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ABSTRACT

We propose using a Gaussian Mixture Model (GMM) as reverse transition opera-
tor (kernel) within the Denoising Diffusion Implicit Models (DDIM) framework,
which is one of the most widely used approaches for accelerated sampling from
pre-trained Denoising Diffusion Probabilistic Models (DDPM). Specifically we
match the first and second order central moments of the DDPM forward marginals
by constraining the parameters of the GMM. We see that moment matching is suf-
ficient to obtain samples with equal or better quality than the original DDIM with
Gaussian kernels. We provide experimental results with unconditional models
trained on CelebAHQ and FFHQ and class-conditional models trained on Ima-
geNet datasets respectively. Our results suggest that using the GMM kernel leads
to significant improvements in the quality of the generated samples when the num-
ber of sampling steps is small, as measured by FID and IS metrics. For example
on ImageNet 256x256, using 10 sampling steps, we achieve a FID of 6.94 and IS
of 207.85 with a GMM kernel compared to 10.15 and 196.73 respectively with a
Gaussian kernel.

1 INTRODUCTION

Diffusion models (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021), also known as Score
based generative models (Sohl-Dickstein et al., 2015; Song et al., 2020), have demonstrated great
success in modeling data distributions in various domains including images (Dhariwal & Nichol,
2021; Nichol & Dhariwal, 2021; Saharia et al., 2022; Rombach et al., 2022), videos (Ho et al., 2022;
Blattmann et al., 2023), speech (Kong et al., 2021) and 3D (Poole et al., 2022; Watson et al., 2022).
This is due to their flexibility in modeling complex multimodal distributions and ease of training
relative to other competitive approaches such as VAEs (Kingma & Welling, 2014; Rezende et al.,
2014), GANs (Goodfellow et al., 2014; Salimans et al., 2016; Karras et al., 2018; Brock et al., 2019),
autoregressive models (van den Oord et al., 2016b;a) and normalizing flows (Rezende & Mohamed,
2015; Dinh et al., 2017), which do not exhibit both of the advantages simultaneously. In spite of their
success, the main bottleneck to their adoption is the slow sampling speed, usually requiring hundreds
to thousands of denoising steps to generate a sample. Recently a number of accelerated sampling
approaches have emerged, notably Denoising Diffusion Implicit Models (Song et al., 2021), pseudo
numerical methods (Liu et al., 2022), distillation (Salimans & Ho, 2022; Luhman & Luhman, 2021;
Meng et al., 2023) and various approximations to solving the reverse SDE(Song et al., 2020; Lu
et al., 2022; 2023; Zhang & Chen, 2023).

Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021) accelerate sampling from De-
noising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) by hypothesizing a family of
non-Markovian forward processes, whose reverse process (Markovian) estimators can be trained
with the same surrogate objective as DDPMs, assuming the same parameterization for reverse esti-
mators. It is based on the observation that a simplified DDPM training objective Lsimple,w (Eq. 4)
depends on the forward process only through its marginals at discrete steps t. In other words, one
can sample with a pretrained DDPM denoiser by designing a different forward/backward process
than the original DDPM given that the forward marginals are the same. Recent works (Xiao et al.,
2022; Guo et al., 2023) have shown that the true denoising conditional distributions of DDPMs are
multimodal, especially when the denoising step sizes are large. Although the unimodal Gaussian
kernel in DDIM yields a multimodal denoising conditional distribution, there is potential to improve
its expressiveness with a multimodal kernel. It is not straightforward to use a multimodal kernel
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while satisfying the marginal constraints. A recent work (Watson et al., 2021) shows that it is not
necessary to satisfy the marginal constraints to achieve accelerated sampling. Taking inspiration
from these works, we propose using Gaussian mixtures as the transition kernels of the reverse pro-
cess in the DDIM framework. This results in a non-Markovian inference process with Gaussian
mixtures as marginals. Further, we constrain the mixture parameters so that the first and second or-
der central moments of the forward marginals match exactly those of the DDPM forward marginals.
For brevity, we refer to central moments as simply moments in the rest of the paper. In summary,
our main contributions are as follows:

1. We propose using Gaussian Mixture Models (GMM) as reverse transition operators (kernel)
within the DDIM framework, which results in a non-Markovian inference process with
Gaussian mixtures as marginals.

2. We derive constraints to match the first and second order moments of the resulting forward
GMM marginals to those of the DDPM forward marginals. Based on these constraints, we
provide three different schemes to compute GMM parameters efficiently.

3. We demonstrate experimentally that the proposed method results in further accelerating
sampling from pretrained DDPM models relative to DDIM, especially with fewer sampling
steps.

We begin by providing a brief overview of Diffusion and the DDIM framework in Section 2. Our
approach for extending DDIMs with Gaussian mixture transition kernels is provided in Section 3.
In Section 4, we conduct experiments on CelebAHQ (Liu et al., 2015), FFHQ (Karras et al., 2019),
ImageNet (Deng et al., 2009), and text-to-image generation with Stable Diffusion (Rombach et al.,
2022), and provide quantitative results. Finally we conclude in Section 5.

2 BACKGROUND

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (Ho et al., 2020) learn a model for the data distribution
q(x0) by designing a forward and backward diffusion process. In the forward process, noise is
added to the data samples following a predetermined schedule, thereby transforming a structured
distribution q(x0) at step t = 0 to Gaussian noise, q(xT ) = N (0, I), at step T . This is achieved by
setting up a Markov chain at every step t with the transition kernel defined by

q(xt|xt−1) = N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
, (1)

where αt are chosen such that the marginal q(xT ) converges to N (0, I) with large enough T . It is
straightforward to obtain the marginal of the latent xt at any step t conditioned on data sample x0

as

q(xt|x0) = N (
√
αtx0, (1− αt)I) . (2)

In the backward process, a parameterized Markovian denoiser pθ(xt−1|xt), initialized with Gaus-
sian noise, p(xT ) = N (0, I), learns to estimate the distribution of xt−1 given xt to maximize the
evidence lower bound (ELBO) or minimize LELBO:

LELBO = Eq

[
DKL(q(xT |x0)||pθ(xT )) +

T∑
t=2

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))− log pθ(x0|x1))

]
.

(3)

The above is equivalent to training pθ(xt−1|xt) to match the posterior q(xt−1|xt,x0), which
turns out to be a Gaussian (Luo, 2022). Assuming a Gaussian form for pθ(xt−1|xt) =
N (xt−1|µθ(xt, t),Σθ(xt, t)), leads to a simplified loss function for training DDPMs, which is
optimized over µθ(xt, t) and Σθ(xt, t). It has been found that a reparameterized mean estimator
µθ(xt, t) as a function of added noise estimator ϵθ(xt, t) has benefits of better sample quality. The
resulting simplified loss function Lsimple,w (Ho et al., 2020) is a weighted version of ELBO with
weights wt:

Lsimple,w = Et∼U [1,T ]q(x0)q(xt|x0)ϵ

[
wt||ϵ− ϵθ(xt, t)||2

]
. (4)
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ϵθ(xt, t) is modeled as a U-Net (Ho et al., 2020) or a transformer (Peebles & Xie, 2022). The
covariance estimator Σθ(xt, t) is either learned (Nichol & Dhariwal, 2021; Dhariwal & Nichol,
2021) or fixed (Ho et al., 2020).

2.2 DDIM

Following the same notation as Song et al. (2021), we refer to the forward process as inference and
the reverse process as generative. The key assumption is that the more general non-Markovian infer-
ence processes qσ(x0:T ) have the same marginal distribution qσ(xt|x0) at every t as the DDPM, but
not necessarily the same joint distribution over all the latents qσ(x1:T |x0). The form of a Markovian
family of generative process in DDIMs (Song et al., 2021) is given by

qσ(x1:T |x0) := qσ(xT |x0)

t=T∏
t=2

qσ(xt−1|xt,x0),

qσ(xT |x0) := N (
√
αTx0, (1− αT )I) , (5)

where σ ∈ RT
≥0 parameterizes the variances of the reverse transition kernels,

qσ(xt−1|xt,x0) = N
(
√
αt−1x0 +

√
1− αt−1 − σ2

t .
xt −

√
αtx0√

1− αt
, σ2

t I

)
,∀t > 1. (6)

The transition kernel above ensures that the resulting marginals qσ(xt|x0) are identical to the DDPM
marginals in Eq. 2. The ODE perspective of DDIM and other related works on accelerated sampling
from diffusion models are discussed in Appendix A.1.

3 APPROACH

We propose using a Gaussian Mixture Model (GMM) within the reverse transition kernels of the
DDIM generative process. Specifically, the form of transition kernels in Eq. 6 is given by

qσ,M(xt−1|xt,x0) =

K∑
k=1

πk
t N

(
√
αt−1x0 +

√
1− αt−1 − σ2

t .
xt −

√
αtx0√

1− αt
+ δkt , σ

2
t I −∆k

t

)
,

(7)

where Mt =
(
πk
t , δ

k
t ,∆

k
t

)
, k = 1 . . .K denote the additional GMM parameters, specifically the

mixture component priors, mean and covariance offsets relative to the single Gaussian counterparts
of Eq. 6, respectively. Further, we constrain the above kernel so that the first and second order
moments of the individual latent variables qσ,M(xt|x0) are the same as that of an equivalently
parameterized DDPM (Eq. 2). This allows us to use DDIM sampling on a model trained with the
same surrogate objective as the DDPM in Eq. 4 given that the GMM parameters Mt satisfy:

K∑
k=1

πk
t = 1,

K∑
k=1

πk
t δ

k
t = 0

∆k
t = δkt (δ

k
t )

T OR ∆k
t =

1

Kπk
t

K∑
l=1

πl
tδ

l
t(δ

l
t)

T , (8)

where either one of the two constraints on the covariance matrix offset ∆k
t is sufficient to yield the

correct moment matching. Please see Appendix A.3 for proof. We also provide an upper bound for
the ELBO loss using the proposed inference process as an augmented version of the Lsimple,w loss
in Appendix A.6. The proposed kernel yields a more expressive multimodal denoising conditional
distribution qσ,M(xt−1|xt) compared to DDIM as shown in Appendix A.7.

3.1 GMM PARAMETERS

Sampling with the original DDIM kernel of Eq. 6 requires choosing an appropriate value for the
variance σ2

t , which determines the stochasticity (Song et al., 2021) of the DDIM inference and sam-
pling processes. It is specified as a proportion η of the DDPM reverse transition kernel’s variance at
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the corresponding step t. The proposed approach requires choosing the additional GMM parameters
Mt at every step t during sampling. In what follows, we describe three different ways to choose
these parameters efficiently to satisfy the constraints in Eq. 8 while keeping additional computational
requirements relatively low.

First we choose the mixture priors πk
t to be uniform or with a suitable random initialization so

that they are non-negative and sum to one. We experiment with choosing the mean offsets δkt
either randomly (DDIM-GMM-RAND) or followed by orthogonalization (DDIM-GMM-ORTHO)
to allow for better exploration of the latent space (xt, t > 0) as described below.

3.1.1 METHOD 1: DDIM-GMM-RAND

At every step t we sample random vectors ok
t , k = 1 . . .K from an isotropic multivariate Gaussian

with dimensionality equal to that of the latent variables xt ∈ RD. These vectors are mean centered
and scaled to yield the offsets δtk.

Ot ∼ N (0, I),Ot ∈ RD×K ,K < D

ōt =

K∑
k=1

πk
t Ot[k], Ct[k] = Ot[k]− ōt, δkt =

s

||Ct[k]||2
Ct[k], (9)

where Ot[k] denotes the kth column of the matrix Ot, ||Ct[k]||2 denotes the magnitude of Ct[k],
and s is a scale factor that controls the magnitude of the offsets.

3.1.2 METHOD 2: DDIM-GMM-ORTHO

In order to allow for better exploration of the latent space of xt, the set of offsets above is orthonor-
malized using an SVD on the matrix Ot with ok

t as columns and choosing the first K components
of the output Ut factor, i.e. the first K eigenvectors of OtO

T
t . Specifically

UtΣtV
T
t = SV D(Ot)

ūt =

K∑
k=1

πk
t Ut[k], Ct[1 : K] = Ut[1 : K]− ūt, δkt = sCt[k], (10)

where Ut[1 : K] are the first K columns of Ut. The mean centering above ensures that the offsets
δkt satisfy the zero weighted mean constraint in Eq. 8. The covariance parameters are chosen as

∆k
t =

1

Kπk
t

K∑
l=1

πl
tδ

l
t(δ

l
t)

T (11)

to satisfy the covariance constraint of Eq. 8. To sample from the reverse kernel of Eq. 7, we approxi-
mate the covariance matrix σ2

t I −∆k
t to be diagonal. A straightforward approximation is to choose

only the diagonal elements of ∆k
t and subtract from σ2

t .

3.1.3 METHOD 3: DDIM-GMM-ORTHO-VUB

Given the random choice of offsets δkt , we also experiment with an upper bound diagonal approxi-
mation of ∆k

t by eigen decomposition similar to PCA (Jolliffe, 1986), These variance upper bounds
(VUB) determine the maximum allowable variances for the dimensions in ∆k

t keeping the total
variance the same. If λi, i = 1 . . .K are the eigenvalues of ∆k

t , then

s2

Kπk
t

(
π1
t −

K∑
l=1

(πl
t)

2

)
≤ λ1 ≤ s2

Kπk
t

π1
t

s2

Kπk
t

πi−1
t ≤ λi ≤

s2

Kπk
t

πi
t, i = 2 . . .K. (12)

Please see Appendix A.4 for proof. It turns out the upper bounds above are independent of the
δkt ’s. We use the upper bounds in Eq. 24 to compute the diagonal approximation of σ2

t I − ∆k
t

by offsetting the first K elements of σ2
t I with the eigenvalue upper bounds. The scale s can be
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chosen such that the upper bounds are always smaller than σ2
t to ensure positive variances across

all dimensions. Note that the above diagonalization and variance offsetting has to be done only
once before sampling, which introduces additional computation for initialization but not during
sampling. We also experiment with sharing GMM parameters across sampling steps t to save time
by avoiding the expensive SVD operation for each step and doing it only once. We denote this
approach as DDIM-GMM-ORTHO-VUB∗. Please see Appendix A.10 for further discussion on
additional computational overhead.

4 EXPERIMENTS

In this section we compare the quality of samples generated using the proposed approach with those
generated by the original DDIM sampling. We conduct experiments on CelebAHQ (Liu et al.,
2015) and FFHQ (Karras et al., 2019), which are high resolution face datasets used as standard
benchmarks for evaluating generative models. We also evaluate the effectiveness of the proposed
approach on sampling from class-conditional distributions by training on the ImageNet dataset with
conditioning on class labels (Rombach et al., 2022). The sample quality is measured using Frechét
Inception Distance (FID) (Heusel et al., 2017) and Inception score (IS) (Salimans et al., 2016) for
class-conditional generation. We train diffusion models using the unweighted DDPM objective (Ho
et al., 2020) in the latent space of a VQVAE (Rombach et al., 2022). More experimental details can
be found in the Appendix A.2. For each dataset, we generate as many samples as in the standard
validation split of the dataset to compute the FID and IS metrics, i.e., 5000 for CelebAHQ, 10000
for FFHQ and 50000 for ImageNet respectively.
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Figure 1: CelebAHQ. FID (↓). The horizontal line is the DDPM baseline run for 1000 steps.
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Figure 2: FFHQ. FID (↓). The horizontal line is the DDPM baseline run for 1000 steps.

4.1 UNCONDITIONAL MODELS ON CELEBAHQ AND FFHQ

The FID scores of unconditional generation models on CelebAHQ and FFHQ datasets are reported
in Figs. 1 and 2 respectively. We run both DDIM and the proposed variants of DDIM-GMM sam-
plers for different numbers of steps (10, 20, 50, 100) using different values of the stochasticity
parameter η (Song et al., 2021). For each DDIM-GMM variant, we choose a GMM with 8 mixture
components with uniform priors (πk

t =0.125) for all steps t. We also search for the best value of
scaling s among {0.01, 0.1, 1.0, 10.0} and report the best result with the chosen value for s. For all
the experiments here, we set the value of s to be the same for all steps t. It is possible to further tune
these parameters. For instance one could search for an optimal set of parameters using a suitable
objective (Watson et al., 2021; Mathiasen & Hvilshøj, 2021) on the training set. We also run full
DDPM sampling for 1000 steps as a baseline since all the models were trained for 1000 steps in
the forward process using the Lsimple,w DDPM objective (Eq. 4) with uniform weights (w = 1).
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We observe that sampling with a GMM transition kernel (DDIM-GMM-*) shows significant im-
provements in sample quality over the Gaussian kernel (DDIM) at lower values of sampling steps
and higher values of η for unconditional generation on both CelebAHQ and FFHQ (see also Ta-
bles 5 and 6, Appendix A.13). Among the different choices for computing GMM offset parameters,
DDIM-GMM-RAND and DDIM-GMM-ORTHO produce similar quality results. We observe sig-
nificant improvements with upper bounding variances with the DDIM-GMM-ORTHO-VUB variant.
Our hypothesis is that the GMM kernel allows exploring the latent space better than the Gaussian
kernel under those settings. Variance upper bounding further encourages this by lumping variances
into fewer dimensions of ∆k

t . This is favorable since sampling time is a significant bottleneck for
the use of DDPM in real-time applications.

4.2 CLASS-CONDITIONAL IMAGENET

We train class-conditional models on ImageNet and experiment with guided sampling using either
classifier guidance (Dhariwal & Nichol, 2021) or classifier-free guidance (Ho & Salimans, 2021)
below. See Appendix A.8 for additional results without using any guidance.

4.2.1 CLASS-CONDITIONAL IMAGENET WITH CLASSIFIER GUIDANCE

For classifier guidance, we train a separate classifier at different levels of noise and use it with two
guidance scales (1, 10) for sampling with 10 and 100 steps. The FID and IS results are in Figs. 3 and
4 respectively. Using smaller guiance scale (1), DDIM-GMM-* samplers show improvements over
DDIM only under the highest η(= 1) setting. FID improves using the fewest sampling steps (10) and
IS improves using both 10 and 100 sampling steps. This can be attributed to a similar argument as for
unconditional sampling, especially for the least number of sampling steps. With a higher guidance
scale (10), all variants of DDIM-GMM-* samplers yield significantly lower FIDs than the DDIM
sampler when the number of sampling steps is small (10) (see Table 9, Appendix A.13.3). The
FIDs with variance upper bounding, relative to without, improve significantly with higher values
of η possibly due to greater exploration of the latent space under those settings. The differences
between DDIM and DDIM-GMM-* are marginal using 100 sampling steps with the exception of
DDIM-GMM-RAND and DDIM-GMM-ORTHO for the highest η setting. With a higher guidance
scale (10), the IS scores of samples from DDIM-GMM-* samplers are almost always higher than
from the DDIM sampler (see Table 10, Appendix A.13.3). The only exception is the DDIM-GMM-
ORTHO sampler run for 100 steps using η = 1, which is only marginally worse. Similar to FID
results, the differences between samplers with and without variance upper bounding are amplified by
η. This is an interesting result indicating that better exploration of latent spaces with a multimodal
reverse kernel not only helps with coverage (FID) but also sample sharpness (IS) since the guidance
scale is known to trade-off one versus the other (Dhariwal & Nichol, 2021) and poses challenges for
higher order ODE solvers (Lu et al., 2023).

4.2.2 CLASS-CONDITIONAL IMAGENET WITH CLASSIFIER-FREE GUIDANCE

For classifier-free guidance, we jointly train a class-conditional and unconditional model with pa-
rameter sharing (Ho & Salimans, 2021) by setting the unconditional training probability to 0.1. We
then sample from this model using two guidance scales (2.5, 5) for 10 and 100 sampling steps. Note
that each sampling step involves two Neural Function Evaluations (NFE) using classifier-free guid-
ance in order to compute conditional and unconditional scores with the same denoising network.
The FID and IS results are shown in Figs. 5 and 6 respectively. Using fewer sampling steps (10),
the FID and IS scores of the samples improve significantly when any DDIM-GMM-* sampler is
used, relative to DDIM, regardless of the guidance scale (see Tables 11 and 12, Appendix A.13.3).
Notably, the best FID (6.72) and IS (320.66) metrics are obtained using deterministic (η = 0)
DDIM-GMM-ORTHO-VUB∗ and DDIM-GMM-ORTHO samplers with guidance scale 2.5 and 5.0
respectively. Similar to previous results, among DDIM-GMM-*, using variance bounding leads to
more significant improvements at higher η relative to not, especially at lower guidance scale (2.5)
for FID but both scales for IS.

Using 100 steps, samples from DDIM and DDIM-GMM-* variants have similar metrics in most
settings with some exceptions. DDIM-GMM-RAND and DDDIM-GMM-ORTHO yield the best
FID values under the η = 1 setting at both guidance scales and η = 0.5 setting at the higher

6



Under review as a conference paper at ICLR 2024

10 10
0

#Steps

0

5

10

15

20

25

FI
D

DDPM DDPM

η=0.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

25

FI
D

DDPM DDPM

η=0.2
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

25

30

FI
D

DDPM DDPM

η=0.5
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

10

20

30

40

50

60

FI
D

DDPM DDPM

η=1.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

FI
D DDPM DDPM

η=0.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

FI
D DDPM DDPM

η=0.2
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

FI
D

DDPM DDPM

η=0.5
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

25

30

35

FI
D

DDPM DDPM

η=1.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

Figure 3: Class-conditional ImageNet with Classifier Guidance. FID (↓) with guidance scale of
1.0 (top) and 10.0 (bottom) respectively. The horizontal line is the DDPM baseline run for 1000
steps.
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Figure 4: Class-conditional ImageNet with Classifier Guidance. IS (↑) with guidance scale of 1.0
(top) and 10.0 (bottom) respectively. The horizontal line is the DDPM baseline run for 1000 steps.

guidance scale (5). DDIM-GMM-ORTHO-VUB samples have consistently higher IS values under
all settings. DDIM-GMM-ORTHO and DDIM-GMM-RAND yield the best IS (around 355) at
η = 1 and DDIM-GMM-ORTHO-VUB yields the best FID (9.13) at η = 0. We posit that the
similar performance of DDIM anf DDIM-GMM-* samplers using larger number of steps is due to
the possibility that the multimodality of the true denoiser conditional distribution (q(xt−1|xt)) is
modeled equally well by both the samplers (Guo et al., 2023; Xiao et al., 2022). Appendix A.14-
A.15 show some qualitative results of sampling with the proposed approach compared to original
DDIM.

4.3 TEXT-TO-IMAGE GENERATION

In this section, we experiment with a pretrained text-to-image diffusion model. Specifically, we
use the publicly available Stable Diffusion v2.1 (Rombach et al., 2022) on a subset of 30,000 text
and image pairs from the large scale COYO-700M image-text pair dataset (Byeon et al., 2022).
Stable Diffusion v2.1 is a text-to-image diffusion model conditioned on text captions. It is trained
on a subset of the large-scale LAION-5B image-text pair dataset (Schuhmann et al., 2022). We use
DDIM and the variants of DDIM-GMM samplers, each with 5 and 10 sampling steps, to generate
images at 256x256 resolution conditioned on captions from the COYO-700M data subset. Fig. 7

7



Under review as a conference paper at ICLR 2024

10 10
0

#Steps

0
2
4
6
8
10
12
14
16

FI
D

DDPM DDPM

η=0.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

2

4

6

8

10

12

14

16

FI
D

DDPM DDPM

η=0.2
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

2

4

6

8

10

12

14

16

FI
D

DDPM DDPM

η=0.5
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

FI
D DDPM DDPM

η=1.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

25

30

FI
D

DDPM DDPM

η=0.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

25

30

FI
D

DDPM DDPM

η=0.2
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

25

30

FI
D

DDPM DDPM

η=0.5
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

10 10
0

#Steps

0

5

10

15

20

25

30

FI
D

DDPM DDPM

η=1.0
DDIM
DDIM-GMM-RAND

DDIM-GMM-ORTHO
DDIM-GMM-ORTHO-VUB

Figure 5: Class-conditional ImageNet with Classifier-free Guidance. FID (↓) with guidance scale
of 2.5 (top) and 5.0 (bottom) respectively. The horizontal line is the DDPM baseline run for 1000
steps.
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Figure 6: Class-conditional ImageNet with Classifier-free Guidance. IS (↑) with guidance scale
of 2.5 (top) and 5.0 (bottom) respectively. The horizontal line is the DDPM baseline run for 1000
steps.

and 8 show the FID and IS metrics respectively. The FID metric improves consistently with the
DDIM-GMM-* samplers relative to DDIM for all settings of η using 10 sampling steps. The relative
improvements with DDIM-GMM-ORTHO-VUB over DDIM are more significant with increasing
η compared to DDIM-GMM-RAND and DDIM-GMM-ORTHO suggesting better exploration of
latent space, similar to results with unconditional models. Using 5 sampling steps, the DDIM-GMM-
* samplers show most improvements with η = 1. On the IS metric, all variants of DDIM-GMM
samplers show significant improvements over DDIM under different settings of η and sampling
steps.

4.4 SHARING GMM PARAMETERS ACROSS SAMPLING STEPS

As discussed in Section 3.1.3, we also experiment with sharing GMM parameters Mt across sam-
pling steps t by choosing the offsets only once followed by orthogonalization (SVD), scaling and
variance upper bounding. This saves some compute time during initialization. Table 1 compares the
FIDs between DDIM-GMM-ORTHO-VUB samplers that share GMM parameters (ORTHO-VUB∗)
with the corresponding ones that set them independently (ORTHO-VUB) across sampling steps t.
We observe that there is no significant (more than 1 FID point) impact on sample FIDs across all
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Figure 7: Text-to-Image Generation. FID (↓) on a 30k subset of COYO-700M using the Stable
Diffusion v2.1 model. Classifier-free guidance with a scale of 7.5 is used during inference.
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Figure 8: Text-to-Image Generation. IS (↑) on a 30k subset of COYO-700M using the Stable
Diffusion v2.1 model. Classifier-free guidance with a scale of 7.5 is used during inference.

datasets, except with FFHQ with 10 sampling steps using η = 1, where the shared parameter sam-
pler yields slightly better results. Here we show results with unconditional models on CelebAHQ
and FFHQ and class-conditional model on ImageNet without any guidance (Appendix A.8). More
results can be found in Tables 5 to 12 in the Appendix. Appendix A.9 discusses ablations on number
of mixture components and offset scale s.

Table 1: Sharing GMM Parameters across sampling steps. FID (↓)

Dataset CelebAHQ FFHQ ImageNet
Steps 10 100 10 100 10 100

η
0 ORTHO-VUB 27.94 11.44 26.46 11.12 36.35 19.81
0 ORTHO-VUB∗ 27.84 11.42 27.18 11.24 36.27 19.70

1.0 ORTHO-VUB 60.65 15.60 69.25 11.44 62.71 16.75
1.0 ORTHO-VUB∗ 61.15 15.94 67.72 11.38 63.02 16.88

5 CONCLUSIONS

We propose improved DDIM sampling by using Gaussian mixture transition kernels whose marginal
first and second order moments match the corresponding moments of the DDPM forward marginals.
Our experiments suggest that moment matching is sufficient to produce samples of the same or better
quality than the original DDIM sampler. This is especially true if the number of sampling steps is
small (e.g. 10) using unconditional models trained on CelebAHQ and FFHQ. For classifier guided
ImageNet class-conditional models, at higher guidance weight (10), the GMM kernel based samplers
lead to improvements in both FID and IS metrics under almost all settings of η and number of
sampling steps (10 and 100). Similar improvements are seen with classifier-free guidance, especially
with fewer sampling steps (10). This seems to suggest that the GMM kernel allows for a better
exploration of the latent space with a small number of sampling steps. The gap between DDIM and
the proposed DDIM-GMM becomes smaller with larger number of steps using training-free GMM
parameter selection. We also demonstrate that DDIM-GMM shows improvements over DDIM in
text-to-image generation with fewer sampling steps. An interesting future direction would be to
optimize the GMM parameters Mt to maximize a suitable metric such as KID (Watson et al., 2021)
or FID (Mathiasen & Hvilshøj, 2021) on the training dataset.
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A APPENDIX

A.1 RELATED WORK

Prior and concurrent work on accelerated sampling for pretrained diffusion models can be broadly
categorized into implicit modeling (Song et al., 2021; Zhang et al., 2022; Watson et al., 2021), distil-
lation (Luhman & Luhman, 2021; Salimans & Ho, 2022; Meng et al., 2023) and ODE solver (Song
et al., 2020; Jolicoeur-Martineau et al., 2021; Zhang & Chen, 2023; Karras et al., 2022; Lu et al.,
2023; Liu et al., 2022) based approaches. Watson et al. (2021) extend DDIMs by introducing a
more general family of implicit distributions with learnable parameters trained with backpropaga-
tion using perceptual loss. While the proposed approach also introduces learnable parameters, our
marginals are Gaussian mixtures and we ensure that the moments are matched exactly with those of
the DDPM marginals. Zhang et al. (2022) analyze the workings of DDIM using a limiting case of
Dirac distribution in the data space and generalize it to non-isotropic diffusion models. Other ap-
proaches propose accelerated sampling by modeling DDPMs with non-Gaussian noise (Nachmani
et al., 2021) or learning noise levels of the reverse process separately (San-Roman et al., 2021).
Different from these, the proposed approach introduces a different sampling kernel in the reverse
process of the DDIM framework (Song et al., 2021). Our work is also complementary to distillation
based approaches, which might further benefit from an improved DDIM teacher (Salimans & Ho,
2022; Meng et al., 2023).

By treating sampling as solving reverse direction diffusion ODEs (Song et al., 2020), acceleration is
achieved by discretization with linear (Song et al., 2021) or higher order approximations (Jolicoeur-
Martineau et al., 2021; Lu et al., 2022; Zhang & Chen, 2023). Being a moment matching version of
DDIM, the proposed approach can be thought of as a linear solver. It is observed that higher-order
solvers are inherently unstable in the guided sampling regime, especially if the guidance weight is
high (Lu et al., 2023). Our empirical results suggest that, even with a high guidance weight, moment
matching based DDIM-GMM is beneficial for guided sampling with few sampling steps.

A.2 EXPERIMENTAL DETAILS

We provide additional details on the experiments reported in Section 4, specifically for the Cele-
bAHQ, FFHQ and ImageNet experiments. All our diffusion models are trained in the latent space of
a VQVAE (Rombach et al., 2022). The input images to the VQVAE are at a resolution of 256x256
pixels. Each of the VQVAEs are trained on a large scale dataset. Specifically the VQVAEs for
unconditional generation on CelebAHQ and class-conditional generation on ImageNet are trained
on OpenImages. We use the publicly available f 4 VQVAE (Table 8, Section D.2. of Rombach
et al. (2022)) for training CelebAHQ models and f 8 VQVAE for class-conditional ImageNet mod-
els respectively.The f4 VQVAE (#embeddings=8192) does not use attention layers at any resolution
within the model architecture, whereas the f 8 VQVAE (#embeddings=16384) uses attention at res-
olution 32. We train a f 4 VQVAE (#embeddings=8192), with no attention layers, on ImageNet for
712k steps and use its latent space to train the diffusion models on FFHQ.

All our diffusion models are trained with 1000 forward steps using a linear noise (βt = 1 − αt

αt−1
)

schedule of [β0 = 0.0015, β1000 = 0.0195]. We use the U-Net architecture (Ho et al., 2020;
Rombach et al., 2022) for the denoiser. Specifically, the unconditional U-Net encoders operating on
the f 4 VQVAE latent space have four 2x downsampling levels with channel multiplication factors
of [1, 2, 3, 4] starting from a base set of 224 channels. Each level uses two residual blocks. Attention
blocks are used within levels at downsampling factors [2, 4, 8]. Similarly, the class-conditional U-
Net encoders operating on f 8 VQVAE latent space have three 2x downsampling levels with channel
multiplication factors of [1, 2, 4] starting from a base set of 256 channels. Other architectural details
remain the same as before except that the attention blocks are at downsampling levels [1, 2, 4].

For each DDIM-GMM variant, we choose a GMM with 8 mixture components with uniform priors
(πk

t =0.125) for all steps t. We also search for the best value of scaling s among {0.01, 0.1, 1.0, 10.0}
and report the best result with the chosen value for s. It is possible that for some choices of s, the
diagonal elements of ∆t

k or the corresponding upper bounds in the DDIM-GMM-VUB sampler
could be larger than σ2

t . In such cases we clip the negative elements of (σ2
t I − diag approx(∆k

t ))
to zero, which amounts to sampling with zero variances in those dimensions in the latent space.
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A.3 PROOF OF CONSTRAINTS ON GMM PARAMETERS

Our proof for the constraints in Eq. 8 follows by induction (Song et al., 2021). The marginal of xT

is already equal to the DDPM marginal at step T by definition (Eq. 5). We show below that the
marginals of all the random variables xt, t < T are Gaussian mixtures with their first and second
order moments equal to the desired values, given the constraints in Eq. 8. We derive the forms of
the marginals for T − 1 and T − 2 and the proof follows inductively for all t < T − 2. Using Bayes’
rule, the marginal at xT−1 is given by

qσ,M(xT−1|x0) =

∫
xT

qσ,M(xT−1|xT ,x0)qσ,M(xT |x0) dxT

=

∫
xT

K∑
k=1

πk
TN

(
√
αT−1x0 +

√
1− αT−1 − σ2

T .
xT −√

αTx0√
1− αT

+ δkT , σ
2
T I −∆k

T

)

qσ,M(xT |x0) dxT

=

K∑
k=1

πk
T

∫
xT

N
(
√
αT−1x0 +

√
1− αT−1 − σ2

T .
xT −√

αTx0√
1− αT

+ δkT , σ
2
T I −∆k

T

)

N (
√
αTx0, (1− αT )I) dxT ,

=

K∑
k=1

πk
TN

(√
αT−1x0 + δkT , (1− αT−1)I −∆k

T

)
, (13)

which is also a GMM with the same mixing weights πk
T . This is due to the fact that each of the above

integrals is a Gaussian, whose parameters can be determined by using Gaussian marginalization
identities (Bishop, 2006)(2.115). The mean µGMM

T−1 and the covariance ΣGMM
T−1 parameters of the

above GMM are given by

µGMM
T−1 =

K∑
k=1

πk
T

(√
αT−1x0 + δkT

)
=

√
αT−1x0 +

K∑
k=1

πk
T δ

k
T

ΣGMM
T−1 =

K∑
k=1

πk
T

(
(1− αT−1)I −∆k

T

)
+

K∑
k=1

πk
T (δ

k
T − δ̄T )(δ

k
T − δ̄T )

T

= (1− αT−1)I +

K∑
k=1

πk
T

(
(δkT − δ̄T )(δ

k
T − δ̄T )

T −∆k
T

)
, (14)

where δ̄T =
∑K

k=1 π
k
T δ

k
T . It is straightforward to verify that these are equal to the desired means

and covariance parameters of the equivalent DDPM forward marginal if the constraints in Eq. 8 are
satisfied. Specifically the constraint δ̄T = 0 and either one of the constraints on ∆k

T in Eq. 8 lead to
the following expressions for the first and second order moments:

µGMM
T−1 =

√
αT−1x0

ΣGMM
T−1 = (1− αT−1)I, (15)

as desired.
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The marginal of xT−2 can be derived similarly by invoking Bayes’ rule and using the form of the
GMM for xT−1. Specifically

qσ,M(xT−2|x0) =

∫
xT−1

qσ,M(xT−2|xT−1,x0)qσ,M(xT−1|x0) dxT−1

=

∫
xT−1

L∑
l=1

πl
T−1N

(
√
αT−2x0 +

√
1− αT−2 − σ2

T−1.
xT−1 −

√
αT−1x0√

1− αT−1
+ δlT−1, σ

2
T−1I −∆l

T−1

)

qσ,M(xT−1|x0) dxT−1

=

∫
xT−1

{
L∑

l=1

πl
T−1N

(
√
αT−2x0 +

√
1− αT−2 − σ2

T−1.
xT−1 −

√
αT−1x0√

1− αT−1
+ δlT−1, σ

2
T−1I −∆l

T−1

)}

{
K∑

k=1

πk
TN

(√
αT−1x0 + δkT , (1− αT−1)I −∆k

T

)}
dxT−1

=

K∑
k=1

L∑
l=1

πk
Tπ

l
T−1

∫
xT−1

N
(
√
αT−2x0 +

√
1− αT−2 − σ2

T−1.
xT−1 −

√
αT−1x0√

1− αT−1
+ δlT−1, σ

2
T−1I −∆l

T−1

)

N
(√

αT−1x0 + δkT , (1− αT−1)I −∆k
T

)
dxT−1

=

K∑
k=1

L∑
l=1

πk
Tπ

l
T−1N

(
µT,T−1

k,l ,ΣT,T−1
k,l

)
, (16)

where we assume that the transition kernel from xT−1 to xT−2 is a GMM with L components and
parameters

(
πl
T−1, δ

l
T−1,∆

l
T−1

)
, l = 1 . . . L. Each of the integrals above is a Gaussian whose

mean µT,T−1
k,l and covariance ΣT,T−1

k,l parameters can be deduced by invoking Gaussian marginal-
ization identities (Bishop, 2006)(2.115) and are given by:

µT,T−1
k,l =

√
αT−2x0 +

√
1− αT−2 − σ2

T−1
√
1− αT−1

δkT + δlT−1

ΣT,T−1
k,l = (1− αT−2)I −

1− αT−2 − σ2
T−1

1− αT−1
∆k

T −∆l
T−1. (17)

Using the above expressions for the mean and covariance parameters of individual Gaussian compo-
nents, the corresponding parameters µGMM

T−2 and ΣGMM
T−2 for the GMM marginal of xT−2 are given

by:

µGMM
T−2 =

K∑
k=1

L∑
l=1

πk
Tπ

l
T−1µ

T,T−1
k,l

=
√
αT−2x0 (18)

(19)

ΣGMM
T−2 =

K∑
k=1

L∑
l=1

πk
Tπ

l
T−1Σ

T,T−1
k,l +

K∑
k=1

L∑
l=1

πk
Tπ

l
T−1[AδTk + δT−1

l ][AδTk + δT−1
l ]T

= (1− αT−2)I, (20)
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where

A =

√
1− αT−2 − σ2

T−1
√
1− αT−1

. (21)

We have made use of the constraints in Eq. 8, for the parameters (πT
k , π

T−1
l , δTk , δ

T−1
l ,∆T

k ,∆
T−1
l ),

to arrive at the above expressions and noting that A is independent of the GMM parameters MT and
MT−1. The first and second order moments in Eq. 19 and Eq. 20 correspond to the DDPM forward
marginal moments of xT−2. The proof for all latents xt, t < T −2 follows from a similar argument
as above noting that the form of the marginal in Eq. 16 is a GMM with M = KL components.
Further each component’s mean and covariances in Eq. 17 carry future (T − 1 and T ) step transition
kernels’ offset parameters (δ’s and ∆’s) as linear additive factors with coefficients (A, A2 and 1)
that are independent of those parameters. This makes it easier to see why proof by induction should
work for t < T − 2.

A.4 VARIANCE UPPER BOUNDS

The upper bounds of the eigenvalues of the matrix ∆k
t are tractable because the matrix is a weighted

sum of outer-products of mean centered orthonormal vectors. Specifically ∆k
t can be written as

∆k
t =

s2

Kπk
t

(
K∑
l=1

πk
t (u

l
t)(u

l
t)

T − ūtū
T
t

)
, (22)

where uk
t = Ut[k] (Section 3.1.2). Diagonalizing the first term in Eq. 22 by pre and post multiplying

by the matrix Ut[1 : K] leads to a matrix Mk
t , which is a sum of a diagonal matrix and a rank one

matrix,

Mk
t = Ut[1 : K]T∆k

tUt[1 : K]

=
s2

Kπk
t

(Dk
t − πtπ

T
t ), (23)

where Dk
t is a diagonal matrix with πk

t , k = 1 . . .K, along its diagonal and πt is a column vector
of mixture proportions πk

t . Using a bound (Golub, 1973) on the eigenvalues of a diagonal matrix
modified by a rank one matrix, if λi, i = 1 . . .K are the eigenvalues of Mk

t , then

s2

Kπk
t

(
π1
t −

K∑
l=1

(πl
t)

2

)
≤ λ1 ≤ s2

Kπk
t

π1
t

s2

Kπk
t

πi−1
t ≤ λi ≤

s2

Kπk
t

πi
t, i = 2 . . .K. (24)

A.5 FORWARD PROCESS

We can derive the forward process using Bayes’ rule. Specifically

qσ,M(xt|xt−1,x0) =
qσ,M(xt−1|xt,x0)qσ,M(xt|x0)

qσ,M(xt−1|x0)
=

GMM(t, t− 1)GMM(t)

GMM(t− 1)

where GMM(t, t− 1) is the transition GMM from step t to t− 1 and GMM(t− 1) and GMM(t)
are the marginal GMMs at steps t − 1 and t respectively. Note that the inference process of the
proposed implicit model is non-Gaussian and non-Markovian in general and different from Gaussian
diffusion.

A.6 UPPER BOUND OF ELBO USING THE DDIM-GMM INFERENCE PROCESS

In this section we provide an upper bound for the ELBO loss using the proposed DDIM-GMM
inference process in terms of an augmented version of the DDPM Lsimple,w loss, w.r.t. the denoiser
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parameters θ. The ELBO loss LELBO,qσ,M(θ) using the proposed DDIM-GMM inference process
is given by

LELBO,qσ,M(θ) = Eqσ,M

[
DKL(qσ,M(xT |x0)||pθ(xT )) +

T∑
t=2

DKL(qσ,M(xt−1|xt,x0)||pθ(xt−1|xt))

]
− Eqσ,M [log pθ(x0|x1)]

= Eqσ,M

[
T∑

t=2

DKL(qσ,M(xt−1|xt,x0)||pθ(xt−1|xt))− log pθ(x0|x1)

]
+ const.,

(25)

where const. is a term independent of θ because pθ(xT ) = N (0, I). We ignore the constant term
and assume a normal likelihood function for the observation x0 given x1, i.e.,

pθ(x0|x1) = N (fθ(x1, 1), σ
2
1I), (26)

where fθ(xt, t) is the denoiser estimate of x0, given by:

fθ(xt, t) =
xt −

√
1− αtϵθ(xt, t)√

αt
. (27)

The ELBO loss in Eq. 25 reduces to

LELBO,qσ,M(θ) =

T∑
t=2

Eqσ,Mt
[DKL(qσ,Mt

(xt−1|xt,x0)||qσ,Mt
(xt−1|xt,fθ(xt, t))))]

+ Eqσ,M(x0,x1) [− log pθ(x0|x1)]

:=K1 +K2

=

T∑
t=2

K1,t +K2, (28)

where we use pθ(xt−1|xt) = qσ,M(xt−1|xt,fθ(xt, t)) as in DDIM (Song et al., 2021). The first
term K1 involves KL-Divergences between mixtures of Gaussians, which is analytically intractable.
However, we can use a suitable upper bound (Hershey & Olsen, 2007) as a surrogate for optimiza-
tion. Assuming that there is a one-to-one correspondence between the mixture components of the
GMMs using the true and estimated value of x0 above, we can use the matched bound (Hershey &
Olsen, 2007; Do, 2003) as the upper bound to each of the KLD terms K1,t at step t, i.e. for any
t > 1

K1,t ≤ Eqσ,M

[∑
k

πk
t DKL((qσ,Mk

t
(xt−1|xt,x0)||qσ,Mk

t
(xt−1|xt,fθ(xt, t)))))

]

≤ Eq(x0)qσ,M(xt|x0)ϵ∼N (0,I)

[(∑
k

πk
t

νkt

)
(1− αt)

2αt
||ϵ− ϵθ(xt, t)||2

]

=
∑
l

ξGMM,l
t Eq(x0)qlσ,M(xt|x0)ϵ∼N (0,I)

[(∑
k

πk
t

νkt

)
(1− αt)

2αt
||ϵ− ϵθ(xt, t)||2

]

= El∼ξGMM
t q(x0)qlσ,M(xt|x0)ϵ∼N (0,I)

[(∑
k

πk
t

νkt

)
(1− αt)

2αt
||ϵ− ϵθ(xt, t)||2

]
(29)

where νkt is the minimum variance within a diagonal approximation of the covariance matrix σ2
t I −

∆k
t , i.e., νkt = min diag((σ2

t I − diag approx(∆k
t ))). Note that in the above, qσ,Mk

t
(xt−1|xt,x0)

is used to refer to the kth mixture component’s density function of the GMM transition kernel.
Similarly, qlσ,M(xt|x0) refers to the lth component of the DDIM-GMM’s forward marginal GMM
at step t. The upper bound of Eq. 29 can be interpreted as an augmented form of Lsimple,w with
weights

wt =

(∑
k

πk
t

νkt

)
(1− αt)

2αt
(30)
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and the DDPM marginals’ mean and covariance randomly modified with shifts from one of the
DDIM-GMM forward marginal’s components at every step t (e.g., Eq. 17 for t = T − 2). The
choice of the shifts is according to a discrete distribution with proportions given by the DDIM-
GMM marginal’s mixture priors ξGMM

t (e.g. Eq. 16 for t = T − 2).

For t = 1, the loss term K2 is given by

K2 = Eqσ,M(x0,x1) [− log pθ(x0|x1)]

= Eq(x0)qσ,M(x1|x0)ϵ∼N (0,I)

[
(1− α1)

2σ2
1α1

||ϵ− ϵθ(x1, 1)||2
]
+ const.

= El∼ξGMM
1 q(x0)qlσ,M(x1|x0)ϵ∼N (0,I)

[
(1− α1)

2σ2
1α1

||ϵ− ϵθ(x1, 1)||2
]
, (31)

where we have ignored the const. term independent of θ. Combining Eqs. 29 and 31, the
LELBO,qσ,M(θ) can be interpreted as upper bounded by an augmented version of Lsimple,w with
weights wt given in Eqs. 30 and 31.

A.7 DDIM-GMM AS A MULTIMODAL DENOISER

Recent works (Guo et al., 2023; Xiao et al., 2022) have shown that the target conditional distribution
q(xt−1|xt), to be estimated by the denoiser pθ(xt−1|xt), is multimodal in real-world datasets. Here
we show that the proposed DDIM-GMM sampling scheme addresses the unimodal assumption of
the single Gaussian denoisers in pre-trained diffusion models better than DDIM. We start by showing
that the proposed DDIM-GMM kernel yields a multimodal conditional distirbution qσ,M(xt−1|xt).
Let the true data distribution q(x0) be a Dirac distribution given by

q(x0) =
∑
i

wiδ(x0 − xi
0), (32)

where xi
0 are the observed data points. The DDIM-GMM denoiser’s conditional distribution

qσ,M(xt−1|xt) can be obtained from Eq. 7 using Bayes’ rule:

qσ,M(xt−1|xt) =

∫
x0

qσ,M(xt−1|xt,x0)qσ,M(x0|xt) dx0

∝
∫
x0

qσ,M(xt−1|xt,x0)qσ,M(xt|x0)q(x0) dx0

=
∑
i

wiqσ,M(xt−1|xt,x
i
0)qσ,M(xt|xi

0),

(33)

which is a mixture of Gaussians. This follows from the fact that qσ,M(xt−1|xt,x
i
0) is a mixture of

Gaussians given by Eq. 7 and qσ,M(xt|xi
0) is a scalar constant given xt. A similar argument holds

even when the data distribution q(x0) is a mixture of Gaussians. The resulting denoiser is a mixture
of Gaussians, whose form can be obtained by noting that qσ,M(xt|x0) is a GMM and accordingly
completing squares within the integrand above (Bishop, 2006). A similar argument as above also
enables DDIM sampler to model a multimodal denoising distribution qσ(xt−1|xt). However the
multimodality of the kernel qσ,M(xt−1|xt,x

i
0) in Eq. 33 enables DDIM-GMM to express more

complex denoising distributions than DDIM. This has the potential to better match the unknown
distribution q(xt−1|xt), especially when the number of sampling steps is small (Guo et al., 2023;
Xiao et al., 2022), without any training or fine-tuning with specialized loss functions.

A.8 CLASS-CONDITIONAL IMAGENET WITHOUT ANY GUIDANCE

The FID and IS metrics of sampling from ImageNet class-conditional models without any guid-
ance are shown in Fig. 9. From the results, we see that DDIM-GMM-ORTHO and DDIM-GMM-
ORTHO-VUB sampling methods yield higher quality samples under the highest η setting. The FID
is significantly better for the least number of sampling steps (10) (see Table 7, Appendix A.13.3),
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whereas the IS is better for both the least (10) and the greatest number of sampling steps (100)
(see Table 8, Appendix A.13.3). This can be attributed to a similar argument as for unconditional
sampling, especially for the least number of sampling steps.
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Figure 9: Class-conditional ImageNet. Top and bottom rows correspond to FID (↓) and IS (↑)
metrics respectively. The horizontal line is the DDPM baseline run for 1000 steps.

A.9 ABLATIONS

In this section, we perform an ablative study on the number of mixture components and offset scaling
factor s of the GMM parameters using the unconditional model trained on the CelebAHQ dataset as
described in Section 4. We use the GMM-ORTHO-VUB sampler and fix the mixture weights of the
components to be uniform in all these experiments.

A.9.1 NUMBER OF MIXTURE COMPONENTS

We compute the FID on the validation set by choosing one of 8, 256, or 1024 components (n) at
each step during sampling, using different values of η. For each choice of n, we select the scale s
among (0.01, 0.1, 1.0, 10.0) that leads to the lowest FID. The results are plotted in Fig. 10. For lower
values of η (0, 0.2), the performance is the same across all the choices, since the offsets perturb only
the means as the offset variances (diag approx(σ2

t I − ∆k
t )) are close to zero. At higher η values

(0.5, 1.0), the offsets affect variances in as many dimensions and influence the exploration of latent
spaces xt. The choices 8 and 256 lead to better samples than 1024 because the latter restricts the
variances in those many dimensions impacting exploration. 8 performs slightly better than 256 at
η = 0.5 and vice-versa at η = 1.0. As the number of steps increases, all the choices lead to similar
results, likely due to small s (See Table 5).
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Figure 10: CelebAHQ. FID (↓). Ablations on the number of mixture components.

A.9.2 OFFSET SCALING s

In order to study the effect of s, we fix the number of mixture components to 8 and choose a value for
s within four choices: (0.01, 0.1, 1.0, 10.0). The results are shown in Fig. 11. The sample quality
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is almost the same with smaller values of s (0.01-1.0). The highest value s = 10 gives the best
results for the least number of sampling steps (10) (See Table 5). As the number of steps increases,
this leads to poor quality samples and smaller offsets are preferable, with one exception: at η = 1
it is still the best choice for up to 50 steps. This can be explained using the hypothesis Guo et al.
(2023); Xiao et al. (2022) that true denoising distributions are multimodal at fewer sampling steps
and larger exploration (higher s) with a multimodal kernel is favorable. This advantage vanishes as
the number of sampling steps increase. At the highest η(= 1), we hypothesize that s = 10 reduces
the offset variances (diag approx(σ2

t I − ∆k
t )) more than other choices, at least up to 50 steps,

keeping sampling quality high.
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Figure 11: CelebAHQ. FID (↓). Ablations on the offset scaling factor s.

A.10 COMPUTATIONAL OVERHEAD

As discussed briefly in Section 3.1, the proposed approach introduces additional computational over-
head in an initialization phase prior to sampling. All the GMM mean and variance offsets are pre-
computed and saved in memory before sampling. We can choose to precompute a single set of
GMM parameters per batch or the entire sample set. We experimented with both the options and
did not see a significant difference in metrics. So it is computationally more efficient to precompute
offsets once and fix them. We also experimented with choosing different GMM parameters for dif-
ferent sampling steps t and found no significant difference with setting them the same across all t in
our experiments. Due to storing the additional GMM parameters, there is some memory overhead
relative to DDIM but it is negligible, especially in the scenario of choosing a single set of offsets
across all samples and time steps. In the scenario of using different offsets across subsets (batches)
of samples or sampling steps, the overhead scales linearly along the sample subset size and number
of step dimensions. The dimensionality of the latent spaces xt also influence the computational and
memory requirements of the GMM offset parameters. For instance, it might be infeasible to com-
pute the outer products of centered offsets (Eq. 11) if the dimensionality of the latent spaces is high,
e.g. high-resolution image space diffusion models. In such cases, the DDIM-GMM-ORTHO-VUB
sampler is more feasible as it provides an upper bound for the variance offsets without explicitly
computing them.

A.11 COMPARISON WITH DPM-SOLVER

In this section, we compare DDIM-GMM-ORTHO-VUB and DPM-Solver (Lu et al., 2022) sam-
plers on the class-conditional model trained on ImageNet. During inference, we use classifier-free
guidance with weights (2.5, 5) and run each sampler for 10 and 100 steps. For the DDIM-GMM-
ORTHO-VUB sampler, η is set to 0. The results listed in Table 4 suggest DDIM-GMM-ORTHO-
VUB is superior to DPM-Solver in all cases, with the exception of lower guidance scale (2.5) using
10 sampling steps .

Steps 10 100
Guidance Scale 2.5 5 2.5 5

DPM-Solver 9.75/225.68 19.22/309.14 9.30/239.11 19.82/323.87
DDIM-GMM-ORTHO-VUB 6.94/207.85 16.61/319.13 9.13/240.88 19.66/323.84

Table 2: Comparison with DPM-Solver. Class-conditional ImageNet with classifier free guidance
(FID↓ / IS↑).
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A.12 ADDITIONAL EXPERIMENTS

In this section, we report results on additional experiments on the LSUN benchmarks (Yu et al.,
2015) using the same settings as the DDIM (Song et al., 2021) work. Specifically, we use the
pretrained DDPM models (Ho et al., 2020) on LSUN Bedroom and Church datasets to compare
DDIM vs. DDIM-GMM-ORTHO-VUB samplers for different number of sampling steps (10, 20, 50
and 100).

Steps 10 20 50 100
DDIM 16.93 8.77 6.68 6.76

DDIM-GMM 16.86 8.76 6.62 6.67

Table 3: LSUN Bedroom. Comparison between DDIM and DDIM-GMM on the FID(↓) metric.
η = 0 for both samplers.

Steps 10 20 50 100
DDIM 19.39 12.33 11.04 10.85

DDIM-GMM 19.33 12.37 10.85 10.81

Table 4: LSUN Church. Comparison between DDIM and DDIM-GMM on the FID(↓) metric. η = 0
for both samplers.

A.13 FID AND IS METRICS

In this section we list the metrics plotted in Section 4 in a tabular format. The numbers in bold
emphasize improvement of the corresponding sampling method’s metric if the difference in metric
(FID or IS) is at least 1 unit from the worst result within the same group (same η and number of
sampling steps). The number in parentheses denotes the scale parameter s that resulted in the best
metric for the particular DDIM-GMM-* sampling method under a given setting. We omit the best s
for ImageNet results.

22



Under review as a conference paper at ICLR 2024

A.13.1 CELEBAHQ

Steps 10 20 50 100 1000
η
0 DDIM 32.95 18.58 12.65 11.42
0 DDIM-GMM-RAND 28.01 (10) 18.74 (1) 12.33 (1) 11.35 (1)
0 DDIM-GMM-ORTHO 27.97 (10) 18.71 (1) 12.41 (1) 11.44 (1)
0 DDIM-GMM-ORTHO-VUB 27.94 (10) 18.71 (1) 12.41 (1) 11.44 (1)
0 DDIM-GMM-ORTHO-VUB∗ 27.84 (10) 18.53 (1) 12.62 (1) 11.42 (0.1)

0.2 DDIM 33.74 19.48 12.79 11.41
0.2 DDIM-GMM-RAND 32.32 (10) 17.26 (10) 12.80 (0.01) 11.36 (0.1)
0.2 DDIM-GMM-ORTHO 32.42 (10) 17.33 (10) 12.79 (1) 11.37 (0.01)
0.2 DDIM-GMM-ORTHO-VUB 28.32 (10) 19.18 (1) 12.58 (1) 11.29 (1)
0.2 DDIM-GMM-ORTHO-VUB∗ 27.68 (10) 19.77 (0.01) 12.81 (1) 11.34 (1)
0.5 DDIM 39.04 22.01 13.99 12.05
0.5 DDIM-GMM-RAND 37.15 (10) 20.66 (10) 12.95 (10) 12.26 (1)
0.5 DDIM-GMM-ORTHO 37.27 (10) 20.78 (10) 12.98 (10) 12.25 (0.1)
0.5 DDIM-GMM-ORTHO-VUB 31.00 (10) 20.65 (10) 13.87 (1) 12.00 (1)
0.5 DDIM-GMM-ORTHO-VUB∗ 31.42 (10) 20.89 (10) 14.09 (1) 11.91 (1)
1.0 DDIM 68.67 39.20 21.53 16.09
1.0 DDIM-GMM-RAND 66.94 (10) 37.63 (10) 19.33 (10) 14.14 (10)
1.0 DDIM-GMM-ORTHO 67.15 (10) 37.79(1) 19.36 (10) 14.37 (10)
1.0 DDIM-GMM-ORTHO-VUB 60.65 (10) 28.03 (10) 15.97 (10) 15.60 (1)
1.0 DDIM-GMM-ORTHO-VUB∗ 61.15 (10) 27.41 (10) 16.48 (10) 15.94 (1)
1.0 DDPM 11.59

Table 5: CelebAHQ (FID↓)

A.13.2 FFHQ

Steps 10 20 50 100 1000
η
0 DDIM 28.73 15.68 11.67 11.17
0 DDIM-GMM-RAND 26.55 (10) 15.64 (1) 11.83 (0.01) 11.12 (0.01)
0 DDIM-GMM-ORTHO 26.46 (10) 15.67 (1) 11.83 (0.01) 11.12 (0.01)
0 DDIM-GMM-ORTHO-VUB 26.46 (10) 15.67 (1) 11.83 (0.01) 11.12 (0.01)
0 DDIM-GMM-ORTHO-VUB∗ 27.18 (10) 15.43 (1) 11.77 (0.1) 11.24 (0.1)

0.2 DDIM 29.33 15.83 11.66 11.07
0.2 DDIM-GMM-RAND 29.27 (0.1) 16.03 (0.1) 11.87 (0.01) 10.92 (0.01)
0.2 DDIM-GMM-ORTHO 29.09 (10) 16.01 (1) 11.87 (0.01) 10.92 (0.01)
0.2 DDIM-GMM-ORTHO-VUB 26.90 (10) 15.96 (1) 11.87 (0.01) 10.91 (0.1)
0.2 DDIM-GMM-ORTHO-VUB∗ 27.35 (10) 15.85 (0.01) 11.62 (0.01) 11.11 (0.01)
0.5 DDIM 35.53 17.83 11.89 10.53
0.5 DDIM-GMM-RAND 35.16 (10) 18.01 (10) 11.85 (1) 10.49 (0.01)
0.5 DDIM-GMM-ORTHO 35.00 (10) 17.92 (10) 11.87 (0.1) 10.47 (0.1)
0.5 DDIM-GMM-ORTHO-VUB 29.03 (10) 18.16 (1) 11.78 (1) 10.45 (0.1)
0.5 DDIM-GMM-ORTHO-VUB∗ 28.73 (10) 17.89 (1) 11.92 (1) 10.81 (1)
1.0 DDIM 81.88 37.09 15.45 11.33
1.0 DDIM-GMM-RAND 79.93 35.85 (10) 15.17 (10) 11.50 (1)
1.0 DDIM-GMM-ORTHO 80.18 (10) 35.93 (10) 15.03 (10) 11.51 (1)
1.0 DDIM-GMM-ORTHO-VUB 69.25 (10) 23.88 (1) 15.44 (0.1) 11.44 (1)
1.0 DDIM-GMM-ORTHO-VUB∗ 67.72 (10) 23.76 (10) 15.56 (1) 11.38 (0.1)
1.0 DDPM 9.69

Table 6: FFHQ (FID↓)
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A.13.3 IMAGENET

The FID and IS results for class-conditional models without classifier guidance are reported in Ta-
bles 7 and 8 respectively. The corresponding results with classifier and classifier-free guidance are
in Tables 9-10 and Tables 11-12 respectively.

Steps 10 20 50 100 1000
η
0 DDIM 36.60 23.06 20.07 20.02
0 DDIM-GMM-RAND 36.27 23.15 19.98 19.85
0 DDIM-GMM-ORTHO 36.31 23.12 19.98 19.94
0 DDIM-GMM-ORTHO-VUB 36.35 23.12 19.98 19.81
0 DDIM-GMM-ORTHO-VUB∗ 36.27 23.08 20.04 19.70

0.2 DDIM 37.18 23.18 20.07 19.39
0.2 DDIM-GMM-RAND 37.04 23.17 20.13 19.50
0.2 DDIM-GMM-ORTHO 37.14 23.15 20.15 19.75
0.2 DDIM-GMM-ORTHO-VUB 36.93 23.16 20.19 19.62
0.2 DDIM-GMM-ORTHO-VUB∗ 37.02 23.20 19.81 19.65
0.5 DDIM 41.52 24.15 19.37 18.70
0.5 DDIM-GMM-RAND 41.24 23.88 19.22 18.34
0.5 DDIM-GMM-ORTHO 41.42 23.90 19.25 18.85
0.5 DDIM-GMM-ORTHO-VUB 41.06 23.89 19.25 18.80
0.5 DDIM-GMM-ORTHO-VUB∗ 41.46 23.81 19.27 18.69
1.0 DDIM 71.54 32.26 18.69 16.95
1.0 DDIM-GMM-RAND 70.91 32.25 18.71 16.81
1.0 DDIM-GMM-ORTHO 71.52 32.22 18.73 16.91
1.0 DDIM-GMM-ORTHO-VUB 62.71 32.10 18.64 16.75
1.0 DDIM-GMM-ORTHO-VUB∗ 63.02 32.03 18.32 16.88
1.0 DDPM 17.07

Table 7: Class-conditional ImageNet (FID↓)

Steps 10 20 50 100 1000
η
0 DDIM 37.66 51.70 57.60 57.38
0 DDIM-GMM-RAND 37.79 51.89 57.13 57.98
0 DDIM-GMM-ORTHO 37.86 51.88 57.03 57.12
0 DDIM-GMM-ORTHO-VUB 37.85 51.88 57.03 57.52
0 DDIM-GMM-ORTHO-VUB∗ 38.16 52.00 56.99 57.90

0.2 DDIM 37.10 52.00 58.08 58.46
0.2 DDIM-GMM-RAND 38.14 51.75 57.25 58.80
0.2 DDIM-GMM-ORTHO 37.94 51.78 57.43 58.10
0.2 DDIM-GMM-ORTHO-VUB 37.90 51.82 57.34 58.52
0.2 DDIM-GMM-ORTHO-VUB∗ 37.38 52.47 58.34 58.04
0.5 DDIM 34.52 51.15 58.71 61.03
0.5 DDIM-GMM-RAND 34.46 51.10 59.32 60.91
0.5 DDIM-GMM-ORTHO 34.52 50.84 59.06 59.65
0.5 DDIM-GMM-ORTHO-VUB 35.54 51.14 59.08 60.70
0.5 DDIM-GMM-ORTHO-VUB∗ 34.50 51.53 58.98 60.97
1.0 DDIM 17.52 42.10 61.83 64.55
1.0 DDIM-GMM-RAND 18.52 43.13 61.37 65.54
1.0 DDIM-GMM-ORTHO 18.58 43.05 61.02 65.82
1.0 DDIM-GMM-ORTHO-VUB 24.25 44.01 61.45 65.97
1.0 DDIM-GMM-ORTHO-VUB∗ 24.04 42.69 61.99 65.87
1.0 DDPM 66.18

Table 8: Class-conditional ImageNet (IS↑)
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Steps 10 100 1000
Guidance Scale 1 10 1 10 1 10

η
0 DDIM 21.94 15.65 10.78 11.66
0 DDIM-GMM-RAND 21.94 11.32 11.14 11.28
0 DDIM-GMM-ORTHO 22.00 11.26 11.22 11.28
0 DDIM-GMM-ORTHO-VUB 22.00 11.26 11.24 11.28
0 DDIM-GMM-ORTHO-VUB∗ 21.95 11.54 10.81 11.31

0.2 DDIM 22.39 15.83 10.59 11.55
0.2 DDIM-GMM-RAND 22.25 13.10 10.50 11.58
0.2 DDIM-GMM-ORTHO 22.11 12.95 10.50 11.57
0.2 DDIM-GMM-ORTHO-VUB 22.43 11.29 10.79 11.20
0.2 DDIM-GMM-ORTHO-VUB∗ 22.39 11.50 10.50 11.24
0.5 DDIM 25.31 16.72 10.04 11.39
0.5 DDIM-GMM-RAND 25.39 15.36 9.93 11.25
0.5 DDIM-GMM-ORTHO 25.35 15.27 9.88 11.25
0.5 DDIM-GMM-ORTHO-VUB 24.72 11.79 9.94 11.01
0.5 DDIM-GMM-ORTHO-VUB∗ 24.96 11.93 9.91 10.96
1.0 DDIM 47.61 26.09 8.97 11.48
1.0 DDIM-GMM-RAND 46.55 23.71 8.94 10.31
1.0 DDIM-GMM-ORTHO 46.45 23.57 8.91 10.28
1.0 DDIM-GMM-ORTHO-VUB 37.97 18.60 8.82 11.38
1.0 DDIM-GMM-ORTHO-VUB∗ 38.08 18.68 8.80 11.40
1.0 DDPM 8.50 10.75

Table 9: Class-conditional ImageNet with classifier guidance(FID↓)

Steps 10 100 1000
Guidance Scale 1 10 1 10 1 10

η
0 DDIM 66.15 136.76 98.71 179.62
0 DDIM-GMM-RAND 66.26 161.19 98.34 181.43
0 DDIM-GMM-ORTHO 66.16 161.47 97.25 181.33
0 DDIM-GMM-ORTHO-VUB 66.17 161.45 97.14 181.33
0 DDIM-GMM-ORTHO-VUB∗ 66.48 154.64 98.75 180.60

0.2 DDIM 66.17 135.01 99.4 179.86
0.2 DDIM-GMM-RAND 69.51 152.48 99.60 182.41
0.2 DDIM-GMM-ORTHO 69.48 152.10 100.12 182.25
0.2 DDIM-GMM-ORTHO-VUB 65.35 162.13 99.00 183.91
0.2 DDIM-GMM-ORTHO-VUB∗ 66.50 156.31 99.64 182.60
0.5 DDIM 62.42 131.49 105.02 190.45
0.5 DDIM-GMM-RAND 62.25 138.43 106.46 191.35
0.5 DDIM-GMM-ORTHO 62.53 139.64 106.18 190.87
0.5 DDIM-GMM-ORTHO-VUB 67.45 161.57 106.74 192.72
0.5 DDIM-GMM-ORTHO-VUB∗ 65.35 156.91 106.46 192.17
1.0 DDIM 35.19 86.76 116.59 207.78
1.0 DDIM-GMM-RAND 36.78 95.47 116.54 207.52
1.0 DDIM-GMM-ORTHO 37.02 96.90 117.09 208.34
1.0 DDIM-GMM-ORTHO-VUB 48.74 120.63 117.19 209.36
1.0 DDIM-GMM-ORTHO-VUB∗ 35.03 118.57 117.52 208.74
1.0 DDPM 118.28 210.53

Table 10: Class-conditional ImageNet with classifier guidance(IS↑)
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Steps 10 100 1000
Guidance Scale 2.5 5 2.5 5 2.5 5

η
0 DDIM 10.15 18.56 9.57 19.94
0 DDIM-GMM-RAND 6.90 16.77 9.23 19.83
0 DDIM-GMM-ORTHO 6.90 16.64 9.20 19.84
0 DDIM-GMM-ORTHO-VUB 6.94 16.61 9.13 19.66
0 DDIM-GMM-ORTHO-VUB∗ 6.72 16.14 9.22 19.77

0.2 DDIM 10.35 18.60 9.67 20.29
0.2 DDIM-GMM-RAND 8.52 17.90 9.70 20.17
0.2 DDIM-GMM-ORTHO 8.54 17.85 9.73 20.18
0.2 DDIM-GMM-ORTHO-VUB 7.06 16.78 9.27 20.04
0.2 DDIM-GMM-ORTHO-VUB∗ 6.75 16.49 9.38 20.05
0.5 DDIM 11.15 19.13 10.70 21.41
0.5 DDIM-GMM-RAND 10.28 18.61 10.60 15.73
0.5 DDIM-GMM-ORTHO 10.29 18.54 10.56 15.73
0.5 DDIM-GMM-ORTHO-VUB 7.59 17.91 10.27 21.10
0.5 DDIM-GMM-ORTHO-VUB∗ 7.44 17.51 10.38 21.17
1.0 DDIM 17.50 20.42 12.97 23.56
1.0 DDIM-GMM-RAND 15.95 19.91 10.84 22.38
1.0 DDIM-GMM-ORTHO 15.94 19.92 10.86 22.26
1.0 DDIM-GMM-ORTHO-VUB 12.38 19.70 12.80 22.94
1.0 DDIM-GMM-ORTHO-VUB∗ 12.34 19.64 12.80 23.59
1.0 DDPM 12.61 23.38

Table 11: Class-conditional ImageNet with classifier free guidance(FID↓)

Steps 10 100 1000
Guidance Scale 2.5 5 2.5 5 2.5 5

η
0 DDIM 196.73 296.89 237.98 321.59
0 DDIM-GMM-RAND 209.90 318.73 238.63 321.68
0 DDIM-GMM-ORTHO 207.65 320.66 238.97 322.90
0 DDIM-GMM-ORTHO-VUB 207.85 319.13 240.88 323.84
0 DDIM-GMM-ORTHO-VUB∗ 200.89 316.90 238.97 321.40

0.2 DDIM 196.15 298.19 241.48 323.87
0.2 DDIM-GMM-RAND 209.22 311.00 239.52 323.23
0.2 DDIM-GMM-ORTHO 209.02 313.10 238.85 322.96
0.2 DDIM-GMM-ORTHO-VUB 208.91 318.41 243.14 326.02
0.2 DDIM-GMM-ORTHO-VUB∗ 204.41 318.19 241.09 324.86
0.5 DDIM 193.44 297.65 250.97 330.86
0.5 DDIM-GMM-RAND 198.14 306.79 251.02 331.14
0.5 DDIM-GMM-ORTHO 197.84 305.75 250.27 331.16
0.5 DDIM-GMM-ORTHO-VUB 211.93 319.87 251.72 333.34
0.5 DDIM-GMM-ORTHO-VUB∗ 210.79 320.60 251.74 333.29
1.0 DDIM 148.96 281.86 272.39 345.19
1.0 DDIM-GMM-RAND 157.54 294.47 270.73 354.69
1.0 DDIM-GMM-ORTHO 158.41 294.03 270.28 355.00
1.0 DDIM-GMM-ORTHO-VUB 187.49 309.10 273.73 349.01
1.0 DDIM-GMM-ORTHO-VUB∗ 185.85 310.05 271.89 346.74
1.0 DDPM 277.40 349.48

Table 12: Class-conditional ImageNet with classifier free guidance(IS↑)
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A.14 QUALITATIVE RESULTS

In this section we show some qualitative results of sampling with the proposed approach compared
to original DDIM. Specifically, we use the DDIM-GMM-ORTHO-VUB∗ (Section 3.1.3) method
to obtain the samples and refer to them with the label DDIM-GMM for brevity. In Fig. 12 we
plot samples from the class conditional model trained on ImageNet with 10 sampling steps for
both DDIM (left) and DDIM-GMM (right). The top and bottom group of images correspond to
input class labels “pelican” and “cairn terrier” respectively. With only a few sampling steps, the
semantic concept seems to emerge clearer in the images obtained from DDIM-GMM sampler than
in the ones from DDIM sampler. Under this setting, the IS metric for the DDIM-GMM sampler
is significantly higher than that of DDIM (see Table 8, Appendix A.13.3). See Appendix A.15 for
more comparisons.

Figure 12: Class-conditional ImageNet, 10 sampling steps. Random samples from the class-
conditional ImageNet model using DDIM (left) and DDIM-GMM (right) sampler conditioned on
the class labels pelican (top) and cairn terrier (bottom) respectively. 10 sampling steps are used for
each sampler (η = 1).

A.15 MORE QUALITATIVE RESULTS
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Figure 13: Class-conditional ImageNet with classifier guidance, 10 sampling steps. Random
samples from the class-conditional ImageNet model using DDIM (left) and DDIM-GMM (right)
sampler conditioned on the class labels pelican (top) and cairn terrier (bottom) respectively. 10
sampling steps are used for each sampler with a classifier guidance weight of 10 (η = 1).
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Figure 14: Class-conditional ImageNet with classifier-free guidance, 10 sampling steps. Ran-
dom samples from the class-conditional ImageNet model using DDIM (left) and DDIM-GMM
(right) sampler conditioned on the class labels pelican (top) and cairn terrier (bottom) respectively.
10 sampling steps are used for each sampler with a classifier free guidance weight of 5 (η = 0).
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