
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Similarity Preserving Transformer Cross-Modal Hashing for
Video-Text Retrieval

Anonymous Authors

ABSTRACT
As social networks grow exponentially, there is an increasing de-
mand for video retrieval using natural language. Cross-modal hash-
ing that encodes multi-modal data using compact hash code has
been widely used in large-scale image-text retrieval, primarily
due to its computation and storage efficiency. When applied to
video-text retrieval, existing unsupervised cross-modal hashing
extracts the frame- or word-level features individually, and thus
ignores long-term dependencies. In addition, effective exploit of
multi-modal structure poses a significant challenge due to intri-
cate nature of video and text. To address the above issues, we
propose Similarity Preserving Transformer Cross-Modal Hashing
(SPTCH), a new unsupervised deep cross-modal hashingmethod for
video-text retrieval. SPTCH encodes video and text by bidirectional
transformer encoder that exploits their long-term dependencies.
SPTCH constructs a multi-modal collaborative graph to model
correlations among multi-modal data, and applies semantic aggre-
gation by employing Graph Convolutional Network (GCN) on such
graph. SPTCH designs unsupervised multi-modal contrastive loss
and neighborhood reconstruction loss to effectively exploit inter-
and intra-modal similarity structure among videos and texts. The
empirical results on three video benchmark datasets demonstrate
that the proposed SPTCH generally outperforms state-of-the-arts
in video-text retrieval.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.

KEYWORDS
Hashing, Contrastive learning, Video-text Retrieval

1 INTRODUCTION
With the rapid development of social networks and short video
sharing platforms, the number of videos on the web has exploded.
When searching using natural language, it is desirable to retrieve
relevant videos in a timely and accurate manner. However, mul-
timedia data in different modalities exhibit significant structural
differences, making it difficult to retrieve relevant content from a

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

large amount of heterogeneous data. Therefore, efficient and effec-
tive cross-modal retrieval from large-scale multi-modal data has
become a challenging problem.

Hashing [10, 12, 30] has been widely applied to large-scale cross-
modal retrieval due to its efficiency in computation and storage.
The idea of hashing is to project high-dimensional data into com-
pact hash codes while preserving similarity among original data
in the Hamming space. Cross-modal hashing maps multi-modal
data into a common Hamming space to enable fast cross-modal
retrieval, e.g., video-text retrieval. Supervised cross-modal hash-
ing [4, 13, 36] requires high-quality semantic labels to supervise
training, which are very expensive and time-consuming to obtain
in real applications. Therefore, unsupervised cross-modal hashing
[3, 16, 25, 38, 39] that does not rely on labels is extensively applied
yet remains challenging.

Unsupervised deep cross-modal hashing [10, 31, 35] performs
joint learning of feature and latent hash code in an end-to-end
manner by optimizing an unsupervised loss. Conventional unsuper-
vised deep cross-modal hashing methods are primarily tailored for
image-text retrieval, and they encounter several main challenges
when extended to video-text retrieval. Existing cross-modal hashing
uses RNN [15] or LSTM [5] for video encoding. However, training
LSTM is computationally expensive and also struggles to capture
long-term dependencies among distant frames effectively due to
gradient vanishing [19]. It is difficult to model similarity structure
among multi-modal data, as label semantics are not available. In
addition, it is not sufficient to effectively capture inter-modality
and intra-modality similarity among video and text modalities due
to their complex data structures. Therefore, it is challenging to de-
velop unsupervised deep cross-modal hashing specifically designed
for video-text retrieval.

To address the above concerns, we propose a new unsuper-
vised deep cross-modal hashing method, i.e., Similarity Preserving
Transformer Cross-Modal Hashing (SPTCH) for video-text retrieval.
SPTCH encodes and reconstructs video and text using bidirectional
transformer auto-encoder. SPTCH further exploits multi-modal
structure by leveraging the superiority of contrastive learning. The
overview of the proposed SPTCH is illustrated in Figure 1. The
main contributions of this work are summarized:

• We propose Similarity Preserving Transformer Cross-Modal
Hashing (SPTCH) for video-text retrieval. SPTCH utilizes the
bidirectional transformer to effectively capture long-term
dependencies in frame and word sequences. To our knowl-
edge, SPTCH is among the first attempts of unsupervised
deep cross-modal hashing specifically designed for video-
text retrieval.

• SPTCH employs GCN on the constructed multi-modal col-
laborative graph to aggregate semantics of multi-modal data.
SPTCH learns hash function and hash code by minimizing
semantic reconstruction loss, neighborhood reconstruction
loss, and multi-modal contrastive loss.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Illustration of the proposed SPTCH. SPTCH employs the bidirectional transformer encoder to encode video and
text, and then constructs a hash layer to transform continuous feature into hash code. SPTCH constructs a multi-modal
collaborative graph to model correlations among multi-modal data, and applies semantic aggregation by employing Graph
Convolutional Network (GCN) on such graph. SPTCH learns hash function and hash code by minimizing several losses, e.g.,
semantic reconstruction loss, neighborhood reconstruction loss, and multi-modal unsupervised contrastive loss.

• The quantitative and qualitative results empirically verify
the superiority of the proposed method over state-of-the-arts
in video-text retrieval.

2 RELATEDWORK
2.1 Cross-modal Hashing
Cross-modal hashing aims to map multi-modal data, mainly in-
cluding images and texts, into a shared Hamming space, where
hash codes of different modalities can be quickly compared and
matched. The primary advantage of cross-modal hashing lies in
its high efficiency in supporting cross-modal retrieval, mainly for
image-text retrieval tasks. This work is closely related to unsuper-
vised cross-modal hashing, where label semantics are unavailable
in the training stage.

The shallow cross-modal hashing [3, 28] learns linear function to
transform multi-modal data into hash code. For instance, Collective
Matrix Factorization Hashing (CMFH) [3] jointly learns uniform
hash codes and hash functions by using the cooperative matrix fac-
torization technique. Semantic Topic Multimodal Hashing (STMH)
[28] learns a common subspace by capturing multiple semantic top-
ics from multimedia data and then generates binary hash codes by
examining the representation of the semantic topics. The shallow
cross-modal hashing typically uses hand-crafted features, and fea-
ture learning is independent of hash code learning. Therefore, the
retrieval performance of shallow cross-modal hashing is expected
to be further improved.

Unsupervised deep cross-modal hashing [11, 16, 25, 38, 39] jointly
performs feature learning and hash code learning in an end-to-end

manner. Deep Binary ReConstruction (DBRC) [11] jointly performs
heterogeneous modal correlation modeling and hash code learning
in a binary reconstruction framework. Deep Joint-Semantics Recon-
structing Hashing (DJSRH) [25] constructs a joint semantic relation
matrix by integrating different similarity matrices and reconstructs
such a joint matrix using hash code to preserve the semantic struc-
ture. Joint-modal Distribution-based SimilarityHashing (JDSH) [16]
constructs a joint-modal similarity matrix to preserve cross-modal
semantic correlation and generates hash code using a sampling
and weighting scheme. Aggregation-based Graph Convolutional
Hashing (AGCH) [38] generates a multi-modal similarity matrix
by aggregating different similarity measures and employs GCN to
preserve the semantic structure. Correlation-Identity Reconstruc-
tion Hashing (CIRH) [39] constructs a multi-modal collaborative
graph to model heterogeneous multi-modal correlations and jointly
performs intra-modal and inter-modal semantic aggregation on
homomorphic and heteromorphic graph convolutional networks.
Existing unsupervised cross-modal hashing primarily focuses on
image-text retrieval, while video-text retrieval is becoming increas-
ingly important due to the richer information of videos. Therefore,
developing effective unsupervised deep cross-modal hashing for
video-text retrieval remains challenging and deserves further re-
search.

2.2 Video Hashing
Video hashing [8, 9, 14, 23, 32, 34, 37? ] aims to learn hash function
and hash code that can yield impressive video retrieval performance.
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Early attempts directly apply conventional image hashing meth-
ods, e.g., Spectral Hashing (SH) [30] and Anchor Graph Hashing
(AGH) [17] on pooled video features, and treat video as a simple
aggregation of independent frames and neglect the temporal infor-
mation in videos. Later some shallow video hashing methods [34]
are proposed to consider temporal information. To our knowledge,
Video Hashing with both Discriminative commonality and Tempo-
ral consistency (VHDT) [34] is the first work that considers video
structure. However, the capability of shallow hashing for video
representation is limited.

Later deep video hashing [7–9, 14, 24, 32, 37? ] has been pro-
posed to extract improved video representation, due to the powerful
capability of neural networks. Deep Video Hashing (DVH) [14] ap-
plies a Convolutional Neural Network (CNN) to extract features
from each frame and leverages temporal and discriminative in-
formation within the video. It is of great significance to develop
new deep hashing models that can preserve spatial and tempo-
ral information efficiently and effectively. Jointly Modeling Static
Visual Appearance and Temporal Pattern (JTAE) [7] jointly mod-
els static visual appearance and temporal pattern. Some advanced
network architectures have been employed to mine temporal struc-
ture in videos afterward. Self-Supervised Temporal Hashing (SSTH)
[37] and its extension, i.e., Self-Supervised Video Hashing (SSVH)
[24] are among the pioneer unsupervised video hashing methods
that model temporal sequences using LSTM. Neighborhood Pre-
serving Hashing (NPH) [8] integrates the neighborhood attention
mechanism into an RNN-based reconstruction scheme and thus
enables hash code to capture spatial and temporal structure in video.
Semantics-Aware Spatial-Temporal Binaries (S2Bin) [? ] is proposed
by considering spatial-temporal context and semantic relationships,
and it is applied to cross-modal video retrieval. Unsupervised Deep
Video Hashing (UDVH) [32] applies a Temporal Segment Network
(TSN) to extract spatial and temporal features from videos. However,
training LSTM requires expensive computation and may struggle
to effectively capture long-term dependencies in videos due to the
gradient vanishing problem. Bidirectional Transformer Hashing
(BTH) [9] utilizes a bidirectional transformer as the backbone model
and designs three self-supervised learning tasks to adequately cap-
ture the similarity structure in video data. However, these hashing
methods are proposed only for video-video retrieval and cannot be
directly applied to more challenging video-text retrieval.

3 THE PROPOSED METHOD
This section first introduces the problem setup and then presents the
details of the proposed Similarity Preserving Transformer Cross-
Modal Hashing (SPTCH), including multi-modal semantic hash
code learning and multi-modal unsupervised contrastive learning.

3.1 Problem Setup and Preliminary
3.1.1 Problem Setup. Assume that the video-text dataset has 𝑁
instances O = {O𝑖 }𝑁𝑖=1, where O𝑖 = {V𝑖 ,T𝑖 },V𝑖 and T𝑖 denote the
𝑖-th video and text respectively. A video is sampled with𝑀 frames
{f𝑚
𝑖
}𝑀
𝑚=1, and can be represented as CNN features {v𝑚

𝑖
}𝑀
𝑚=1 ∈

R𝑀×𝑑 , where 𝑑 denotes CNN feature dimension. For video modal-
ity, we feed CNN features to a bidirectional transformer based
hash model to obtain hash code B𝑣 ∈ {−1, 1}𝑘 , where 𝑘 denotes

code length. For text modality, we use a pre-trained tokenizer to
convert text into token sequences, and then feed to a pre-trained
bidirectional transformer based hash model to obtain hash code
B𝑡 ∈ {−1, 1}𝑘 . The proposed SPTCH aims to learn such hash codes
as compact video and text representation for video-text retrieval.

3.1.2 Bidirectional Transformer Encoder. Inspired by the great suc-
cess of self-attention in capturing correlations in a sequence [27],
we employ the bidirectional transformer to encode video and text,
both of which are essentially types of sequences. For video modal-
ity, we sum the visual feature sequences {v𝑚

𝑖
}𝑀
𝑚=1 and position

embeddings, and feed them to video transformer. Assume there are
𝐿 transformer layers, and each layer is constructed by multi-head
attention. Specifically, in each transformer layer, given an input
sequence of embedding X, the 𝑗-th attention head projects X to a
triplet of (query, key, value) denoted as (Q𝑗 , K𝑗 , V𝑗 ) via three learn-
able parameters. A scaled dot-product attention is applied between
Q𝑗 and K𝑗 , and its output is then fed to the softmax function to ob-
tain attentional distribution over V𝑗 . After being passed through 𝐿

transformer layers, these input tokens are mapped to a sequence of
l-𝐷 latent visual embeddings {h𝑣

𝑖,𝑚
}𝑀
𝑚=1. Each of such embeddings

contains visual content and information flowing from other frames
in both directions within the video.

For text modality, The tokenizer first splits a text corresponding
to a video into words and truncates them to a unified length. Each
word is assigned to a unique token in the vocabulary table, and
each sentence can be transformed into a token sequence. In each
sentence, we convert each token into an embedding, aggregate
embeddings of all the tokens, and feed the aggregation to the bidi-
rectional transformer. Text encoder has the same structure as video
encoder.

The representation obtained through the transformer is real-
valued, and a hash layer is utilized to project the continuous repre-
sentation into a discrete hash code. Taking the video modality as
an example, {h𝑣

𝑖,𝑚
}𝑀
𝑚=1 is first projected as a real-valued sequence

{z𝑣
𝑖,𝑚

}𝑀
𝑚=1 via a Fully Connected (FC) layer, and then {z𝑣

𝑖,𝑚
}𝑀
𝑚=1 is

fused into a relaxed binary vector z𝑣
𝑖
by average pooling. Finally,

z𝑣
𝑖
is discretized into a binary vector b𝑣

𝑖
that integrates information

from all potential outputs of the transformer.

3.2 Multi-Modal Semantic Hash Code Learning
3.2.1 Multi-Modal Collaborated GraphConstruction. Multiplemodal-
ities offer different properties of multi-modal data, and it is en-
couraging to combine multiple similarity structures from multiple
modalities. For video modality, X𝑣 is utilized to calculate the cosine
similarity S𝑣 . For text modality, text features h𝑡

𝑖
are extracted using

a pre-trained bidirectional transformer encoder, and we employ
X𝑡 = {h𝑡

𝑖
}𝑁
𝑖=1 to calculate the cosine similarity S𝑡 . Following [39],

we construct the following multi-modal collaboration graph by
combining S𝑣 and S𝑡 :

S = 𝜃1S𝑣 + (1 − 𝜃1) S𝑡 (1)

where 𝜃1 is used to balance the relative importance of the two
modal similarity matrices. The most similar instance pairs have
the top largest values in similarity matrix S. However, the small
similarity in S are more likely to be affected by noise and may
hinder unsupervised learning. To eliminate such noisy effects, we
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set the minimum 𝜃2% in each row of S to -1 with the following
equation:

𝑆𝑖 𝑗 =

{
−1, 𝑆𝑖 𝑗𝜖𝑒𝑖 (𝜃2)
𝑆𝑖 𝑗 , otherwise

(2)

where 𝑒𝑖 (𝜃2) is the set consisting of the minimum 𝜃2% values in
the 𝑖-th row of S. We obtain the final multi-modal collaboration
graph by applying tanh function on S for nonlinear transformation.

3.2.2 Cross-Modal Semantic Aggregation. The video and text fea-
tures X𝑣 and X𝑡 are fed into two encoders to obtain latent semantic
representations V𝑣 and V𝑡 respectively. In this work, inspired by
the superior capability of GCN on capturing higher-order semantic
similarity structure, we employ two modality-specific GCNs on
V𝑣 and V𝑡 to obtain graph structure representations V𝑔𝑣 and V𝑔𝑡

respectively. The layer-wise propagation rule of modality-specific
GCNs is defined as:

H(𝑙 ) = 𝜎

(
D̃− 1

2 SD̃− 1
2H(𝑙−1)W(𝑙 )

)
(3)

where D̃ is a diagonal matrix, D̃𝑖𝑖 =
∑
𝑖 𝑆𝑖 𝑗 . The latent video and

text features V𝑣 and V𝑡 are concatenated into a new representation
V𝑐 , which is then fed into a multi-modal GCN to enhance the
interactions between heterogeneous modal features. The layer-wise
propagation rule of such multi-modal GCN is defined as:

H𝑐
(𝑙 ) = 𝜎

(
D̃𝑐−

1
2 S𝑐 D̃𝑐−

1
2H𝑐

(𝑙−1)W
𝑐
(𝑙 )

)
(4)

S𝑐 =

(
S I
I S

)
,H𝑐

(𝑙−1) =

(
V𝑣
(𝑙−1)

V𝑡(𝑙−1)

)
(5)

where D̃𝑐 is a diagonal matrix, D̃𝑐
𝑖𝑖

=
∑
𝑖 𝑆

𝑐
𝑖 𝑗
, H𝑐

(0) = V𝑐 . Multi-
modal GCN performs semantic aggregation between fused features,
preserves multi-modal neighborhood correlations, and thus reduces
the modality gap.

3.2.3 Loss. We propose to employ a fully connected layer to ag-
gregate V𝑗 and V𝑔𝑣 to generate the latent representation H𝑣 that
contains more semantics among different modalities. We then fed
H𝑣 into the video decoder to reconstruct the original video feature
X𝑣 . In the text branch, we generate H𝑡 similar to H𝑣 , and further
reconstruct X𝑡 . The semantic reconstruction loss of the video and
text modalities is defined as:

L𝑟𝑐 = ∥X̃𝑣 − X𝑣 ∥2𝐹 + ∥X̃𝑡 − X𝑡 ∥2𝐹 (6)

where X̃𝑣 and X̃𝑡 denote the reconstructed video and text features,
respectively.

In this work, H𝑣 , H𝑡 , and V𝑗 contain different semantics and
are complementary. We first employ a fully connected layer to
project V𝑗 to obtain H𝑗 , and concatenate H𝑗 , H𝑣 , and H𝑡 to obtain
a composite multi-modal complementary representation H. SPTCH
expects that the generated latent semantic representations H𝑣 , H𝑡

and H can reflect the correlations among multi-modal data and can
preserve similarity structure well. Specifically, we employ cosine
similarity among the latent representations to approximate the
ground-truth similarity. To achieve this, we minimize the following
neighborhood reconstruction loss:

L𝑠𝑐 =∥S − cos
(
H𝑣,H𝑣 ) ∥2𝐹 + ∥S − cos

(
H𝑡 ,H𝑡 ) ∥2𝐹

+ ∥S − cos (H,H)∥2𝐹
(7)
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Figure 2: Illustration of multi-modal contrastive learning.
We construct inter- and intra-modal triplet sets. Based on
the two sets, we define inter- and intra-modal contrastive
losses to preserve inter- and intra-modal similarity structures
respectively.

We minimize the following quantization loss to enable continuous
network outputs and hash codes to be close:

L𝑏𝑐 = ∥B − H∥2𝐹 (8)

To this end, by summarizing the above three losses, i.e., L𝑟𝑐 , L𝑠𝑐 ,
and L𝑏𝑐 , we have the following objective function of multi-modal
semantic hashing learning:

L𝑐 = L𝑟𝑐 + 𝛼1L𝑠𝑐 + 𝛼2L𝑏𝑐 (9)

where the two parameters 𝛼1 and 𝛼2 are used to balance each term.

3.3 Multi-Modal Unsupervised Contrastive
Learning

The learned multi-modal semantic hash code contains neighbor-
hood information of the original space. This section introduces
multi-modal unsupervised contrastive learning to effectively ex-
ploit the inter-modal and intra-modal similarity structure among
videos and texts. The general goal of contrastive learning is to pull
the anchor and positive sample together and push apart the anchor
from negative samples. The overview of the proposed multi-modal
unsupervised contrastive learning is illustrated in Figure 2.

Given a set of 𝑁 samples {x𝑖 , g𝑖 }𝑁𝑖=1, g𝑖 is the label vector of x𝑖 .
Its augmentated set is denoted as {x̂𝑖 , g𝑖 }2𝑁𝑖=1 that has 2𝑁 samples,
and x̂2𝑖−1 and x̂2𝑖 are two random augmentations of x𝑖 (𝑖 = 1 . . . 𝑁 ).
Assume that 𝑖 ∈ 𝐼 = {1 . . . 2𝑁 } denotes the index of an arbitrary
augmented sample, and (x̂𝑖 , x̂𝑗 ) denotes a positive pair. The con-
ventional self-supervised contrastive loss [2] is defined as follows:

L𝑠𝑒𝑙 𝑓 = − 1
2𝑁

2𝑁∑︁
𝑖=1

log
exp(x̂𝑖 · x̂𝑗/𝜏)∑

𝑎∈A(𝑖 )
exp(x̂𝑖 · x̂𝑎/𝜏)

(10)

where 𝜏 is a temperature coefficient that controls the dynamic range
of the product, A(𝑖) = {𝑎 |𝑎 ∈ 𝐼 , 𝑎 ≠ 𝑖}, x̂𝑖 and x̂𝑗 are called the
anchor and positive respectively, and the other 2(𝑁 − 1) samples
{x̂𝑘 |x̂𝑘 ∈ 𝐼 , 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗} are called the negatives.

3.3.1 Inter-Modal Contrastive Loss. Inter-modal contrastive learn-
ing is defined based on a triplet set of anchor, inter-positive, and
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Algorithm1 Similarity Preserving Transformer Cross-Modal Hash-
ing

Input: video-text pairs O𝑖 = {V𝑖 ,T𝑖 }𝑁𝑖=1; input dimension 𝑑 ;
code length 𝑘 ; batch size; number of epochs; learning rate;
parameters.
Output: network parameters.

1: Extract video and text features X𝑣 and X𝑡 ;
2: Construct multi-modal collaboration graph S;
3: for each epoch do
4: for each iteration do
5: Sample a minibatch randomly;
6: Obtain H𝑣 , H𝑡 , and H𝑗 via forward propagation algo-

rithm;
7: Calculate loss via (6), (7), and (8);
8: Update multi-modal semantic hashing network param-

eters to minimize (9) via BP algorithm;
9: end for
10: for each iteration do
11: Sample a minibatch randomly;
12: Obtain B via GCN and encoder;
13: Obtain {h𝑣

𝑖,𝑚
}𝑀
𝑚=1 and h

𝑡
𝑖
via bidirectional transformer;

14: Calculate multi-modal unsupervised contrastive loss
L𝑚𝑓 via (13);

15: Update bidirectional transformer network parameters
to minimize (16) via BP algorithm;

16: end for
17: end for

inter-negative samples. Inter-modal contrastive learning simulta-
neously encourages the embedding of anchors to be close to that
of inter-positive samples and to be far away from those of inter-
negative samples, such that cross-modal correlation can be effec-
tively exploited in latent embedding space.

Let z𝑣
𝑖
and ẑ𝑣

𝑖
be original and augmented features of the 𝑖-th

video. Similarly, z𝑡
𝑖
and ẑ𝑡

𝑖
are the original and augmented features

of the 𝑖-th text. By regarding z𝑣
𝑖
and ẑ𝑣

𝑖
as anchors, we have the

following inter-modal contrastive loss:

L𝑣𝑒
𝑚 =

1
𝑁

𝑁∑︁
𝑖=1

− log
exp

(
z𝑣
𝑖
· z𝑡

𝑖
/𝜏

)
∑
𝑎∈A(𝑖 ) exp

(
z𝑣
𝑖
· z𝑡𝑎/𝜏

)
+ 1
𝑁

𝑁∑︁
𝑖=1

− log
exp

(
ẑ𝑣
𝑖
· ẑ𝑡

𝑖
/𝜏

)
∑
𝑎∈A(𝑖 ) exp

(
ẑ𝑣
𝑖
· ẑ𝑡𝑎/𝜏

)
(11)

Accordingly, inter-modal contrastive loss L𝑡𝑒
𝑚 for text modality can

be similarly defined.

3.3.2 Intra-Modal Contrastive Loss. Intra-modal contrastive learn-
ing defines a triplet set of anchor, intra-positive, and intra-negative
samples. Intra-modal contrastive learning enables the embedding
of anchors to be close to that of intra-positive samples and far
away from those of intra-negative samples, thereby preserving
the intrinsic similarity structure within each modality. Taking the

video modality as an example, we have the following intra-modal
contrastive loss:

L𝑣𝑎
𝑚 =

1
𝑁

𝑁∑︁
𝑖=1

− log
exp

(
z𝑣
𝑖
· ẑ𝑣

𝑖
/𝜏

)
∑
𝑎∈A(𝑖 ) exp

(
z𝑣
𝑖
· ẑ𝑣𝑎/𝜏

) (12)

Accordingly, intra-modal contrastive loss L𝑡𝑎
𝑚 for text modality can

be similarly defined. To sum up, we have the following multi-modal
unsupervised contrastive learning loss:

L𝑚𝑓 = L𝑣𝑒
𝑚 + L𝑡𝑒

𝑚 + L𝑣𝑎
𝑚 + L𝑡𝑎

𝑚 (13)
In addition, we enforce the outputs of bidirectional transformer

encoders to be close to the learned hash code. We minimize the
following loss:

L𝑏𝑓 = ∥B − Z𝑣 ∥2𝐹 + ∥B − Z𝑡 ∥2𝐹 (14)

where Z𝑣 =
{
z𝑣
𝑖

}𝑁
𝑖=1 and Z𝑡 =

{
z𝑡
𝑖

}𝑁
𝑖=1 represent video and text

features respectively.

3.3.3 Neighborhood Preservation Loss. In addition to preserving
similarity introduced by contrastive learning, we further expect to
use cosine similarity of the outputs of the bidirectional transformer
encoder to approximate the ground-truth similarity. To achieve this,
we minimize the following neighborhood preservation loss:

L𝑠 𝑓 = ∥S − cos
(
Z𝑣,Z𝑡

)
∥2𝐹 + ∥S − cos

(
Z𝑣,Z𝑣 ) ∥2𝐹

+ ∥S − cos
(
Z𝑡 ,Z𝑡

)
∥2𝐹

(15)

To this end, by summarizing the above three losses, i.e., L𝑚𝑓 , L𝑏𝑓 ,
and L𝑠 𝑓 , we have the following objective function of SPTCH hash-
ing encoder:

L𝑓 = L𝑚𝑓 + 𝛽1L𝑏𝑓 + 𝛽2L𝑠 𝑓 (16)
where 𝛽1 and 𝛽2 are the two parameters to balance each term.
SPTCH optimizes the entire network using backpropagation. The
training procedure of the proposed SPTCH is illustrated in Algo-
rithm 1.

4 EXPERIMENTS
This section evaluates the performance of the proposed method for
video-text retrieval. The experiments are performed on an Ubuntu
Enterprise 64-bit Linux workstation with 128G memory and a
NVIDIA A6000 GPU server.

4.1 Experimental Setup
4.1.1 Datasets. The experiments are conducted on three bench-
mark video text datasets, which have been widely used for video-
text analysis. The three datasets are detailed as follows:

MSR-VTT [33] is the largest general video captioning dataset.
It contains 10,000 video clips with 41.2 hours and 200,000 clip-
sentence pairs in 20 categories. Additionally, each video clip has
been manually annotated with 20 natural sentences. Following [37],
we randomly choose 6,513 and 2,990 clips for training and testing
respectively.

ActivityNet Captions v1.2 [6] is a large-scale video dataset for
human action understanding. It contains more than 13,000 videos
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Figure 3: mAPs of all the hashing methods with respect to different code lengths in two video-text retrieval tasks.

from 100 activity categories collected from YouTube, with an aver-
age of 137 untrimmed videos per class and 1.41 activity instances
per video. We randomly choose 4,816 and 2,382 videos for training
and testing respectively.

Charades [21] is a dataset composed of 9848 videos of daily
indoor activities collected through Amazon Mechanical Turk. The
dataset contains 66,500 temporal annotations for 157 action classes,
41,104 labels for 46 object classes, and 27,847 textual descriptions
of the videos. Since the test set does not provide labels, we use
the validation set for testing. We choose 7,985 and 1,863 videos for
training and testing respectively.

4.1.2 Baselines. To our knowledge, there are few cross-modal hash-
ing methods specifically designed for video-text retrieval. We com-
pare SPTCHwith seven state-of-the-art hashing methods, including
two shallow cross-modal hashing methods, i.e., CMFH [3], STMH
[28], five deep cross-modal hashing methods, i.e., CIRH [39], AGCH
[38], JDSH [16], DJSRH [25], and DBRC [11]. For CMFH and STMH,
following [22], we apply mean pooling on features extracted by
VGG-16 to represent video. For CIRH, AGCH, JDSH, DJSRH, and
DBRC, we employ I3D [1] as the backbone to encode video.

4.1.3 Experiment Setting. Following [37], we first sample 25 frames
resized to 224×224 for each video and extract 4096-𝐷 frame fea-
tures with VGG-16 [22] pre-trained on ImageNet [20]. The video
transformer includes four layers with 256-𝐷 attention head, and
the scaling factor 𝑑𝑘 is set to 256. We first concatenate all texts
belonging to the same video and then tokenize concatenated text
as input. The text transformer has the same structure as the video
transformer, and its pre-trained model is provided by Hugging
Face. The batch size, number of epochs, GCN learning rate, and
transformer learning rate are set to 128, 20, 1 × 10−3, and 1 × 10−4

respectively. The parameters 𝛼1, 𝛼2, 𝛽1, and 𝛽2 are empirically set
to 0.2, 0.2, 1, and 1 respectively. In the construction of multi-modal
graphs, the parameters 𝜃1 and 𝜃2 are empirically set to 0.6 and 0.1
respectively. The temperature coefficient is empirically set to 0.2.
The proposed SPTCH is optimized using Adam optimizer.

4.1.4 Data Augmentation. In this work, we apply the same spatial
augmentation to frames for video augmentation to avoid temporal
structure disruption. We collect the augmented frames that do
not overlap with the original frames to capture a wider range of
information. Specifically, we apply random cropping, flipping, noise,
color-jittering, and blurring on each collected frame, where the
parameters are first randomly generated for each video and then
applied to all the frames.

We employ the widely-used Easy Data Augmentation (EDA) [29]
for text augmentation. Given a sentence, we apply four augmenta-
tion approaches randomly, including (1) Synonym Replacement(SR)
that randomly replaces n non-stop-words with synonyms, (2) Ran-
dom Insertion (RI) that randomly inserts a synonym of a non-stop-
words into a random position, (3) Random Swap (RS) that randomly
swaps two words, (4) RandomDeletion (RD) that randomly removes
each word with a probability.

4.1.5 Evaluation Metric. Following [37], we consider the widely-
usedmeanAverage Precision (mAP) and Precision-Recall (PR) curve
as evaluation metrics [18].

4.2 Comparsions With State-of-The-Arts
This section evaluates the proposed SPTCH by comparing it with
state-of-the-art cross-modal hashingmethods in video-text retrieval.
Figure 3 reports the mAPs of all the hashing methods in two video-
text retrieval tasks on three benchmark datasets. In addition, the
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Figure 4: Precision-recall curves of all the hashing methods with respect to 32-bit hash code in two video-text retrieval tasks.

Precision-Recall (PR) curves with respect to 32 bits are shown in
Figure 4. From the above results, we can clearly observe that (1)
the proposed SPTCH outperforms all the baselines in most cases.
For instance, for MSR-VTT, SPTCH improves the best baseline by
2.11%, 3.54%, and 1.43% with 32, 64, and 128 bits respectively in
𝑉 → 𝑇 task, and improves the best baseline by 2.77%, 2%, and
2.23% with 32, 64, and 128 bits respectively in 𝑇 → 𝑉 task. The
PR curves of the proposed SPTCH are generally above those of
the most baselines, demonstrating again the effectiveness of the
proposed method on video-text retrieval tasks. (2) Among all the
baselines, deep hashing methods generally outperform shallow
hashing methods in most cases. (3) Among deep hashing baselines,
CIRH performs best, indicating its superior capabilities of capturing
multi-modal semantic structure.

4.3 Further Analysis
4.3.1 Ablation Study. This section first conducts an ablation study
of the proposedmethod by analyzing the effectiveness of each of the
three losses. Specifically, we compare the proposed method with the
following three variants, including (1) SPTCH-Cont: a variant that
removes multi-modal unsupervised contrastive loss; (2) SPTCH-
Sim: a variant that removes similarity retention loss; (3) SPTCH-Bin:
a variant that removes multi-modal semantic hash code learning
loss. We adopt MSR-VTT for the experiment and report the mAPs of
these methods in Table 1. As can be observed from Table 1, SPTCH
significantly outperforms SPTCH-Cont, demonstrating the impor-
tance of multi-modal unsupervised contrastive loss. In addition,
SPTCH further improves SPTCH-Sim and SPTCH-Bin, verifying the
effectiveness of similarity retention loss and multi-modal semantic
hash code learning loss.

Table 1: Ablation study of the proposed SPTCH onMSR-VTT.

Method 𝑉 → 𝑇 𝑇 → 𝑉

32 bits 64 bits 32 bits 64 bits
SPTCH-Cont 0.1444 0.1559 0.1395 0.1563
SPTCH-Sim 0.1984 0.206 0.1968 0.2042
SPTCH-Bin 0.1993 0.2167 0.1864 0.2004
SPTCH-S1 0.1923 0.1967 0.1957 0.2039
SPTCH-B1 0.1975 0.2127 0.2039 0.2090
SPTCH-B2 0.1942 0.2107 0.2002 0.2142
SPTCH 0.2111 0.2294 0.2217 0.2280

This section then conducts an ablation study by analyzing the
effectiveness of some operations on the multi-modal collaborative
graph. Specifically, we compare the proposed method with the
following three variants, including (1) SPTCH-S1: a variant that
removes noise processing and normalization operation on S; (2)
SPTCH-B1: a variant that removes cross-modal semantic aggrega-
tion operation such thatH is generated by concatenatingH𝑣 andH𝑡 ;
(3) SPTCH-B2: a variant that removes all the GCN modules. From
Table 1, we can observe that the proposed SPTCH outperforms
the three variants. It reveals that graph processing, graph aggrega-
tion, and GCN lead to improved similarity structure preservation,
providing retrieval performance.

4.3.2 Parameter Analysis. The section analyzes the sensitivity of
four important trade-off parameters in the proposed method, i.e., 𝛼1,
𝛼2, 𝛽1, and 𝛽2, where 𝛼1, 𝛼2 are varied from [0.01, 1], and 𝛽1, 𝛽2 are
varied from [0.01, 10]. We adopt MSR-VTT for the experiment, set
the code length to 64, and report the mAPs with respect to different
parameters in Figure 6. As can be observed, as the four parameters
increase, the mAPs first increase stably and then decrease. The
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(a) 𝛼1 (b) 𝛼2

(c) 𝛽1 (d) 𝛽2

Figure 6: Parameter analysis of the proposed SPTCH onMSR-
VTT.

highest mAPs of the proposed SPTCH are obtained when 𝛼1 and
𝛼2 are set to 0.2 and 𝛽1 and 𝛽2 are set to 1.

4.3.3 Visualization. This section visualizes learned hash code to
qualitatively compare different hashing methods. The MSR-VTT
is adopted for the experiment, the code length is set to 32, and
only the samples annotated with a single label are selected. The
hash codes learned by all the hashing methods are visualized into
a 2-dimensional space with t-SNE [26], as illustrated in Figure 5.
From Figure 5, we see that visualization is generally consistent
with quantitative empirical results, and SPTCH provides better
visualization results than the baselines.

4.3.4 Case Study. This section presents a case study on video-
text retrieval, the proposed method, and the competitive baseline,
i.e., CIRH experiment on MSR-VTT. Figure 7 illustrates the top-5
retrieved results of one randomly selected query video and text.
The correct and incorrect retrieved results are marked by ticks and
crosses respectively. From this figure, we see that the proposed
SPTCH is capable of retrieving more correct results than CIRH.

5 CONCLUSION
In this work, we propose a new unsupervised deep cross-modal
hashing method designed for video-text retrieval. SPTCH exploits
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Figure 7: Top-5 retrieved results of the proposed SPTCH and
CIRH on one randomly selected query video and text pair
from MSR-VTT.

long-term dependencies by encoding video and text via bidirec-
tional Transformer. SPTCH applies semantic aggregation by em-
ployingGCNon constructedmulti-modal collaborative graph. SPTCH
exploits inter- and intra-modal similarity structure using unsuper-
vised multi-modal contrastive loss and neighborhood reconstruc-
tion loss. Extensive empirical results demonstrate superiority of
the proposed method and verify effectiveness of each component.
In the future, we aim to develop cross-modal hashing for degraded
video-text retrieval where video and text are of inferior quality.
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