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ABSTRACT

Black-box decision models have been widely adopted both in industry and
academia due to their excellent performance across many challenging tasks and
domains. However, much criticism has been raised around modern AI systems, to
a large extent due to their inability to produce explainable decisions that both their
end-users and their developers can trust. The need for such decisions, i.e., deci-
sions accompanied by a rationale for why they are made, has ignited much recent
research. We propose MAGNEx, a global algorithm that leverages neural-network
based explainers to produce rationales for any black-box decision model, neural
or not. MAGNEx is model-agnostic, and thus easily generalizable across domains
and applications. More importantly, MAGNEx is global, i.e., it learns to create ra-
tionales by optimizing for a number of instances at once, contrary to local methods
that aim at explaining a single example. The global nature of MAGNEx has two
advantages over local methods: i) it generalizes across instances hence producing
more faithful explanations, ii) it is computationally more efficient during infer-
ence. Our experiments confirm that MAGNEx outperforms popular explainability
algorithms both in explanation quality and in computational efficiency.

1 INTRODUCTION

Black-box decision models have for some time now posed a dilemma between power and inter-
pretability. For use cases where explanations are necessary, the inability of black-box models to
supply them is often a deterrent to adoption. However, even in low-risk scenarios this lack of ex-
plainability often causes distrust to both the developers and the users of these models, who are often
puzzled about how decisions emerge (Ribeiro et al., 2016). Also, explainability is an important
mechanism when investigating if black-box models act fairly and without bias (Sun et al., 2019).1

In this paper, we propose MAGNEx, a model-agnostic neural explainer that globally learns to ex-
plain an already trained model, neural or not. In this post-hoc interpretability setting, most methods
(Ribeiro et al., 2016; Sundararajan et al., 2017; Lundberg & Lee, 2017; Luo et al., 2020) create
feature-based explanations, i.e., explanations that assign a score to each feature of the input based
on how important the feature is to the model’s decision. This importance score may rely on some in-
ternal mechanism of the model we wish to explain, e.g., gradients (Sundararajan et al., 2017; Shriku-
mar et al., 2017) or attention (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019). Such methods have
limitations to the types of model they can explain, e.g., gradient-based methods work only with dif-
ferentiable models. Perturbation-based methods, e.g., LIME (Ribeiro et al., 2016), SHAP (Lundberg
& Lee, 2017), drop combinations of features for a specific input to the model and observe its out-
put. Omitted features that have a large impact on the output of the model across perturbations are
deemed important, while other features are considered unimportant. This allows perturbation-based
methods to be model-agnostic, but adds severe computational complexity, since a large number of
perturbations is required per input instance to create quality explanations. The search for an optimal
solution by erasure (feature drop) is combinatorial and practically infeasible for even small feature
spaces; the search space is the power set of the feature set resulting in a complexity of O(2n) for n
features. Therefore, pertubation-based methods find approximate (sub-optimal) solutions, but even
this process is cumbersome, especially when the input is large (i.e., contains many features) and the
explainability method is local (a different search must be performed for each input instance).

1We use explainability and interpretability interchangeably as there is no clear consensus in the literature.
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Figure 1: A high-level illustration of MAGNEx. The features of input i are scored by the explainer.
The scores are used to create a binary mask (Eq. 2) representing the parts of i to be retained. The
original and masked input are both passed through the pre-trained model and the outputs, y and ŷ,
are used to calculate the sufficiency score. The explainer aims to maximize sufficiency while also
masking as many features as possible, thus also maximizing sparsity.

MAGNEx also creates feature-based explanations, but contrary to most methods, its explainer is
a neural network that globally learns to assign feature importance scores. This is similar to the
work of De Cao et al. (2020), which relies on gradients to produce feature importance scores; their
explainer is a shallow network directly attached to the model being explained, requiring the gradients
to flow through both the explainer and the model. This limits the approach of De Cao et al. (2020) to
explaining only differentiable models, while increasing the memory and computational complexity.

Neural explanation modules have also been used in explainable by-design models (Lei et al., 2016;
Bastings et al., 2019; Yu et al., 2019; Chang et al., 2019; Chalkidis et al., 2021). These models
mainly focus on human-centric explainability and jointly train a rationale extractor and a classifier.
This setting poses an extra burden on the training procedure and disincentivizes exploring parts of
the space of possible solutions the model can arrive to, possibly leading to loss of model performance
at the expense of interpretability. MAGNEx disentangles the explainer from the model it wishes to
explain, aiming to produce explanations that are faithful, i.e., accurately reflect the features consid-
ered important by the model (Lipton, 2018; Jacovi & Goldberg, 2020). The generated explanations
do not have to agree with human annotated rationales (e.g., gold text snippets), which are often used
as an optimal solution in explainable by-design methods. MAGNEx’s goal is to faithfully reveal in-
formation about a model’s inner workings to its developers and if its explanations agree with human
intuition, then MAGNEx can also be used as an explanation algorithm for end-users. If the expla-
nations do not agree with human intuition, MAGNEx can reveal weaknesses of the explained model
and/or of the data used to train it. For instance, training data may not be diverse enough, allowing a
model to overfit to insignificant features in its input.

The explainer of MAGNEx is a shallow neural network that attributes scores to input features (Figure
1). Its training is dictated by a two-fold objective that can be classified under constrained optimiza-
tion. The scoring of the explainer must be primarily sufficient, i.e., the explanations when fed to the
underlying model must result in the same output (DeYoung et al., 2020). Also, among all possible
sufficient explanations the explainer is tasked with finding one that is maximally sparse, i.e., utilizes
the minimum number of features (Lei et al., 2016). This constrained objective, or a relaxed version
of it, has been also used by perturbation-based systems (De Cao et al., 2020; Ribeiro et al., 2016).

Our contributions are as follows:

• We propose MAGNEx a method that explains the inner workings of a pre-trained model
in a post-hoc manner. MAGNEx, is completely model agnostic and thus can explain any
pre-trained model across modalities (e.g., vision, text) and applications.

• The proposed approach is global, allowing MAGNEx to generalize across instances; learn-
ing from many samples has a regularization effect alleviating hindsight bias (Fischhoff &
Beyth, 1975) which is a common phenomenon in machine learning problems (Mahdavi &
Rahimian, 2017) and more specificaly in perturbation-based explainability (De Cao et al.,
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2020). Also, the global nature of MAGNEx transfers the computationally expensive feature
search to the training stage allowing for more efficient inference than its competitors.

• The experiments showed that MAGNEx produces explanations of better quality than popular
explainability methods (LIME (Ribeiro et al., 2016), IG (Sundararajan et al., 2017)), while
also being more stable across instances and much more efficient during inference.

2 METHODOLOGY

2.1 FORMULATION

Let M : I → O be the model we wish to explain. Each input i ∈ I is a set of input features such
that i = {f1, f2, . . . , fn}, where n is the number of features. An explainer, E, operates on i and
associates each feature in i with an importance score sj ∈ [0, 1] for j ∈ {1, 2, . . . , n}:

E(i) = {s1, s2, . . . , sn} (1)

A masking function µ, operates on an input i = {f1, f2, . . . , fn} and its corresponding scoring
s = {s1, s2, . . . , sn} to produce a masked version of i:

µ(i, s) = {e1 ∈ {f1,m}, e2 ∈ {f2,m}, . . . , en ∈ {fn,m}} (2)

where m is a feature which carries no information for M and is chosen according to the task, e.g.,
a black pixel in computer vision or a pad token in natural language processing. In practise, µ is
realized in different ways in training and inference. During training whether a feature fj will be
replaced by m is determined by performing a biased coin flip based on sj (the score of fj), while
during inference µ is realized as:

µ(i, s)j =

{
fj , if sj > ε

m, otherwise
(3)

Given an input i and a scoring s = E(i), we compute the quality of the explainer’s scoring in terms
of sufficiency (su) and sparsity (sp), defined as follows:

su = gsu(M(i),M(µ(i, s))) (4)
sp = gsp(µ(i, s)) (5)

where, gsu : O×O → [0, 1] is a function measuring to what extent the output of M when presented
with µ(i, s) resembles the output of M when presented with i, and gsp computes the percentage
of features which have been replaced with m. Since we opt for maximally sparse inputs with high
sufficiency, the total quality score for the explanation is computed as:

q =

{
su + sp, if su > υ

su, otherwise
(6)

Note that we force explanations that have a sufficiency of at least υ to ensure a minimum quality.

Unless otherwise specified, we use a gsu tailored to classification where we assume O = [0, 1]c and
c is the number of classes. Classification sufficiency is then calculated as:

gsu(y, ŷ) = 1− (max(y)− ŷp) (7)

where p = argmax(y) is the predicted class in y ∈ O and gsu is bounded in [0, 1] with higher scores
signaling more faithful explanations. The term max(y) − ŷp measures the divergence between the
top probability estimate across classes in y and the probability estimate for the same class in ŷ.

2.2 LEARNING

Our explainer is realized as a neural network with parameters θ throughout. We aim to find the opti-
mal values θ∗ which maximize q (Eq. 6) across a number of training examples {i1, i2, . . . , im} ⊆ I .
However, the standard backpropagation optimization approach falls short in this case since it is im-
possible to produce gradients to update the explainer. While the explainer itself is differentiable,
in order for a sufficiency score to be computed for some input i a hard choice must be made on
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which features in i to retain and which to substitute with m. The masking function µ is therefore
non-differentiable. More importantly, our approach is completely model-agnostic and we make no
assumptions about whether the model we wish to explain (M ) is differentiable or not.

In the simplest scenario, where only the masking function is non-differentiable, a number of ap-
proaches have attempted to produce gradient estimations with methods other than the score estima-
tor, based on REINFORCE (Williams, 1992). The most common of these approaches are the straight-
through estimator (Chang et al., 2019; Chalkidis et al., 2021) and relaxation to binary variables
(Louizos et al., 2018; Bastings et al., 2019; De Cao et al., 2020) which leverages the reparametriza-
tion trick (Kingma & Welling, 2013). Both of these approaches can be used only when the masking
function is the only non-differentiable component, i.e., they require M to be differentiable, thus
breaking the model-agnostic nature of the explainer, which is a requirement in MAGNEx.

To retain the model-agnostic nature of our formulation and alleviate large computational strain to
our method we opt to train our model by estimating gradients for updates to our explainer network
with the score estimator (REINFORCE). For training on a single input i we create a multi-variable
policy using the output of our explainer.

πθ(i) = {B(Eθ(i)j)}|i|j=1 (8)
where B is the Bernoulli distribution. Sampling from this policy is equivalent to sampling from each
of the Bernoulli distributions independently. Therefore a sample τ ∼ πθ(i) is a sequence of binary
variables indicating the presence or the absence of the feature at position j. We train our method
using the score estimator which in this case can be written as:

∇θJ(πθ(i)) = ∇θEτ∼πθ(i)[q(τ )] (9)
Following Williams (1992) we can rewrite the above gradient in the form:

∇θJ(πθ(i)) = Eτ∼πθ(i)[∇θ log P(τ |i; θ) q(τ )] (10)

where P(τ |i; θ) =
∏|i|
j=1 P (τj |πθ(i)j). We can easily approximate Eq. 10 by Monte-Carlo sam-

pling.2 We further add a baseline in order to reduce the variance of the gradient estimator:
∇θJ(πθ) = Eτ∼πθ

[∇θ log P(τ |i; θ) (q(τ )− b)] (11)

In Mnih et al. (2014), which bears some similarities to our setting a learned baseline was used. Here,
we use a moving average baseline which seems to be sufficient for our use cases.

While similar methods relying on differentiable relaxation to binary variables have been shown to
outperform REINFORCE in some cases (Bastings et al., 2019; De Cao et al., 2020), we choose this
gradient estimator for a number of reasons. Firstly, we want our method to remain purely model-
agnostic, a requirement which cannot be satisfied by the estimators in Bastings et al. (2019) and
De Cao et al. (2020) which support only differentiable models. Secondly, the fact that the estimator
works by simple exposure to a scalar metric (Eq. 6), which does not need to have a gradient,
greatly reduces the space complexity of the method, allowing a higher degree of parallelism on
the same hardware, and in practice allowing very complex models to be explained in reasonable
time. Lastly, this problem involves constrained optimization. Looking back at the definition of our
total metric (Eq. 6) we can see that we are optimizing sparsity subject to sufficiency being higher
than some threshold. This objective is therefore non-differentiable and De Cao et al. (2020) and
Bastings et al. (2019) employ Lagrangian relaxation to approximate the constrained objective in a
differentiable manner. This adds a new hyperparameter, the Lagrangian multiplier, which needs to
be tuned, adding further overhead to the explainer’s development procedure and is in all cases an
approximation of the true constrained objective.

3 EXPERIMENTS

We tested MAGNEx in three challenging settings across modalities, i.e., image classification, sen-
timent classification, and question answering. Although, some of these tasks are simple to handle
with modern models, they pose a challenging setting for perturbation-based algorithms, since feature
spaces are large compared to previous work (Ribeiro et al., 2016; Lei et al., 2016; Bastings et al.,
2019; De Cao et al., 2020). This makes it difficult for such methods to identify subsets of the input
which are sparse and yet expressive enough to lead to the same output.

2See Appendix A.2 for a proof.
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3.1 BASELINES AND EVALUATION

We compare MAGNEx against Lime (Ribeiro et al., 2016) and Integrated Gradients (IG) (Sundarara-
jan et al., 2017), two popular post-hoc explainability methods. Recall that the explainer of MAGNEx
(E) outputs a score sj ∈ [0, 1] for each feature fj of an input i. This score can be interpreted as
the probability of fj being important for a model to produce the same output. During training these
probabilistic scores are converted to a binary value with a biased coin flip. During inference we cast
a feature as important if its respective explainer score is above a treshold ε (0.5 in our experiments).
On the other hand, both LIME and IG compute relative feature importance (i.e. whether a feature is
more important than another) but have no explicit threshold to decide which features to keep. This is
left up to the user as a post-processing step. We therefore evaluate both of these methods by selecting
the top k most highly scored features, where k is the number of features selected byE (MAGNEx) for
the same input. In other words, we evaluate the sufficiency of all explanations at the sparsity level
achieved by E. For each method we also report the time required to produce explanations averaged
across inputs. Further, we intentionally make no attempt to compare explanations against human
annotated rationales. Our main goal is to produce explanations which are faithful to the underlying
model, i.e., accurately reflect the features in an input which are important for the model (Lipton,
2018; Jacovi & Goldberg, 2020), which is generally ensured when the sufficiency scores are high.
Whether these faithful explanations align with what a human would consider a correct explanation
is an open question and beyond the scope of this work.3

3.2 TECHNICAL DETAILS

For IG, following Sundararajan et al. (2017), we use 50 steps in the approximation of the integral
throughout.4 Concerning LIME, shallow models allow a larger number of perturbations to be drawn.
Therefore, in image classification where we use MAGNEx to explain shallow models, we allow 1,500
perturbations to be drawn.5 On the other hand, for sentiment classification the model complexity
increases and we allow 1,000 perturbations, to ensure that the explanations will be created in rea-
sonable amount of time (less than 10 seconds per input). For similar reasons, in question answering
where we try to explain the most complex model in this work, we allow only 700 perturbations per
example which again keeps explanation generation time around the 10 second mark per input.6

3.3 IMAGE CLASSIFICATION

For image classification we use the popular MNIST dataset (Deng, 2012). The input features are
pixels, and we chooseE to be a two-layer Convolutional Neural Network (CNN) (LeCun et al., 1990)
which creates a vector representation for each pixel, followed by a shared linear projection to output
a single score per pixel. The feature space size is the number of pixels in an image (28×28 = 784).7

3.3.1 EXPLAINING RANDOM FOREST

We train a random decision forest (Ho, 1995) to perform digit classification from raw pixels. The
model achieves a perfect accuracy on the test set. In this case, we only compare against LIME
because random forests are not differentiable and IG is unable to produce explanations. Table 1
shows the results. MAGNEx is able to achieve much higher sufficiency than LIME while being faster
during inference. Explanations are also more stable (smaller standard deviation across inputs).

3.3.2 EXPLAINING A CNN

We also train a two-layer CNN on the same task and compare MAGNEx against LIME and IG since
the CNN is able to produce gradients.8 The CNN reaches near-perfect accuracy on the test set (99%).
Our results can be seen in Table 2. All methods have very high sufficiency scores, producing faithful

3We report results for the best of two runs because the differences were small (< 1%).
4Sundararajan et al. (2017) proposed a value between 20 and 300.
5We found that increasing this number further does not yield more sufficient explanations.
6We only perform a mild manual tuning for both baselines due to their complexity.
7Refer to Appendix A.3 for sample rationales.
8We also attempted to use a simple gradient approach (Jacobian) but the results were significantly inferior.
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Method Sparsity Sufficiency Time (s)

MAGNEx (ours) 0.81 ± 0.05 0.99 ± 0.02 0.02 ± 0.00
LIME – 0.83 ± 0.15 0.30 ± 0.02

Table 1: Performance of MAGNEx and LIME when explaining a random forest model trained for
digit recognition. MAGNEx outperforms LIME in both sufficiency and inference time.

Figure 2: MAGNEx for experiments with text. The input is passed through BERT fine-tuned for the
task and then a GRU further contextualizes the embeddings before each of them is passed through a
shared linear layer to produce a score for each token. BERT is not updated during training.

explanations. This could be attributed to the fact that the pre-trained CNN is much more robust to
slight changes in the input images. It appears to have generalized better than the random forests
and can be more easily explained, as LIME performs well here while it was had difficulties when
explaining the random forests. This is further supported by the fact that the sparsity here is higher,
meaning that we can mask a larger percentage of each input while retaining very high sufficiency.
When it comes to efficiency our method remains much faster during inference than its competitors.

Method Sparsity Sufficiency Time (s)

MAGNEx (ours) 0.88 ± 0.04 0.99 ± 0.05 0.01 ± 0.0

LIME – 0.99 ± 0.06 0.57 ± 0.1

IG – 0.99 ± 0.06 0.60 ± 0.0

Table 2: Performance of MAGNEx, LIME, and IG when explaining a CNN trained for digit recogni-
tion. All methods generate sufficient explanations, but MAGNEx is more efficient during inference.

3.4 SENTIMENT CLASSIFICATION

We fine-tune BERT (Devlin et al., 2019) for binary sentiment classification on the IMDB review
dataset (Maas et al., 2011). In this task, the input is a sequence of tokens. Again we choose a
dataset with a large number of features (tokens) per instance, to ensure our method is tested for its
scalability to realistic scenarios. On the validation set, the mean number of tokens per review is
303. The maximum allowed number of tokens is 512 (13% of validation instances). BERT achieves
94% accuracy on the test set. Here E is a single-layer GRU model (Cho et al., 2014) operating on
the contexualized embeddings drawn from the last layer of the fine-tuned BERT model. In effect the
GRU further contexualizes these embeddings before passing them to a shared linear projection to
create the score for each token. Updates are only performed on the GRU and the linear projection,
i.e., the fine-tuned BERT remains frozen. The whole architecture of MAGNEx for this setting can be
seen in Figure 2. As mentioned in Section 2.2, a reason for choosing REINFORCE is the alleviation
of a lot of computational stress from the training procedure. If we were to use differentiable masking
(relaxation to binary variables) to create semi-hard scores for each token, we would have to produce
gradients for the feedback given back from the pre-trained model. The computation graph in this
case would be further tasked with tracking gradients for the BERT model and all its intermediate
computation throughout the explainer’s training procedure.

Our results can be seen in Table 3. MAGNEx produces comparable or better explanations than its
competitors, while being faster during inference. One additional advantage of MAGNEx is that it
alleviates hindsight bias, which can often be observed in perturbation-based explainability. When
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Method Sparsity Sufficiency Time (s)

MAGNEx 0.94 ± 0.06 0.95 ± 0.10 0.05 ± 0.03

LIME – 0.95 ± 0.09 9.33 ± 5.23

IG – 0.90 ± 0.16 1.32 ± 0.70

Table 3: Performance of MAGNEx, LIME, and IG, explaining BERT fine-tuned for sentiment classi-
fication. MAGNEx outperforms the baselines in both suffuciency and inference time.

(a)

(b)

Figure 3: Explanations produced by MAGNEx (a) and LIME (b) for a review in the IMDB test set.
Both explanations have high sufficiency, but we believe that (a) is a more faithful interpretation of
the model’s computation. LIME appears to have fallen victim of hindsight bias identifying a single
feature (great) as important. This does not mean that the underlying model ignores everything else.
MAGNEx considers more features to be important as its global training acts against hindsight bias.

performing erasure (i.e., dropping features from the input to a model) there is no guarantee that
low scored features are indeed not useful for the underlying model. The token great in Figure 3b
is scored very highly in comparison to all other tokens. Retaining this token alone would lead to
the same output. This does not necessarily mean that the pre-trained model does not consider any
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other tokens when casting a decision. Although we employ no explicit mechanism to tackle this
issue, we believe that we make steps towards the right direction due to two characteristics of our
method. Firstly, MAGNEx is global, i.e., it learns a model across a large number of instances, which
we believe to act as a regularizer against hindsight bias. The exact optimum of erasure for a specific
instance can easily fall victim to hindsight bias and therefore approximations of this exact opti-
mum (e.g., LIME) can often exhibit this same behaviour. On the other hand, global context allows
MAGNEx to reveal patterns that generalize across instances instead of local ones. For instance, great
being associated with a positive prediction is a pattern local to an instance that cannot be established
globally. It is therefore, disincentivised as a solution in MAGNEx’s global training regime. We do
not argue that such patterns are non-existent, rather that they are important only when they can be
established across a variety of instances and can otherwise create extremely misleading explanations
(which score very well according to our metrics, i.e., they are sufficient while also being very sparse)
but are at the same time not faithful explanations. Secondly, E operates in the space of hidden rep-
resentations, i.e., BERT token embeddings, which arguably capture contextualized morpho-syntactic
and semantic information, allowing MAGNEx to learn more general explanation patterns.

3.5 QUESTION ANSWERING

For this task we use a large variant of BERT (24 layers, 16 attention heads, 1024 hidden size), pre-
trained and fine-tuned on SQUAD (Rajpurkar et al. (2016)). The model attempts to predict answer
spans within some context given a question. It achieves an F1 score of 93.2% and an exact match
score of 86.9%. We show the results of various explainers on the task in Table 4. Our explainer
continues to produce explanations that have higher sufficiency scores than the other methods while
also being considerably faster. A side note here is that for this task sufficiency is realized as the
Jaccard index. So between two predicted spans y = {f1, f2, . . . , fm} and ŷ = {f̂1, f̂2, . . . , f̂n},
sufficiency is measured as su(y, ŷ) = (y

⋃
ŷ)/(y

⋂
ŷ). The Jaccard index severely punishes small

mistakes. For example, the Jaccard index for the spans ‘Stanford University’ and ‘the Standford
University’ is 2/3 despite the answers being almost identical. To some extent this explains the large
standard deviations (Table 4) reported for all methods. Finally, similarly to the sentiment analysis
task, LIME suffers from the hindsight bias problem. Figure 4 shows an indicative example where the
explanations produced by MAGNEx are more well formed than those of LIME.

Method Sparsity Sufficiency Time (s)

MAGNEx 0.76 ± 0.12 0.88 ± 0.30 0.09 ± 0.03

LIME – 0.82 ± 0.32 12.91 ± 5.22

IG – 0.34 ± 0.40 5.76 ± 2.24

Table 4: Performance of MAGNEx, LIME, and IG, explaining a large variant of BERT in question
answering. MAGNEx outperforms the baselines in both suffuciency and inference time.

4 RELATED WORK

The outburst in the field of explainability in machine learning started with Ribeiro et al. (2016) who
proposed LIME, a model-agnostic perturbation-based algorithm that generates explanations for ma-
chine learning models. Since then, apart from perturbation-based methods, gradient based methods
were explored (Shrikumar et al., 2017; Sundararajan et al., 2017)). More recently, Jain & Wallace
(2019) and Wiegreffe & Pinter (2019), driven by the increasing popularity of Transformer-based
models (Vaswani et al., 2017) in a number of tasks across modalities (Devlin et al., 2019; Schnei-
der et al., 2019; Dosovitskiy et al., 2021), have initiated the discussion on whether the attention
mechanism in these models can provide quality explanations.

In parallel, a lot of work focused on creating explainable neural networks by-design (Lei et al.,
2016; Bastings et al., 2019; Yu et al., 2019; Chang et al., 2019; Chalkidis et al., 2021). These sys-
tems typically contain two components. The first component selects rationales (subsets of the input)
which are then fed to the second component for classification. They are typically trained with sim-
ilar objectives to perturbation-based methods, i.e., sufficiency and sparsity, other objectives such as
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(a)

(b)

Figure 4: Explanations produced by MAGNEx (a) and LIME (b) for a question (green box) of SQUAD
validation set. Filtering these to produce binary scores as we do during evaluation creates the reduced
inputs i) who wrote about the great pest ##ile ##nce in 1893 ? the historian francis aidan gas ##quet
wrote about the ‘ great pest ##ile and ii) who wrote about ##ile ##nce 1893 ? the francis gas ##quet
wrote great 1893 suggested “ some adopt black interpretation other roman ##1. Global context
allows MAGNEx to produce comparatively well formed inputs to present to the pre-trained model.

continuity Lei et al. (2016) and comprehensiveness Yu et al. (2019); Chalkidis et al. (2021) have
also been tested. However, the initial system (Lei et al., 2016) performed gradient estimation for
the rationale extractor with REINFORCE without baseline reduction making the system unstable due
to the nature of the learning algorithm. Bastings et al. (2019) relaxed this binary rationale extrac-
tion process by following Louizos et al. (2018) and therefore making the objective differentiable.
Nonetheless, all further work done in this area (Yu et al., 2019; Chang et al., 2019) optimizes at least
two neural networks concurrently and uses some sort of gradient estimation either through REIN-
FORCE, the reparametrization trick, or straight-trough estimators. Naturally, these systems are often
very hard to train due to their complexity and their innate inability to produce exact gradients due to
their stochastic nodes. Finally, recent work (Jain et al., 2020; Situ et al., 2021) has attempted to use
auxiliary explanations generated by some attribution method (such as LIME or integrated gradients)
as supervision. For instance, one of the methods explored by Situ et al. (2021) was to train a ratio-
nale extractor on explanations produced by LIME. They also experimented with integrated gradients,
sumilarly to Jain et al. (2020) to train a neural network to create explanations in the post-hoc setting.

5 CONCLUSION & FUTURE WORK

We introduced MAGNEx, a post-hoc explainability algorithm, that is global and completely model-
agnostic. We experimentally showed that our approach outperforms popular post-hoc algorithms
in terms of the faithfulness of its explanations and in computational complexity across tasks and
modalities. In addition, the global nature of MAGNEx seems to alleviate the hindsight bias problem
that seemed to trouble local perturbation-based explainability methods.

In the future we aim to pursue a number of interesting directions. We would like to combine our
method with online learning to produce higher quality explanations. The explanations learned offline
can be used as a starting point and further search can be performed on a per instance basis. We are
also planning on performing human evaluation between MAGNEx and its baselines to determine
how informative its explanations in the eyes of a human. Lastly, we will explore counterfactual
explainability (Goyal et al., 2019; Elazar et al., 2021) and how it can be used to improve both the
training regime of MAGNEx as well as our evaluation framework.
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and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/5ad742cd15633b26fdce1b80f7b39f7c-Paper.pdf.
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Miroslav Kárný, David Rios-Insua, and David H. Wolpert (eds.), Proceedings of the NIPS 2016
Workshop on Imperfect Decision Makers, volume 58 of Proceedings of Machine Learning Re-
search, pp. 111–127. PMLR, 09 Dec 2017. URL https://proceedings.mlr.press/
v58/mahdavi17a.html.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems, pp. 2204–2212, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We implemented all models in AllenNLP (Gardner et al., 2018) and PyTorch (Paszke et al., 2019).
For experiments with text (Sections 3.4 and 3.5) we used the Transformers library of Huggingface
(Wolf et al., 2020). For MAGNEx we found automatic tuning to be slow in developement since
REINFORCE tends to diverge very quickly when the learning rate is non-optimal. We therefore man-
ually tuned the hyper-parameters in each experiment by allowing a small number of batches to flow
through the model and observing its metrics. Non-promising runs were terminated very quickly.
We performed this procedure for sentiment classification and question answering for learning rates
∈ {10−4, 10−5}. The optimal learning rates were 10−4 for sentiment classification and 10−5 for
question answering. For image classification (Section 3.3) we used a learning rate of 10−3. Opti-
mization was carried out with Adam (Kingma & Ba, 2015) throughout the experiments except when
fine-tuning BERT-base in sentiment classification where AdamW (Loshchilov & Hutter, 2019) was
used. Finally, for our baselines (LIME, IG) we use Captum (Kokhlikyan et al., 2020).

A.2 SCORE ESTIMATOR PROOF

We begin by creating a policy parametrized by θ. For some input i the policy can be written as:

πθ(i) = {B(Eθ(i)j)}|i|j=1 (12)
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Our loss is the expected return across samples τ drawn from πθ (τ ∼ πθ(i)) with gradient:

∇θJ(πθ(i)) = ∇θEτ∼πθ(i)[q(τ )] (13)

The probability of trajectory τ which is a sequence of binary variables being sampled from πθ(i) is:

P(τ |i; θ) =
|i|∏
j=1

P (τj |πθ(i)j) (14)

We can rewrite Eq. 13 by taking the definition of expectation as:

∇θJ(πθ(i)) = ∇θ
∫
τ

P(τ |i; θ)q(τ) (15)

We can add the gradient in Eq. 15 under the integral:

∇θJ(πθ(i)) =
∫
τ

∇θP(τ |i; θ)q(τ ) (16)

and rewrite Eq. 16 by utilizing log(f(x))′ = f ′(x)/f(x) as:

∇θJ(πθ(i)) =
∫
τ

P(τ |i; θ)∇θ log P(τ |i; θ)q(τ ) (17)

By reverting back to expectation form we arrive at:

∇θJ(πθ(i)) = Eτ∼πθ(i)[∇θ log P(τ |i; θ) q(τ )] (18)

This allows us to sample τ ∼ πθ(i) and compute the gradient with Monte Carlo Sampling.

A.3 IMAGE CLASSIFICATION RATIONALES

We show rationales for MNIST classification when the model being explained is a Random Forest
(Figure 5) or a CNN (Figure 6). MAGNEx produces explanations of higher quality than LIME.

(a) (b) (c)

Figure 5: Explanations for a sample image (a) in the MNIST dataset with explanations generated by
MAGNEx (b) and LIME (c) when explaining a Random Forest.
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(a) (b) (c)

Figure 6: Explanations for a sample image (a) in the MNIST dataset with explanations generated by
MAGNEx (b) and LIME (c) when explaining a CNN.
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