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Abstract
Human spatial attention conveys information about the regions of scenes that1

are important for performing visual tasks. Prior work has shown that the spatial2

distribution of human attention can be leveraged to benefit various supervised3

vision tasks. Might providing this weak form of supervision be useful for self-4

supervised representation learning? One reason why this question has not been5

previously addressed is that self-supervised models require large datasets, and6

no large dataset exists with ground-truth human attentional labels. We therefore7

construct an auxiliary teacher model to predict human attention, trained on a8

relatively small labeled dataset. This human-attention model allows us to provide9

an image (pseudo) attention labels for ImageNet. We then train a model with10

a primary contrastive objective; to this standard configuration, we add a simple11

output head trained to predict the attentional map for each image. We measured the12

quality of learned representations by evaluating classification performance from13

the frozen learned embeddings. We find that our approach improves accuracy of14

the contrastive models on ImageNet and its attentional map readout aligns better15

with human attention compared to vanilla contrastive learning models.16

1 Introduction17

Figure 1: Illustration of the proposed method of aligning
model spatial attention to humans attention using a teacher
auxiliary model.

Deep learning models have made sig-18

nificant progress and obtained notable19

success on various vision tasks. Despite20

these promising results, in many appli-21

cations humans continue to perform bet-22

ter than deep learning models. A no-23

table reason is that deep learning mod-24

els have a tendency to learn “short-cuts”,25

i.e., giving significance to physically26

meaningless patterns or exploiting fea-27

tures which are predictive in some set-28

tings, but not causal [12]. Examples29

include focusing on less significant fea-30

tures such as background and textures31

[8]. These models yield representations32

that are less generalizable and lead to33

models that are highly sensitive to small34

pixel modulations [22].35

Human vision on the other hand is known to be much more robust and generalizable. One major36

difference between human and machine vision is that humans tend to focus on specific regions in37

visual scene [24]. These locations often reflect regions salient or useful to perform a specific vision38
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task. Machines, instead, initially place equal significance to all regions. A natural question is: will it39

be beneficial if machine vision models is guided by human spatial attention?40

Human spatial attention has been shown to benefit computer vision models in supervised tasks, such41

as classification [17]. Yet, it is still a question whether adding a form of weak supervision in the42

form of human spatial attention could similarly benefit self-supervised models. Self-supervised43

models typically need a large amount of data to yield good representations. To test if training weakly44

supervised models with human spatial attention cues, we will need to collect a large volume of human45

spatial attention labels, which is a very expensive process that requires either using trackers to record46

eye movements [32, 4, 23] or asking humans to highlight regions that they attend to [15, 16]. This47

process is prohibitively tedious and costly for datasets with millions of examples.48

In this work, we explore utilizing human spatial attention as a form of weakly-supervised represen-49

tation learning for models trained with a contrastive objective. Inspired by knowledge distillation50

and self-training ideas using teacher models [26, 28], we address the challenge of obtaining spatial51

attention labels on large scale image datasets by using machine pseudo-labeling. We train a teacher52

model on a set of limited ground truth human spatial attention labels. We then use this teacher model53

to generate spatial attention pseudo-labels for the larger ImageNet benchmark. We are then able to54

utilize the generated spatial attention maps in the contrastive models, and discover that this approach55

yields representation highly predictive of human spatial attention. Further, we find that the learned56

representations are better as measured by higher accuracy of the ImageNet classification downstream57

task. More interestingly, we find that the gains from using teacher models to provide pseudo labels58

are larger than using the limited ground truth human labels directly when training contrastive models.59

2 Related work60

Contrastive learning: Contrastive learning has gained popularity in the past few years for self-61

supervised and semi-supervised representation learning. In general, contrastive learning aims to62

learn similar representations for similar data pairs and different representations for different pairs.63

SimCLR [5] utilized MLP projection heads and strong data augmentation for constructing similar64

pairs and demonstrated great gains in image classification downstream tasks. Zbontar et al. [30] used65

a different formulation by encouraging the empirical cross correlation of the representations of two66

versions of augmented mini-batch to be close to identity. He et al. [10] further proposed building67

large dictionaries for self-supervised learning (MOCO), and Chen et al. [6] achieved better results on68

image classification and object detection tasks when combining advances from SimCLR and MOCO.69

Human spatial attention data collection: Human visual system has developed an attention mecha-70

nism that focuses on regions in the visual space that are of interest or highly informative to the vision71

task ([7, 27]). Eye trackers are often used to collect human spatial attention [32, 4, 23]. Many gaze72

data sets ([2]) have already been collected with these eye trackers, where users are either asked to73

view the image/video freely, or conduct specific tasks like classification or object detection. Besides74

eye trackers, human spatial attention data can also be collected via mouse tracking [15, 16], e.g., users75

see a blurry version of an image, and then click on regions they want to see more clearly, mimicking76

human’s peripheral vision based on neurophysiological and psychophysical studies [11, 16]. Salicon77

[15] dataset is one of the largest spatial attention datasets, contains around 20K images, each with78

attention labels from 50-60 participants, via a mouse tracking system, under free viewing setting .79

Yet, this data is still orders of magnitude smaller than those needed to train self-supervised models.80

Spatial attention of computer vision models: Spatial attention in neural networks can be mainly81

categorized into post-hoc attention like class activation map (CAM) ([31]), and trainable attention82

(e.g., Wang et al. [25], Jetley et al. [13], Guo et al. [9]). Post-hoc spatial attention methods have83

been proposed to estimate regions in the image that are important or give rise to model decisions,84

often for model interpretation. In supervised settings where classification labels are known, the85

simplest and most direct method is class activation map (CAM) [[31]]. CAM uses class labels to86

extract the feature map that is most informative about the true class of an image. Grad-CAM [21]87

generalizes the CAM to apply to any model with any downstream task. ContraCAM [18] applies88

Grad-CAM assuming downstream task of contrastive learning, thus allowing computing spatial89

attention maps with no class label supervision. Mo et al. [18] proposed to utilize the spatial attention90

information learned from ContraCAM to design data augmentation strategies to discourage contextual91

and background biases in a scene. Yet, those augmentation are complex and ad-hoc. Here we propose92

an end-to-end framework to predict spatial attention targets rather than using spatial attention to93

design augmentation policies. Lai et al. [17] conducted experiments to use human spatial attention94
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to supervise model attention, for three tasks (salient object segmentation, video action recognition95

and fine-grained image classification) and demonstrated that human spatial attention is beneficial.96

However, it still remains a question whether such benefits could be extended to contrastive learning.97

Teacher model pseudo-labeling: Previous work on knowledge distillation and machine self training98

has demonstrated that machine teaching machines approaches may address the challenge of labeling99

large datasets. In image classification, Xie et al. [28] demonstrated that training a model to classify100

images then use that model to provide pseudo-labels for larger data improved classification perfor-101

mance. Similar idea is applied in West et al. [26] for language models. Inspired by these successes,102

we train a teacher model on smaller human attention data and use this model to generate new spatial103

attention pseudo labels for ImageNet benchmark (see Figure 1).104

3 Methods105

We first train a spatial attention teacher model on Salicon data [15], then use the teacher-generated106

attention to predict pseudo human attention labels from ImageNet dataset. We then use the pseudo107

attention labels as targets of the contrastive learning’s spatial-attention training objective. Our teacher108

model follows the architecture of [19], but is simplified with less channels/layers. Whereas existing109

attention prediction models [14, 19, 1] finetune pretrained classification backbones, we instead use110

randomly initialized backbone to avoid any leak of class label information111

As shown in Figure 1, the proposed model consists of two branches: the contrastive branch and the112

spatial attention branch. The contrastive branch is the same as the original SimCLR method, which113

applies augmentations to image x to get different variants xi and xj , and learns the representation hi114

and hj via a feature extractor backbone network (we use ResNet-50 ), then use a projection head to115

map hi/hj to zi/zj , where the contrastive loss is applied.116

For the spatial-attention branch, we apply a global average pooling to the intermediate outputs of the117

model backbone, i.e. the last three blocks of the Resnet backbone, including both low level and high118

level features. Then we select the intermediate representations corresponding to the max channel and119

resize with bilinear interpolation to the image resolution. Finally we stack the representations together,120

pass them into a linear readout layer, and use the output as our final spatial attention prediction mp.121

We use the pseudo labels from the teacher model as target spatial attention mt, and then optimize the122

network to bring spatial attention output mp close to mt using KL divergence loss. In order to cover123

more human attention details, we also generate pseudo fixation points from the pseudo attention maps124
1 and use normalized scanpath saliency (NSS) loss [3] as an additional loss. We hypothesize that125

this method regularizes the training of the feature extractor backbone rather than explicitly enforce126

the network to generate masked representations that match the spatial attention maps. Note that for127

attention branch, there is no augmentation applied to each image x, since human attention is not128

invariant to transformation (e.g., a human looking at a cropped image may attend to different region129

compared to a consistent crop of human attention map of the original image).130

4 Results131

4.1 Spatial attention guided models are highly predictive of human attention132

In this section, we explore whether the use of auxiliary teacher model to provide spatial attention133

pseudo labels on ImageNet better aligns contrastive model’s attention with human attention. We134

define model spatial attention here as the ability to predict spatial attention mask from the model135

backbone features by a simple readout layer proposed in Section 3.136

We then trained two ResNet-50 backbones using the SimCLR objective from Chen et al. [5]. We137

added additional attention losses as discussed in Section 3. For the first model (baseline), we placed a138

stop gradient operation between the backbone features and the attention projection head to prevent139

attention information from informing the learned features, whereas for the second model (attention140

guided) we allowed the learned attention gradients to flow back to the backbone.141

We evaluated the degree the predicted attention maps is aligned with human attention by computing142

the Pearson’s correlation between the model predicted attention and a human attention dataset [23]143

1We first extract the point with highest value in current attention map, then generate a new attention map by
subtracting a Gaussian blur around the extracted point from the current attention map. The process is repeated
with the new attention map until the maximal value of the attention map is smaller than a threshold.
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Figure 2: a) Examples comparing spatial attention maps predicted by different models vs ground
truth human attention data on OSIE dataset [23]. b) Distribution of correlation coefficients between
attention maps predicted by models vs ground truth human maps on OSIE dataset [23].

collected by mobile eye tracker [23] on OSIE images[29]. Our results are summarized in Figure 2. We144

find that the baseline model is positively correlated with human attention (ttest: ρ = 0.07 p < 0.001)145

suggesting that the contrastive loss produces features that are predictive of human attention to some146

extent. Yet, the correlation was generally close to 0 and explains only 0.5% of data variance. The147

correlation of the attention guided model with human attention is much stronger (ttest: ρ = 0.48148

p < 0.001) than the baseline model (See Fig 2a for qualitative examples and Fig 2b for quantitative149

analysis. Two samples ttest: p < 0.001), and thus more faithfully reflecting human visual attention. 2150

4.2 Spatial attention guided models are more accurate than baselines151

Table 1: ImageNet Top-1 classification ac-
curacy for different models (mean ± SE
for 3 seeds, except for * 1 seed).

Model Accuracy (%)
Contrastive 67.61± 0.04

Contrastive attn. teacher 68.23± 0.08

Contrastive attn. augmented 56.35∗

Supervised 75.91± 0.10

Supervised attn. teacher 76.08± 0.03

We evaluate the quality of the representations learned152

by spatial attention guidance framework using the typ-153

ical contrastive learning evaluation criteria: fitting an154

ImageNet [20] linear classifier on top of the frozen rep-155

resentation (in practice we place stop gradient at the156

end of the backbone and train the classifier concurrently157

while training the backbone). We compute Top 1 accu-158

racy on ImageNet validation set and compare the results159

with baselines. As shown in Table 1, we observe around160

0.6% accuracy gain on ImageNet compared to vanilla161

SimCLR. We further explore an alternative way of in-162

corporating human attention data. Rather than using pseudo attention labels on ImageNet from163

the teacher model, we add Salicon data to to the training data, and directly predict attention labels164

from Salicon data (though we use a different readout layer consists of convolution and transpose165

convolution layers instead of the simple linear layer). Interestingly, we find this method to lead to166

worse performance.167

To investigate whether the spatial attention guidance framework benefits supervised models in the168

same way, we conducted the same experiments for supervised models. Supervised models similarly169

benefit from this framework, yet the gain is limited compared to the contrastive models perhaps due170

to the higher accuracy the supervised model achieves compared to the contrastive model.171

5 Conclusion172

In this work, we explored using human spatial attention to aid training of contrastive learning models.173

We overcome the challenge of obtaining attention labels for large dataset by utilizing a teacher174

model trained on limited ground truth human attention labels to provide pesudo-attention labels for175

ImageNet. Our results demonstrate that contrastive models trained with those pseudo-attention labels176

become more predictive of human attention and we obtain better representations.177

2Note that the teacher model is trained on Salicon data with human attention ground-truth collected via
mouse tracking [15], while the evaluation data set is OSIE image set with attention data collected directly from
mobile eye tracker [23], thus it more faithfully represent human spatial attention
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