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Abstract

Graph Neural Networks (GNNs), especially message-passing-based models, have become
prominent in top-k recommendation tasks, outperforming matrix factorization models due
to their ability to efficiently aggregate information from a broader context. Although GNNs
are evaluated with ranking-based metrics, e.g. NDCG@k and Recall@k, they remain largely
trained with proxy losses, e.g. the BPR loss. In this work we explore the use of ranking loss
functions to directly optimize the evaluation metrics, an area not extensively investigated
in the GNN community for collaborative filtering. We take advantage of smooth approxi-
mations of the rank to facilitate end-to-end training of GNNs and propose a Personalized
PageRank-based negative sampling strategy tailored for ranking loss functions. Moreover,
we extend the evaluation of GNN models for top-k recommendation tasks with an induc-
tive user-centric protocol, providing a more accurate reflection of real-world applications.
Our proposed method significantly outperforms the standard BPR loss and more advanced
losses across four datasets and four recent GNN architectures while also exhibiting faster
training. Demonstrating the potential of ranking loss functions in improving GNN training
for collaborative filtering tasks.

1 Introduction

Recommender systems have become an essential component in many online applications, helping users dis-
cover relevant and personalized content amid the overwhelming abundance of information available on the
internet. Collaborative filtering is one of the most popular and widely adopted techniques for building recom-
mender systems, which operates by leveraging the past behavior of users and the relationships among items
to generate recommendations. Graph Neural Network architectures have emerged as powerful methods for
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Figure 1: The goal in top-k recommendation is to recommend to a user, e.g. u, (purple), relevant items such
as ip, (in green), based on its interaction history, 7.e. items in blue such as i,,. ITEM directly optimizes the
evaluation metric, i.e. NDCG, during training using a smooth approximation of the rank and Personalized
PageRank (Page et al| (1998)) based negative sampling. Best seen in color.

learning and representing complex data structures, particularly those that exhibit non-Euclidean properties
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such as graphs (Velickovi¢ et al.| (2017); [Hamilton et al.| (2017); [Kipf & Welling| (2016)); |[Rossi et al.| (2020);
Xu et al| (2018)). In the context of recommender systems, GNNs offer a natural way to model user-item
interactions, leveraging the inherent graph structure to capture higher-order relationships among users and
items. Among the various GNN architectures, message-passing GNNs (MP-GNNs) have demonstrated im-
pressive performance on top-k recommendation tasks (He et al.| (2020); Wang et al.| (2019)); Sun et al.| (2020);
Chen et al.| (2020b)), consistently surpassing traditional matrix factorization methods (Rendle et al.| (2012);
Hsieh et al.| (2017); |Chen et al. (2020a))).

Top-k recommendation is a standard task in recommender systems, which involves generating an ordered list
of k items for a user. This process necessitates calculating similarities between elements before ranking them.
Evaluation of top-k recommendations typically employs ranking-based metrics such as Average Precision
(AP), Normalized Discounted Cumulative Gain (NDCG), or Recall at k (R@k). However, these metrics are
non-differentiable and cannot be directly used to train neural networks like GNNs with Stochastic Gradient
Descent (SGD).

Instead, GNNs are commonly trained using a pairwise loss, the well-known Bayesian Personalized Ranking
(BPR) (Rendle et al.| (2012)), which serves as a coarse approximation of the ranking metric. The BPR is not
explicitly designed to optimize standard non-differentiable evaluation rank-based metrics, such as NDCGQK
and Recall@K: there are some criticisms about the gap between the evaluation objective and the training
objective of the BPR (Wu et al.|(2021))). We investigate alternative loss functions that more closely align
the training and evaluation objectives.

The second issue arises from another misalignment, between batch learning and rank-based evaluation.
During training, one does not have access to the true rank and must resort to hard negatives, that are more
challenging to distinguish from positive items, for better performance. Some methods, such as MixGCF
(Huang et al.| (2021)), generate artificial hard negatives for the BPR loss. While this approach is suitable for
a pairwise loss like BPR, its online process is computationally expensive. Given that we employ a listwise
loss function, we need to sample a large number of informative negative items per user, the hard negative
generation of MixGCF is not tractable. We thus propose to sample negative items offline, based on their
Personalized PageRank (PPR) score (Page et al.| (1998)): a high PPR score indicates proximity in the graph,
making them more challenging to distinguish from a positive item for MP-GNNs.

Another impediment in the GNN literature for top-k recommendation is the limited and unrealistic evaluation
protocol. Recent works predominantly use a transductive approach, evaluating on the same users used in
training. This not only deviates from real-world recommendation scenarios but also fails to consider GNN
models’ generalization capacity. We propose to enhance evaluation by incorporating an inductive user-split
protocol, evaluating models on users not seen during training.

In this paper, we introduce our framework ITEM (Improving Training and Evaluation of Message-passing-
based GNNs). Our framework is designed to provide training and evaluation for Graph Neural Networks
tailored to the top-k recommendation task.

e Specifically, our list-wise loss Lirgn first leverages smooth rank approximations, which have recently
been revisited in image retrieval and machine learning Bruch et al.| (2019)); Brown et al.| (2020)); Ramzi
et al.| (2021)), leading to good approximations of the evaluation metrics, such as the NDCG or AP.

« Additionally, we enhance our loss Lirgy by incorporating a negative sampling strategy tailored for
rank approximation losses and leveraging the graph data structure. This strategy is based on the
Personalized PageRank (Page et al.|(1998)) (PPR) score. We show that this sampling is particularly
well suited to our loss LiTgwMm, since it allows for a fast sampling of many informative negative items.
This sampling helps to build large efficient batches to better approximate the true ranking.

o Finally, we propose to evaluate and benchmark GNNs for top-k recommendation in an inductive
user-split protocol. While it is known in the field of recommendation and used by some traditional
models (Meng et al| (2020); Liang et al.| (2018])), this setting has not been used to evaluate GNN
architectures. This user-split protocol is more realistic because it introduces new users in testing,
thus better evaluating the generalization capacity of recommender systems.
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We carry out extensive experimental validations in both transductive and inductive settings. Our results
highlight the benefits of ITEM over the standard training with BPR loss in terms of time and performance
across multiple GNN architectures. Moreover, we demonstrate that ITEM outperforms more advanced
state-of-the-art loss functions, showcasing its effectiveness.

2 Related Work

2.1 Graph Neural Networks for Collaborative Filtering

We focus on collaborative filtering (CF) models applied to data with implicit feedback, where only connec-
tions between users and items are considered, without incorporating other informations such as rating. A
common variant of CF is the top-k recommendation task, where the goal is to identify a small set of items
that are most relevant to a user’s interests. In this context, Graph Neural Networks have shown impressive
results, indeed they are directly suitable to this task since user-item interactions can be modeled by bipartite
graphs. Within the family of graph neural network models, message-passing-based (Gilmer et al| (2017))
methods have demonstrated superior performance compared to traditional CF models. These include matrix
factorization (MF) (Rendle et al.[(2012); Hsieh et al.|(2017);|Chen et al.| (2020a))), auto-encoders (Liang et al.
(2018)), and node embedding models that rely on random walks for generating representations (Perozzi et al.
(2014); |Grover & Leskovec| (2016)). MP-GNNs for CF learn user and item representations by propagating
and updating their embeddings through the bipartite graph. The BPR loss is employed to optimize the
user-item representations by ensuring that a user’s embedding is closer to a positive item than to a negative
one. In this sense several models of MP-GNNs have been designed such as NGCF (Wang et al| (2019)),
LR-GCF (Chen et al. (2020b))), or DGCF (Wang et al.| (2020))).

He et al. introduce Light GCN (He et al.|(2020)) as a simplified version of NGCF, achieved by eliminating
weight matrices and non-linear activation layers. Although LightGCN is less expressive, it proves to be
highly effective and more efficient, with a considerably simplified training process. Subsequent research has
focused on enhancing the training of these models: SGL-ED (Wu et al. (2021))) proposes to combine the
standard BPR loss with a self supervised loss, while MixGCF (Huang et al. (2021))) artificially generates
hard negatives embeddings for negative sampling to replace the random negative sampling in the standard
BPR loss.

2.2 Evaluation protocol for top-k recommendation

All these GNN models competed with matrix factorization methods thus, their learning and evaluation
setups are transductive.

However, other evaluations and training protocols for recommendation exist (Liang et al.| (2018)). In (Meng
et al.| (2020)), authors show that the evaluations of GNNs-based models are limited compared to all those
existing in the literature. Instead of splitting the data based on interactions, one may split the data by
user, with some users in the training set, and new users for testing (see Fig.|3). This setup is closer to real
applications, and allows to produce recommendation to new users without re-training the model. It is also
more challenging, requiring to construct representations for a new user without learning. We propose here to
evaluate our ITEM model and benchmark MP-GNNs baselines in this realistic setting which was not used
before for MP-GNNs, to the best of our knowledge.

2.3 Ranking-based loss function

The Learning to Rank problem (Cao et al|(2007)) is evaluated using ranking based metrics, e.g. NDCG
(Jarvelin & Kekéldinen| (2002)), RQK, or AP (Croft et al. (2010)). As these metrics are not differentiable
(because of the ranking operator), their optimization has been abundantly studied. Different proxy methods
have been built in Information Retrieval, with for instance pairwise loss (Burges et al.| (2005)); [Hadsell et al.
(2006)), or triplet losses (Rendle et al.| (2012); |Li et al.| (2017)). To train GNNs, the most well-known loss
is the BPR loss (Rendle et al.| (2012)), a smoothed triplet loss. However, it was shown that triplet losses
tend to put more emphasis on correcting errors at the bottom of the ranked list, rather than at the top,
which would have the most impact to maximize the metric (Brown et al.| (2020))). The direct optimization
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Figure 2: Using message passing, a GNN creates embeddings for every node of the graph. For each user we
first construct a batch of randomly sampled positive items and negative items selected with our Personalized
PageRank (Page et al.| (1998])) based negative sampling Eq. . We then compute the score of the user wrt.
the batch of items and calculate the loss using the approximation of the rank of Eq. . Finally the loss is
backpropagated to update the parameters of the GNN, and update the embeddings for the items and users
in the transductive setting. Best seen in color.

of ranking-based metrics has long been studied for Information Retrieval using structured SVM (Yue et al.
(2007)), or rank approximations (Burges et al.| (2006); |Taylor et al.| (2008); |Qin et al.| (2009)). Several
direct optimization methods have gained traction in deep learning using for instance soft binning approaches
(Revaud et al.| (2019))) or rank approximations (Bruch et al.| (2019); Pobrotyn & Bialobrzeski (2021); Brown
et al.| (2020)); |Ramzi et al.| (2021))).

3 ITEM framework

In this section, we present the ITEM framework. We first define our ranking-based losses using a smooth
approximations of the rank in Section as well as our adapted negative sampling strategy in Section .
We then introduce the protocol used to train and evaluate the GNNs performances in Section

Training context We consider an undirected bipartite graph G = (U, V, ) with || users, |V| items and
|€| edges. We assign to each node in & x V an embedding h. We use a GNN that re-embeds the node
embeddings to another space of the same dimension using message passing.

The task is to construct an embedding space such that, after message passing, the embedding of a user
is closer to the embeddings of its positive items (V1) than to its negative items (V7), i.e. for user u, its
embedding hy, a positive item p, its embedding hy, and a negative item j, we want s, > s;, with s, =
h, - hpT, and s; = hy - th, s, and s; are respectively the similarity score between the positive and the
negative item. To evaluate the performances of a GNN, we use ranking-based metrics, NDCG Eq. , that
measures the quality of a ranking.

— 1
NDCG = %7 with DCG =2 pev+ log, (T+rank(p)) (1)
iDCG iDCG = max;anking DCG

3.1 Direct ranked-based optimization

GNNs are evaluated using standard ranking based metrics, e.g. NDCG, R@k, AP. We propose to train
GNNs by optimizing directly smooth approximations of those metrics. Specifically, we use an approximation
of the ranking operator to yield losses amenable to gradient descent.
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The ranking operator can be defined as: rank(p) = 1+3_,c, H(s;—sp), with H the Heaviside (step) function
(Qin et al.| (2009); Brown et al.[(2020))). The intuition behind this definition is that in order to have the rank of
a (positive) item p, we must “count” the number of items j that have a similarity to the query user s; greater
than p’s, s, i.e. H(s; —sp) = 1. During training, we aim to minimize rank™ =143 .,,- H(s; — sp), i.e.
the number of “negative” items that have a higher score than positive items. Ranking-based metrics optimize
this objective. This writing of the rank shows why the ranking operator is not differentiable, i.e. because
the Heaviside function is not, specifically its gradients are null or undefined.

We propose to use the sigmoid function as an approximation of the Heaviside function (Qin et al.| (2009);

Brown et al.| (2020)): o(z; 7) = —L—, with 7 € R a temperature scaling parameter. 7 controls the slop
l4+exp 7
of the sigmoid, as 7 gets smaller the slope is greater, and the sigmoid saturates faster.

Using this approximation we can define a smooth version of the rank:
rank,(p,7) =1+ Z o(sj — Sp; T) (2)
2%
rank; is differentiable and is thus amenable to gradient descent. It has a single hyper-parameter, 7, we study
its impact in our experimental validation (Section [4.5)).

Application to ranked-based metrics This plug-and-play rank approximation can be used to get a
smooth version of ranking metrics, e.g. NDCG, RQk and AP. The approximation of the Normalized Dis-
counted Cumulative Gain (NDCGQG) is defined as follows:

DCG, 1
- ith DCG, =
iDoG “ith DCG. pg; logy (1 + rank, (p)) )

Lirem = 1

We use this approximation of ranks to approximate the DCG (see Eq. )7 and use the exact iDCG
(see Eq. ) In Sec. A of supplementary material we show how other ranking-based metrics can be
approximated and show their effect on the evaluation metrics in Sec. B.5.

End-to-end ranked-based training of GNN GNNs; e.g. GCN (Kipf & Welling| (2016)), jointly learn
embeddings for the items and users of a graph, and through parameterized (or not for Light GCN |He et al.
(2020)) message passing they create representation for items and users. Using a user as a query (purple
embedding in Fig. [2), as in Learning to Rank (Cao et al| (2007)), we aim to make the distance between a
user’s embeddings and the ones of its positive items, i.e. with implicit feedback (in green on Fig. , closer
than the negatives ones, i.e. no implicit feedback (in red on Fig. [2)). ITEM Eq. is directly applied
on the similarities, to produce better ranking. As ITEM is differentiable, after computing the loss we can
backpropagate gradients through the network (see Fig. , to update the potential weights of the GNNs, and
update the users and items embeddings.

3.2 Negative Sampling

The objective of ITEM is to rank, for a user query, its positive items (high rating or implicit feedback)
before the negative ones. To do so, for each user we have to construct, a batch of positive items and negative
items as we cannot use all items. For a given user the number of negative items is much larger than that
of the positive items. In order to better approximate the global ranking in mini-batch learning, we have
to sample a significant number of informative negative items. Uniform random sampling is adopted as
a solution in many GNN models for recommendation (He et al.| (2020); Wang et al| (2019)), however the
sampled negatives are often not very informative which can limit the performances of the model. We propose
to use the Personalized PageRank (Page et al.| (1998])) (PPR) to weigh the sampling of negative examples.
Specifically we normalize the PPR score using the softmax function and sample negative items j for a user
query uq4 according to Eq. . Indeed items with high PPR score will be harder to rank, as they are in closer
proximity to the user query.
ePPTug (15)
p(ij |ug)  ~ SN (4)
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Figure 3: Transductive interaction-split (left) vs Inductive user-split (right) (Meng et al. (2020))). In the
first case, the same users are in train and test, their learned embeddings can be directly used in test. In
the second case, a part of the users and 100% of their interactions are used in train. During the evaluation,
the model infers a representation of a new test user from some interactions (fold-in), in order to predict the
fold-out items where we apply the ranking metrics.

Unlike PinSage (Ying et al| (2018)) our sampling strategy considers all negative items and weighs them
differently with the softmax function. Moreover, while sampling strategies such as MixGCF (Huang et al.
(2021)) generates hard negatives from embeddings “online”, i.e. during training, the PPR score can be
computed on the bipartite graph “offline”, i.e. before training. This offline computation makes hard negative
sampling much faster, thus allowing to build informative and large batches well suited for our Lirgn loss.
We perform ablative experiments in Table [§] to show the benefit of this sampling strategy.

3.3 Protocol for collaborative filtering

3.3.1 Inductive protocol

We propose to evaluate GNNs in the top-k recommending task using an inductive user-split protocol (Meng
et al.| (2020); Liang et al| (2018)) (illustrated on the right side of Fig. . During training, we have access to
a fraction p (i.e., uy, ug on Fig. [3) of the user and their entire click history, for evaluation we consider the
1— u (i.e. uz on Fig. [3) unseen users and, with access to a fraction n of their click history (fold-in — in blue
on Fig. [3), we must recommend the other 1 — 7 fraction (fold-out — in green on Fig. [3)) of their click history.
Despite the benefits of this inductive protocol known in top-k recommendation, to our knowledge no GNN
models are measured in this user-split protocol in this task. This protocol measures the capacity of a GNN
to make accurate recommendation for a new user (not seen during training), based on its first interactions.

3.3.2 Transductive protocol

The standard protocol for evaluating GNNs in a recommendation task (Wang et al.| (2019); He et al.| (2020);
Wu et al| (2021)) is to evaluate them in a transductive manner, i.e. items and users are the same during
training and evaluation (left of Fig. |3). The training and evaluation splits are defined using an interaction-
split, specifically for a given user we use a fraction p (orange on Fig. |3 of its interaction to perform message
passing during training and for evaluation the GNN must give a higher score to the 1 — p (green on Fig. |3)
fraction of its other interactions before the items to which it has no interaction with. For this protocol, the
nodes in the graph remain the same for training and evaluation: the system cannot accommodate new users,
it is limited to presenting new content to existing users.
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Table 1: Statistics of the four datasets used for our experimental validation.

Dataset #Users #Items #Links
MovieLens-100K (Harper & Konstan (2015))) 610 8957 100k
MovieLens-1M (Harper & Konstan| (2015)) 6022 3043 1m
Yelp-2018 (Asghar| (2016) 31668 38048 1.5m
Amazon-book (Wang et al.| (2019)) 52643 91599 2.9m

4 Experiments

In our experiments and ablation studies, our aim is to demonstrate the effectiveness of our ranking loss
function as well as our negative sampling setup applied to MP-GNNs in comparison to the standard BPR loss
and other training enhancement strategies such as self-supervised regularization loss or alternative negative
sampling techniques. Additionally, we propose to refine the evaluation of GNNs for CF by benchmarking
them using an inductive, user-centric protocol.

4.1 Datasets and evaluation protocol
4.1.1 Evaluation metrics

We follow (Huang et al.| (2021); He et al.| (2020); |[Wang et al.| (2019)) evaluation protocol, computing the
NDCG@20 and Recall@20 with the all-ranking protocol (He et al.| (2017)).

4.1.2 Datasets

We validate our method on four recommendation datasets. We use the MovieLens-100k and MovieLens-
1M (Harper & Konstan| (2015)) dataset, the 2018 edition of the dataset from the Yelp challenge (Asghar
(2016)) and Amazon-book (Wang et al.| (2019))). We detail the preprocessing of the datasets in Sec. B.1 in
supplementary.

4.1.3 Data splitting strategies

Transductive setting: For the transductive setup we use the exact same data preprocessing and split as
the Light GCN (He et al|(2020))) and MixGCF (Huang et al|(2021))) models. In the transductive split, for
each user 80% of these interactions have been randomly selected for the training set and the 20% for the
test and validation set. We followed this same ratio across all datasets in our experiments. This data split
is illustrated on the left side of Fig.

Inductive setting: The inductive setup is based on the user-split data protocol, detailed in |Meng et al.
(2020) and used by the variational encoder model Mult-VAE (Liang et al.| (2018))). We used the same ratio
as in the Mult-VAE paper, i.e. In this protocol, we first separate users into training,validation and test
sets. 80% of the users are kept for training, 10% for validation and 10% for testing. Unlike the test and
validation sets, the training users keep 100% of their interaction history for learning our models. The test
and validation user interactions are separated into a fold-in and a fold-out set. The fold-in set is used to build
a representation of the user in inference from a partial history, predictions and evaluation are performed on
the fold-out set. In our experiments, the fold-in is composed of 80% of the randomly sampled interactions
of a user, the rest is for the fold-out. This data split is illustrated on the right side of Fig.

4.2 Baselines and implementation details
4.2.1 Baselines

We use several GNN architectures GCN (Kipf & Welling| (2016)), GAT (Velickovi¢ et al.| (2017)), GIN (Xu
et al.| (2018)) and LightGCN (He et al| (2020)) and compare their original training, i.e. with the BPR
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(Rendle et al|(2012)), to ITEM training. To assess our model against the state of the art, we compare it
with various CF model families, such as MF (MF-BPR (Rendle et al.| (2012)), ENMF (Chen et al.| (2020a)))),
metric-learning based (CML (Hsieh et al.| (2017))), graph embedding (DeepWalk (Perozzi et al| (2014))),
LINE (Tang et al.| (2015)), Node2Vec (Grover & Leskoved| (2016)))), VAE models (Mult-VAE (Liang et al.
(2018))), MP-GNNs (NGCF (Wang et al.|(2019)), DGCF (Wang et al.| (2020)), Light GCN (He et al.| (2020)),
NIA-GCN (Sun et al.|(2020)), LR-GCCF (Chen et al.| (2020b)))).

Finally, we compare ITEM to other losses and negative sampling methods such as NeuraNDCG (Pobrotyn
& Bialobrzeski| (2021)), another ranking loss); SGL-ED (Wu et al.| (2021))) which combines BPR and a self-
supervised loss; XSimGCL and SimGCL (Yu et al. (2022)) two contrastive-based models for CF; MixGCF
(Huang et al.| (2021))) which employs a hard negative sampling method for BPR. For a fair comparison of
the various loss functions, we employ the same Light GCN backbone across all models.

4.2.2 Implementation details

We give all details on hyper-parameters and optimization procedure in Sec. B.2 of supplementary. For the
inductive setting, we found experimentally that learning user embeddings during training is harmful for the
generalization of the GNNs to new users, so for training and evaluation users’ embeddings are inferred using
message passing only.

4.3 Main results

In this section we present our main results, we compare ITEM vs state-of-the-art methods. We first compare
ITEM on the standard transductive protocol in Table [3] we then compare ITEM on the indcutive protocol
in Table For both protocols we use a Light GCN (He et al| (2020)) backbone following (Huang et al.
(2021); Wu et al.| (2021)).

4.3.1 Transductive state of the art comparison

In Table [3| we compare, in the transductive setting, ITEM using a Light GCN (He et al| (2020)) backbone
vs state-of-the-art methods. We show that across all datasets ITEM outperforms all the MP-GNNs state-
of-the-art methods NGCF, LR-GCCF, NIA-GCCN, Light GCN and DGCF. It surpasses non-graph methods
on the three datasets with relative improvements of +18% NDCG@20 on Yelp-2018 or 21% NDCG@20 on
Amazon-book vs Mult-VAE, which shows the interest of using dedicated architectures for graph learning.
Furthermore, ITEM outperforms the recent NeuraNDCG (Pobrotyn & Bialobrzeski| (2021))), e.g. +0.89
R@20 and 4+0.65 NDCG@20 on Yelp-2018, as well as SGL-ED, e.g. +0.55 R@20 and +0.23 NDCG@20 on
Amazon-Book, and the advanced sampling method MixGCF (Huang et al|(2021))), e.g. +2.45 R@20 and
+2.64 NDCG@20 on MovieLens-1M. Despite the limitations of MP-GNNs (Alon & Yahav| (2020)); |Chen
et al.|(2019)), ITEM shows competitive results against the hybrid model SimpleX (Mao et al| (2021))) with
better results on two of three datasets with +1.78 R@20 on MovieLens-1M and +0.38 R@20 on Yelp-2018
with the best state of the arts results.

4.3.2 Inductive state-of-the-art comparison:

MP-GNNs can be easily evaluated in an inductive setup, unlike matrix factorization models or random walk
embedding methods. MP-GNNs have a strong ability to generalize to users not seen during the training
phase with the propagation and update process. We show that our ITEM method significantly boosts
the performance of MP-GNNs in the inductive setup. We compare ITEM using Light GCN (He et al.
(2020)) to state-of-the-art methods, and show that on the three datasets, ITEM sets new state-of-the-
art performances for inductive recommendation. It outperforms Mult-VAE (Liang et al.| (2018)) which is
designed for the inductive setting, by +3.79 NDCG@20 on MovieLens-100k, +1.4 NDCG@20 on Yelp-
2018 and +0.69 NDCG@20 on Amazon-book. We compare ITEM to different GNNs that were optimized
using the BPR loss, this is further studied in Tab. 1 of supplementary where we show the interest of the
well designed loss of ITEM vs the standard BPR loss. Finally ITEM outperforms MixGCF (Huang et al.
(2021))) on the three datasets, e.g. on MovieLens-100k with +1.77 R@Q20 or +1.58 R@20 on Yelp-2018 as well
as the ranking loss function NeuraNDCG (Pobrotyn & Bialobrzeskil (2021)), e.g. +1.54 R@20 and +1.08
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Table 2: Comparison of ITEM vs state-of-the-art methods on three inductive benchmarks. Best results in
bold.

Moethod MovieLens-100K ‘ Yelp-2018 ‘ Amazon-Book
R@20 N@20 | R@20 N@20 | R@20 N@20
Mult-VAE (Liang et al| (2018)) 30.14 2828 | 10.15 818 | 10.86 9.2
GCN (Kipf & Welling| (2016)) 28.74 2768 | 7.34 5.76 8.85 7.61
GAT (Velickovié et al| (2017)) 31.01 2892 | 9.04 7.32 9.88 8.17
GIN (Xu et al[(2018)) 29.71 2758 | 7.34 5.76 9.62 8.05
Light GCN (He et al. (2020)) 30.79 2973 | 7.88 6.34 9.56 8.02
NeuraNDCG (Pobrotyn & Bialobrzeski (2021)) 31.12  30.07 | 9.14 7.62 9.54 8.19
MixGCF (Huang et al. (2021)) 32.07 3062 | 9.85 821 | 10.11  9.63
ITEM (ours) 33.84 32.63 | 10.54 8.70 | 11.03  9.89

Table 3: Comparison of ITEM vs state-of-the-art methods on three transductive benchmarks. Best results
in bold.

Method MovieLens-1M ‘ Yelp-2018 ‘ Amazon-Book
R@20 N@20 | R@20 N@20 | R@20 N@20
MF-BPR (Rendle et al|(2012)) 21.53 2175 | 5.49 4.45 3.38 2.61
CML (Hsieh et al. (2017)) 1730 1563 | 6.22 5.36 5.22 4.28
ENMF (Chen et al. (2020al)) 2315 2069 | 6.24 5.15 3.59 2.81
DeepWalk (Perozzi ct al.| (2014)) 13.48  10.57 | 4.76 3.78 3.46 2.64
LINE (Tang et al|(2015)) 23.36 2226 | 5.49 4.46 4.10 3.18
Node2Vec (Grover & Leskovec, (2016)) 14.75  11.86 4.52 3.60 4.02 3.09
Mult-VAE (Liang et al. (2018)) 29.23 2384 | 6.41 4.97 4.46 3.33
NGCF (Wang et al. (2019)) 25.13  25.11 5.79 4.77 3.44 2.63
LR-GCCF (Chen et al. (2020b)) 2231 2124 | 561 3.43 3.35 2.65
NIA-GCN (Sun et al (2020)) 23.59 2242 | 5.99 4.91 3.69 2.87
Light GCN (He et al. (2020)) 25.76 2427 | 6.28 5.15 4.23 3.17
DGCF (Wang et al. (2020)) 26.40  25.04 | 6.54 5.34 4.22 3.24
SGL-ED ( 26.34 2487 | 6.75 5.55 4.78 3.79
SimGCL ( 2022 27.55 2501 | 721 6.01 4.90 3.98
XSimGCL (Yu et al. (2022)) 27.94 2536 | 7.33 6.06 5.02 4.11
NeuraINDCG (Pobrotyn & Bialobrzeski| (2021)) 29.45  25.13 | 6.50 5.23 4.38 3.27
MixGCF (Huang et al. (2021)) 27.35 2456 | 7.7 5.84 4.51 3.41
ITEM (ours) 29.80 27.20 | 7.39  5.88 | 5.23  4.02

NDCG@20. Although message-passing models face certain challenges (Alon & Yahav| (2020)); |(Chen et al.|
(2019)), when evaluated with the proposed inductive protocol they outperform state-of-the-art methods and
exhibit fast training and strong generalization capabilities for unseen users during the training phase.

4.4 Ablation studies

In this section we perform ablation studies for the two elements of ITEM. We first study the impact of using
Litem vs the BPR loss in Table [l We then study the impact of the sampling in Table [5}
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4.4.1 Ranking loss vs BPR

In Table |4| we compare in the same settings the BPR loss (Rendle et al.| (2012))) and our proposed ranking-
based loss Lirgm on three transductive benchmarks, and show that for all four considered architectures,
ITEM outperforms the BPR loss. Using our loss in combination with Light GCN (He et al.| (2020)), the
state-of-the-art GNN for transductive datasets, increases relative performances from +10.05% NDCG®@20
on MovieLens up to +22.1% NDCG@20 on Amazon-book. We can also note that when using ITEM more
expressive GNNs; e.g. GAT (Velickovi¢ et al.| (2017))), perform better than Light GCN on MovieLens-1M
and Amazon-book. With GAT the relative improvements range from +18.55% NDCG@20 on MovieLens-
1M up to +54.9% NDCG@20 on Amazon-book. Overall, Table [4] shows the huge benefits of optimizing a
ranking-based loss rather than a prozy loss. Table 1 of supplementary shows similar results for the inductive
benchmarks. In Table 1 of supplementary we show that the best performing architectures on the inductive
setting are not the same as in the transductive setting.

Table 4: Comparison of our ranking-based loss ITEM vs the BPR loss (Rendle et al.| (2012)), using different
GNN architectures on 3 transductive benchmarks. For each architecture best results is bold, best overall
results is underlined.

Method MovieLens-1M ‘ Yelp-2018 ‘ Amazon-book
R@20 NDCG@20 | R@20 NDCG@20 | R@20 NDCG@20
ZBPR 27.26 22.75 5.21 4.04 3.48 2.55
SEITEM 29.96 25.62 6.81 5.33 4.89 3.70
%Improv. +9.90% +12.62% +30.7% +31.9% +40.5% +45.1%
BPR 26.99 22.28 5.52 4.32 3.42 2.54
Z,
5 Lirem 29.94 25.60 6.87 5.38 5.24 3.94
%Improv. +10.93% +14.90% +24.5% +24.5% +53.2% +55.1%
HBPR 27.50 22.96 5.08 3.89 341 2.53
g LITEM 30.43 27.22 7.03 5.47 5.20 3.92
%Improv. +10.65% +18.55% +38.4% +40.6% +52.5% +54.9%
ZBPR 25.76 24.27 6.26 5.14 4.23 3.17
SCITEM 29.69 26.71 7.25 5.70 5.09 3.87
= %Improv. +15.27% +10.05% +15.81% +10.89% +20.3% +22.1%

4.4.2 Negative sampling

We show in Table [5| ablation studies for the impact of our PPR sampling strategy. On both datasets our
sampling strategy boosts the performances of ITEM, e.g. +3.2% NDCG@20 relative improvement on Yelp-
2018 and +3.9% NDCG@20 on Amazon-book. We also use the MixGCF (Huang et al.| (2021))) negative
sampling with ITEM, however due to its high computation overhead, we cannot sample many negatives. This
leads to MixGCF negatively affecting performances on Yelp-2018 and Amazon-book, e.g. -0.34 NDCG@20
on Amazon-book.

4.5 Model analysis

4.5.1 Efficiency comparison

10



Under review as submission to TMLR

Table 5: Ablation study of the components of ITEM. The loss: v for Lirgm, BPR otherwise (X). And
sampling: random negative sampling vs MixGCF (Huang et al| (2021)) vs the ITEM sampling Eq.

(PPR).With Light GCN (He et al.|(2020)) on transductive benchmarks.

Litmn MixGCF  PPR (ours) Yelp-2018 ‘ Amazon-book
R@20 NDCG@20 | R@20 NDCG@20
X X X 6.26 5.14 4.23 3.17
v X X 7.25 5.70 5.09 3.87
4 v X 7.21 5.71 4.86 3.53
v X v 7.39 5.88 5.23 4.02

Table 6: Computational cost on Yelp-2018 with
In Table [6] we compare the training times of Light GCN Light GCN backbone.

(He et al| (2020)) using the BPR loss, MixGCF and

ITEM on the Yelp-2018 dataset until convergence. We 1041104
train these 3 variants with a Quadro RTX 5000 GPU.

‘ Time / epoch Training Time

Light GCN-BPR takes 10h26 before convergence on the BPR 53s 10h26
Yelp-2018 dataset, which contains 1.5 million interac- MixGCF 145s 6h07
tions. With MixGCF, the convergence time is reduced 1TEM (ours) 12.3s 1h43

to approximately 6 hours, as hard negative sampling

accelerates convergence, despite the time per epoch being more than twice as long due to the online gen-
eration of the hard negatives examples. Finally, ITEM leads to model convergence in just 1 hour and 43
minutes. ITEM performs far fewer iterations per epoch by building batches of negative and positive items
per user to approximate the NDCG metric.

4.5.2 Impact of 7

We show in Figs. [da] and [4b] the impact of 7 in Eq. (2)) on the R@20 and NDCG@20 when optimizing ITEM
on MovieLens for the inductive protocol. We can see on both figures that our method is robust for a wide
range of 7. Specifically, for values of 7 in range 0.1 to 2.0, ITEM outperforms the BPR loss. Also note that
using a finer selection of 7 could lead to better results than reported in Table [2] e.g. using 7 = 0.3 leads
to a R@20 of 33.52 in Fig. [4a] against 33.13 for the value of 7 used in Table [2| (note that in Table 2] ITEM
additionally uses the PPR sampling).

R@20
NDCG@20

---- BPR 29 ---- BPR .
24 1 1 1 1 ! ! !
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
T T
(a) R@20 vs 7 in Eq. . (b) NDCG@20 vs T in Eq. .

Figure 4: 7 in Eq. vs R@20, NDCG@20 on MovieLens-100k (inductive) with LightGCN (He et al.|

o20))

11
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4.6 Qualitative results

In the qualitative results presented in Fig. [5] a comparative analysis between our approach and the BPR loss
baseline reveals the superior ranking achieved by ITEM. This enhanced ranking is not solely attributable to
optimizing the target metric directly during training; it is also a result of the efficacy of our hard negative
sampling strategy. This strategy contributes to a more effective differentiation between negative and positive
instances, further refining the ranking quality. Supplementary B.6 includes a detailed listing of the top-20
results for comprehensive examination.

rank 1 rank rank 3 rank 4 rank 5
UF AMEN ) = .

User query

477 - % THBORE
O : S Rt

ITEM

BPR

Figure 5: Qualitative results on MovieLens-100k. We compare the ranking obtained using Light GCN trained
with the baseline BPR loss (bottom row) to the ranking obtained using ITEM (top row). Positive elements
are highlighted in green, while negative elements are indicated in red.

5 Conclusion

In this study, we introduce the ITEM framework to optimize GNNs for the top-k recommendation task. By
incorporating ranking losses used in the image retrieval and directly optimizing item ranking for a given user,
we demonstrate the limitations of the BPR loss, a widely-used pairwise loss within the GNN community.

Our proposed list-wise loss requires sampling a substantial number of hard negative items for each user,
which is a challenging task. Unable to employ online methods such as MixGCF (Huang et al. (2021))), we
devised an offiline strategy to sample negatives, relying on the Personalized PageRank score. It leverages
the graph structure of a local neighborhood around a user: an item with a high PPR score for a user will be
more challenging to distinguish for an MP-GNN, and enhance the learning performance.

Furthermore, we expanded the evaluation of GNNs by benchmarking on an inductive user-split protocol,
which gauges the generalization capacity of GNNs. In both inductive and transductive protocols, we show-
cased the effectiveness of our ITEM learning framework, exhibiting improvements over the conventional BPR
loss function, even compared to standard GNN training-enhancements methods such as SGL-ED, SIMGCL,
or MixGCF. Our findings demonstrate that using ranking losses to enhance the training of MP-GNNs is
very a promising research direction.
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A Method

In this section we define several ranking-based metrics used to evaluate recommender systems in Ap-
pendix In Appendix we show how to use the rank approximation of Eq. (1) of main paper
to define other differentiable ranking-based losses.

A.1 Metric definition

We remind here the definition of other well-known ranking-based metrics, used to evaluate recommender
systems:

# of positive in the top-k 1
k= = H(k —rank
ha min(|V], k) min(|V*], k) 2 H(k—rank(p)) (5)
peVt
1 rank™(p) . n
AP = v Z rank(p) | with rank™(p) = Z H(s; — sp) (6)
peVt jevt
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A.2 Other ranking based losses

In this section using the differentiable rank approximation of Eq. (1) of the main paper we define other
differentiable ranking-based losses. In Appendix [B.4] we show the choice of the metric used during training
impacts the evaluation metric.

The differentiable Average Precision loss is defined as follows (Qin et al. (2009); Brown et al. (2020)):

1 ki
Lot =1— Z rants (p)’ with rank? (p,7) = 1 + Z o(8j — 8p,T) (7)

jevt

Note that we use the approximation of Eq. (1) of the main paper to approximate both rank and rank™,
using the same temperature T parameter.

Finally, Patel et al.| (2022)) defines an approximation the RQk as follows:

1 1
RQE 1— — E - E _ k. *
‘CITEM |’C| &= min(|V+|, k) O'(k ran é(p)vT ) (8)

peEVT

In (Patel et al.| (2022)) the loss uses different level of recalls, i.e. for k in K, it is necessary to provide enough
gradient signal to all positive items. To train Eﬁ%ﬁm it is also necessary to approximate a second time the
Heaviside function, using a sigmoid with temperature factor 7*. Note that one other interesting property of

both Lirey and E?TPEM is that they only require to select one hyper-parameter, 7.

B Experiments

B.1 Datasets

We validate our method on four recommendation datasets. We use the latest small MovieLens-100k dataset
(Harper & Konstan| (2015))) in the inductive settings. It features relations between users and movies, where
users give ratings to different movies. For implicit feedback, we keep relations with ratings of 3 or higher.
We use the 2018 edition of the dataset from the Yelp challenge (Asghar| (2016)). Rated items are bars and
restaurants, we follow (Wang et al.| (2019); He et al.[(2020])) to get implicit feedback. We also evaluate ITEM
on the Amazon-Book dataset from Amazon-review, we use the same pre-processing as NGCF (Wang et al.
(2019)) and LightGCN (He et al.| (2020)). For the three datasets we apply a pre-processing to make sure
that we have the same items for the training and for the evaluation. Tab. 1 in main paper presents the
datasets statistics.

B.2 Implementation details

All our models are trained using the Adam optimizer, with learning rate in {0.01, 0.001}. On the inductive
setting, we use 7 = 1.0, and 7 = 1.5 on the transductive setting. We use sum-pooling and embeddings of
dimension 200 for the inductive setting on Yelp and MovieLens-100k and embeddings of dimension 64 for
Amazon-Book, sum-pooling — except for Light GCN (He et al.| (2020)) with mean-pooling — and embeddings
of dimension 64 for the transductive setting. On both settings, we sample 5 positives and 200 negatives for
ITEM for Yelp2018, MovieLens-100k and MovieLens-1M and 600 negatives for AmazonBook. We use, on
both protocols, batch sizes of 512 for MovieLens-100k, MovieLens-1M, and 2048 for Yelp-2018 and Amazon-
book. For the inductive setting, we found experimentally that learning user embeddings during training is
harmful for the generalization of the GNNs to new users, so for training and evaluation users’ embeddings
are inferred using message passing only. For GIN (Xu et al|(2018)), GAT (Velickovié et al.| (2017))) and GCN
(Kipf & Welling| (2016])) we use the framework Pytorch Geometric (Fey & Lenssen| (2019)) to implement the
models.
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Table 7: Comparison of our ranking-based loss ITEM vs the BPR loss (Rendle et al.| (2012)), using different
GNN architecture on 3 inductive benchmarks. For each architecture best results is bold, best overall results
underlined.

Method MovieLens-100k ‘ Yelp-2018 ‘ Amazon-book
R@20 NDCG@20 |  R@20 NDCG@20 |  R@20 NDCG@20
_ BPR 28.74 27.68 7.34 5.76 8.85 7.61
S Lire 32.24 31.44 10.06 8.35 10.23 8.82
%Improv. +12.2% +13.5% +37.1% +45% +15.6% +15.9%
BPR 29.71 27.58 8.25 6.74 9.62 8.05
%cITEM 32.00 29.87 10.57 8.79 13.05 11.59
%Improv. +7.7% +8.3% +28.5% +30.4% +35.7% +44.0%
BPR 31.01 98.92 9.04 7.32 9.88 8.17
-
= Lore 32.04 30.54 11.43 9.58 11.70 10.00
%Improv. +3.3% +5.6% +26.4% +30.9% +18.4% +22.4%
_ BPR 30.79 29.73 7.88 6.34 9.56 8.02
S Lrren 33.13 32.07 9.88 8.32 10.66 9.52
= %Improv. +7.6% +7.9% +25.4% +31.2% +11.5% +18.7%

B.3 Ablation studies

B.3.1 Inductive loss comparison

In Table[7| we compare in the same settings the BPR loss (Rendle et al.| (2012)) and our proposed ranking-
based loss ITEM. We show that on the three inductive benchmarks, and across all four considered archi-
tectures, ITEM outperforms the BPR loss. On MovieLens-100k and with the best performing architecture,
Light GCN (He et al.|(2020))), our loss outperforms the BPR loss with +2.34 R@20 and +2.34 NDCG@20. The
relative improvements are also significant, ranging from +3.3% NDCG@20 for GCN, up to 12.2% NDCG@20
for GCN. On Yelp-2018 which is a large scale dataset, GAT is the best performing architecture. ITEM out-
performs the BPR loss by +2.39 RQ20 and +2.26 NDCG@20. We can point out the considerable relative
improvements on Yelp-2018, which are always larger than 25% and reaching 45% over GCN for NDCG@20.
Finally on Amazon-book the best overall results are obtained with GIN using ITEM. It outperforms BPR
and GIN by +3.4 R@Q20 and 3.5 NDCG@20 which are huge relative improvements on Amazon-book our
most large scale dataset. Note that accros the three considered datasets different GNN architectures work
best, Light GCN (He et al.| (2020)) on MovieLens-100k, GAT (Velickovi¢ et al.[(2017))) on Yelp-2018 and GIN
(Xu et al|(2018)) on Amazon-book. Overall, Table [7| - similarly as Tab. 4 in the main paper — shows the
interest of optimizing a ranking-based loss, LiTgMm, rather than the BPR loss, i.e. a prozy loss.

B.3.2 Negative sampling

In Table |8 we show the impact of our PPR negative sampling strategy in the inductive setting. We show
that on the three inductive benchmarks using our sampling strategy boost the performances of our trained
GNN model over the random negative sampling (RNS), e.g. +0.66 R@20 and +0.4 NDCG@20 on Yelp-2018.
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Table 8: Comparison of Random Negative Sampling (RNS) vs the sampling method in ITEM (PPR). We
use a LightGCN (He et al.| (2020)) backbone for the three inductive benchmarks.

Loss  Samplin MovieLens-100k Yelp-2018 Amazon-book
PERS  Ra2o NDCG@20 R@20 NDCG@20 R@20 NDCG@20
r RNS 33.13 32.07 9.88 8.32 10.66 9.52
"TPMPPR (ours)  33.84 32.63 10.54 8.70 11.03 9.89

B.4 Model analysis
B.4.1 Metric optimization

In Table @ we compare the benefits of optimizing different ranking-based losses on MovieLens-100k (in-
ductive) using a Light GCN model. Specifically, we compare the optimization of AP, R@k and NDCG, and
include the BPR loss as a baseline. First we can note that on each metric all our ranking-based losses
outperform the BPR loss. We can see that, for each metric, using its smooth approximation to optimize a
GNN during training yields a higher score on this target metric. Lap, yields the best score of 19.05 AP,
Lrag, yields the best score of 33.37 R@20 (outperforming the results reported in Table @ Finally Lnpea,
yields the best score for both NDCG and NDCG@20 of 53.55 and 32.07 respectively.

Table 9: Performances of different ranking-based losses on the MovieLens-100k inductive benchmark, and
the BPR loss |Rendle et al.| (2012)) baseline. The model used is Light GCN |He et al.| (2020]).

Loss AP NDCG R@20 NDCG@20
BPR 16.56 50.68 29.59 28.24
L5 19.05 53.48 32.61 31.91
LIRSk, 18.57 52.93 33.37 31.82
LitEM 18.94 53.55 33.13 32.07

B.5 Qualitative Results

We display on Fig. [] the top-20 items retrieved when using ITEM on MovieLens-100k, and on Fig. [7] the
top-20 items retrieved when using the baseline BPR loss (Rendle et al.|(2012))). Both models are Light GCN
(He et al.| (2020)). We can observe qualitatively that ITEM brings more positive results, and leads to a
better ranking than the BPR loss.
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Figure 6: Top-20 results on MovieLens-100k (inductive) when using Light GCN and ITEM.
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Figure 7: Top-20 results on MovieLens-100k (inductive) when using Light GCN and BPR loss.
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