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Abstract

Large language models (LLMs) have proven to
be highly effective across various natural lan-
guage processing tasks. However, their large
number of parameters poses significant challenges
for practical deployment. Pruning, a technique
aimed at reducing the size and complexity of
LLMs, offers a potential solution by removing
redundant components from the network. De-
spite the promise of pruning, existing methods
often struggle to achieve substantial end-to-end
LLM inference speedup. In this paper, we intro-
duce SLEB, a novel approach designed to stream-
line LLMs by eliminating redundant transformer
blocks. We choose the transformer block as the
fundamental unit for pruning, because LLMs ex-
hibit block-level redundancy with high similar-
ity between the outputs of neighboring blocks.
This choice allows us to effectively enhance the
processing speed of LLMs. Our experimental
results demonstrate that SLEB outperforms previ-
ous LLM pruning methods in accelerating LLM
inference while also maintaining superior perplex-
ity and accuracy, making SLEB as a promising
technique for enhancing the efficiency of LLMs.
The code is available at: https://github.
com/jiwonsong—-dev/SLEB.

1. Introduction

Large language models (LLMs), such as GPT-3, OPT, and
LLaMA demonstrate exceptional proficiency in a variety of
natural language processing (NLP) tasks and have become
key components in applications like chatbots and question-
answering systems (Brown et al., 2020; Zhang et al., 2022;
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Figure 1. Typical LLM architecture

Chowdhery et al., 2022; Touvron et al., 2023a;b). However,
their substantial number of parameters creates significant
challenges in deploying these models for real-world ser-
vices, especially due to the increased memory consumption
and computational demands. This limitation restricts their
widespread use. Consequently, it is critical to develop tech-
niques that improve the compactness and processing effi-
ciency of LLMs while preserving their linguistic prowess.

Network pruning is a technique aimed at reducing the size
and complexity of neural networks by eliminating redun-
dant weight parameters (LeCun et al., 1989; Hassibi et al.,
1993; Han et al., 2015). Its application in LLMs has been
somewhat limited, primarily due to challenges that arise in
managing sparse matrices (Frantar & Alistarh, 2022; Sun
et al., 2023; Frantar & Alistarh, 2023; Zhang et al., 2024).
This complexity becomes particularly evident when using
modern GPU hardware, as these systems are typically opti-
mized for operations involving dense matrices (Wang, 2020;
Shi et al., 2020).

In the realm of LLMs, a significant similarity in output is
observed among successive transformer blocks (Din et al.,
2023; Liu et al., 2023). This similarity arises because each
transformer block incrementally contributes to the residual
path spanning the entire LLM. Figure 1 depicts the typi-
cal architecture of conventional LLMs, characterized by a
continuous stack of transformer blocks. A key aspect of
LLM computation is the residual path that traverses the
entire network, a feature introduced to stabilize the back-
propagation process during training. Consequently, each
transformer block contributes its computational outputs, de-
rived from both the attention mechanisms and feed-forward
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Figure 2. Overview of previous pruning methods, 2:4 pruning and channel-wise (a.k.a. row/column-wise) pruning, and proposed SLEB

layers, to this residual path. This design feature results in a
considerable degree of output similarity between consecu-
tive transformer blocks, leading to redundancy within the
LLMs.

In this paper, we propose SLEB, a novel approach designed
to streamline LLMs by identifying and eliminating redun-
dant transformer blocks. Figure 2 compares the proposed
approach with previous pruning methods. SLEB is tailored
to refine LLMs through the strategic removal of redundant
transformer blocks, thereby effectively aligning speedup
with the pruning ratio. The fundamental principle behind
SLEB is that the careful elimination of redundant trans-
former blocks can be achieved without affecting the text
generation capabilities of LLMs. By targeting these spe-
cific redundant elements within the LLM’s architecture,
SLEB seeks to provide a more efficient pruning approach.
It aims to overcome the challenges typically associated with
traditional network pruning, particularly in enhancing the
acceleration of LLMs.

2. Motivation
2.1. Pruning

Standard LLMs are designed as shown in Figure 1, with a
series of identically structured transformer blocks arranged
sequentially. Each transformer block in these models con-
sists of attention and feed-forward layers. The operations
in both the linear and feed-forward layers primarily involve
matrix multiplication between the weight parameters and
input activations. Given this structure, there are two main
strategies for developing compact and fast LLMs: enhanc-
ing the efficiency of each individual transformer block or
reducing the overall number of blocks. To improve both
the compactness and processing speed of individual blocks,
pruning is frequently utilized (LeCun et al., 1989; Hassibi
etal., 1993; Han et al., 2015). This technique involves the
strategic removal of superfluous weight parameters, thereby
reducing the computational load associated with matrix mul-
tiplication in each linear and feed-forward layer. However,
the application of pruning techniques to LLMs encounters a
notable challenge.

Challenge 1) Limitation in Achieving LLM Inference
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Figure 3. The speedup achieved through 2:4 pruning on matrix
multiplication between b x h matrix and h X h (b: batch size, h:
hidden size). The test is conducted on an NVIDIA RTX A6000
GPU. The dashed grey line represents the peak speedup attainable
with 2:4 pruning. The speed of the 2:4 pruning case with batch
sizes between 1 and 16 is measured using a dense matrix multipli-
cation kernel, because NVIDIA CUTLASS effectively supports

2:4 sparse matrix multiplication with batch sizes larger than 16.

Speedup: Pruning can be divided into two main types: un-
structured and structured (Frantar & Alistarh, 2022; Sun
et al., 2023; Frantar & Alistarh, 2023; Zhang et al., 2024).
Unstructured pruning targets the removal of individual
weights, leading to sparse weight matrices within the model.
This sparsity can create complex data access patterns, com-
plicating the management of sparse data and potentially hin-
dering the model’s acceleration. Particularly with NVIDIA
GPUs, achieving a speedup through unstructured pruning
typically requires reaching a high level of sparsity, often
more than 90% (Wang, 2020; Shi et al., 2020). However, for
LLMs, achieving pruning ratios above 50% is often difficult
without substantially compromising their linguistic prowess.
Structured pruning, on the other hand, involves the elimina-
tion of predefined units of weights to create more hardware-
friendly patterns, such as 2:4 pruning (Sun et al., 2023;
Frantar & Alistarh, 2023; Zhang et al., 2024) or channel-
wise (a.k.a. row/column-wise) pruning (Ashkboos et al.,
2024; Ma et al., 2023). The goal of structured pruning is to
form dense matrices that are more efficiently processed by
hardware, thereby enhancing efficiency. Nonetheless, the
anticipated speedup from structured pruning, ideally propor-
tional to the pruning ratio, frequently fails to be realized in
practical settings.

Recent NVIDIA GPUs support the acceleration of 2:4 fine-
grained structured sparsity using their Tensor Cores (Mishra
et al., 2021). This form of sparsity involves having two
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Figure 4. Perplexity comparison on WikiText-2 for OPT-6.7B
(left) and OPT-13B (right) after removing consecutive transformer
blocks. “Early Exit” refers to removing the very last blocks from
the target model, while “Chunk Best” represents the best perplex-
ity results achieved by testing all possible removable points of
consecutive blocks.
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zero values within each contiguous block of four values,
resulting in a natural sparsity rate of 50%. The peak perfor-
mance of sparse tensor cores is twice that of dense tensor
cores. Thus, previous research on pruning LLMs has exten-
sively examined 2:4 pruning techniques (Sun et al., 2023;
Frantar & Alistarh, 2023; Zhang et al., 2024). However,
it is challenging to achieve the desired speedup with 2:4
pruning. The speedup achieved with 2:4 pruning heavily
depends on the size of the input matrix. Figure 3 provides a
comparative analysis of matrix multiplication latency on an
NVIDIA RTX A6000 GPU, using both NVIDIA cuBLAS
and CUTLASS libraries. The matrix multiplication involves
batched inputs with dimensions of b x h, along with a weight
matrix size of h x h, where b represents the batch size and
h represents the hidden size. The measurement results in-
dicate that within a realistic batch size range of 1 to 128,
2:4 pruning does not result in a speedup. However, as the
batch size is increased beyond this range, 2:4 pruning be-
gins to show a speedup, eventually reaching approximately
1.5x the speed of dense matrix multiplication. To achieve
significant speedups, it is essential to have a sufficiently
large matrix size, which can lead to high arithmetic inten-
sity (Mishra et al., 2021). In summary, achieving faster LLM
inference with conventional pruning methods has two main
limitations. Firstly, it requires dedicated hardware, such as
the 2:4 sparse matrix multiplication accelerator adapted in
recent NVIDIA GPUs, to enhance inference speed. Sec-
ondly, even with dedicated hardware support, the extent of
speedup achievable through 2:4 pruning is influenced by
factors like batch size and model size.

As an alternative to traditional pruning methods, approaches
like LLM-Pruner (Ma et al., 2023) and SliceGPT (Ashk-
boos et al., 2024) have been developed, focusing on the
elimination of redundant neurons and the weight parameters
connected to them. These methods involve the elimination
of the entire channel (row/column) from weight matrices,
allowing pruned weights to remain in a dense format. This
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Figure 5. Percentage of token prediction alignment with the final

predictions of LLMs for each transformer block.
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retention of dense matrices enables direct speedup in matrix
multiplication. However, it is challenging to maintain lin-
guistic capabilities of LLMs with these channel-wise prun-
ing approaches without the help of extensive fine-tuning (Ma
et al., 2023). Additionally, speedup in matrix multiplication
does not always lead to corresponding improvement in the
end-to-end inference speed of LLMs (Ashkboos et al., 2024).
This limitation arises because transformer blocks in LLMs
encompass various operations beyond matrix multiplication
that involve weight parameters. These operations include,
but are not limited to, layer normalization and attention
mechanisms (Figure 1).

Recently, Deja Vu (Liu et al., 2023) has introduced a new
pruning approach termed contextual sparsity. This method
dynamically assesses whether to bypass certain segments of
a layer operation, based on the context of the input. It has
shown effectiveness in accelerating inference, particularly
in single-batch scenarios. However, its dynamic nature
introduces a set of challenges akin to those encountered
with early exit strategies. These challenges will be further
examined and discussed in the following subsection.

2.2. Early Exit

Reducing the total number of transformer blocks in the LLM
can directly lead to increased processing speed, proportional
to the reduction in the number of blocks. A notable tech-
nique in this context is the early exit (Schuster et al., 2022;
Din et al., 2023; Varshney et al., 2023; Chen et al., 2023).
This method dynamically assesses whether to process subse-
quent transformer blocks. When the model reaches a certain
level of confidence in its early outputs, it can halt further
processing, effectively reducing computational cost. An-
other recent approach (Del Corro et al., 2023) proposes an
alternative method for bypassing transformer blocks. This
strategy suggests that removing blocks, particularly those at
the beginning of LLMs, might be more feasible. However,
all of these strategies, which involve skipping transformer
blocks, typically require either dynamic decision-making
or extensive training to be effective. To assess the impact
of such removals without dynamic decision-making and
training, we analyze the perplexity scores of OPT-6.7B/13B
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on the WikiText-2 dataset (Merity et al., 2016) after remov-
ing various consecutive blocks, as illustrated in Figure 4.
The analysis results show that the “Early Exit” approach
leads to a noticeable decline in the linguistic prowess of the
LLMs, as evidenced by a significant increase in their per-
plexity scores. Moreover, “Chunk Best”, which represents
the best perplexity results achieved by testing all possible
removable points of consecutive blocks, also results in a
significant increase in perplexity as the number of removed
blocks increases. Therefore, the concept of removing con-
secutive blocks from LLMs is not effective without dynamic
decision-making and training. In addition, applying early
exit to LLMs, particularly in real-world implementation,
faces the following challenges.

Challenge 2) Limitation in Acceleration in Multi-batch
Settings: In practical LLM applications, multi-batch scenar-
ios are common and pose significant challenges. Processing
individual tokens can lead to diverse dynamic skipping deci-
sions. When these tokens are batched for parallel processing,
each token may require different processing paths. This vari-
ation complicates the implementation and diminishes the
efficiency benefits in multi-batch contexts.

Challenge 3) Inability to Reduce Memory Requirements:
Dynamic methods such as early exit face limitations in
reducing memory consumption, as they require maintain-
ing the entire set of model parameters. This limitation is
particularly impactful for models with a large number of
parameters, where memory efficiency is crucial.

Challenge 4) Resource-Intensive Training: As shown in
Figure 5, transformer blocks that produce the same predic-
tion results as the final token prediction of the LLM are
typically positioned near the end of the model. Even with
the use of an ideal skipping predictor for accurately deter-
mining an early exit point, it is estimated that around 90%
of the transformer blocks would still require processing.
Hence, implementing early exit strategies demands exten-
sive training. This process is not limited to training the
skipping predictor but also involves adapting the LLMs to
effectively utilize early exit mechanisms. Such a training
process can be resource-heavy and complicated. Owing to
these challenges, the implementation of early exit strate-
gies in state-of-the-art LLMs, particularly those with more
than 13 billion parameters, has not been extensively pur-
sued. This situation emphasizes the significant difficulties
in adapting these methods for use in extremely large-scale
models like LLaMA-2-70B.

In the upcoming section, we introduce SLEB, a novel ap-
proach designed to streamline LLMs by identifying and
eliminating redundant transformer blocks. SLEB is devel-
oped to address challenges faced by previous works in the
following ways:
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Solution to Challenge 1) LLM Inference Speedup: SLEB
adopts transformer block as the primary unit for elimination,
aiming to achieve a speedup that is directly proportional to
the number of blocks removed.

Solution to Challenge 2) Acceleration in Multi-batch
Settings: Unlike the early exit strategy, SLEB employs a
static approach to eliminate transformer blocks following
an in-depth verification of redundancy, aligning with tradi-
tional pruning techniques. This allows SLEB to enhance
processing speed in multi-batch scenarios effectively.

Solution to Challenge 3) Reduction in Memory Require-
ments: By completely removing redundant blocks, SLEB
can significantly decrease memory usage, contributing to
more efficient memory management in LLMs.

Solution to Challenge 4) Training-free Compression: Re-
lying on a training-free redundancy analysis, SLEB elimi-
nates the need for intensive training processes. This makes it
an especially suitable solution for large-scale models, where
the demands and constraints of extensive training are often
prohibitive.

3. Proposed SLEB
3.1. Output Similarity across Transformer Blocks

During the inference process of LLMs, there is a notable
similarity in the outputs of consecutive transformer blocks.
This similarity arises because each block incrementally adds
to the residual path that runs throughout the entire LLM. The
computation results of each transformer block, considering
the residual path, can be simplified using the following
equation:

Tip1 = Tipa(xs) + 2 1

Here, x; denotes the output of the ¢-th transformer block,
and T; denotes the operation results of the i-th transformer
block. To comprehensively analyze and quantify the output
similarity within the transformer blocks, we analyze cosine
similarity between outputs of these blocks. This analysis is
based on the distance measurement method outlined in (Din
et al., 2023). It involves feeding a single random token into
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Figure 7. Perplexity comparison on WikiText-2 for OPT-6.7B (top)
and OPT-13B (bottom) when transformer blocks are removed using
different metrics.

each LLM and measuring the cosine similarity between the
output of the ¢-th transformer block and that of the j-th
transformer block is defined as follows:

I’i'zj

IEAINEA

similarity(z;, ;) = 2)
The measurement results for OPT-6.7B and LLaMA-2-7B
models are displayed in Figure 6.

These results reveal that, although the similarity between
transformer blocks that are further apart varies across the
LLM architecture, there is a consistently high degree of sim-
ilarity between neighboring transformer blocks. This insight
underscores the potential redundancy within these models
and highlights areas where efficiency could be enhanced
through strategic block elimination.

Indeed, this observation emphasizes a fundamental misalign-
ment between existing early exit methods and the nature
of LLMs. The primary limitation of early exit methods is
their tendency to skip a continuous sequence of transformer
blocks. This approach does not take into account the high
degree of output similarity between adjacent transformer
blocks, as indicated by our cosine similarity measurements.
Consequently, such strategies risk bypassing blocks that are
essential for preserving the linguistic integrity of the LLMs.

3.2. Redundancy Verification of Transformer Blocks

To streamline LLMs without affecting their linguistic
prowess, it is essential to identify redundant transformer
blocks first. We design metrics to measure the significance
of a block to eliminate blocks with lower metric values. One
potential metric is to assess the distance between the input
and output of each block. A small change after passing

through the block might indicate a minor impact on the
overall LLM inference. In this context, we adopt Eq. 2 as
the metric to measure the significance of transformer blocks.
Given the input and output of the j-th transformer block as
Aj; and B;, this metric can be defined as follows:

Metric; = 1 — similarity(A;, B;) 3

Metric! is tested on removing transformer blocks from the
OPT-6.7B and OPT-13B model, and the results are reported
in Figure 7. However, using this metric led to a significant
increase in perplexity. The reason for this increase is that
even though a transformer block may have a minor impact
on the residual path at its stage, as the LLM inference pro-
gresses, these minor changes in that block can be amplified,
especially if the block lies in the early stage of the LLM,
leading to a more substantial impact on the overall results.

To evaluate the significance of transformer blocks within
the overall LLM inference process, we design a new metric
to assess the impact of each block on the token prediction
results of the target model. We denote the target LLM model
as M and the LLM model after removing j-th transformer
block as M;. Using a tokenized sequence for the calibra-
tion as wi, wa, ..., Wk, the second metric for measuring the
significance of j-th transformer block can be defined as
follows:

K
Metrz'c? = —% ZlogpMj (wi|wer) )
k=0

Metric? shows significant improvements in perplexity on
the block-removed LLMs compared to those removed using
Metrict (Figure 7). However, as the number of removed
blocks increases, Metric? also exhibits significant degrada-
tion in token prediction results, particularly for OPT-6.7B
models. This behavior can be explained by the observation
such that the significance of a block keeps changing as other
blocks are removed. For example, when using M etric?,
it selects blocks with indices 3, 4, 5, 6, 7, 8, and 10 for
removal from OPT-6.7B. While these blocks individually
have a minor impact on LLM inference results, the removal
of a continuous sequence of blocks can significantly impact
the overall LLM inference result.

To accurately assess the redundancy of transformer blocks
and determine the next block for removal, we utilize the
LLM with previously removed redundant blocks in an itera-
tive removal process. In this revised metric, we first evaluate
the token prediction results of the original LLM to identify
the most redundant block for removal. In the next stage, we
assess the significance of each block with a block-removed
LLM to select the next block for removal. This iterative pro-
cess guides the removal of transformer blocks based on the
current state of the LLM. Denoting the target LLM model
with previously removed redundant blocks as M’, the metric
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Algorithm 1 SLEB algorithm. We remove the transformer
blocks until the number of removed blocks reaches the target
number.
M <— original model
C <— calibration dataset
N «— # blocks of M
n <— # blocks to remove
fori =0ton — 1do
forj=0to N —i—1do
S «— Metric}(M,C)
if S < min_S then
min_S +— S
min_S_idx +— j
end if
end for
M <— remove_block(M,min_S_idz)
end for

for identifying the next block for removal is as follows:

K
Metricd(M') = = 3 logpyys (wnlwas) )
k=0
When utilizing Metric? to assess the significance of each
block and remove a total 7 of blocks from OPT-6.7B, blocks
with the following indices are removed at each block re-
moval step: 6, 7, 3, 24, 18, 30, 11. It avoids the removal of
a continuous sequence of blocks and successfully considers
the changing significance of each block. Consequently, as
shown in Figure 7, the LLMs streamlined using this metric
maintain their perplexity scores remarkably well regardless
of the target models.

3.3. Proposed SLEB Algorithm

The proposed SLEB verifies and eliminates redundant trans-
former blocks with proposed Metric®. The overall SLEB
algorithm is summarized in Algorithm 1. SLEB can be
seamlessly integrated into the forward pass of the LLM
model, similar to recent methods for pruning LLMs. It
leverages calibration data to estimate the redundancy of
transformer blocks and uses Metric® to pinpoint and re-
move the most redundant block. To determine the next
block for removal, the algorithm calculates the redundancy
of transformer blocks within the LLM that has been stream-
lined so far, allowing it to iteratively identify and prune
redundant blocks. This approach streamlines the model
without the need for an additional training process.

4. Experiments

4.1. Experimental Setup

We implement SLEB in PyTorch (Paszke et al., 2019), using
the HuggingFace Transformers library (Wolf et al., 2020).

OPT-13B
0 39
LLaMA-2-13B
0 39

Selected Transformer Blocks
Figure 8. Locations of removed transformer blocks after applying
SLEB with target sparsity of 20%

The experiments on redundancy verification and elimina-
tion of transformer blocks are executed on NVIDIA A100
GPUs equipped with 80GB of memory. SLEB requires 2
GPUs for pruning OPT-66B and LLaMA-70B, and 1 GPU
for pruning smaller models. Runtime of SLEB for pruning
LLM:s falls within the range of runtime observed with other
pruning methods (See Appendix A.1). For example, SLEB
can fully compress LLaMA-2-70B, within approximately
1.5 hours. SLEB is processed based on the inference-only
approach without any fine-tuning, aligning with contempo-
rary practices in post-training pruning of LLMs. We use
128 samples randomly selected from WikiText-2 training
dataset as calibration data, following the approach used in
previous works (Ashkboos et al., 2024).

Our evaluation encompasses models from the OPT and
LLaMA-2 families. We assess SLEB under two target spar-
sity levels: 10% and 20%. In case that the product of the
total number of transformer blocks in a model and the target
sparsity is not an integer, we round up the product to deter-
mine the number of transformer blocks to remove. The pro-
posed SLEB is compared to previous works that are widely
recognized for their potential to accelerate LLM inference.
These previous works include SparseGPT (Frantar & Alis-
tarh, 2023), Wanda (Sun et al., 2023), and DSnoT (Zhang
et al., 2024), which utilize 2:4 structured pruning methods,
and LLM-Pruner and SliceGPT, which employ channel-wise
pruning.

4.2. Elimination of Transformer Blocks using SLEB

We assess which transformer blocks are chosen to be elim-
inated with SLEB in Figure 8. The locations of removed
transformer blocks vary significantly across the target mod-
els. In the case of OPT-13B, earlier transformer blocks are
selected more frequently, while middle and later blocks are
chosen for LLaMA-2-13B. This demonstrates that the sensi-
tivity to the removal of transformer blocks varies depending
on the model. Therefore, it is crucial to select a metric like
the proposed Metric? that accurately reflects the character-
istics of each model to identify the optimal combinations of
transformer blocks for removal from various models. The
removed block indices for all evaluated LLMs are provided
in Appendix A.2.



SLEB: Streamlining LLMs through Redundancy Verification and Elimination of Transformer Blocks

Table 1. Perplexity results on C4 dataset and throughput (tokens/s) results. We measure throughput of each method with LLaMA-2-70B

on 2 NVIDIA A100 GPUs. (T.Block: Transformer Block)

Pruning Throughput OPT LLaMA-2

Method Unit Sparsity | Tokens/s Improve. 6.7B 13B 30B 66B 7B 13B 70B
Dense | - | 0% | 299 | 1.00x | 1271 1206 11.44 1099 | 7.26 6.73 5.71
SparseGPT 2:4 50% 293 0.98x 1642 1485 13.17 12.25 13.54 1139  8.16
Wanda 2:4 50% 293 0.98x 19.03 16.18 16.18 8414.05 | 1557 1247 8.10
DSnoT 2:4 50% 293 0.98x 1841 1651 1471 8360.81 | 1556 1222  8.15
LLM-Pruner | Channel 20% 314 1.05x - - - - 1225 1043 -
SliceGPT Channel 20% 314 1.05% 23776 1749 13.38 11.80 26.06 2290 15.84
SliceGPT Channel 25% 331 1.11x 2735 1943 1446 1229 | 3274 29.86 20.03
SliceGPT Channel 30% 343 1.15% 3343 2258 15.89 13.08 41.69 3843 2579
SLEB T. Block 10% 336 1.12x 13.84 1243 1165 1125 | 934 780 632
SLEB T. Block 20% 381 1.27x 1599 1381 12.74 12.54 1232 942 7.31
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a coarser granularity of pruning unit. These results once 220 i 14 Eg gg 2
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SLEB can have a minimal impact on perplexity scores. The 0 : 0 :
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in Appendix B.2.

4.4. Dependency on Calibration Dataset

We analyze the influence of the calibration data on the per-
plexity results of pruned LLMs. During the pruning process
of the target LLMs, 128 sequences are randomly sampled
either from WikiText-2 or C4 training datasets to serve as
the calibration data. Subsequently, the pruned LL.Ms are
evaluated using both WikiText-2 and C4 datasets. We com-
pare pruning results of SparseGPT, Wanda, SliceGPT with
25% sparsity, and SLEB with 20% sparsity.

As shown in Figure 9, SLEB demonstrates the least depen-
dency on the choice of the calibration dataset. SliceGPT
struggles to preserve perplexity scores when the type of
evaluation data differs from the type of calibration data.
SliceGPT relies on the principal component analysis of
activation matrices to determine which neurons to prune
for channel-wise pruning, making its performance more

(b) Perplexity results on C4

Figure 9. Perplexity results of pruned LLMs depend on the calibra-
tion dataset. The colored bar graphs depict the results when there
is a difference between the calibration dataset and the evaluation
dataset.

reliant on the calibration dataset. SparseGPT and Wanda
take a different approach by measuring the significance of
weights in the matrix multiplication results of each linear
layer. These methods leverage the information contained
in the pre-trained weight matrices of LLMs and show less
dependency on the dataset. While previous methods mea-
sure redundancy at the layer level, SLEB assesses the re-
dundancy of each transformer block at the entire network
level using Metric®. This approach fully exploits the infor-
mation present in the pre-trained LLMs and demonstrates
less dependency on the dataset. More results comparing
the dependency on the calibration dataset are presented in
Appendix B.3.
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Table 2. Mean accuracies (%) on zero-shot tasks and latency results. We measure latency of each method with LLaMA-2-70B on 2

NVIDIA A100 GPUs. (T.Block: Transformer Block)

Pruning OPT LLaMA-2
Method Unit Sparsity | Latency(ms) | Speedup | 6.7B 13B 30B 66B 7B 13B 70B
Dense \ - \ 0% \ 1718.4 \ 1.00x \ 60.70 61.79 6440 66.16 \ 69.00 71.76 76.57
SparseGPT 2:4 50% 1555.5 1.10x 5494 5676 59.96 62.33 | 5823 63.06 71.87
Wanda 2:4 50% 1555.5 1.10x 53.14 55.12 58.89 3593 | 5559 61.23 7234
SliceGPT Channel 20% 1658.7 1.04 % 56.31 60.20 63.65 65.74 | 58.17 6345 72.34
SliceGPT Channel 25% 1440.7 1.19x% 5428 59.27 62.11 65.17 | 5549 58.90 69.75
SliceGPT Channel 30% 1364.2 1.26x 53.00 5742 6127 6424 | 51.50 55.16 66.11
SLEB T. Block 10% 1529.1 1.12x 60.00 62.07 6448 6538 | 6224 66.77 73.14
SLEB T. Block 20% 1364.1 1.26x 57.61 60.08 62.86 62.53 | 56.80 6296 70.81
4.5. Zero-shot Tasks 18
. . . . = [O sieB ® sieB+AWQ |
Following the evaluation methods presented in previous 21| 4@ < — =
x - 5 =3 n %
works (Ashkboos et al., 2024), we evaluate SLEB on fol- 2 2 < g o S
lowing zero-shot tasks: PIQA (Bisk et al., 2020), Wino- rg_’i 6 o E
Grande (Sakaguchi et al., 2019), HellaSwag (Zellers et al., 0
2019), ARC-easy and ARC-challenge (Clark et al., 2018). 6.78 13BOPT3OB 668 } 78 LLls/IBA , 708
aMA-

LM Evaluation Harness (Gao et al., 2023) with its default
parameters is used for the evaluation.

Table 2 shows the average accuracies of pruned LLMs on
zero-shot tasks. SLEB with 10% sparsity achieves superior
accuracies compared to previous pruning methods, preserv-
ing the original accuracies to a significant extent. Even
when the sparsity of SLEB is increased to 20%, it contin-
ues to outperform previous approaches in most cases. The
task-wise accuracies are provided in Appendix B.4.

4.6. Speedup

We evaluate the LLM inference speedup achieved by SLEB
in comparison to previous pruning methods - 2:4 pruning
and 25% channel-wise pruning. The inference speed is
assessed using the LLM implementation provided by Hug-
gingFace Transformers libraries for each pruning method.
The language processing of LLMs can be categorized into
two stages: prompt processing and token generation. In the
prompt processing stage, LLMs assess the given prompt and
generate the KV cache. In the token generation stage, LLMs
generate new tokens in an auto-regressive manner. Because
these two stages have distinct characteristics in terms of
inference speed, with the prompt processing stage tending
to be compute-bound and the token generation stage tending
to be memory-bound, we analyze the speedup in each of
them separately.

Table 1 and Table 2 present throughput and latency results
for LLaMA-2-70B with 2 NVIDIA A100 GPUs during to-
ken generation and prompt processing, respectively. For
token generation, the test scenario consists of generating
sentences with a length of 128 tokens and a batch size of

Figure 10. Perplexity comparison between LLMs pruned with
SLEB (target sparsity: 20%) and those further compressed us-
ing AWQ, a 4-bit weight quantization

64. For prompt processing, we measure the latency when
processing an input sequence with 2048 tokens. In both
scenarios, SLEB demonstrates improvements in latency and
throughput that are proportional to the pruning ratio. This
performance enhancement is attributed to the adoption of
transformer block, which is a fundamental building block
of LLMs, as the basic unit of pruning. In contrast, previous
approaches fail to achieve significant improvements, partic-
ularly in the case of token generation. For more detailed
analysis results, please refer to Appendix B.5. SLEB con-
sistently provides speedup benefits across various serving
scenarios, while the speedup achieved by other methods is
significantly influenced by the specific serving scenarios.

4.7. Compatibility with Post-Training Quantization

Post-training quantization (PTQ) is a well-established tech-
nique for compressing and accelerating LLMs (Frantar et al.,
2023; Lee et al., 2024; Lin et al., 2023). If PTQ can be ap-
plied to compress LLMs alongside SLEB, we can expect
further improvements in memory efficiency and LLM in-
ference speed. In Figure 10, we present a comparison of
perplexity scores for LLMs that have undergone SLEB with
target sparsity of 20% and those that have been further com-
pressed with AWQ (Lin et al., 2023), a state-of-the-art PTQ
algorithm that quantizes weights to 4-bit integer values. The
experimental results indicate that applying PTQ to stream-
lined models has no discernible impact on their perplexity.
More analysis results on compatibility with PTQ are pro-
vided in Appendix B.6.
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5. Conclusion

This paper introduces SLEB, a novel technique for stream-
lining LLMs by removing redundant transformer blocks.
SLEB carefully identifies and eliminates redundant blocks,
ensuring that it effectively preserves the language capabil-
ities of LLMs without the need for any resource-intensive
training. Our experimental results demonstrate that SLEB
can successfully prune up to 20% of blocks while maintain-
ing the linguistic performance of LLMs across language
modeling and zero-shot tasks. One of the significant advan-
tages of SLEB is its ability to remove entire transformer
blocks, resulting in substantial speed improvements in end-
to-end LLM inference. This speedup is applicable across
various implementation scenarios, making SLEB a practical
solution for real-world LLM serving scenarios.
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A. SLEB details
A.1. Runtime

We compare runtime of SLEB and previous works for pruning LLaMA-2 models. Here, the runtime indicates the time
required to execute the pruning algorithms. Specifically, it denotes the time needed to identify and remove elements based
on each particular pruning approach. It is important to note that each pruning algorithm is applied to each model only once.
Therefore, as long as the runtime remains within a reasonable range, the application of the pruning algorithms can proceed
smoothly without any complications.

The official implementation of SparseGPT ! offloads the entire LLMs to the CPU and loads the target transformer block
to GPU one by one for pruning, resulting in long runtime. Hence, for both SparseGPT and Wanda, we utilize the official
implementation of Wanda 2, which supports distributing LLMs across multiple GPUs. For SliceGPT, we use its official
implementation 3. As shown in Table 3, runtime of SLEB is generally within the range of runtime of other pruning methods.

Table 3. Comparison of runtime for pruning LLaMA-2 using NVIDIA A100 GPU

7B 13B 70B
Method #GPU Time (s) | #GPU  Time (s) | #GPU Time (s)
SparseGPT 1 528 1 920 3 5040
Wanda 1 64 1 104 2 480
SliceGPT 1 452 1 633 1 3010
SLEB 20% 1 113 1 279 2 5420

A.2. Selected Transformer Blocks

We summarize the number and indices of transformer blocks selected for removal using SLEB in Table 4. The order of
indices presented in Table 4 corresponds to the order in which they are removed.

Table 4. Number and indices of removed blocks when applying SLEB on different LLM models. In 20% sparsity scenarios, it initially
removes blocks selected for 10% sparsity and then selects additional blocks for removal to reach the desired sparsity level.

Model 10% Sparsity 20% Sparsity
Type Size  #Blocks | # Removed | Removed Indices # Removed | Removed Indices
6.7B 32 4 6,7,3,24 7 + 18,30, 11
PT 13B 40 4 5,4,9,2 8 + 14, 25,34, 10
0 30B 48 5 4,17,7,12, 14 10 +40, 23,2, 13,43
66B 64 7 18, 12,21, 46, 8, 16,9 13 + 65, 13,27, 61, 35,42
7B 32 4 14,23,11,24 7 +10,27, 15
LLaMA-2 13B 40 4 31,27, 13,12 8 + 33,29, 14,2
70B 80 8 33,29, 61, 11, 55, 30, 59, 28 16 +50, 27, 68, 32, 31, 15, 60, 4

"https://github.com/IST-DASLab/sparsegpt
2https://github.com/locuslab/wanda
3https://github.com/microsoft/TransformerCompression/tree/main
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B. More Evaluation Results
B.1. Limitations of Early Exit

We analyze the ratio of skipped blocks in the LLMs under the assumption of an exit at the ideal point. The ideal exit point is
defined as the point at which the token prediction outcomes of a specific transformer block align with the final predictions of
the LLMs. The results are depicted in Table 5.

Table 5. The ratio of skipped blocks under the assumption of early exiting at ideal exit points
Batch | LLaMA-2-7B | LLaMA-2-13B | LLaMA-2-70B | OPT-6.7B | OPT-13B | OPT-66B
1| 8.23% | 9.56% | 8.96% | 1252% | 11.74% | 11.89%

Next, we evaluate the throughput improvement achieved by implementing ideal early exits in scenarios where sentences of
128 tokens are generated across different batch sizes. These results are presented in Table 6. In the single-batch scenario,
the speedup of early exit is directly proportional to the ratio of skipped blocks. Consequently, early exit can achieve up to a
1.14x speedup. Conversely, in multi-batch scenarios, where multiple tokens are processed simultaneously, the inference of
the LLMs to follow the longest path dictated by any of the tokens. For instance, if in a batch of four tokens, three tokens can
complete processing halfway through the LLM while the fourth requires full traversal, the entire batch must process through
the full length of the LLM to accommodate the token with the longest path. Therefore, as the batch size increases, the
effectiveness of early exit diminishes since the termination point of each token differs, reducing the likelihood of achieving a
significant speedup.

Table 6. Throughput improvement under the assumption of early exiting at ideal exit points
Batch | LLaMA-2-7B | LLaMA-2-13B | LLaMA-2-70B | OPT-6.7B | OPT-13B | OPT-66B

1| 109%x | Llx | L10x | Ll4x | L13x | LI3x
2| 1.03x | 1.02x | 1.02x | 1.05x | 1.06x | 1.05x
4 | 100x | 100X | 100X | 102x | 1.02x | 1.02x
8 ‘ 1.00x ‘ 1.00x ‘ 1.00x ‘ 1.00x ‘ 1.01x ‘ 1.00x
16 | 1.00x | 1.00x | 1.00x | 1.00x | 1.00x | 1.00x
32 | 100x | 100x | 100x | 100x | 100x | 1.00x
64 | 100x | 1.00x |  1.00x | 100x | 1.00x | 1.00x
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B.2. Language Modeling

We use sequence length 2048 for all models to evaluate perplexity. Table 7 provides perplexity results of pruned models on
WikiText-2 dataset. Notably, SliceGPT demonstrates good perplexity in this case because it uses calibration data sampled
from the WikiText-2 training dataset. As discussed in Section 4.4, SliceGPT tends to perform well in terms of perplexity
when the types of calibration and evaluation datasets align. However, it may yield poor results when the datasets do not
align. This behavior is attributed to SliceGPT relying solely on information from activation matrices to determine the target
channels for pruning. Hence, when SliceGPT is evaluated on C4 dataset, it shows poor perplexity results (Table 1).

Table 7. Perplexity results on WikiText-2 dataset and throughput (tokens/s) results. We measure throughput of each method with
LLaMA-2-70B on 2 NVIDIA A100 GPUs. (T.Block: Transformer Block)

Pruning Throughput OPT LLaMA-2

Method Unit Sparsity | Tokens/s Improve. 6.7B 13B 30B 66B 7B 13B 70B
Dense | - | 0% | 299 | 1.00x | 1086 10.13  9.56 934 | 547 488 332
SparseGPT 2:4 50% 293 0.98x 14.16 1298 10.92 10.09 10.79 875 5.70
Wanda 2:4 50% 293 0.98x 1593 1557 1338 12122.15 | 12.09 899 548
DSnoT 2:4 50% 293 0.98 % 1621 15.16 1239 11037.35 | 11.97 887 5.49
LLM-Pruner | Channel 20% 314 1.05x - - - - 10.58 8.56 -

SliceGPT Channel 20% 314 1.05x 11.59 10.73  9.93 9.60 6.87 6.01 4.44
SliceGPT Channel 25% 331 1.11x 12.10 11.04 10.13 9.75 7.55 6.63 4.89
SliceGPT Channel 30% 343 1.15x% 1273 1149 10.39 9.94 859 744 544
SLEB T. Block 10% 336 1.12x 11.22  10.16  9.57 9.33 695 563 398
SLEB T. Block 20% 381 1.27x 1294 1140 10.73 10.18 9.14 680 4.88
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B.3. Dependency on Calibration Dataset

We examine the influence of the calibration dataset on the perplexity results of pruned LLaMA-2 models. We use calibration
datasets consist of 128 sequences randomly sampled from WikiText-2 and C4 training dataset, respectively. We compare
perplexity results of SparseGPT, Wanda with 2:4 pruning, SliceGPT with 25% sparsity, and SLEB with 20% sparsity.

SliceGPT relies on principal component analysis of input activations to identify which neurons to prune for channel-wise
pruning. This calibration method heavily relies on input values, without adequately considering information from the weight
matrices, making its performance more dependent on the input data pattern. In contrast, SLEB, SparseGPT, and Wanda
utilize information from pre-trained weight matrices of LLMs, showing less reliance on specific datasets. These methods
utilize computation results from LLMs, which involve weight matrices at the layer (SparseGPT, Wanda) or network level
(SLEB), to determine which components should be pruned. Thanks to utilization of weight matrix information, SLEB
exhibits more stable perplexity results compared to SliceGPT.

Table 8. Perplexity results of different pruning methods depending on the calibration dataset

Model | Evaluation Set | Calibration Set | SLEB | SparseGPT | Wanda | SliceGPT
LLaMA2-7B | WikiText-2 Wikgf“'z 2;71 186§779 };83 177':5351
waazs | o | M R0 5 | 55 | b
LLaMA2-138 | WikiTew2z | MR | 0 | gs |
tavaziss || VG T O LS | Tons
LLaMA-2-70B | WikiText-2 WikiCTf“'z ;‘;?2 ‘5‘;28 2;23 ‘7"5,2
teava20s | e | Gl gle | glo | san
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B.4. Zero-shot tasks

Table 9. Accuracies (%) on zero-shot tasks

Model | Method | Sparsity | PIQA | WinoGrande | HellaSwag | ARC-e | ARC-c | Avg.
Dense - 76.39 65.19 67.16 60.14 34.64 | 60.70

SpareGPT | 2:4 (50%) | 74.21 60.77 57.25 53.03 29.44 | 54.94

Wanda 2:4 (50%) | 71.76 60.22 54.20 51.18 28.33 | 53.14

OPT-6.7B SliceGPT 25% 70.35 60.62 58.15 52.78 29.52 | 54.28
SliceGPT 30% 68.61 60.69 54.56 52.15 29.01 53.00

SLEB 10% 76.61 64.72 66.36 58.67 33.62 | 60.00

SLEB 20% 74.92 61.33 62.13 57.07 3259 | 57.61

Dense - 76.82 64.30 69.81 61.87 35.67 | 61.79

SpareGPT | 2:4 (50%) | 74.16 62.43 59.18 56.27 31.74 | 56.76

Wanda 2:4 (50%) | 72.25 61.72 57.97 53.96 29.69 | 55.12

OPT-13B SliceGPT 25% 73.67 64.25 63.28 60.52 34.64 | 59.27
SliceGPT 30% 71.82 62.90 60.66 58.80 3294 | 57.42

SLEB 10% 76.12 65.51 69.81 61.78 37.12 | 62.07

SLEB 20% 75.90 63.46 66.87 59.60 34.56 | 60.08

Dense - 78.07 68.19 72.27 65.24 38.23 | 64.40

SpareGPT | 2:4 (50%) | 75.24 65.67 65.10 59.76 34.04 | 59.96

Wanda 2:4 (50%) | 75.46 63.54 63.41 60.14 31.91 58.89

OPT-30B SliceGPT 25% 75.30 66.61 69.42 63.55 35.67 | 62.11
SliceGPT 30% 74.97 65.04 68.15 63.55 34.64 | 61.27

SLEB 10% 77.64 68.75 72.32 65.12 38.57 | 64.48

SLEB 20% 76.93 67.40 70.62 61.99 37.37 | 62.86

Dense - 79.82 68.90 74.85 67.21 40.02 | 66.16

SpareGPT | 2:4 (50%) | 77.75 66.22 68.59 63.34 3575 | 62.33

Wanda 2:4 (50%) | 50.65 50.51 25.97 25.29 27.22 | 3593

OPT-66B SliceGPT 25% 78.40 67.09 73.33 67.89 39.16 | 65.17
SliceGPT 30% 77.42 66.30 72.62 66.90 37.97 | 64.24

SLEB 10% 78.94 68.90 74.18 65.95 38.91 65.38

SLEB 20% 76.99 66.22 70.77 63.34 3532 | 62.53

Dense - 79.11 69.06 75.99 74.58 46.25 | 69.00

SpareGPT | 2:4 (50%) | 72.14 64.96 58.93 60.90 3422 | 58.23

Wanda 2:4 (50%) | 70.84 62.27 55.33 57.58 31.91 55.59

LLaMA-7B | SliceGPT 25% 66.87 63.38 54.16 58.46 34.56 | 55.49
SliceGPT 30% 63.55 61.33 49.62 51.77 31.23 | 51.50

SLEB 10% 76.44 63.14 70.23 63.68 3771 | 62.24

SLEB 20% 73.07 58.96 62.47 56.48 33.02 | 56.80

Dense - 80.47 72.22 79.39 77.48 49.23 | 71.76

SpareGPT | 2:4 (50%) | 75.46 68.51 65.52 66.04 39.76 | 63.06

Wanda 2:4 (50%) | 73.94 67.01 63.09 64.31 37.80 | 61.23

LLaMA-13B | SliceGPT 25% 68.55 67.48 58.10 62.50 37.88 | 58.90
SliceGPT 30% 66.10 65.11 52.69 56.82 35.07 | 55.16

SLEB 10% 79.16 66.93 74.36 71.84 41.55 | 66.77

SLEB 20% 76.61 64.96 70.55 64.35 38.31 | 62.96

Dense - 82.70 77.98 83.84 80.98 57.34 | 76.57

SpareGPT | 2:4 (50%) | 80.03 76.56 76.09 76.94 49.74 | 71.87

Wanda 2:4 (50%) | 80.30 74.66 79.22 76.35 51.19 | 72.34

LLaMA-70B | SliceGPT 25% 74.92 75.37 68.84 77.90 51.71 69.75
SliceGPT 30% 72.31 73.56 63.69 73.40 47.61 66.11

SLEB 10% 81.56 75.06 80.02 76.77 5230 | 73.14

SLEB 20% 80.14 72.93 77.21 75.38 48.38 | 70.81
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B.5. Speedup

We provide a comprehensive analysis of LLM inference speed across a range of LLM models using both NVIDIA A100
GPUs and A6000 GPUs. For prompt processing, we conduct a single dummy test and then measure the latencies of 50
additional tests. The average latency is calculated from these measurements. Similarly, for token generation, we conduct a
single dummy test and then measure the throughputs of 10 additional tests. The average throughput is calculated from these
measurements.

As presented in Table 10 and Table 11, SLEB consistently enhances the latency and throughput of LLM inference across
various serving scenarios. However, the impact of other pruning methods that prune weight values is significantly influenced
by the specific serving scenarios. As discussed in Section 2.1, there are two reasons behind this. First, the impact of
weight pruning on the speed of matrix multiplication varies depending on the original matrix size, even when the pruning is
conducted in a structured manner. Second, LLMs have various types of operations besides linear operations with matrix
multiplication, and these operations can also affect the overall inference speed.

Table 10. LLaMA-2 latency for prompt processing

7B 13B 70B
Method Sparsity | #GPU Latency Speedup | #GPU Latency Speedup | #GPU Latency Speedup
Dense - 1 240.0 - 1 397.3 - 2 1718.4 -
2:4 Pruning 50% 1 218.2 1.10x 1 372.2 1.07x 2 1555.5 1.10x
A100 | Ch. Pruning 25% 1 213.3 1.13x 1 349.9 1.14x 2 1440.7 1.19x
SLEB 10% 1 209.3 1.15x% 1 355.1 1.12x 2 1529.1 1.12x
SLEB 20% 1 187.3 1.28x 1 316.0 1.26x 2 1364.1 1.26x
Dense - 1 234.5 - 1 400.8 - 4 1806.8 -
2:4 Pruning 50% 1 216.7 1.08 x 1 371.7 1.08 x 4 1707.2 1.06x
A6000 | Ch. Pruning 25% 1 201.3 1.16x 1 339.7 1.18x 4 1475.6 1.22x
SLEB 10% 1 205.8 1.14x 1 360.2 1.11x 4 1616.2 1.12x
SLEB 20% | 184.4 1.27x 1 321.0 1.25x% 4 1434.3 1.26%
Table 11. LLaMA-2 throughput for token generation
7B 13B 70B
Method Sparsity | #GPU Tokens/s Improve. | #GPU Tokens/s Improve. | #GPU Tokens/s Improve.
Dense - 1 1649 - 1 1078 - 2 299 -
2:4 Pruning 50% 1 1306 0.79x 1 952 0.88x 2 293 0.98x
A100 | Ch. Pruning 25% 1 1685 1.02x 1 1109 1.03x 2 331 1.11x
SLEB 10% | 1856 1.13x | 1189 1.10x 2 336 1.12x
SLEB 20% 1 2060 1.25x% 1 1337 1.24x 2 381 1.27x
Dense - 1 1200 - 1 712 - 4 104 -
2:4 Pruning 50% 1 1247 1.04x 1 795 1.12x 4 129 1.24x
A6000 | Ch. Pruning 25% 1 1335 1.11x 1 827 1.16x 4 135 1.29x
SLEB 10% 1 1362 1.14x 1 783 1.10x 4 117 1.13x
SLEB 20% 1 1515 1.26x 1 879 1.24x 4 135 1.30x
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B.6. Compatibility with Post-Training Quantization

We demonstrate the compatibility of SLEB with PTQ. When further compressing LLMs that have been pruned with SLEB
using AWQ, we observe a negligible impact on perplexity results for both C4 and WikiText-2 datasets. Additionally, it is
notable that the impact of quantization is less pronounced on larger models with more than 13 billion parameters.
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Figure 11. Perplexity comparison between LLMs pruned with SLEB and those further compressed using AWQ, a 4-bit weight quantization
(Evaluation dataset: C4)
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Figure 12. Perplexity comparison between LLMs pruned with SLEB and those further compressed using AWQ, a 4-bit weight quantization
(Evaluation dataset: Wikitext-2)
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B.7. Perplexity and Accuracy Results of SLEB across Various Sparsity Ratios

We explore SLEB with various sparsity ratios from 10% to 50%. We evaluate the perplexity with C4 dataset and the accuracy
with zero-shot tasks. The evaluation results of OPT and LLaMA-2 models are provided in Table 12.

Table 12. OPT and LLaMA-2 perplexity results on C4 dataset and accuracies (%) on zero-shot tasks

Model | Sparsity | C4(]) | PIQA | WinoGrande | Hellwswag | ARC-e | ARC-c | Avg.
Dense | 1271 | 76.39 65.19 67.16 6014 | 3464 | 60.70

10% | 1384 | 76.61 64.72 66.36 5867 | 3362 | 60.00

OPT6TE 20% | 1599 | 74.92 61.33 62.13 57.07 | 3259 | 57.61
: 0% | 2011 | 7176 58.25 5428 5227 | 2807 | 52.93

40% | 37.90 | 67.57 56.12 4527 4314 | 2696 | 47.81

50% | 13549 | 6148 51.30 3273 3586 | 2338 | 40.95

Dense | 12.06 | 76.82 64.80 69.81 6187 | 3567 | 61.79

10% | 1243 | 7612 65.51 69.81 6178 | 3712 | 62,07

OPT13E 20% | 1381 | 75.90 63.46 66.87 5060 | 3456 | 60.08
0% | 1713 | 73.07 58.48 62.29 5497 | 3311 | 5638

40% | 2854 | 66.54 52.25 50.90 4453 | 2799 | 48.44

50% | 106.66 | 58.87 51.38 34.59 3464 | 2560 | 41.02

Dense | 1144 | 78.07 68.19 7227 6524 | 3823 | 6440

10% | 1165 | 77.64 68.75 72.32 6512 | 3857 | 64.48

OPT-30B 20% | 1274 | 7693 67.40 70.62 6199 | 3737 | 62.86
0% | 1559 | 74.81 62.98 65.33 5051 | 3276 | 59.08

40% | 2434 | 71.60 58.48 55.57 4840 | 28.67 | 52.54

50% | 4727 | 63.93 53.67 42.44 38.68 | 2500 | 44.74

Dense | 1099 | 79.82 68.90 74.85 6721 | 4002 | 66.16

10% | 1125 | 78.94 68.90 74.18 6595 | 3891 | 6538

OPT-66B 20% | 1254 | 7699 66.22 70.77 6334 | 3532 | 62.53
30% | 1581 | 74.97 60.22 64.46 57.03 | 3387 | s8.11

40% | 2424 | 7046 53.50 53.18 4987 | 2944 | 5131

50% | 58.09 | 60.50 48.14 36.32 3615 | 2440 | 41.10

Dense | 726 | 79.11 69.06 75.99 7458 | 4625 | 69.00

10% 934 | 7644 63.14 70.23 6368 | 3771 | 62.24

20% | 1232 | 73.07 58.96 62.47 5648 | 33.02 | 56.80

LLaMA-2-TB | 350 | 1742 | 68.44 54.30 54.08 51.85 | 30.80 | 51.89
0% | 3206 | 6273 5217 4275 4289 | 2875 | 4586

50% | 8596 | 5745 50.59 33.56 3485 | 27.05 | 40.70

Dense | 673 | 8047 72.22 79.39 7748 | 4923 | 71.76

10% 780 | 79.16 66.93 7436 7184 | 4155 | 66.77

20% 942 | 7661 64.96 70.55 6435 | 3831 | 62.96

LLaMA-2-13B | = 350 | 1161 | 7492 62.90 63.34 5800 | 3507 | 58.86
40% | 1635 | 7095 50.91 55.54 5164 | 3072 | 5375

50% | 3677 | 63.06 55.17 43.50 4125 | 2602 | 45.80

Dense | 571 | 82.70 77.98 83.84 8098 | 5734 | 7657

10% 632 | 81.56 75.06 80.02 7677 | 5230 | 73.14

20% 731 | 80.14 72.93 7721 7538 | 4838 | 70.81

LLaMA-2-70B | 550, 864 | 77.80 69.38 73.57 7201 | 4411 | 67.37
0% | 1216 | 76.01 65.90 65.48 6684 | 3789 | 6242

50% | 19.68 | 7029 61.09 57.65 57.83 | 3558 | 56.49
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B.8. Fine-tuning

We investigate the effects of fine-tuning on LLaMA-2-7B after pruning with 2:4 pruning (SparseGPT), channel-wise pruning
(SliceGPT), and SLEB. All pruned models are trained fore a single epoch on the Alpaca training dataset (Taori et al., 2023).
For the efficient fine-tuning procedure, we employ LoRA (Hu et al., 2021) modules with a rank of 8.

Even after retraining, SLEB continues to outperform previous pruning methods in terms of both perplexity and zero-shot
accuracy.

Table 13. Perplexity and accuracy (%) results before/after fine-tuning pruned LLaMA-2-7B
Method | Sparsity | Fine-tuning | C4(|) | PIQA | WinoGrande | Hellwswag | ARC-c | ARC-e | Avg.

Dense 0% - 7.26 79.11 69.06 75.99 46.25 74.58 | 69.00
SparseGPT 2:4 - 13.54 | 72.14 64.96 58.93 60.9 3422 | 58.23
SliceGPT 20% - 26.06 | 69.42 65.11 59.04 37.54 59.76 | 58.17
SliceGPT 25% - 32.74 | 66.87 63.38 54.16 34.56 5846 | 55.49
SliceGPT 30% - 41.69 | 63.55 61.33 49.62 31.23 51.77 | 51.50
SLEB 10% - 9.17 76.77 61.33 67.19 36.77 64.86 | 61.38
SLEB 20% - 11.38 | 74.27 58.80 62.08 32.94 59.34 | 57.49
SparseGPT 2:4 v 10.65 | 75.95 66.30 68.03 38.40 64.35 | 62.61
SliceGPT 20% v 13.50 | 73.88 64.16 69.3 40.02 6229 | 61.93
SliceGPT 25% v 14.79 71.7 62.83 65.93 38.82 61.65 | 60.19
SliceGPT 30% v 16.35 | 69.86 61.64 62.37 37.37 59.76 | 58.20
SLEB 10% v 9.01 78.73 62.43 70.70 41.21 66.25 | 63.86
SLEB 20% v 10.50 | 73.88 64.16 69.30 40.02 6229 | 61.07
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