%) 23.3 (13.2%) 31.3%
SimCLR2 cifar10 85.4 79.2 (7.3%) 67.5 (21.0%) 58.0 (32.1%) 45.6 (46.6%) 45.8 (46.4%) 54.8 (35.8%) 31.5%
SimCLR2 cifar100 63.5 55.2 (13.1%) 44.6 (29.8%) 33.2 (47.7%) 21.2 (66.7%) 22.4 (64.7%) 31.4 (50.6%) 45.4%
SimCLR2 stl10 91.9 89.3 (2.9%) 81.7 (11.2%) 69.8 (24.1%) 38.4 (58.2%) 40.8 (55.6%) 61.5 (33.1%) 30.8%
SimCLR2 cars196 17.7 16.9 (4.6%) 15.6 (11.9%) 9.8 (44.5%) 1.6 (91.2%) 2.4 (86.7%) 14.3 (19.1%) 43.0%
SimCLR2 aircraft70 31.2 32.0 (-2.4%) 32.0 (-2.3%) 20.1 (35.7%) 7.1 (77.4%) 10.2 (67.2%) 26.7 (14.6%) 31.7%
BarlowTwins cifar10 83.8 77.8 (7.1%) 70.0 (16.4%) 62.0 (26.0%) 51.6 (38.5%) 50.0 (40.3%) 56.9 (32.1%) 26.7%
BarlowTwins cifar100 63.7 56.0 (12.1%) 48.1 (24.5%) 38.8 (39.2%) 26.5 (58.5%) 26.6 (58.2%) 34.2 (46.3%) 39.8%
BarlowTwins stl10 94.5 91.6 (3.0%) 83.7 (11.4%) 74.6 (21.1%) 40.0 (57.7%) 44.8 (52.6%) 63.7 (32.6%) 29.7%
BarlowTwins cars196 23.4 23.6 (-1.1%) 20.7 (11.4%) 11.8 (49.6%) 2.7 (88.4%) 2.4 (89.8%) 18.7 (19.9%) 43.0%
BarlowTwins aircraft70 39.2 43.1 (-9.7%) 40.4 (-2.9%) 22.5 (42.7%) 7.7 (80.3%) 9.4 (76.1%) 31.4 (19.9%) 34.4%
DeepCluster cifar10 87.2 80.5 (7.7%) 70.6 (19.0%) 64.3 (26.2%) 52.5 (39.7%) 50.3 (42.3%) 57.3 (34.3%) 28.2%
DeepCluster cifar100 65.0 56.2 (13.6%) 47.3 (27.1%) 39.6 (39.1%) 27.7 (57.4%) 25.6 (60.6%) 33.5 (48.5%) 41.1%
DeepCluster stl10 94.8 92.4 (2.6%) 84.6 (10.8%) 79.2 (16.5%) 41.9 (55.8%) 45.0 (52.6%) 64.0 (32.5%) 28.5%
DeepCluster cars196 22.7 20.9 (7.8%) 19.3 (15.0%) 13.8 (39.3%) 2.9 (87.2%) 3.8 (83.2%) 16.7 (26.4%) 43.2%
DeepCluster aircraft70 40.3 39.2 (2.8%) 37.6 (6.7%) 24.4 (39.5%) 7.3 (81.8%) 11.2 (72.2%) 27.9 (30.7%) 38.9%
SwAV cifar10 83.5 76.8 (8.1%) 68.8 (17.7%) 63.3 (24.1%) 52.9 (36.6%) 48.6 (41.8%) 55.3 (33.8%) 27.0%
SwAV cifar100 60.1 52.5 (12.7%) 44.3 (26.3%) 38.5 (35.9%) 27.1 (55.0%) 23.8 (60.4%) 31.0 (48.4%) 39.8%
SwAV stl10 94.4 91.8 (2.8%) 84.0 (11.1%) 80.3 (14.9%) 43.0 (54.5%) 44.5 (52.8%) 62.7 (33.6%) 28.3%
SwAV cars196 17.2 16.2 (5.8%) 14.6 (15.0%) 12.0 (30.4%) 3.0 (82.8%) 3.0 (82.5%) 12.6 (26.9%) 40.6%
SwAV aircraft70 31.5 29.7 (5.6%) 30.5 (3.0%) 23.9 (24.2%) 8.3 (73.7%) 10.3 (67.2%) 22.1 (29.7%) 33.9%
SwAV-b cifar10 84.7 78.0 (7.9%) 70.1 (17.2%) 63.4 (25.1%) 52.6 (37.8%) 51.0 (39.8%) 56.7 (33.0%) 26.8%
SwAV-b cifar100 62.7 54.4 (13.2%) 46.5 (25.8%) 39.7 (36.6%) 28.0 (55.3%) 26.5 (57.8%) 33.2 (47.1%) 39.3%
SwAV-b stl10 94.3 91.6 (2.9%) 83.7 (11.3%) 78.5 (16.8%) 44.6 (52.8%) 45.0 (52.4%) 60.9 (35.4%) 28.6%
SwAV-b cars196 19.3 18.0 (6.8%) 16.4 (15.2%) 12.4 (36.1%) 3.1 (84.2%) 3.5 (82.0%) 14.7 (24.2%) 41.4%
SwAV-b aircraft70 33.5 32.8 (2.1%) 30.5 (9.0%) 21.7 (35.2%) 8.0 (76.0%) 11.0 (67.2%) 23.9 (28.7%) 36.3%

Table D.5: Robustness to downstream data corruption with fine-tuning. We fine-tune the full network and linear classification layer for 10
epochs. Overall, CL methods can be more robust than Sup under this setting except for BarlowTwins.

Pre-train Alg Dataset Orig γ = 0.2 γ = 5 G-small G-large L-small L-large Avg ∆

Sup cifar10 96.7 96.8 (-0.2%) 94.0 (2.8%) 88.2 (8.8%) 77.5 (19.8%) 72.0 (25.5%) 86.0 (11.0%) 11.3%
Sup cifar100 83.8 83.7 (0.1%) 77.4 (7.6%) 68.8 (17.9%) 53.5 (36.2%) 46.0 (45.1%) 65.2 (22.2%) 21.5%
Sup stl10 97.7 97.2 (0.6%) 92.5 (5.4%) 92.1 (5.7%) 55.5 (43.2%) 56.5 (42.2%) 89.1 (8.8%) 17.6%
Sup cars196 75.1 73.2 (2.6%) 58.4 (22.3%) 40.1 (46.5%) 4.1 (94.6%) 5.0 (93.4%) 56.5 (24.7%) 47.3%
Sup aircraft70 81.5 80.4 (1.3%) 78.8 (3.3%) 66.5 (18.4%) 11.5 (85.9%) 17.6 (78.4%) 72.8 (10.6%) 33.0%
BYOL cifar10 96.5 96.3 (0.2%) 93.9 (2.7%) 88.8 (7.9%) 80.2 (16.9%) 75.2 (22.0%) 87.4 (9.4%) 9.8%
BYOL cifar100 83.2 82.2 (1.2%) 76.7 (7.8%) 68.3 (17.9%) 54.2 (34.8%) 46.5 (44.1%) 64.4 (22.6%) 21.4%
BYOL stl10 96.2 95.8 (0.5%) 91.8 (4.7%) 91.3 (5.2%) 57.0 (40.8%) 56.2 (41.6%) 88.2 (8.4%) 16.9%
BYOL cars196 80.4 77.2 (4.0%) 62.1 (22.8%) 49.0 (39.1%) 2.8 (96.6%) 3.9 (95.2%) 65.1 (19.0%) 46.1%
BYOL aircraft70 87.7 86.5 (1.4%) 84.1 (4.2%) 76.3 (13.0%) 13.9 (84.1%) 20.2 (76.9%) 80.0 (8.8%) 31.4%
SimSiam cifar10 95.0 95.1 (-0.1%) 92.1 (3.1%) 87.5 (7.9%) 79.8 (16.1%) 75.4 (20.7%) 86.7 (8.8%) 9.4%
SimSiam cifar100 81.0 80.5 (0.6%) 74.1 (8.5%) 68.5 (15.5%) 56.4 (30.4%) 51.3 (36.6%) 67.1 (17.1%) 18.1%
SimSiam stl10 94.0 93.4 (0.6%) 88.1 (6.3%) 87.1 (7.3%) 64.4 (31.5%) 59.5 (36.7%) 85.8 (8.7%) 15.2%
SimSiam cars196 85.7 85.2 (0.6%) 75.7 (11.6%) 64.4 (24.9%) 4.2 (95.1%) 5.9 (93.1%) 79.3 (7.5%) 38.8%
SimSiam aircraft70 89.7 89.0 (0.8%) 86.9 (3.2%) 82.3 (8.3%) 23.5 (73.8%) 28.9 (67.7%) 86.4 (3.7%) 26.3%
MoCo-b cifar10 96.8 96.7 (0.2%) 94.5 (2.4%) 89.6 (7.5%) 81.5 (15.9%) 77.4 (20.1%) 89.4 (7.7%) 9.0%
MoCo-b cifar100 84.8 84.1 (0.9%) 78.5 (7.5%) 72.2 (14.8%) 59.0 (30.5%) 53.9 (36.4%) 70.8 (16.5%) 17.8%
MoCo-b stl10 96.3 96.3 (0.0%) 91.8 (4.6%) 91.6 (4.9%) 64.3 (33.2%) 61.0 (36.7%) 90.3 (6.2%) 14.3%
MoCo-b cars196 85.7 84.6 (1.3%) 75.7 (11.7%) 62.8 (26.7%) 3.6 (95.8%) 5.0 (94.2%) 78.5 (8.3%) 39.7%
MoCo-b aircraft70 90.3 89.3 (1.1%) 88.0 (2.5%) 82.5 (8.6%) 22.6 (75.0%) 27.2 (69.9%) 86.9 (3.8%) 26.8%
SimCLR2 cifar10 96.3 95.8 (0.5%) 93.3 (3.1%) 87.1 (9.6%) 76.8 (20.3%) 72.2 (25.0%) 86.2 (10.5%) 11.5%
SimCLR2 cifar100 84.8 84.2 (0.7%) 78.6 (7.3%) 69.5 (18.1%) 56.7 (33.2%) 51.4 (39.4%) 67.3 (20.7%) 19.9%
SimCLR2 stl10 95.5 95.2 (0.3%) 89.7 (6.0%) 86.5 (9.4%) 54.6 (42.8%) 55.8 (41.6%) 88.0 (7.8%) 18.0%
SimCLR2 cars196 77.9 75.3 (3.4%) 64.9 (16.8%) 47.0 (39.6%) 3.0 (96.2%) 4.5 (94.3%) 68.1 (12.6%) 43.8%
SimCLR2 aircraft70 84.8 83.8 (1.1%) 82.9 (2.2%) 72.5 (14.5%) 20.1 (76.3%) 23.8 (72.0%) 79.4 (6.3%) 28.7%
BarlowTwins cifar10 96.8 96.7 (0.1%) 94.4 (2.5%) 87.9 (9.2%) 76.4 (21.0%) 70.1 (27.6%) 84.9 (12.3%) 12.1%
BarlowTwins cifar100 83.9 83.6 (0.4%) 76.9 (8.4%) 64.2 (23.5%) 46.1 (45.1%) 39.0 (53.5%) 56.4 (32.8%) 27.2%
BarlowTwins stl10 97.3 96.8 (0.6%) 92.2 (5.2%) 91.2 (6.3%) 52.9 (45.7%) 52.0 (46.6%) 87.1 (10.5%) 19.1%
BarlowTwins cars196 73.5 69.0 (6.3%) 53.2 (27.7%) 38.0 (48.3%) 2.7 (96.4%) 3.4 (95.3%) 57.1 (22.4%) 49.4%
BarlowTwins aircraft70 81.1 77.9 (4.0%) 76.5 (5.7%) 63.8 (21.3%) 11.3 (86.0%) 15.5 (80.9%) 67.7 (16.5%) 35.7%
DeepCluster2-b cifar10 96.5 96.5 (0.0%) 94.6 (2.0%) 89.9 (6.9%) 80.8 (16.3%) 75.7 (21.6%) 87.7 (9.2%) 9.3%
DeepCluster2-b cifar100 84.7 83.6 (1.3%) 78.3 (7.5%) 71.6 (15.4%) 57.6 (32.0%) 49.2 (41.9%) 66.8 (21.1%) 19.9%
DeepCluster2-b stl10 96.8 96.3 (0.4%) 93.7 (3.2%) 93.1 (3.8%) 62.3 (35.6%) 57.6 (40.4%) 88.9 (8.1%) 15.3%
DeepCluster2-b cars196 81.6 79.4 (2.6%) 68.6 (16.0%) 56.3 (31.0%) 3.4 (95.8%) 4.9 (94.0%) 66.5 (18.5%) 43.0%
DeepCluster2-b aircraft70 87.9 87.2 (0.8%) 85.4 (2.9%) 77.8 (11.5%) 15.4 (82.5%) 20.0 (77.2%) 79.1 (10.1%) 30.8%
SwAV-b cifar10 96.3 96.4 (-0.2%) 94.0 (2.3%) 89.8 (6.7%) 81.6 (15.2%) 75.9 (21.2%) 87.8 (8.7%) 9.0%
SwAV-b cifar100 83.7 83.1 (0.7%) 77.4 (7.5%) 70.8 (15.4%) 58.1 (30.5%) 49.7 (40.6%) 66.3 (20.8%) 19.3%
SwAV-b stl10 96.3 96.6 (-0.3%) 92.8 (3.7%) 92.7 (3.8%) 63.2 (34.3%) 58.9 (38.9%) 88.6 (8.0%) 14.7%
SwAV-b cars196 82.2 80.1 (2.5%) 70.5 (14.2%) 60.4 (26.5%) 3.8 (95.4%) 5.4 (93.4%) 67.7 (17.6%) 41.6%
SwAV-b aircraft70 89.2 88.2 (1.2%) 87.2 (2.3%) 80.0 (10.4%) 18.2 (79.6%) 22.9 (74.3%) 81.3 (8.9%) 29.5%

D.7. Pre-train on corrupted CIFAR-10, but test on uncorrupted images

In the main paper, we show the results when both the pre-training and evaluation datasets are corrupted in the same consistent
way. In the following Table D.7, we report the accuracy numbers obtained from KNN evaluation on the original uncorrupted
images. Since these models are pre-trained on the pixel or patch-level corrupted dataset, the results reflect the transfer
capability of the pre-trained representation from corrupted data to original data. We find that the trend is similar to evaluating
on corrupted data that Sup appears more robust.

Table D.7: Uncorrupted evaluation results of robustness to pre-training pixel-level gamma distortion and patch-level corruption (global
and local shuffling) with CIFAR-10 and ResNet-18.

Method Orig γ = 0.2 G4x4 G8x8 L4x4 L8x8 Avg ∆
Supervised 92.23 82.72 63.03 36.94 61.56 62.51 -
∆ - 10.31% 31.66% 59.95% 33.25% 32.22% 33.48%
MoCo-v2 KNN Eval 82.55 72.01 46.66 32.93 48.91 53.78 -
∆ - 15.40% 43.48% 60.11% 40.75% 34.85% 38.39%

E. Additional Visualization
E.1. Visualizing corrupted images

Please check Figure E.4 for more visual examples of the pixel-level gamma distortion and patch-level shuffling corruptions
we used.

E.2. Visualizing Grad-CAM attention maps

Figure E.5 visualizes the Grad-CAM (Selvaraju et al., 2017) attentions maps of ResNet-18 models pre-trained and linearly
fine-tuned on either uncorrupted or 4x4 global patch shuffled images. We discover some difference in terms of the equivariant
property: Sup models are largely equivariant to 4x4 global patch shuffling – the attention is focused on the object parts even
after patch shuffling, whereas the MoCo model pre-trained on 4x4 global shuffled images are not – it is rather focused on
distracting parts. The quality of attention map correlates with the top-1 validation accuracy, where Sup on 4x4 achieves
65% and MoCo achieves 35%. Intuitively, a model can be more robust to such global patch shuffling if it possesses such
equivariant property. This shows the robustness of SL from another aspect, because it can robustly learn the same feature
even under the shuffling disturbance.

Orig = 0.2 = 2.5 G2x2 G4x4 G8x8 G32x32 G96x96/L1x1 L2x2 L4x4 L8x8 L32x32

Figure E.4: Randomly chosen examples from the STL-10 dataset. The original images have resolution 96x96. We show the resulting
images of gamma distortion (γ = 0.2, 2.5), global shuffling (G2x2, weaker – G96x96, stronger), and local shuffling (L1x1, stronger –
L32x32, weaker). G1x1 and L96x96 revert to the original, while G96x96 and L1x1 are the most random ones (and have similar effect).
Gamma distortion reduces information in pixel intensity. Global shuffling destroys global but preserves local structure, Local shuffling is
the opposite.

Orig Sup,ori-trained MoCo,ori-trained Sup,G4x4-trained MoCo,G4x4-trained G4x4 shuffled Sup,ori-trained MoCo,ori-trained Sup,G4x4-trained MoCo,G4x4-trained

Figure E.5: Randomly chosen images from ImageNet-100. We consider 4x4 global patch shuffling and visualize the Grad-CAM attention
maps of 4 models: Sup trained on original images, MoCo trained on original images, Sup trained on shuffled images, and MoCo trained
on shuffled images. The attention map of the MoCo on shuffled images model is less equivariant to the patch shuffling.

