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Abstract— This study addresses a new adversarial learning
framework to make reinforcement learning robust moderately
and not conservative too much. To this end, the adversarial
learning is first rederived with variational inference. In addi-
tion, light robustness, which allows for maximizing robustness
within an acceptable performance degradation, is utilized as
a constraint. As a result, the proposed framework, so-called
LiRA, can automatically adjust adversary level, balancing
robustness and conservativeness. The behaviors of LiRA are
confirmed in numerical simulations.

I. INTRODUCTION

Reinforcement learning (RL) attracts increasing attention
as methodology for robots to learn stochastic control policies
that enable them to accomplish a given task by trial and
error [1]. In particular, model-based RL has high expectations
for real-world robot applications due to its excellent sample
efficiency [2], [3], and various robot applications have been
reported recently. Although the framework proposed in this
study can be applied to model-free RL, for the sake of
simplicity, this paper limits its focus to model-based RL.

In addition to the sample efficiency (and, of course, control
performance), recent RL studies have often aim to maximize
robustness to prepare for unexpected events/behaviors in a
faced enviornment. A naive approach is domain randomiza-
tion on simulations [4]–[6], which encompasses a variety of
optimal policies by learning from data experienced in simula-
tions driven by various simulation parameters. Although this
approach has had much success in recent years, it should be
inefficient unless data are collected in parallel using plenty
of computational resources.

As a more efficient approach, an adversarial learning can
be considered, in which an adversary is introduced that
actively interferes with the robot’s task accomplishment [7]–
[9]. Such active disturbances can produce complex and chal-
lenging experiences more efficiently than random ones, but
this approach inevitably inherits the mode collapse issue in
adversarial learning [10], [11], making learning the optimal
policy unstable. In addition, in real-world robots, excessive
disturbances might damage themselves and/or objects in the
faced environment.

Furthermore, one of the adverse effects of maximizing
robustness (caused in both of the above) is to make the policy
too conservative [12]–[14]. In other words, since robots have
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to take into account contingencies that may not occur in
practice, they tend to choose safer and more secure actions.
If the maximum disturbance intensity could appropriately
be designed in advance, such conservativeness would be
controlled at the minimum. However, as the relationship
between the policy performance and the disturbance intensity
is nonlinear and varies from situation to situation, this
solution is infeasible.

In this context, this study proposes a new adversarial
learning framework, so-called LiRA (see Fig. 1). LiRA
aims to improve the robustness moderately while mitigating
learning collapse and policy conservativeness. To this end,
adversarial learning is first rederived according to variational
inference [15]. Then, as a new definition of robustness,
light robustness [16] is integrated with it. This relaxes full
robustness by imposing an inequality constraint that limits
the degradation from ideal performance due to disturbances
within a specified threshold (this corresponds to the con-
servativeness). Through the Lagrangian method [17], this
inequality constraint is transformed into a loss function for
numerical optimization, allowing for automatic tuning of the
adversary level.

The behaviors of the proposed LiRA are confirmed by
numerical simulations using Mujoco. LiRA is not too conser-
vative in control performance only with the nominal noise,
and the degradation of control performance in response to
disturbance intensity is suppressed. In addition, according to
the specified conservativeness, the proposed LiRA attempts
to increase the robustness by increasing the adversary level
for the condition with weaker disturbance sensitivity, and
vice versa. Such an auto-tuning capability also yields self-
paced curriculum learning [18], [19], where disturbances
are suppressed during the under-performance phase and
reinforced as learning progresses. These results indicate that
LiRA can achieve a good balance between robustness and
conservativeness.

II. PRELIMINARIES

A. Model-based reinforcement learning

In RL [1], an agent aims to gain the maximum rewards
from an environment in the future. For mathematical formu-
lation of the relationship between the agent and environment,
Markov decision process (MDP) is basically assumed, i.e.
(S,A, pe, r). Here, S is the state space, A is the action
space, pe : S × A → S is the state transition probability
(a.k.a. dynamics), and r : S × A × S → R is the reward
function to evaluate each transition.
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Fig. 1: Proposed framework: LiRA

Under MDP, this study solves the following optimization
problem for acquiring the optimal (stochastic) policy π∗ :
S → A, which should be able to accomplish the task defined
by r, at the discrete time step t ∈ N.

π∗(at | st) = arg max
π(at|st)

H∑
k=0

rt+k (1)

s.t.


rt+k = r(st+k, at+k, s

′
t+k)

s′t+k ∼ pe(st+k+1 | st+k, at+k)

at+k ∼ π(at+k | st+k)

where H ∈ N denotes the horizon indicating how far into
the future to be considered.

If the agent knows pe and r accurately, this problem
can numerically be solved using MPC (in this paper, Ac-
celMPPI [20] is employed). Therefore, model-based RL
algorithms explicitly approximate them as a model (pw in
this paper) using, for example, deep neural networks with
parameters θ [2], [21].

θ∗ = argmin
θ

Epe,r,π[− ln pw(s
′, r | s, a; θ)] (2)

s.t.


r = r(s, a, s′)

s′ ∼ pe(s
′ | s, a)

a ∼ π(a | s)
Note that, in this paper, r is alternatively represented as a
probability conditioned on s and a except s′ for simplicity.
The obtained pw replaces pr and r in eq. (1).

B. Adversarial learning
To make π∗ obtained through the above optimization

problem robust, worst-case scenarios for the objective func-

tion (i.e. the sum of predicted reward, called the return)
are basically considered [22], [23]. However, this incurs an
extra computational cost at inference time compared to the
case simply using expected value of the prediction. In this
study, therefore, robust control is achieved by making pw
robust during learning, referring to the result reported in the
literature [24] that control performance becomes implicitly
robust if pw is optimized in consideration of events that are
rare in reality.

To make pw fully robust, it is effective to intentionally
allow the agent to experience the rare events. That is, this
purpose can be achieved by adversarial learning with the
following min-max problem, instead of eq. (2):

θ∗, ϕ∗ = argmin
θ

max
ϕ

Ep̃e,r̃,π,ϖ[− ln pw(s
′, r | s, a; θ)]

(3)

s.t.


r = r̃(s, a, s′; d)

s′ ∼ p̃e(s
′ | s, a; d)

a ∼ π(a | s)
d ∼ ϖ(d | s;ϕ)

where ϖ : S → D denotes the learnable adversary (or,
disturbance generator) with parameters ϕ. Note that the
disturbance d should have upper and lower bounds and
be distributed around zero to avoid the collapse and bias
of the original environment. Therefore, is is assumed that
d ∈ [−dmax, dmax]|D| with dmax the maximum disturbance
intensity, which is specified in advance as a hyperparameter.

As a remark, ϖ can be conditioned on a in addition to
s, but in that case, the effects of d are too strong because d



can easily interfere with a by determining later than a. As
this study is in favor of moderate robustness, a was omitted
from the condition for ϖ. In addition, the way d acts on
the environment is a discussion for robotic applications, so
it was also omitted in this paper in favor of theory.

III. LIRA: LIGHT-ROBUST ADVERSARY

A. Adversarial learning with variational inference

First, adversarial learning defined in eq. (3) is redefined
based on variational inference as a basis for incorporating the
light robustness introduced in the next section. Specifically,
we can focus on the fact that the disturbance d is usually
unobservable and regarded to be the latent variable. That is,
by introducing the disturbance-aware model and the prior,
the following evidence lower bound is derived according to
Jensen’s inequality.

ln pw(s
′, r | s, a; θ)

= lnEϖ(d)[pw(s
′, r | s, a; d, θ)]

≥Eϖ(d|s)[ln pw(s
′, r | s, a; d, θ)]−KL(ϖ(d | s;ϕ)||ϖ(d))

≥ inf
ϖ(d|s;ϕ)

[ln pw(s
′, r | s, a; d, θ)]−KL(ϖ(d | s;ϕ)||ϖ(d))

(4)

where KL(·||·) denotes Kullback-Leibler divergence between
two probabilities. When maximizing this lower bound, the
adversary tries to minimize ln pw(s′, r | s, a; d, θ) to take into
account the rare events, while regularizing ϖ(d mids;ϕ) →
ϖ(d). That is, the min-max problem in eq. (3) seems to be
extended by adding the regularization.

The degree of regularization is commonly adjusted by
introducing the gain β ≥ 0 [25] (β = 0 means no
regularization as like eq. (3)). Although this regularization is
expected to reduce the generation of excessive disturbances,
how it (β, more specifically) affects to the balance between
robustness and conservativeness is unclear. For developing
an auto-tuning mechanism of β (or other alternative gain) to
achieve the desired balance, some kind of criteria that can
be intuitively specified by the user are needed.

In addition, we need to focus on the fact that the newly
introduced disturbance-aware model, pw(s

′, r | s, a; d, θ),
cannot be used when d is unknown, so it is used only
for adversarial learning. Only if an additional disturbance
estimator could be introduced, it could be used even during
inference to enable the domain adaptation. In that light, as
the disturbance-marginalized model, pw(s′, r | s, a; θ), is not
included in the above lower bound, it should be additionally
optimized by explicitly considering some kind of conditions.

B. Integration with light robustness

To address these remaining issues, the light robustness [16]
is integrated with the maximization problem of the above
lower bound. The light robustness establishes a tolerance
for performance degradation due to disturbances and assigns
that constraint to the optimization problem. This allows
for a more intuitive setting since the “relative” tolerance
can be defined, in comparison to, for example, the degree

of regularization to the prior and the absolute predictive
performance of the model.

Specifically, for any state (and action), the following
constraint is applied.

− ln pw(s
′, r | s, a; θ) ≤ − ln pw(s

′, r | s, a; d, θ) + ρ

ln pw(s
′, r | s, a; d, θ)− ln pw(s

′, r | s, a; θ)− ρ+∆(s; η)︸ ︷︷ ︸
δ(s′,r,s,a,d)

= 0 (5)

where, ρ ≥ 0 denotes the tolerance of performance degra-
dation and ∆ ≥ 0 denotes the slack variable, which rep-
resents the different between the left and right sides and is
approximated by parameters η. The first line is the inequality
according to the original light robustness, and the second line
is a clarification for this study. Note that although it may be
temporarily violated depending on the initialization of the
models, ln pw(s′, r | s, a; d, θ) ≤ ln pw(s

′, r | s, a; θ) holds
in general because the likelihood is higher when conditioned
with more necessary information.

This constraint can be converted into the corresponding
regularization term via Lagrangian with an auto-tuned gain
λ, as shown in the literature [17]. In summary, the proposed
LiRA solves the following optimization problem to suppress
conservativeness while making the model moderately robust.

θ∗, ϕ∗ = argmin
θ

max
ϕ

Ep̃e,r̃,π,ϖ[−λ ln pw(s
′, r | s, a; θ)

− (1− λ) ln pw(s
′, r | s, a; d, θ)

− βKL(ϖ(d | s;ϕ)||ϖ(d))] (6)

s.t.


r = r̃(s, a, s′; d)

s′ ∼ p̃e(s
′ | s, a; d)

a ∼ π(a | s)
d ∼ ϖ(d | s;ϕ)

where, λ (and η for approximating ∆) can be optimized
according to the literature [17]. Note that λ is a Lagrange
multiplier, so λ ∈ R holds, but if λ < 0 and λ > 1, θ
will be learned in a direction that degrates the predictive
performance of the models. Since this is not in line with
the original purpose of model learning, λ is restricted within
[0, 1] in this study.

If the disturbance is too strong, δ > 0 is likely to occur,
leading to λ → 1. As a result, the adversarial learning
for the disturbance-aware model is suppressed, and the
adversary is dominantly regularized to its prior, weakening
the disturbance. On the other hand, if the disturbance is too
weak, δ < 0 and λ → 0 are expected, and the adversarial
learning is activated to strengthen the disturbance. In this
way, LiRA automatically adjusts the disturbance intensity to
be moderately robust and not exceed the specified tolerance
(a.k.a. conservativeness).

IV. NUMERICAL VERIFICATION

A. Task

Numerical simulations are conducted to verify the behav-
iors of the robot when learned with the proposed LiRA.
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Fig. 2: Worm-type robot

Mujoco is used as the simulator, and a task is to maximize the
forward speed of a worm-type robot (see Fig. 2). This robot
is 1 m long with 6–8 joints at equal intervals: 4 controllable
joints on the head side and 2–4 joints for disturbance on the
tail side.

The fewer the number of joints for disturbance, the smaller
the effect of the disturbance and thus the less the need to
limit the disturbance intensity; in other words, the more
the number of joints for disturbance, the more the task
performance degradation and the more the need to limit
the disturbance intensity. That is, if the tolerance of the
performance degradation is fixed for all the conditions, the
disturbance intensities should converge to different values.

B. Results

First, the following three conditions are compared in terms
of the control performance after learning the above task
under three types of disturbance.

• Nominal (λ = 1, β = ∞):
The model is learned only with the prior.

• Full (λ = 0, β = 0):
The model is learned in a fully adversarial manner.

• Proposal (λ is optimized, β = 10−3):
The model is learned with LiRA.

Note that the prior in this task is given as Gaussian (a.k.a.
nominal noise). During learning/inference, the robot is con-
trolled with AccelMPPI [20], but exploration noise is added
to action only during learning. The three types of disturbance
are as follows: the first is the nominal noise and is the
weakest; the second is a composite of several Brownian
noises; and the third is scaled more than the second.

The test results are shown in Fig. 3. It can be found
that Nominal without adversarial learning achieved high
performance with small disturbance, but it was vulnerable

TABLE I: Statistics of λ auto-tuned by LiRA

Tail2 Tail3 Tail4
0.474±0.279 0.630±0.282 0.694±0.274

to large ones. Full, which always learns adversarially to
the maximum extent possible, maintained its performance
independent of the disturbance intensity, but its basic per-
formance was low and conservative. Compared to Nominal,
Proposal (a.k.a. LiRA) was able to suppress the performance
degradation caused by the disturbance intensity, was less
conservative than Full, and succeeded in achieving a well-
balanced and stable learning.

The auto-tuning process of λ by LiRA is depicted in Fig. 4
with its statistics summarized in Table I. Note again that the
smaller λ is, the stronger the disturbance intensity. The fewer
the number of disturbance joints and the smaller the original
disturbance influence, the smaller λ waws, giving priority to
adversarial learning. Conversely, as the number of joints for
external disturbances increased, λ became larger, suggesting
that the disturbance intensity was suppressed to prevent the
performance degradation.

In addition, λ was once large from the beginning to the
middle of learning progress, and after a while, it became
smaller and converged to each value suitable for the task.
This result suggests the emergence of some kind of self-
paced curriculum that once simplifies the task to an easily
predictable situation and then makes the task more difficult
by gradually increasing the disturbance. Indeed, it can be
said that the derivation of LiRA is partially similar to the
self-paced learning methods [18], [19], and therefore, LiRA
might lead to such an additional value.

V. CONCLUSION

This study proposed a new adversarial learning framework,
so-called LiRA. LiRA enabled RL agents to improve the
robustness of policy moderately while mitigating learning
collapse and policy conservativeness. To this end, adversarial
learning was reformulateed using the variational inference
and the light robustness. As a result, LiRA achieved a
good balance between robustness and conservativeness in
comparison to the cases with/without the previous adversary,
which fully prevents model learning. In the near future, LiRA
will be utilized to learn moderately robust robot policies in
the real world.
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