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Abstract

Domain generalization aims to learn a domain-invariant model that can generalize well to the unseen
target domain. In this paper, based on the assumption that there exists an invariant feature mapping,
we propose an evidence upper bound of the divergence between the category-specific feature and
its invariant ground-truth using variational inference. To optimize this upper bound, we further pro-
pose an efficient Variational Disentanglement Network (VDN) that is capable of disentangling the
domain-specific features and category-specific features (which generalize well to the unseen sam-
ples). Besides, the generated novel images from VDN are used to further improve the generalization
ability. We conduct extensive experiments to verify our method on three benchmarks, and both
quantitative and qualitative results illustrate the effectiveness of our method.

1 Introduction

Nowadays, deep neural networks are widely used in numerous tasks and exhibit remarkable performance. However,
their performance may degrade rapidly when the deployed environment is different from the training one. How to
obtain a domain invariant network that can generalize to the data collected from an unseen environment is always a
research hotspot (Zhang et al., 2016; Kawaguchi et al., 2017).

Domain generalization (DG) aims to tackle the generalization problem where the data from the target domain is inac-
cessible. Generally, existing DG research works can be categorized into three streams, invariant feature representation
learning, meta-learning, and data augmentation. The objective of invariant feature representation learning is to extract
shareable information across different domains, as such, the learned model is expected to be better generalized to the
unseen but related domain during evaluation. For example, Li et al. (2018b;d) aim to minimize the divergence of the
latent features between different domains or the divergence with a pre-defined prior distribution. Dou et al. (2019)
further propose to minimize the divergence of the distributions conditioned on the category label. Although some
desired performances have been reported through the aforementioned methods, they may face the risk of overfitting
to the source domains without carefully specifying the invariant information to learn, e.g., barely ensuring invariance
may cause over-matching on the observed domains (Shui et al., 2022). On the other hand, data augmentation based
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Figure 1: Given data from multiple source domains, we propose to learn a domain invariant embedding for classi-
fication and a domain-specific embedding to encode the style information. The arrows from images to embeddings
indicate the encoding process, and the arrows from features to the generated samples represent the generation process.
Invariant category-specific features are learned using the proposed variational disentanglement framework.

methods have also been proved to be effective in the domain generalization setting by enlarging the scale of training
data with different augmentation strategies, e.g., data augmentation through adversarial training (Volpi et al., 2018;
Zhou et al., 2020b), MixUp (Wang et al., 2020c), stacked transformation (Zhang et al., 2020), and Fourier transforma-
tion (Xu et al., 2021). However, these augmentation strategies can be limited since they only focus on some specific
types of data augmentation, as such, the diversity of augmented data may be constrained.

In this paper, we propose to learn an invariant feature representation by matching the distribution of the feature space
across domains to a distribution which is expected to represent the ground truth (i.e., invariant information) for the
problem of domain generalization on a specific task. We first propose to derive the evidence upper bound of the
divergence between the distribution of the feature space across domains and its unknown ground-truth distribution. To
further optimize the upper bound, we develop an effective framework named Variational Disentanglement Network
(VDN), which is capable of alleviating the aforementioned limitations jointly. More specifically, instead of optimizing
the latent feature z alone, we propose to optimize the category(label)-specific feature zc and domain-specific feature zd

at the same time. The optimization of zc and zd are twofold: minimizing the redundant information in the task-specific
features and maximizing the posterior probability of the generated samples with random styles. By maximizing the
posterior probability term, zc and zd are impelled to be disentangled and contain all necessary information to avoid a
trivial solution that overfits to source domains. Meanwhile, minimizing our proposed information term that filters out
redundant information in zc can be regarded as the strategy of information bottleneck which benefits the generalization
ability of the model (Alemi et al., 2016). Last but not the least, our VDN is also capable of generating different
and diverse data across domains based on the specific task by swapping zd across domains. The generated novel
images can be further used to improve the generalization ability of the model, and are also compatible with existing
augmentation-based methods. Extensive experiments are conducted on widely-used benchmarks, and both quantitative
and qualitative results show the effectiveness of our method.

In summary, our contributions are as follows:

• We provide a theoretical insight of how variational disentanglement can benefit the task of domain general-
ization based on the basic assumption of the invariant feature representation learning.

• We propose to derive a novel evidence upper bound of the divergence between the distribution of task-specific
features and its invariant ground truth for domain generalization. Our proposed evidence upper bound further
supports the rationality and build the tie between previous feature alignment-based methods (Li et al., 2018b)1

and disentangle-based methods, e.g., Li et al. (2017); Peng et al. (2019b).

• A novel framework is proposed to optimize the proposed evidence upper bound of the divergence. Extensive
experiments demonstrate the effectiveness and superiority of our proposed method.

1In Li et al. (2018b), the author empirically proposes to use an adversarial autoencoder to minimize the divergence between ph and px where
ph is the latent code distribution and px is the prior distribution (Laplace distribution in the paper).
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2 Related works
2.1 Domain generalization

The core ideas of domain generalization (DG) are inherited from domain adaptation (Huang et al., 2006; Pan et al.,
2011; Zhang et al., 2015; Ghifary et al., 2017; Blanchard et al., 2021) to some extent, e.g., they assume that there
exists something in common between different domains even if they can look quite different. For example, Khosla
et al. (2012); Seo et al. (2020) aim to jointly learn an unbiased model and a set of bias vectors for each domain,
Yang & Gao (2013) use Canonical Correlation Analysis (CCA) to extract the shared feature, Muandet et al. (2013)
propose a domain invariant analysis method which used MMD and was further extended by Li et al. (2018b), multi-
task autoencoders were also used by Ghifary et al. (2015) to learn a shared feature extractor with multiple decoders.
Moreover, various regularization methods of latent code are proposed (Zhao et al., 2020; Wang et al., 2020b), e.g., low-
rank regularization (Xu et al., 2014; Li et al., 2017; 2020; Piratla et al., 2020). In addition, data augmentation based
methods are also proved to be effective in the domain generalization setting, e.g., GAN generated samples (Volpi et al.,
2018; Zhou et al., 2020b), domain mixup (Wang et al., 2020c; Zhou et al., 2021a), stacked transformations (Zhang
et al., 2020), domain-guided perturbation direction (Shankar et al., 2018), Fourier augmentation (Xu et al., 2021), and
solving a jigsaw puzzle problem (Carlucci et al., 2019). Meta-learning based methods (Li et al., 2018a; Balaji et al.,
2018; Li et al., 2019b;a; Dou et al., 2019; Du et al., 2020) are also explored by learning from episodes that simulate
the domain gaps. Recently, invariant risk minimization (IRM) is proposed to eliminate spurious correlations as such
the models are expected to have better generalization performance (Arjovsky et al., 2019; Ahuja et al., 2020; Bellot
& van der Schaar, 2020; Zunino et al., 2020). As for feature disentanglement, current methods are usually based on
decomposition (Li et al., 2017; Khosla et al., 2012; Piratla et al., 2020; Chattopadhyay et al., 2020). Generation based
disentanglement methods are also explored. For instance, Peng et al. (2019b) conduct the single domain generalization
using adversarial disentangled auto-encoder and Wang et al. (2020a) provide a pair of encoders for disentangled
features in each domain.

2.2 Feature disentanglement and image translation

Our proposed method is related to the feature disentanglement, which has also been widely adopted in the problem
of cross-domain learning (Bousmalis et al., 2017; Hoffman et al., 2018; Russo et al., 2018; Saito et al., 2018). A lot
of progress in domain generalization has been made by applying feature disentanglement (Peng et al., 2019b; Khosla
et al., 2012; Li et al., 2017; Piratla et al., 2020). For instance, Peng et al. (2019b) propose a domain agnostic learning
method based on VAE and adversarial learning, and Khosla et al. (2012); Li et al. (2017); Piratla et al. (2020) assume
that there exists a shared model which is regarded as domain invariant and a set of domain-specific weights.

Our work is also related to the image translation (Isola et al., 2017; Choi et al., 2018; Zhu et al., 2017; Liu et al.,
2019), which can be treated as conducting feature disentanglement by separating the style feature and content feature.
Generally, the existing translation methods can be categorized into two streams, supervised/paired (Isola et al., 2017)
and unsupervised/unpaired (Zhu et al., 2017; Choi et al., 2018). While some progress has been achieved, most of the
existing models require a large amount of data. Recently, some efforts have been made to improve the capability of the
translation model by utilizing few samples (Liu et al., 2019; Saito et al., 2020). Specifically, the framework we propose
conducts translation tasks in a more efficient manner given limited and diverse data. This helps us obtain a more
accurate posterior probability estimation. In addition, the generated high-quality samples with different combinations
of image attributes (e.g., samples with a new combination of angles, shape, and color (Zhao et al., 2018)) based on our
proposed framework are also used for data augmentation purpose for better generalization capability.

3 Methodology

3.1 Preliminary

Assume we observe K domains and there are Ni labeled samples {(xj , yj)}Ni

j=1 in the domain Di. Xi is the image
set of the domain Di and Y is the set of labels. We first introduce the assumption regarding the invariant feature
representation for the task of DG.

Assumption 1 (Learnability) Denote the dimension of the image x and the latent feature zc by dx and dc, respectively,
let ϕc : Rdx → L1(Rdc) be the mapping between an image x and its probability density function (PDF) f(zc|x), where
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L1 denotes 1-norm integrable function space. A deterministic mapping ϕg : Rdc → N acts as a classifier to predict
the category of the image based on its latent feature zc. For a domain generalization problem with ns source domains
(Xs = X1 ∪X2... ∪Xns ) and a target domain Xt, we say it learnable if

∃ϕc, s.t.

Ex∼Pxi|y
[ϕc(x)] = Ex∼Pxj|y

[ϕc(x)],∀y ∈ Y, ∀i, j ∈ {1, 2, ..., ns, t}

ϕg(ψ(ϕc(x))) = y,∀x ∈ Xs ∪Xt,

(1)

where Pxi|y
represents the conditional distribution of images with the category y in the domain i, and ψ(ϕc(x)) =

Ezc∼ϕc(x)zc.

While we assume a noiseless case similar to Tachet des Combes et al. (2020), such an assumption is mild and is
commonly adopted in the community of domain generalization (Muandet et al., 2013). Based on the assumption
that if the task is feasible, there should exist a domain invariant mapping ϕc(·). In other words, we can improve
the generalization capability of the classifier model if we can find the domain-invariant mapping ϕc. However, as
suggested in Kingma & Welling (2013), the invariant ground-truth distribution P (zc|x) (where P (zc|x) = ϕc(x)) can
be intractable, as such, we are unable to obtain an explicit form of P (zc|x). To this end, we propose to use variational
inference to find an approximation of ϕc(·). 2

3.2 Motivation

To approximate the conditional distribution of domain-invariant features ϕc, we propose to minimize the evidence
upper bound of the KL divergence D(Q(zc|x)||P (zc|x))3 derived by Bayes variational inference, where Q(zc|x)
denotes the feature distribution obtained from the category-specific encoder Ec and P (zc|x) is the invariant ground
truth distribution. Since we aim to find a deterministic classifier, we set Ec(x) = ψ(Q(zc|x)) for simplicity. We now
introduce the rationality of learning invariant feature representation by minimizing the upper bound of KL divergence.
Due to the limited space, proofs of Theorem 1 and 2, and additional details are placed in the Appendix.

Lemma 1 The KL divergence D(Q(zc|x)||P (zc|x)) can be represented as

D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x
[log p(x|zc)] + log p(x),

where p(x|zc) is the PDF of the distribution P (x|zc). Based on Lemma 1, we can derive the evidence upper bound of
D(Q(zc|x)||P (zc|x)).

Theorem 1 The evidence upper bound of KL divergence D(Q(zc|x)||P (zc|x)) between the distribution Q(zc|x) and
the ground-truth P (zc|x) is as follows:

D(Q(zc|x)||P (zc))︸ ︷︷ ︸
① information gain term

− Ezc∼Qzc|x,zd∼Pzd
[log p(x|z)]︸ ︷︷ ︸

② posterior probability term

+ C,

where C is a constant, z = [zc, zd] and Pd can be an arbitrary prior distribution.

It is worth noting that zc and zd are implicitly determined by the category and domain label respectively, i.e., only the
realistic image in accord with its corresponding category and domain could have a high probability density value. We
further show that the performance in the unseen target domain can also benefited from the optimization of the given
upper bound in source domains.

2Similar to other DG works (Li et al., 2018d;c; Hu et al., 2020), there is an implicit assumption that the label prior does not vary a lot among
source and target domains. The cases that label priors are largely different may in the scope of imbalanced classification (Sun et al., 2009) and
heterogeneous domain generalization (Wang et al., 2020c; Li et al., 2019b). In addition, theoretical analysis can be found in Shui et al. (2021) which
demonstrates that the upper bound of target risk is related to the discrepancy of label distribution.

3For consistency, we represent distributions using upper case letter, e.g., Q(zc|x) means the distribution of random variable zc conditioned on
x and it is also abbreviated as Qzc|x. The lower case represent the exact probability density value, e.g., p(x|zc, zd).
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Figure 2: Framework of our method for training. For a random sample (xi, yi) in the training set, we random select
another sample (xj , yj) that does not require the same category. We feed the two samples into the task-specific encoder
Ec and domain-specific encoder Ed and get the corresponding code zci

, zcj
and zdi

, zdj
. Then we use the generator G

to obtain the reconstructed samples G(zci
, zdi

) and samples with random style G(zci
, zdj

) . The perceptual loss and
discriminator loss are used to enhance the quality of generated samples which further guarantee good disentanglement
between class-specific feature zc and domain-specific feature zd. In addition, for the task-specific feature zc, it is
supervised by the specific task, e.g., classification, and regularized by the information gain term D(Q(zc|x)||P (zc)).

Assumption 2 Given a sample xt from the target domain Xt, there exists a non-empty feasible set I which is defined
as

I = {I|q(zc|xt) ≤
∑
i∈I

βiq(zc|xs
i ),∀zc ∈ Rdc} ∩ {I|ϕc(xt) = ϕc(xs

i ),∀i ∈ I},

where I is the index set, xs
i denotes an arbitrary sample with index i in any source domains, and q(zc|x) is the

probability density function value of zc conditioned on xt from distribution Q(zc|xt).

Assumption 2 is a mild assumption since it holds as long as the task is feasible (the second set is not empty) and
q(zc|x) is a distribution that satisfies q(zc|x) > 0 given any zc, e.g., Gaussian distribution (the first set is not empty).

Theorem 2 Based on Assumption 2, the KL divergence between Q(zc|xt) and the unknown domain-invariant ground
truth distribution P (zc|xt) can be bounded as follows

D(Q(zc|xt)||P (zc|xt)) ≤ inf
I∈I

[
∑
i∈I

βiD(Q(zc|xs
i )||P (zc|xs

i ))].

The above theorem demonstrates that the KL divergence between Q(zc|x) and P (zc|x) from source domains con-
stitutes the divergence upper bound in the unseen target domain. Therefore, it further supports the rationale and
effectiveness of our method.

3.3 Optimization strategies

In this section, we introduce the overall framework and the optimization details of each term in our proposed evidence
upper bound.

3.3.1 Overall framework

The whole framework of our proposed method is illustrated in Fig. 2 which consists of a task-specific encoder Ec, a
domain-specific encoder Ed, a generator G, a discriminator Dx to distinguish real and generated images, a discrimi-
nator Dc to justify whether the task-specific feature comes from a predefined distribution, and a task-specific network
Et for classification purpose. The overall optimization objective is given as

L = λregLreg︸ ︷︷ ︸
To minimize ①

+ Lposterior︸ ︷︷ ︸
To minimize ②

,
(2)
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where the first term Lreg is defined as follows

Lreg = Ezc∼Pzc
[Dc(zc)] + Ex∼X [log(−Dc(Ec(x)))] + 1, (3)

which acts as a regularization term that aligns the task-specific feature to a predefined distribution and is further
interpreted in section 3.3.2, and Lposterior is defined as

Lposterior = Ltask + λrecLrec + λganLgan, (4)

where the definitions of each term in Lposterior are defined as follows

Ltask = Ex∼X [ltask(Et ◦ Ec(x), y)] + Ezc∼Qc,zd∼Qd
[ltask(Et ◦ Ec(G(zc, zd)), y)],

Lgan = Ex∼X [Dx(x|zc, zd)] − Ezc∼Qc,zd∼Qd
[Dx(G(zc, zd)|zc, zd)],

Lrec = Ex∼X ||Ep(x) − Ep(G(Ec(x), Ed(x)))||1.

The details of each term in Lposterior are illustrated in section 3.3.3. These losses are optimized jointly to disentangle
the task-specific feature zc and domain-specific feature zd.

In the test phase, an image from an unseen but related target domain is passed through the task-specific encoder Ec

and the task-specific network Et, and the other networks will not be involved. Therefore, our network is supposed to
have the same inference complexity as the vanilla model.

3.3.2 Estimation of the information gain term

To reduce the risk of learned task-specific feature overfitting to the source domains, similar to Li et al. (2018b), we
minimize the divergence between Q(zc|x) which is introduced by the task-specific encoder Ec, and a predefined prior
distribution P (zc). The divergence D(Q(zc|x)||P (zc)) can be interpreted as the information gain by introducing a
specific image x. Ideally, the optimal features only contain the necessary information for classification, and domain-
specific information will be ruled out. To this end, we minimize the task-specific loss, i.e., classification loss in equa-
tion 12, and information gain term in our framework simultaneously. For the minimization of information gain term,
we empirically find that directly optimizing this term using the reparameterization trick (Kingma & Welling, 2013)
may not be feasible due to the high dimensionality of zc. To this end, we propose to optimize D(Q(zc)||P (zc)), which
is equivalent to optimize the upper bound of the information gain term Lreg in Theorem 1. The proof is in Lemma A.2
and the optimization of the proposed upper bound also supports the core idea of the previous work (Li et al., 2018b)
that aligns the latent feature to a pre-defined distribution. More specifically, we optimize its dual form following the
core idea of f-GAN (Nowozin et al., 2016) given as

D(Q(zc)||P (zc)) = Df (P (zc)||Q(zc)) =
∫

q(zc) sup
t∈domf∗

{
t
p(zc)
q(zc) − f∗(t)

}
dzc, (5)

where p(·) and q(·) are PDFs of P and Q respectively, f(u) = − log(u), and f∗(t) denotes its Fenchel conjugate
(Hiriart-Urruty & Lemaréchal, 2004) which is defined as

f∗(t) = sup
u∈domf

{ut− f(u)} = −1 − log(−t). (6)

One can replace t in equation 6 using an arbitrary class of functions T , as such, the term ① can be represented as

D(Q(zc)||P (zc)) = sup
T ∈T

(
Ezc∼Pzc

[T (zc)] − Ezc∼Qzc|x
[f∗(T (zc))]

)
, (7)

if the capacity of T is large enough.

To optimize equation 7, an adversarial training manner is used. Specifically, we optimize the task-specific encoder Ec

to maximize this term and the discriminator Dc to minimize it. The final goal of the training for the regularization
term is as follows

min
Ec

max
Dc

Lreg = Ezc∼Pzc
[Dc(zc)] + Ex∼X [log(−Dc(Ec(x)))] + 1, (8)

where the function T in equation 7 is implemented by a deep neural network Dc with the activation function gf (v) =
− exp(−v) at the output to retain the original domain domf∗ .
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Algorithm 1 Variational Disentanglement for domain generalization.

Input: X = {xi}N
i=1, Y = {yi}N

i=1, initialized parameters G, Dc, Dx, Ec, Ed and Et.
Output: Learned parameters G∗, D∗

c , D∗
x, E∗

c , E∗
d and E∗

t .
1: while Stopping criterion is not met do
2: Sample a minibatch X̃ and Ỹ from X and Y respectively.
3: Calculate the task-specific feature Zc = Ec(X̃) and domain-specific feature Zd = Ed(X̃).
4: Shuffle the domain-specific feature Ẑd = shuffle(Zd)
5: Generate the reconstructed samples Xrec = G(Zc, Zd) and the samples with the random style Xrand =

G(Zc, Ẑd).
6: Calculate the weighted loss Lgen = Ltask + λregLreg + λganLgan + λrecLrec

7: Compute the gradient of Lgen w.r.t G, Ec, Ed and Et and then do the update.
8: if Update frequency is met then
9: Calculate the weighted loss Ldis = −(λregLreg + λganLgan)

10: Compute the gradient of Ldis w.r.t Dc and Dx and then do the update.
11: end if
12: end while

3.3.3 Estimation of the posterior probability term

For better disentanglement, we propose to maximize the posterior probability term p(x|zc, zd). The advantages of
maximizing this term can be roughly summarized into two points: first, directly minimizing the information gain term
and task-specific term may cause the overfitting to the training samples. For instance, when the dataset is not large
enough, directly memorizing all the datasets may have less information gain comparing with extracting discriminate
features for classification. By maximizing the posterior probability, we can guarantee that zc and zd together contain
almost all the information of the image which avoid the loss of discriminative features caused by minimizing the in-
formation gain term. Second, by improving the quality of generated samples using random combined task-specific
feature zc and style feature zd, the task-specific and domain-specific features will be disentangled since our discrimi-
nator can not only distinguish real and fake images but can also differentiate whether the generated samples are from
the specific domains thanks to the domain labels.

To maximize the posterior probability term, two obstacles need to be solved. First, an efficient sampling strategy is
needed on account that the space of zc and zd is large and intractable and it is not feasible to sample ergodically from
them. To this end, inspired by VAE (Kingma & Welling, 2013), we propose to adopt the task-specific encoder Ec

and domain-specific encoder Ed instead, i.e., Qzc ∼ Ec(X) and Qzd
∼ Ed(X), to conduct code sampling of zc

and zd which are most likely to generate a realistic sample. To sample in Qc and Qd independently, we shuffle the
domain-specific features in a batch and ensure the generated samples G(zci

, zdj
) using randomly combined features

as realistic as possible. More details can be found in Algorithm 1.

Unlike VAE (Kingma & Welling, 2013) which only computes the reconstruction term p(x|zci
, zdi

), we also need to
compute the probability of the generated one G(zci

, zdj
) using the generator G for ∀i ̸= j without a corresponding

ground-truth. To this end, we estimate the probability p(x|zc, zd) using the following equations

p(x|zc, zd) =
{

La(x|G(zc, zd), β)) w/ ground-truth
Dx(G(zc, zd)|zc, zd) w/o ground-truth

, (9)

where La denotes the PDF of Laplace distribution (corresponding to the L1 norm) to measure the pixel reconstruction
loss, and Dx(·|zc, zd) is the estimation from the discriminator based on the corresponding category and domain la-
bels/features. To optimize the term in equation 9, Dx needs to have the capability to distinguish between the real and
generated images G(zci

, zdj
) through random combined latent features, and to differentiate whether the samples have

the desired domain and category. Meanwhile, the generator G is required to produce realistic outputs. To this end, we
train the model in an adversarial manner given below

min
Ec,Ed,G

max
Dx

Lgan = Ex∼X [Dx(x|zc, zd)] − Ezc∼Qc,zd∼Qd
[Dx(G(zc, zd)|zc, zd)]. (10)

For the reconstructed images with ground-truth, we empirically find that directly minimizing the pixel level divergence
can lead to a performance degradation. To this end, we minimize the divergence of semantic features through a pre-

7



Published in Transactions on Machine Learning Research (08/2022)

(a) photo → art painting (b) art painting → photo (c) photo → sketch (d) sketch → art painting

Figure 3: The generated samples in source domains. The images in the first row are the input images that we want to
keep the category information and in the last row are the input images that provide the style information. The second
row is the reconstructed one and the third row is the translated one.

trained perceptual network Ep instead. Therefore, we maximize the improved version La(Ep(x)|Ep(G(zc, zd)), β))
by minimizing its corresponding L1 loss given as

min
Ec,Ed,G

Lrec = Ex∼X ||Ep(x) − Ep(G(Ec(x), Ed(x)))||1. (11)

Last but not least, to further enforce the task-specific encoder Ec to generate more meaningful embeddings, we use
label information to guide the model training by minimizing the following equation

min
Ec,Et

Ltask = Ex∼X [ltask(Et ◦ Ec(x), y)] + Ezc∼Qc,zd∼Qd [ltask(Et ◦ Ec(G(zc, zd)), y)], (12)

where y denotes the ground-truth label of the input x or its task-specific feature zc, ltask is the task-specific loss, e.g.,
cross entropy is used in our work for classification tasks. Besides, we also consider the generated samples for data
augmentation purpose, which is the second term of equation 12.

4 Experiments

We evaluate our method using three benchmarks including Digits-DG (Zhou et al., 2020b), PACS (Li et al., 2017) and
mini-DomainNet (Zhou et al., 2020c; Peng et al., 2019a). For the hyper-parameters, we set λreg, λrec and λgan as
0.1, 1.0 and 1.0, respectively, for all experiments. The network architectures and training details are illustrated in the
supplementary materials. We report the accuracy of the model at the end of the training.

4.1 Digits-DG

Settings: Digits-DG (Zhou et al., 2020b) is a benchmark composed of MNIST, MNIST-M, SVHN, and SYN
where the font and background of the samples are diverse. Except that we additionally use the Fourier-based data
augmentation (Xu et al., 2021), we follow the experiment setting in Zhou et al. (2020b). More specifically, the input
images are resized to 32×32 based on RGB channels. The ConvNet is used as the backbone for all methods and
is divided into two parts: the task-specific encoder Ec which includes the first three conv blocks except for the last
max-pooling layer and the rest are regarded as the task-specific network Et. For the Ec and Et, we use the same
learning parameters with Zhou et al. (2020b). SGD is used as the optimizer with an initial learning rate of 0.05 and
weight decay of 5e-5. For the rest of the networks, we use RmsProp without momentum as the optimizer with the
initial learning rate of 5e-5 and the same weight decay. We train the model for 60 epochs using the batch size of 128
and all the learning rate is decayed by 0.1 at the 50th epoch.

Results: We repeat the experiment 3 times and report the average accuracy in Table 1. Our method has about 10%
percent improvements in MNIST-M, SVHN, and SYN domains compared with the DeepAll method. In addition, the
results demonstrate that our method achieves the best overall performance, especially in the domain of MNIST-M with
about 3% improvement compared with other competitors.
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Table 1: Evaluation of DG on the Digits-DG benchmark. The average target domain accuracy are reported.

Method Reference MNIST MNIST-M SVHN SYN Avg.

DeepAll - 95.8 58.8 61.7 78.6 73.7
MMD-AAE (Li et al., 2018a) CVPR 2018 96.5 58.4 65.0 78.4 74.6
CrossGrad (Shankar et al., 2018) ICLR 2018 96.7 61.1 65.3 80.2 75.8
DDAIG (Zhou et al., 2020b) AAAI 2020 96.6 64.1 68.6 81.0 77.6
L2A-OT (Zhou et al., 2020a) ECCV 2020 96.7 63.9 68.6 83.2 78.1
MixStyle (Zhou et al., 2021a) ICLR 2021 96.5 63.5 64.7 81.2 76.5
FACT (Xu et al., 2021) CVPR 2021 97.9 65.6 72.4 90.3 81.5
VDN Ours 97.6 68.1 72.9 87.6 81.6

Table 2: Evaluation of DG on the PACS benchmark. The average target domain accuracy of five repeated experiments
is reported.

Method Reference Art Cartoon Photo Sketch Avg.

DeepAll - 77.0 75.9 95.5 70.3 79.5
MASF (Dou et al., 2019) NIPS 2019 80.3 77.2 93.9 71.7 81.0
Epi-FCR (Li et al., 2019a) ICCV 2019 82.1 77.0 93.9 73.0 81.5
L2A-OT (Zhou et al., 2020a) ECCV 2020 83.3 78.2 96.2 73.6 82.8
RSC (Huang et al., 2020) ECCV 2020 78.9 76.9 94.1 76.8 81.7
MixStyle (Zhou et al., 2021a) ICLR 2021 84.1 78.8 96.1 75.9 83.7
DAML (Shu et al., 2021) CVPR 2021 83.0 74.1 95.6 78.1 82.7
FACT (Xu et al., 2021) CVPR 2021 85.4 78.4 95.2 79.2 84.5
DSU (Li et al., 2022) ICLR 2022 83.6 79.6 95.8 77.6 84.1
VDN Ours 84.3 79.8 94.6 82.8 85.4

4.2 PACS

Settings: PACS (Li et al., 2017) is a benchmark for domain generalization task collected from four different do-
mains: photo, art painting, sketch, and cartoon with relatively large domain gaps. Following the widely used setting
in Carlucci et al. (2019), we only used the official split of the training set to train the model and all the images from
the target domain are used for the test. RmsProp is used to train all the networks with an initial learning rate of 5e-5
without momentum and decrease the learning rate by a factor of 10 at the 50th epoch. The batch size is set to 24 and
we sample the same number of images from each domain at the training phase. All the images are cropped to 224×224
for training and the data augmentations including random crop with a scale factor of 1.25, amplitude mix (Xu et al.,
2021) , and random horizontal flip. Other augmentations such as random grayscale are not used as it may conceal the
true performance of the model by introducing prior knowledge of the target domain. More specifically, the part from
the beginning to the second residual block inclusive is regarded as the task-specific encoder Ec, and the remaining part
acts as the task-specific network Et. The discriminators Dc and Dx are updated once after every 5 updates of other
parts in the framework.

Results: The results based on Resnet-18 are reported in Table 2. As we can observe, our method outperforms other
state-of-the-art methods. Moreover, we observe that we can achieve much better performance in the sketch domain in
a large margin compared with other baseline methods. We conjecture the reason that the Sketch domain may contain
less domain-specific information. As shown in Fig. 4, shuffling domain-specific features has less impact on image
generation in the domain of Sketch. Due to limited space, the results based on Resnet-50 are reported in the Appendix.

4.3 mini-DomainNet

Settings: We then consider a larger benchmark mini-DomainNet (Zhou et al., 2020c), which is a subset of Domain-
Net (Peng et al., 2019a) without noisy labels, for evaluation purpose. In mini-DomainNet, there are more than 140k
images in total belonging to 4 different domains, namely sketch, real, clipart, and painting.
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Table 3: Evaluation of DG on mini-DomainNet benchmark. We repeat the experiments three times and report the
average accuracy in the unseen target domain in the table.

Method Reference Clipart Real Painting Sketch Avg.

DeepAll - 62.86 58.73 47.94 43.02 53.14
MLDG (Li et al., 2018a) AAAI 2018 63.54 59.49 48.68 43.41 53.78
JiGen (Carlucci et al., 2019) CVPR 2019 63.84 58.80 48.40 44.26 53.83
MASF (Dou et al., 2019) NIPS 2019 63.05 59.22 48.34 43.67 53.58
RSC (Huang et al., 2020) ECCV 2020 64.65 59.37 46.71 42.38 53.94
DSU (Li et al., 2022) ICLR 2022 63.17 56.03 47.46 47.14 53.45
VDN Ours 65.08 59.05 48.89 49.21 55.56

For the task-specific encoder Ec and task-specific network Et, we use SGD with a momentum of 0.9 and an initial
learning rate of 0.005 as the optimizer. For other parts of our framework, RmsProp without momentum is used with
the initial learning rate of 0.0001. For the learning rate scheduler towards all the optimizers, we use the same cosine
annealing rule (Loshchilov & Hutter, 2016) with the minimum learning rate of 0 after 100 epochs. The batch size
is 128 with a random sampler that roughly samples the same number of images in each domain. We consider data
augmentations including the random clip with a probability of 0.5, and random crop the data to the size 96 × 96 using
the scale factor of 1.25. For a fair comparison, we use the same backbone network Resnet-18 for all the methods and
the division of Ec and Et for our model is the same as the setting in PACS. The update frequency of Dc and Dx is the
same with PACS that discriminators update once after every 5 updates of other parts in the framework.

Results: We compare our method with MLDG (Li et al., 2018a), JiGen (Carlucci et al., 2019), MASF (Dou et al.,
2019), RSC (Huang et al., 2020), and DSU (Li et al., 2022). The results are shown in Table 3. As we can observe,
we can achieve better performance compared with other baselines, especially in the sketch domain in a large margin.
There is an interesting finding that similar to the PACS benchmark, the performance improvement in the sketch domain
is huge, but in the real domain, the performance of our method has some degradation. This may reveal the potential
inductive bias of the model. However, our method still has the best overall performance.

4.4 Ablation study and perceptual results

In this section, we first present the results of the ablation study to illustrate the effectiveness of each component in our
proposed method. We further provide some perceptual results of image generation to show the significance of feature
disentanglement.

4.4.1 Ablation study

We conduct the ablation study using the PACS benchmark. We first explore the effectiveness of each term in the
evidence upper bound we proposed in Theorem 1. Then, the impacts of optimization strategies for each term are
evaluated.

Effectiveness of each term: We first evaluate the effectiveness of optimizing each term we proposed in the EUB.
The results are shown in Table 4 where ‘+①’ and ‘+②’ represent that we utilize the information gain term ① defined
in equation 8 and the posterior probability term ② defined in equation 4 but without data augmentation respectively.
‘+DAug’ means we use the generated samples from our generator G for data augmentation, and ‘+FAug’ represents
that we adopt Fourier-based data augmentation strategy (Xu et al., 2021) to do the data augmentation. The results
demonstrate that both the information gain term and posterior probability term can improve the generalization capa-
bility of the model. In addition, combining these two together can attain larger performance improvements. The results
also demonstrate that using the generated samples as augmented data can effectively improve the generalization ability
of the model.

Impacts of different optimization strategies: As for the evidence upper bound we proposed, there are different
optimization strategies for each term. For instance, reparameterization trick (Kingma & Welling, 2013) is a widely
used method to optimize the term ①. In addition, directly optimizing the L1 reconstruction loss is a usual way to
generate sharp reconstructed images. We investigate the impacts of different optimization strategies and the results are
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Table 4: Ablation study regarding the effectiveness of each term in the evidence upper bound we proposed. The first
row is the DeepAll baseline and the last is the complete version of our method.

+① +② +DAug +FAug Art Cartoon Photo Sketch Avg.

- - - - 77.0 75.9 95.5 70.3 79.5
✓ - - - 77.6 77.8 93.5 71.8 80.2
- ✓ - - 79.7 78.4 94.3 75.2 81.9
✓ ✓ - - 81.5 78.2 93.8 77.6 82.8
✓ ✓ ✓ - 82.6 78.5 94.0 82.7 84.5
✓ ✓ ✓ ✓ 84.3 79.8 94.6 82.8 85.4

(a) art painting (b) cartoon (c) photo (d) sketch

Figure 4: The generated samples in the unseen target domains. The rows from up to down denote the input image
provide the task-specific features, reconstructed images, transformed images, and the images that provide the style
features, respectively. Note that the input images all come from the unknown target domain.

shown in Table 5 where the ✓one is the strategy we adopt. As we can see, directly using the reparameterization trick
to align the high-dimensional features can lead to side effects. In addition, optimizing the perceptual loss can lead to
better performance compared with replacing the reconstruction loss in equation 11 with L1 loss.

Table 5: Ablation study regarding the effects of different optimization strategies. ‘✓’: the strategy we use in the paper.
‘reparam’: the reparameterization trick (Kingma & Welling, 2013). ‘L1 loss’: replacing the reconstruction loss in
equation 11 with L1 loss.

+① +② Art Cartoon Photo Sketch Avg.

- - 77.0 75.9 95.5 70.3 79.5
reparam - 74.4 77.6 92.4 68.3 78.2

✓ - 77.6 77.8 93.5 71.8 80.2
- L1 loss 78.2 78.3 93.9 73.4 81.0
- ✓ 79.7 78.4 94.3 75.2 81.9

4.4.2 Perceptual results

To provide an intuitive way to understand the effect of disentangling, we further give some perceptual results. For
limited space, more visualization results are placed in the supplementary materials.

Generated samples based on source-domain images: To demonstrate the effectiveness of our method, we first
visualize the generated samples in a cross-domain setting that the pairs of input samples are from different source
domains on account that the quality of the samples can reflect the accuracy of the estimated posterior probability
and the degree of disentanglement. Some of the generated samples are shown in Fig. 3. The visualization results
demonstrate that our method can disentangle the domain-specific features and task-specific features well and generate
realistic novel samples with high quality and different styles. In addition, we observe that the reconstructed samples
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art_painting
sketch
cartoon
photo(target)

(a) w/o domain label

dog
elephant
giraffe
guitar
horse
house
person

(b) w/o category label

dog
elephant
giraffe
guitar
horse
house
person

(c) w/o category label

art_painting
sketch
cartoon
photo(target)

(d) w/o domain label

Figure 5: The unsupervised t-SNE visualization results of extracted features from our model. The features in (a,b) are
collected from the domain-specific encoder Ed and features in (c,d) are collected from the task-specific encoder Ec.
PACS benchmark is used for visualization and photo domain is selected as the target domain. (Best viewed in color.)

may not necessarily be the same as the original one, mainly due to the perceptual loss we adopt, as such, we can
prevent the latent features from overfitting to the source domain.

Generated samples based on target-domain images: To further demonstrate the effectiveness of our proposed
framework, we conduct image generation based on the unseen target domain, where the generated samples using
the pairs from the same unseen target domain are shown in Fig. 4 based on leave-one-domain-out training manner.
From the visualization results, we find that our method can still separate the task-specific features and domain-specific
features well even if the networks have never seen the samples from the target domain. More specifically, it can
encode the intra-domain style variance based on the observation that the model can generate samples with different
styles using the domain-specific features from the same target domain. Meanwhile, the results in Fig. 4 also illustrate
that the sketch domain may have little domain-specific features and intra-domain style variance on account that the
translated and reconstructed samples are almost the same. This observation further demonstrates the effectiveness
of our proposed method by using Sketch as the target domain where a significant performance improvement can be
achieved.

4.4.3 The visualization of feature embeddings

In addition to the perceptual results of generated samples, we also utilize t-SNE (Van der Maaten & Hinton, 2008)
to conduct analysis on the features extracted from two different branches Ec and Ed using our framework by using
PACS where Photo is treated as the target domain. The visualization results are shown in Fig. 5 and several findings
are observed: in Fig. 5(a) and 5(b), the features from source domains extracted byEd can be well separated in terms of
domain information but cannot be separated in terms of category information. On the contrary, as we can observe from
Fig. 5(c) and 5(d), Ec can separate the features in terms of the category information instead of the domain information,
which shows the effectiveness of our disentanglement framework.

5 Conclusion

In this paper, we propose to tackle the problem of domain generalization from the perspective of variational disen-
tangling. Specifically, we first provide an evidence upper bound regarding the divergence between the distribution of
category-specific feature and its invariant ground-truth through Bayes variational inference. Then, we propose an effi-
cient framework to optimize the proposed evidence upper bound for domain generalization. Extensive experiments are
conducted to verify the significance of our proposed method. Besides, we conduct experiments of image generation
which further justify the effectiveness of our proposed disentanglement framework.

Limitations: While we have the same memory usage and speed for inference, our method may increase the training
overhead since the existence of auxiliary networks. In addition, due to the instability of GANs, the tuning of the hyper-
parameters may need some experience and effort. Since our method can be regarded as an unpaired image translation
network, it has requirements on the data amount, e.g., too many domains with limited data in each domain may be
challenging for our method. Besides, though the information term in our derived evidence upper bound can be exactly
calculated, we utilize its substitute given the practical concerns. This could be further improved in the future.
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Broader Impact: Our proposed method shows the potential in improving the generalization ability of models. It can
be used to alleviate the side effect of data bias, e.g., medical images collected from different devices and areas. In
addition, our proposed evidence upper bound could give insights to further works. The generated samples with mixing
styles and novel characteristics could mitigate stereotypes. However, like other image generation models, our work
may also face the risk of being used to generate malicious samples.
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A Detailed proof

A.1 Preliminary

Our probabilistic graphical model for classification is represented as Fig. 6. It is notable that the mapping between
zc and x, and the mapping between zd and x are all many-to-many, e.g., there are many plausible images if specify
zc or zd alone. In addition, given an image x, there should exist many possible zc and zd, i.e., there exist conditional
distributions p(zc|x) and p(zd|x) instead of a deterministic mapping. Or in other word, given a specific latent code
pair z = [zc, zd], there exists a conditional distribution p(x|z). This assumption is reasonable since the latent codes
z = [zc, zd] are usually constrained into a lower-dimensional subspace compared with the image-space so that there
may not exist a latent code z that can deterministically correspond to an image x.

Assumption A.1 (Learnability) Denote the dimension of the image x and the latent feature zc by dx and dc, respec-
tively, let ϕc : Rdx → L1(Rdc) be the mapping between an image x and its probability density function (PDF) f(zc|x),
where L1 denotes 1-norm integrable function space. A deterministic mapping ϕg : Rdc → N acts as a classifier to
predict the category of the image based on its latent feature zc. For a domain generalization problem with ns source
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x

zc zd

y

Figure 6: The graphical structure of our proposed model for classification, and the arrows represent learnable map-
pings. The shaded nodes represent the observed random variables and others are latent random variables. There exist
conditional dependences between the image x and the category-specific feature zc and domain-specific feature zd,
respectively. We expect zc and zd are independent. In addition, the ground-truth label y only depends on the category-
specific feature zc.

domains (Xs = X1 ∪X2... ∪Xns
) and a target domain Xt, we say it learnable if

∃ϕc, s.t.

Ex∼Xi|y
[ϕc(x)] = Ex∼Xj|y

[ϕc(x)],∀y ∈ Y,∀i, j ∈ {1, 2, ..., ns, t}
ϕg(ψ(ϕc(x))) = y,∀x ∈ Xs ∪Xt

(13)

whereXi|y represents the conditional distribution of images with the category y in the domain i, ψ(·) returns the mean
value of the distribution.

In other words, we say the task is learnable if there exists a domain invariant category-specific encoder ϕc among
source and unseen target domains that can achieve the same marginal distribution p(zc|y) for each domain. In addition,
the extracted category-specific features can be used to correctly predict labels of the images from both source and
unseen target domains. This assumption is mild since we only assume that the task is feasible. In addition, we have
no additional constraints on the form of the solution.

For a learnable domain generalization task, we aim to find out the domain invariant mapping ϕc(·) so that we could
further train a domain-agnostic classifier. However, given limited data and limited function space, the mapping ϕc is
intractable. To this end, we propose to use an encoder Ec to approximate the unknown ground truth mapping ϕc by
Bayes variational inference. More specifically, we give an upper bound of D(Q(zc|x)||P (zc|x)) where P (zc|x) =
ϕc(x) andQ(zc|x) is the conditional distribution embedded by the encoderEc implemented by a deep neural network.
A corresponding framework is further proposed to optimize the proposed evidence upper bound.

Our motivation is summarized as follows

• We first give an evidence upper bound of the KL divergence D(Q(zc|x)||P (zc|x)) between the approximated
conditional distribution of category-specific features zc and its intractable ground-truth distribution in Lemma
A.1 and Theorem A.1.

• We further relax the information gain term of the derived upper bound to make a balance between the two
terms in the upper bound. Our relaxed loss is proved to be an upper bound of the original one as shown in
Lemma A.2.

• Finally, we demonstrate that under a mild assumption, the upper bound of the divergence
D(Q(zc|xt)||P (zc|xt)) in the unseen target domain can also be bounded in Theorem A.2.

A.2 The upper bound of D(Q(zc|x)||P (zc|x))

Lemma A.1 The KL divergence D(Q(zc|x)||P (zc|x)) can be represented as

D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x
[log p(x|zc)] + log p(x). (14)
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Proof A.1

D(Q(zc|x)||P (zc|x)) =
∫

q(zc|x) log q(zc|x)
p(zc|x)dzc

=
∫

q(zc|x)[log q(zc|x) − log p(zc|x)]dzc

=
∫

q(zc|x)[log q(zc|x) − log p(x|zc) − log p(zc) + log p(x)]dzc

= D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x
[log p(x|zc)] + log p(x)

(15)

The term p(x) can come out of the expectation Ezc∼Qzc|x
on account that it does not depend on zc. This completes

the proof.

Based on Lemma 1, we can derive the evidence upper bound of D(Q(zc|x)||P (zc|x)).

Theorem A.1 The evidence upper bound of KL divergence D(Q(zc|x)||P (zc|x)) between the distribution Q(zc|x)
and the ground-truth P (zc|x) is as follows:

D(Q(zc|x)||P (zc))︸ ︷︷ ︸
① information gain term

− Ezc∼Qzc|x,zd∼Pd [log p(x|z)]︸ ︷︷ ︸
② posterior probability term

+ C
(16)

where C is a constant, z = [zc, zd], and Pd can be an arbitrary prior distribution.

Proof A.2

D(Q(zc|x)||P (zc|x))
= D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x

[log p(x|zc)] + log p(x)︸ ︷︷ ︸
Using lemma 1

= D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x
[log[

∫
p(x, zd|zc)dzd]] + log p(x)

= D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x
[log[

∫
p(x, zd, zc)

p(zc) ]] + log p(x)

= D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x
[log[

∫
p(zd)p(zc|zd)p(x|z)

p(zc) ]] + log p(x)

= D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x
{log[Ezd∼Pd

p(zc|zd)
p(zc) p(x|z)]} + log p(x)

≤ D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x,zd∼Pd log[p(zc|zd)
p(zc) p(x|z)]︸ ︷︷ ︸

Using Jensen’s inequality on account that − log is convex

+ log p(x)

= D(Q(zc|x)||P (zc)) − Ezc∼Qzc|x,zd∼Pd [log p(x|zc, zd)]︸ ︷︷ ︸
p(zc|zd) = p(zc) because zc and zd are independent

+ log p(x)

= D(Q(zc|x)||P (zc))︸ ︷︷ ︸
① information gain term

− Ezc∼Qzc|x,zd∼Pd [log p(x|z)]︸ ︷︷ ︸
② posterior probability term

+ C

(17)

This completes the proof.

Assumption A.2 For an image x there exists a constant M that satisfies q(x|zc)
q(x) < M given any zc.

The Assumption A.2 is mild due to the following reasons. First, x is generated based on both zc and zd. There-
fore, the mapping between zc and x is not deterministic, i.e., q(x|zc) can not be the impulse function δ. Second,
when the random variables zc and zd extracted from two encoders Ec and Ed are disentangled in some degree, i.e.,
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supzc,zd

q(zc|zd)
q(zc) < k where k is a constant, we can obtain the following upper bound

q(x|zc)
q(x) =

∫
q(x, zd|zc)
q(x) dzd

=
∫
q(zd)q(zc|zd)q(x|zc, zd)

q(zc)q(x) dzd

≤ kEzd∼Qzd

q(x|zc, zd)
q(x)

≤ k sup
zc,zd

q(x|zc, zd)
q(x) = M

(18)

where q(x|zc, zd) is the PDF of a predefined Laplace/Gaussian distribution so that it is bounded, and q(x) is a constant
for a given x. Thus, q(x|zc)

q(x) is bounded when zc and zd is disentangled to some degree. In addition, Eq. equation 18
also demonstrates that the better the disentanglement, the tighter upper bound we can obtain.

Lemma A.2 The upper bound of the KL divergence D(Q(zc|x)||P (zc)) based on Assumption A.2 can be represented
as

MD(Q(zc)||P (zc)) +M logM. (19)

Proof A.3

D(Q(zc|x)||P (zc)) =
∫
q(zc|x) log q(zc|x)

p(zc) dzc

=
∫
q(x|zc)q(zc)

q(x) log q(x|zc)q(zc)
q(x)p(zc) dzc

≤ M [
∫
q(zc) log q(zc)

p(zc)dzc + logM ]

= MD(Q(zc)||P (zc)) +M logM

(20)

The upper bound given in Lemma A.2 is used to balance the weight of two terms in the upper bound of
D(Q(zc|x)||P (zc|x)) given in Theorem A.1. It is difficult to accurately estimate the posterior probability term
in Eq. 16 since the high dimensionality of the image and limited data. On the contrary, the calculation of
D(Q(zc|x)||P (zc)) is trivial and accurate, so it leads to a stable gradient. If we do not relax the constraint of the in-
formation gain term in Eq. 16, the gradient accumulation will cause a over-sparse embedding of zc. The ablation study
in the main paper also demonstrate the necessity of the relaxation. To further verify that optimizing D(Q(zc)||P (zc))
can help the minimization of D(Q(zc|x)||P (zc)), we provide a synthetic toy example as follows.

We consider a classical problem, exclusive or, which aims to predict the outputs of XOR logic gates. More specifically,
in our setting, we assume x ∈ R3 and its label y = (x0 > 0) ⊕ (x1 > 0) ⊕ (x2 > 0) where xi ∼ U(−1, 1) represent
the ith dimension of x. For networks, we use the same backbone network for all experiments which includes three
fully connected (FC) layers with the (input dimension, output dimension) as follows (3, 3), (3, 2), (2, 1). For each
fully connected layer except the last one, there is a ReLU activation layer following it. We adapt the reparameterization
trick (Kingma & Welling, 2013) as shown in Fig. 7 so that we could explicitly obtain the distribution Q(zc|x), i.e., the
KL divergence between Q(zc|x) and the standard Gaussian distribution can be explicitly calculated. For the baseline
method, we directly optimize the network by minimizing the cross entropy loss. For the method with the regularization
term Lreg, we additionally utilize a multilayer perceptron (MLP) with three FC layers as the discriminator Dc. We
keep other hyper-parameters and settings the same. The experimental results are shown in Fig. 8. As we can see, the
model can achieve slightly higher test accuracy by introducing Lreg . In addition, even if we do not directly minimize
D(Q(zc|x)||P (zc)), it can be effectively optimized by minimizing D(Q(zc)||P (zc)) compared with the baseline
method. The result in Fig. 8(b) further supports our Lemma A.2 empirically.
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x

Fully connected layer (3,3)

Fully connected layer (3,2)

Fully connected layer (3,2)

× N (0, 1)+

Fully connected layer (2,1)

y

µzc

∑
zc

Figure 7: The structure of the network for the toy synthetic experiment. The activation layers are omitted for concise.
We utilize the reparameterization trick so that we could explicitly obtain the distribution Q(zc|x)

(a) Test accuracy (b) The KL divergence D(Q(zc|x)||P (zc))

Figure 8: The comparison of the methods w/ and w/o Lreg.
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A.3 The upper bound in the unseen target domain

Assumption A.3 Given a sample xt from the target domain Xt, there exists a non-empty feasible set I which is
defined as

I = {I|q(zc|xt) ≤
∑
i∈I

βiq(zc|xs
i ),∀zc ∈ Rdc} ∩ {I|ϕc(xt) = ϕc(xs

i ),∀i ∈ I},

where I is the index set, xs
i denotes an arbitrary sample with index i in any source domains, and q(zc|x) is the

probability density function value of zc conditioned on x from distribution Q(zc|x).

Since we target to deal with the target domain samples with only domain shift, i.e., the samples with unseen zd and
known zc. If the unseen sample has quite a different ground-truth distribution of the feature zc, we cannot guarantee
the behavior of the classifier even if we have an ideal classifier Ec that can perfectly disentangle zc and zd. We assume
the task is feasible, i.e., there exist samples in source domains that have the same ground-truth conditional distribution
Pzc|x. In other words, the second set in Assumption 2 is not empty if the task is feasible.

For the first set in Assumption 2, as long as we assume q(zc|x) is a distribution that satisfies q(zc|x) > 0 given any zc,
e.g., Gaussian/Laplace distribution, for any source domain image set in the second set {I|ϕc(xt) = ϕc(xs

i ),∀i ∈ I},
there always exist a vector of βi that makes q(zc|xt) ≤

∑
i∈I βiq(zc|xs

i ),∀zc ∈ Rdc hold. Therefore, the fesasible set
I is non-empty if the task is feasible.

Theorem A.2 Based on Assumption A.3, the KL divergence between Q(zc|xt) and the unknown domain-invariant
ground truth distribution P (zc|xt) can be bounded as follows

D(Q(zc|xt)||P (zc|xt)) ≤ inf
I∈I

[
∑
i∈I

βiD(Q(zc|xs
i )||P (zc|xs

i ))].

The above theorem demonstrates that the KL divergence between Q(zc|x) and P (zc|x) from source domains con-
stitutes the divergence upper bound in the unseen target domain. Therefore, it further supports the rationale and
effectiveness of our method. Since no general upper exists in KL divergence, our derived upper bound will also
inevitably exist arbitrarily large values. However, it still provides some insights which are intuitive:

• We can get a tighter bound if we have more diverse samples. By increasing the number of source domain
samples, we are likely to obtain a larger feasible set to achieve a smaller infimum.

• The better disentangle ability the encoder Ec has, the more similar q(zc|xt) and q(zc|xs
i ) will be. Then β are

expected to be samller.

B Detailed architectures of the networks

To be more clear about the architecture of our framework, we give a simplified diagram about the relationship between
class-specific encoder Ec, domain-specific encoder Ed and generator G. More details about the architecture of each
network are elaborated in the following sub-sections.

B.1 The architectures of Ec and Et

B.1.1 The architectures of Ec and Et for Digits-DG

We use ConvNet as the backbone for Digits-DG and divide it into two parts. The details about the division for Ec and
Et are illustrated in Table 6.

B.1.2 The architectures of Ec and Et for PACS and mini-Domainnet

For PACS and mini-Domainnet, we use Resnet-18 as the backbone network and adopt the same division regarding Ec

and Et. The details about the division for Ec and Et are illustrated in Table 7.
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Figure 9: A simplified diagram regarding Ec, Ed and G. The input of the generator G consists of two parts: the output
of the task-specific encoder zc and the output of the domain-specific encoder zd. The feature zd is fed into a three-layer
network to obtain the mean and variance used by AdaIN ResBlk following Liu et al. (2019). In addition, we reshape
zd to the same size with the feature map of zc and then concatenate them together.

# Layer

task-specific encoder Ec

1 Conv2D(in=3, out=64, kernel_size=3, stride=1,padding=1)
2 Relu
3 MaxPool2D(kernel_size=2)
4 Conv2D(in=64, out=64, kernel_size=3, stride=1,padding=1)
5 Relu
6 MaxPool2D(kernel_size=2)
7 Conv2D(in=64, out=64, kernel_size=3, stride=1,padding=1)
8 Relu

task-specific network Et

9 MaxPool2D(kernel_size=2)
10 Conv2D(in=64, out=64, kernel_size=3, stride=1,padding=1)
11 Relu
12 MaxPool2D(kernel_size=2)
13 flatten the feature
14 Fully connected layer(in=64*2*2, category number)

Table 6: The architecture of task-specific encoder Ec and task-specific network Et for Digits-DG. They are obtained
by separating the backbone ConvNet into two parts.
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# Layer

task-specific encoder Ec

1 Conv2D(in=3, out=64, kernel_size=7, stride=2,padding=3)
2 BatchNorm2d
3 Relu
4 MaxPool2d(kernel_size=3,stride=2,padding=1)
5 Relu

6 layer1
[
3 × 3 64
3 × 3 64

]
7 layer2

[
3 × 3 128
3 × 3 128

]

task-specific network Et

8 layer3
[
3 × 3 256
3 × 3 256

]
9 layer4

[
3 × 3 512
3 × 3 512

]
10 global average pooling
11 Fully connected layer(in=512, category number)

Table 7: The architecture of the task-specific encoder Ec and the task-specific network Et for PACS and mini-
DomainNet. They are obtained by separating the backbone Resnet-18 into two parts.

B.2 The architecture of the domain-specific encoder Ed

For all the experiments, we use the same domain-specific encoder. The details of the architecture are shown in Table
8. On account that we use a global average pooling layer to reduce the size of the feature map to 1 × 1, the domain-
specific code zd will lose the spatial information and hence only embed the global appearance which is relevant to the
domain.

# Layer

1 Conv2D(in=3, out=64, kernel_size=7, stride=1,padding=3)
2 Relu
3 Conv2D(in=64, out=128, kernel_size=4, stride=2,padding=1)
4 Relu
5 Conv2D(in=128, out=256, kernel_size=4, stride=2,padding=1)
6 Relu
7 Conv2D(in=256, out=256, kernel_size=4, stride=2,padding=1)
8 Relu
9 global average pooling
10 Conv2D(in=256, out=128, kernel_size=1, stride=1,padding=0)

Table 8: The architecture of the domain-specific encoder Ed.

B.3 The architecture of the discriminator Dx

PatchGan discriminator (Isola et al., 2017) is adopted as Dx for all experiments. More specifically, the discriminator
Dx which is responsible to distinguish real and generated images includes one convolutional layer and 8 activation
first residual blocks (Mescheder et al., 2018) as shown in Table 9.

Our discriminator is not only capable of distinguishing real and fake, but it can also distinguish whether the image
comes from the specified domain (the number of output channel of our discriminator is the domain number as illus-
trated in Table 9). If zc and zd are not disentangled well, the arbitrarily combined pairs may not generate realistic
images with corresponding domain labels, i.e., the disentanglement is supervised by the posterior probability term.
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# Layer

1 Conv2D(in=3, out=64, kernel_size=7, stride=1,padding=3)
2 ActFirstResBlock(in=64, out=128, activation=leakyRelu, norm=None)
2 ActFirstResBlock(in=128, out=128, activation=leakyRelu, norm=None)
3 ReflectionPad2d(padding=1)
4 AvgPool2d(kernel_size=3, stride=2)
5 ActFirstResBlock(in=128, out=256, activation=leakyRelu, norm=None)
6 ActFirstResBlock(in=256, out=256, activation=leakyRelu, norm=None)
7 ReflectionPad2d(padding=1)
8 AvgPool2d(kernel_size=3, stride=2)
9 ActFirstResBlock(in=256, out=512, activation=leakyRelu, norm=None)

10 ActFirstResBlock(in=512, out=512, activation=leakyRelu, norm=None)
11 ReflectionPad2d(padding=1)
12 AvgPool2d(kernel_size=3, stride=2)
13 ActFirstResBlock(in=512, out=1024, activation=leakyRelu, norm=None)
14 ActFirstResBlock(in=1024, out=1024, activation=leakyRelu, norm=None)
15 ReflectionPad2d(padding=1)
16 AvgPool2d(kernel_size=3, stride=2)
17 LeakyRelu(1024)
18 Conv2D(in=1024, out=domain number, kernel_size=1, stride=1,padding=1)

Table 9: The architecture of the discriminator Dx. ActFirstResBlock: activation first residual blocks (Mescheder
et al., 2018)

B.4 The architecture of the discriminator Dc

The discriminator Dc is built by multiple fully connected layers. The details are illustrated in Table 10. For the fake
sample, the input of the discriminator Dc is the task-specific feature zc after average-pooling and is concated with the
domain label which acts as supervised information. For the real one, the input is the random variable sampling from a
standard Gaussian distribution and concated with a random domain label.

# Layer

1 Linear(in=input dim, out=512, bias=True)
2 Relu
3 Dropout(probability=0.2)
4 Linear(in=512, out=512, bias=True)
5 Relu
6 Dropout(probability=0.2)
7 Linear(512, 2)
8 activation layer gf (v) = − exp(−v)

Table 10: The architecture of the discriminator Dc. input dim: the number of source domains + the channel number
of the feature zc = Ec(x)

B.5 The architecture of the generator G

We use roughly the same architecture of the generator G for Digits-DG and PACS/mini-DomainNet. The difference is
mainly in the number of channels and the number of upsampling modules. The architecture of the generator is shown
in Table 11. Note that the three-layer network for AdaIN ResBlk (Huang et al., 2018) is not included in the table.
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(a) The generator for Digits-DG

# layer

1 AdaIN ResBlk(192)
2 AdaIN ResBlk(192)
3 Upsample(scale_factor=2, nearest)
4 Conv2D(in=192, out=96, kernal_size=5, s=1, p=2)
5 InstanceNorm
6 Relu
7 Upsample(scale_factor=2, nearest)
8 Conv2D(in=96, out=48, kernal_size=5, s=1, p=2)
9 InstanceNorm
10 Relu
11 Conv2D(in=48, out=3, kernal_size=5, s=1, p=2)
12 Tanh & Normalize

(b) The generator for PACS and mini-DomainNet

# layer

1 AdaIN ResBlk(256)
2 AdaIN ResBlk(256)
3 Upsample(scale_factor=2, nearest)
4 Conv2D(in=256, out=128, kernal_size=5, s=1, p=2)
5 InstanceNorm
6 Relu
7 Upsample(scale_factor=2, nearest)
8 Conv2D(in=128, out=64, kernal_size=5, s=1, p=2)
9 InstanceNorm

10 Relu
11 Upsample(scale_factor=2, nearest)
12 Conv2D(in=64, out=32, kernal_size=5, s=1, p=2)
13 InstanceNorm
14 Relu
15 Conv2D(in=32, out=3, kernal_size=5, s=1, p=2)
16 Tanh & Normalize

Table 11: The architecture of the generator G except the three-layer network for AdaIn ResBlk (Liu et al., 2019).
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C Extra results

C.1 Results on PACS benchmark using Resnet-50 backbone

Algorithm A C P S Avg
ERM 83.2 ± 1.3 76.8 ± 1.7 97.2 ± 0.3 74.8 ± 1.3 83.0
IRM 81.7 ± 2.4 77.0 ± 1.3 96.3 ± 0.2 71.1 ± 2.2 81.5
GroupDRO 84.4 ± 0.7 77.3 ± 0.8 96.8 ± 0.8 75.6 ± 1.4 83.5
Mixup 85.2 ± 1.9 77.0 ± 1.7 96.8 ± 0.8 73.9 ± 1.6 83.2
MLDG 81.4 ± 3.6 77.9 ± 2.3 96.2 ± 0.3 76.1 ± 2.1 82.9
CORAL 80.5 ± 2.8 74.5 ± 0.4 96.8 ± 0.3 78.6 ± 1.4 82.6
MMD 84.9 ± 1.7 75.1 ± 2.0 96.1 ± 0.9 76.5 ± 1.5 83.2
DANN 84.3 ± 2.8 72.4 ± 2.8 96.5 ± 0.8 70.8 ± 1.3 81.0
CDANN 78.3 ± 2.8 73.8 ± 1.6 96.4 ± 0.5 66.8 ± 5.5 78.8
MTL 85.6 ± 1.5 78.9 ± 0.6 97.1 ± 0.3 73.1 ± 2.7 83.7
SagNet 81.1 ± 1.9 75.4 ± 1.3 95.7 ± 0.9 77.2 ± 0.6 82.3
ARM 85.9 ± 0.3 73.3 ± 1.9 95.6 ± 0.4 72.1 ± 2.4 81.7
VREx 81.6 ± 4.0 74.1 ± 0.3 96.9 ± 0.4 72.8 ± 2.1 81.3
RSC 83.7 ± 1.7 82.9 ± 1.1 95.6 ± 0.7 68.1 ± 1.5 82.6
VDN(Ours) 85.8 ± 0.6 83.5 ± 0.7 96.7 ± 0.3 85.6 ± 0.6 87.9

Table 12: Evaluation of domain generalization performance on PACS benchmark using ResNet-50 backbone. The
mean value and corresponding standard error of the test accuracy are reported.

We further conduct experiments using ResNet-50 backbone and report the mean accuracy and std in the target domain
when finish the training. The results of 5 repeated experiments are shown in Table 12 and the results demonstrate that
our method achieves better performance than SOTA methods4.

C.2 Parameter sensitivity

We explore the influence of two important hyper-parameters λrec and λgan. We evaluate the performance of models
trained with different λrec and λgan while keeping other settings the same on the sketch domain of PACS. The results
are shown in Fig 10. As we can see, the performance remains relatively stable among different hyper-parameters.
We empirically find that λgan has a relatively larger impact on the performance compared with λrec. We conjec-
ture the reason is that an inappropriate λgan may cause unnatural artifacts. For a larger λrec, it imposes a stronger
regularization on zc and zd so it also causes performance degradation.

C.3 Results on Camelyon17

We further evaluate the effectiveness of our method on the WILDS (Koh et al., 2021; Sagawa et al., 2021) benchmark.
More specifically, we utilize Camelyon17 (Bandi et al., 2018) dataset which is collected from different hospitals. Each
hospital is regarded as a domain and the domain variations are mainly in the data collection and processing. We use
the official train/val/test split of the dataset and report the test accuracy when we achieved the highest accuracy on the
evaluation set. We use DenseNet121 as the backbone which is the same for all competitors. The generated samples
are shown in Fig. 11 and the accuracy in the unseen target domain is reported in Table 13. As we can see in Fig.
11, our method can well disentangle the domain variations, e.g., the color difference caused by the processing while
preserving the necessary details. In addition, the quantitative result exhibits huge improvement compared with the
baseline methods, which further demonstrates the effectiveness of our method.

C.4 Computational cost

For inference, we do not need the auxiliary networks so that we have the same computational cost and the clock time
as the baseline method.

4The results of other methods are from the camera ready version of the paper "In search of lost domain generalization", ICLR 2021.
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Figure 10: Sensitivity analysis of hyper-parameters λrec and λgan.

Figure 11: The generated samples in source domains using Camelyon17 (Bandi et al., 2018) dataset. The images in
the first row are the input images that we want to keep the category information and in the last row are the input images
that provide the style information. The second row is the reconstructed one and the third row is the translated one.

Evaluation Accuracy Test Accuracy

ERM 85.8 (1.9) 70.8 (7.2)
IRM 86.2 (1.4) 64.2 (8.1)

VDN(Ours) 88.0 (2.4) 90.3 (3.1)

Table 13: Evaluation of domain generalization performance on Camelyon17 dataset using DenseNet-121 backbone.
The mean value and corresponding standard error of the test accuracy are reported.
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For training, we compare our method with the baseline method and MLDG using the settings of the experiments on
Camelyon17 as illustrated in Sec. C.3. All the experiments are conducted on the same server with RTX A5000s.
We use the same settings, e.g., the same batch size and image size, for all experiments. The results are reported in
Table 14. As we can see in the table, our method has an acceptable computational cost, which is similar to the previous
work MLDG (Li et al., 2018a). It is worth noting that, the extra memory usage of our method is mainly due to the
existence of data augmentation, i.e., the batch size of our method can be regarded as twice that of other methods.

Parameters Memory usage Speed (s/iter)

Baseline 6,955,906 2739MB 0.1153
MLDG (Li et al., 2018a) 6,955,906 4013MB 0.4604

VDN (Ours) 8,408,844 5765MB 0.2115

Table 14: The computational cost of our method for training. We train models using mixed precision for all experi-
ments using the same platform.

C.5 Extra visualization results

Besides the image generation task in the source domains or in the target domain that we have shown the results
in the paper, we are also interested in the "cross-domain" performance, i.e., from source domains to unseen target
domain and from unseen target domain to source domains. Assuming that we have two images xi and xj and their
corresponding task-specific features zci , zcj and domain-specific features zdi , zdj , the translated images with different
mixture degrees are generated usingG(zci

, λzdi
+(1−λ)zdj

) where λ in [0.0, 0.1, 0.2, ..., 1.0]. Note that in this work,
we do not use the generated samples with a mixture style for data augmentation nor use the discriminator to supervise
the generated images with a mixture style. How to effectively utilize the sample of mixed style may be a potential
research direction.

C.5.1 From the target domain to source domains

We first investigate the performance of our framework that translates the samples from the unseen target domain to
source domains. The results are shown in Fig. 14. As we can observe, even if the framework has never seen the
samples in the unseen target domain, it can still extract task-specific features that are compatible with the domain-
specific features from source domains and then generate the samples with the style of source domains. This further
verifies the robustness and generalization ability of our method.

C.5.2 From source domains to the target domain

We then explore the performance of our proposed framework that translates the image from source domains to the
unseen target domain. The visualization results are shown in Fig. 15. As we can see, the framework may be difficult
to generate samples of the unseen target domain. This is reasonable because our framework has never seen the sample
distribution of the target domain and it is difficult to generate OOD samples with large domain gaps. However, our
proposed framework can generate samples from a new domain, i.e., the image that is not exactly the same as the sketch
domain but has some similar characters such as having little task-irrelevant information.

C.6 Comparison with other data augmentation-based DG methods

It is still an open problem and a research hotspot to generate realistic images. The conditional generation task or
unpaired image translation task usually requires large-scale data or data which are not very diverse. For example,
CycleGan uses 939 horse images and 1177 zebra images to train a model that can only transfer the horse image to
zebra even if they have relatively high similarity. However, the PACS dataset we used only has 1670 images in the
photo domain and there are both different domains and different categories in it. In addition, photo domain images
have more details, especially compared with sketch so it will be more difficult to learn and generate.

Most importantly, we aim to conduct the classification task instead of the generation task. The generated images are
only side products of our method and the perceptual quality of generated images is beyond the scope of our paper.
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In addition, our ablation study demonstrates that by using our generated samples as augmented training data, the
generalization ability of the model can be further improved and outperform other data generation-based DG methods.

Here we display the visualization results reported in their paper from the methods that also aim to generate novel data
using the same PACS dataset in Fig. 12. As we can see, these methods fail to generate data with large divergence, e.g.,
the translation to sketch domain in Borlino et al. (2021).

(a) Zhou et al. (2020b) (b) Zhou et al. (2020a) (c) Zhou et al. (2021b) (d) Borlino et al. (2021)

Figure 12: Comparison with other DG methods based on novel data generation. Best zoom in for details.

C.7 Failure cases

Some failure cases of our proposed model are displayed in Fig. 13. For the Digits-DG benchmark, we may fail to
generate samples with the style that multiple digits exist in a single image. We conjecture that it may be caused by
the inductive bias of our network structure, e.g., the utilization of the AdaIn layer. For the natural image, our model
may fail to transfer images from the sketch domain to the real photo/art painting domains, which include much more
information. This may be due to the limitation of the data amount. While some of the samples do not have desirable
perceptual quality, they may still include some important features of the desired category, so they are still valuable for
acting as augmented data.

Figure 13: Some failure cases of our model.

D Experiment details

D.1 Experiment environment

Parts of the experiments are conducted on a Windows workstation with Ryzen 5900X, 64GB RAM, and an Nvidia
RTX 3090. Others are conducted on a Linux server with Intel(R) Xeon(R) Silver 4210R CPU, 256GB RAM, and RTX
2080-TIs. For the software, PyTorch 1.9 is used. We do not find a significant difference of trained models under two
different environments.
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D.2 Tuning strategy for hyper-parameters

Since we have multiple hyper-parameters, we elaborate on the tuning strategy here for reference.

• We first explore the split strategy of Ec and Et. If Ec is too small, then there will be little semantic informa-
tion. While if Ec is very deep, then we find it is difficult to reconstruct the image using a feature map with
small width and height given a small but diverse dataset.

• After finding the appropriate division of Ec and Et that can well reconstruct the image, we then explore
the hyper-parameter of the regularization term λreg since it is a relatively individual hyper-parameter. After
finding the λreg that can increase the generalization ability, we fix it for the following experiments. We also
find λrec that does not degrade the classification performance much and can well reconstruct the images, and
then fix it for the following experiments.

• We then introduce the discriminator into the training. We find that the updating frequency of the generator
and discriminator is significant. We first find the updating frequency that will not cause model collapse and
then finetune λgan.

• We search the hyper-parameters on the PACS benchmark since it is a relatively small dataset. We find that
the hyper-parameters used in PACS exhibit good robustness and can also be used in other benchmarks.
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Figure 14: The visualization results of the image translation from the unseen target domain to source domains. The
photo domain in PACS is used as the unseen target domain. The first row is the input image from the unseen target
domain that provides the task-specific features and the last row is from source domains that provide the domain-
specific features. Other rows are images that are generated images G(zci

, λzdi
+ (1 − λ)zdj

) using different mixture
degrees.
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Figure 15: The visualization results of the image translation from source domains to the uneen target domain. The
domain sketch in PACS is used as the unseen target domain. The first row is the input image from source domains that
provide the task-specific features and the last row is from the unseen target domain that provides the domain-specific
features. Other rows are images G(zci , λzdi + (1 − λ)zdj ) using different mixture degree.
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