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Abstract

The reconstruction of images observed by sub-
jects from fMRI data collected during visual
stimuli has made strong progress in the past
decade, thanks to the availability of extensive
fMRI datasets and advancements in generative
models for image generation. However, the appli-
cation of visual reconstruction has remained lim-
ited. Reconstructing visual imagination presents
a greater challenge, with potentially revolution-
ary applications ranging from aiding individuals
with disabilities to verifying witness accounts in
court. The primary hurdles in this field are the
absence of data collection protocols for visual
imagery and the lack of datasets on the subject.
Traditionally, fMRI-to-image relies on data col-
lected from subjects exposed to visual stimuli,
which poses issues for generating visual imagery
based on the difference of brain activity between
visual stimulation and visual imagery. For the
first time, we have compiled a substantial dataset
(around 6h of scans) on visual imagery along with
a proposed data collection protocol. We then train
a modified version of an fMRI-to-image model
and demonstrate the feasibility of reconstructing
images from two modes of imagination: from
memory and from pure imagination. The result-
ing pipeline we call Mind-to-Image marks a step
towards creating a technology that allow direct
reconstruction of visual imagery.

1. Introduction
In the rapidly evolving field of neuroscience and artificial in-
telligence, the quest to decode the complex mechanisms
of the human brain has led to groundbreaking develop-
ments, particularly in the area of functional magnetic res-
onance imaging (fMRI). Among the myriad applications
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of fMRI, one of the most intriguing has been the recon-
struction of visual experiences. Traditional methods have
successfully reconstructed images based on fMRI BOLD
(blood-oxygen-level-dependent) data captured while sub-
jects view specific images (Chen et al., 2022; 2023; Scotti
et al., 2023). This process involves preprocessing the BOLD
data to isolate voxels associated with the brain’s visual ar-
eas, generating clip embeddings from these voxels, and
then employing image generation algorithms that utilize
these embeddings to recreate the observed images. Such
methodologies have shown promising results, especially
when employing datasets like the NSD (Natural Scenes
Dataset) (Allen et al., 2022), a substantial 7T fMRI dataset
designed to bridge cognitive neuroscience and artificial intel-
ligence. This dataset, featuring extensive scans from eight
subjects, has had tremendous impact for research in this
domain.

Progress in cognitive neuroscience and artificial intelligence
has not only allowed to advance our understanding of brain
mechanisms but also to holds the promise to develop practi-
cal applications, such as real-time clinical tools and brain-
computer interfaces. However, despite the progress in visual
reconstruction from observed images, a challenge remains
in the domain of visual imagination. Visual imagination en-
compasses both the recall of previously seen images (which
we refer to as weak imagination in the paper) and the gener-
ation of entirely new images within the mind’s eye (which
we refer to as strong imagination). The ability to decode
and reconstruct these imagined visuals offers a wide range
of promising possibilities from aiding individuals with dis-
abilities, to enhancing creative processes.

While using models based on reconstruction of images based
on visual stimuli to generate images from imagination is
theoretically possible, we believe that we need novel ap-
proaches to tackle the issue of visualizing imagination in
the brain, particularly in data collection and model devel-
opment. To this end, we introduce a protocol inspired by
the NSD dataset but tailored to capture the nuances of vi-
sual imagination. Our approach distinguishes between weak
and strong imagination, developing specific protocols for
each type of visual imagery. We restrict our analysis on
one theme of images: surrealism, and two distinct modal-
ities of images: portraits and landscapes. This is done by
collecting a dataset of surrealist face portraits and nature



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Mind-to-Image: Projecting Visual Mental Imagination of the Brain from fMRI

Figure 1. Overview of our Mind-to-Image pipeline which allows to reconstruct images from mental imagery. Left: overview of MindEye,
the fMRI-to-Image model used in our Mind-to-Image approach. The stimuli (an image seen or in our case imagined) and the associated
fMRI data is fed to a high-level pipeline (composed of an MLP and Diffusion Prior) and a low-level pipeline to create aligned CLIP
embeddings of the fMRI data. Middle: fMRI data collection protocols. In the classic fMRI-to-Image approach, a subject sees images in
an MRI scanner, BOLD (Blood-Oxygen Level Dependent) data are recorded then used to train an fMRI-to-Image model that convert
brain data to match the seen images. In our approach, we devise two mental imagery protocols: weak and strong imagination. For weak
imagination, we let the subject imagine previously seen images from a dataset of surrealist images (face portraits and nature landscapes)
which we create. The brain data associated to the recollection of such images is gathered. For strong imagination, we collect brain
data where the subject completely imagines new images based on instructions. Right: our Mind-to-Image pipeline. We use the weak
imagination fMRI data to train an fMRI-to-Image model to reconstruct recollected images from visual imagination brain data. At inference
time we use strong imagination fMRI data and this trained model to generate the imagined images, thanks to transfer learning.

landscapes, using real and generated images. This choice
is not only methodological but also thematic, aligning with
the project’s broader artistic aspirations. The intersection of
art and science, particularly through the lens of surrealism
and its exploration of automatic processes, provides a rich
context for our research.

Leveraging the MindEye model (Scotti et al., 2023), a state-
of-the-art fMRI-to-image framework, we adapt its architec-
ture to adapt to the larger dimensional complexity inherent
in visual imagination data. Our approach is summarised in
Fig.1. Our results, while preliminary, indicate the model’s
capability to, at least to some degree, generate portraits and
landscapes based on the nature of the imagination. Although
the fidelity of the reconstructions to the imagined content
varies, which is measured quantitatively through usual met-
rics in the field, our findings underscore the potential of
this approach. With further refinement and expansion of the
dataset, this research could pave the way for more precise

reconstructions of visual imagination, with the promise of
a better understanding of the brain’s creative and cognitive
processes.

2. Related work
In the domain of mental imagery, several studies have sought
to decode and reconstruct images from the brain’s visual
cortex when subjects engage in imagining specific scenes
or objects. (Stokes et al., 2009) provided early evidence
of the brain’s capacity to activate shape-specific population
codes during mental imagery, highlighting the top-down
influence of visual imagination on neural activity in the
visual cortex. (Reddy et al., 2010) explored the decoding of
category information during mental imagery, providing an
understanding on how different types of visual information
are processed and represented in the brain.

More recently, (Naselaris et al., 2015) developed a voxel-
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wise encoding model capable of decoding mental images
of remembered scenes, demonstrating the relationship be-
tween memory, imagination, and visual perception. (Van-
Rullen & Reddy, 2019) employs a combination of vari-
ational auto-encoders (VAE) and Generative Adversarial
Networks (GAN) to perform pairwise decoding of faces
with a high degree of accuracy but also to classify gender
and decode which face was imagined by subjects. (Goebel
et al., 2022) showed the feasibility of reading imagined let-
ter shapes from the mind’s eye using real-time 7 Tesla fMRI,
presenting a novel approach to understanding how specific
visual information can be decoded from brain activity.

These studies collectively show the potential of fMRI data
in decoding not just seen images but also those that are
imagined or remembered.

More close to our work, a recent paper (Koide-Majima et al.,
2024) provides preliminary results on reconstructing images
from memory. While their results are encouraging, their
reconstruction pipeline backbone is not state-of-the-art like
MindEye is, which partly explains the results obtained.

3. fMRI data collection for visual imagery
The development of a comprehensive data collection proto-
col is one the main contributions of our study, aimed at cap-
turing the complex neural correlates of visual imagination.
Drawing inspiration from the NSD paper (Allen et al., 2022),
our protocol is designed to explore two distinct modes of
visual imagination: weak imagination (imagination from
memory) and strong imagination (pure imagination). This
approach enables us to study how the brain navigates be-
tween recalling visual information and generating novel
visual constructs.

3.1. Image dataset used: Surrealism

We do not use the images from the COCO dataset (Lin et al.,
2014) as it is done in the NSD dataset. Because our research
is also associated to an artistic research, we decided to nar-
row the dataset to one theme (surrealism) and two modes
(face portraits and nature landscapes). This choice narrows
the visual space of the fMRI-to-Image model, which sim-
plify the task and allows us to have results without having
to do 40 hours of scans as in the NSD dataset.

Thus, we created our own dataset of images for our experi-
ments. The images come from three sources: real images
and generated images using Versatile Diffusion (Xu et al.,
2023) and Midjourney. The dataset comprises 1200 images.

This dataset is used in the weak imagination protocol, where
the images are recollected from memory and imagined.
Then, the images are used to train the fMRI-to-Image model.
Finally, only brain data is given to the fMRI-to-Image model

to produce the reconstructions, both in the weak and strong
imagination cases.

3.2. fMRI parameters

Data were collected on Siemens 3T PrismaFit using a 64
channels headcoil. BOLD data were acquired using the
CMRR multiband EPI sequence. The main parameters are:
2mm isotropic voxels with full brain coverage, TR/TE =
1300ms/27ms, MultiBand=4, partialFourier=7/8, FlipAn-
gle=68°, P>>A phase encoding direction, EchoSpacing at
minimum.

3.3. Weak imagination: data collection protocol

The protocol for weak imagination aims at recording brain
activity corresponding to the recall of previously seen im-
ages. In this phase, subjects are first shown an image for 3
seconds, followed by a 1-second rest period. This sequence
is repeated with three different images, each selected from
our curated set of 600 surrealist portraits and 600 surrealist
landscapes. To engage the brain’s imagination, the same
images are then flashed for 0.1 seconds, prompting the sub-
ject to imagine the image for 5 seconds before resting for
another second. This process is repeated over a span of 6
hours, encompassing a total of 1200 images. Out of the
data collected, 75 data points (comprising brain activity and
the corresponding image) are reserved for validation and
evaluation, with the remainder serving as the training set for
our fMRI-to-image model. The evaluation focuses on the
model’s ability to generate images that not only match the
correct modality (face portrait or nature landscape) but also
reflect the contents of the original image.

3.4. Strong imagination: data collection protocol

For strong imagination, the subject is now asked to gen-
erate entirely new visual content based on verbal prompts.
The subject is instructed to imagine a portrait or landscape
evoking one of ten primal emotions (such as fear, happiness,
love, etc.). This task is designed to stimulate the pure imag-
ination process, encouraging the brain to construct novel
visual imagery without the reference of previously seen im-
ages. Each imagination session lasts for 6 seconds, followed
by a 1-second rest, cycling through combinations of land-
scape/portrait and emotional prompts. This cycle is repeated
10 times. Unlike the data collected for weak imagination,
this dataset is solely used during the model’s inference stage.
The evaluation here is similar to the weak imagination eval-
uation: quantitively assess if the model matches the correct
modality (face portrait or nature landscape) and qualitatively
assess if the contents of the generated image matches the
visual imagery of the subject. However we cannot compute
all the quantitative metrics as the ground truth image does
not actually exists outside the subject’s mind. To ensure
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that we recall what the subject has imagined, the subject
provides an oral description of the visual contents of the
imagined image.

3.5. Pre-processing of raw BOLD data and masking of
the regions of interest

After the raw BOLD (blood-oxygen-level-dependent) data
is collected, we apply a preprocessing routine to provide the
model with data that decorrelates all the noise that impair
the following steps. We first co-register all BOLD data with
a T1 anatomical scan. Then, using a General Linear Model
(GLM) with the Glover hemodynamic response function
(HRF) (implemented via the Nilearn library (Abraham et al.,
2014)), we extracted beta values associated with each voxel
for every distinct event, including both the displayed images
and the periods of imagination. This allows us to isolate the
specific brain activity corresponding to each event, which is
common practice for such tasks.

Mask selection. In the subsequent data pre-processing
phase, we identify the brain regions most important to visual
imagination and visual perception, using a GLM model to
manually extract these areas of interest. Unlike the NSD
dataset, which predominantly focuses on visual areas, our
study required the creation of a custom mask to englobe
the regions identified as crucial in our context of weak and
strong imagination.

It is a well known fact that the generation of the percep-
tive or imagined visual experience (Dijkstra et al., 2019)
involves the ventral stream cortical areas (in occipital and
temporal lobe). In these visual regions, various aspects of
visual information contribute to creating a mental image.
This includes features like shape, color, motion, depth, and
texture. These features are processed and integrated across
low-level (V1,V2), associative (V3, V4, V5) and high-level
(including fusiform gyrus in temporal lobe) cortical areas
to form a coherent mental representation of what we see or
what we think of.

This is the reason why we designed the brain mask to collect
the cortical responses during the imagination conditions us-
ing the mean responses of the general linear model applied
to the event vs. rest condition, in the occipital and tempo-
ral lobe. This method aimed to consider only the cortical
activity involved in creating a mental image in one subject
during the imagination phase.

We thus create and compare three masks manually curated
based on the GLM analysis results, ensuring that only vox-
els corresponding to our defined regions of interest were
included in further analyses. The delineation and analysis of
these regions, and how they diverge from the predominantly
visual areas highlighted in the NSD study, is studied in the
results section.

Finally, we create our training, validation (weak imagina-
tion) and test (strong imagination) datasets by flattening the
pre-processed betas corresponding the selected voxels and
pair them with the images or prompts related to their events.

4. Mind-to-Image pipeline
We know describe the fMRI-to-Image model used for our
experiments and then outline our Mind-to-Image pipeline
by connecting the dots between the data collection protocol
and the fMRI-to-Image model.

4.1. fMRI-to-Image model

We start from the state-of-the-art MindEye model which
reconstructs images viewed by subjects from fMRI data by
combining two pipelines: a high-level (semantic) pipeline
and a low-level (perceptual) pipeline. The high-level
pipeline maps fMRI voxels to the CLIP Vision Transformer
L/14 image space, capturing the semantics of the image.
The low-level pipeline targets the perceptual fidelity of re-
constructed images by mapping voxels to Stable Diffusion’s
Variational Autoencoder (VAE) embedding space. They
leverage contrastive and mean squared error (MSE) losses
for training of its projection and reconstruction capabilities.
At inference time, fMRI data associated to an image is fed
through the model which outputs a low-level reconstructed
image and aligned CLIP embeddings. These embeddings
are fed to an UnCLIP models, which is a model able to
reconstruct an image based on its CLIP embeddings. In
this case, the embeddings as well as the low-level recon-
structed image is fed to a Versatile Diffusion Image Varia-
tions pipeline to obtain the final reconstruction, as it is done
in the original MindEye paper. The whole fMRI-to-Image
pipeline is illustrated in Fig.1.

Adapting fMRI-to-Image to larger masks for visual
imagery. To accommodate the increased dimensionality
inherent in our fMRI BOLD voxel data, which covers exten-
sive brain areas notably larger than only the visual areas of
the brain, we adapted MindEye’s architecture. This adjust-
ment aimed to manage the growth in input dimensions with-
out exponentially increasing the model’s parameter count.
We thus simply refine the architecture of the MLP so that
the model efficiently processes the data while maintaining a
reasonable cost in GPU memory.

4.2. Mind-to-Image pipeline

Our Mind-to-Image experimental procedures are as outlined
below:

• We first collect a dataset of weak and strong imagina-
tion using the protocol defined in Sec.3, with a total of
6 hours of scans.
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• Then, we train our adapted fMRI-to-Image model using
the dataset obtained from the weak imagination data
collection protocol. Then, this model is evaluated using
the validation set to assess its performance.

• We finally freeze the parameters of the fMRI-to-Image
model. This frozen model is then employed to per-
form inference on the dataset derived from the strong
imagination data collection protocol, with the goal of
visualising the purely imagined images thanks to trans-
fer learning.

5. Results
We first analyze the most activate regions of the brain during
visual perception, weak imagination and strong imagination.

We then go over the results obtained for training reconstruc-
tion fMRI-to-Image models for weak imagination before
looking at strong imagination.

5.1. What happens in the brain during visualisation,
weak and strong imagination?

In this section we describe the brain regions involved during
visual perception, weak imagination, and strong imagination.
This is done though the visualisations presented in Fig.2.

Figure 2. Functional MRI results of the three conditions, respec-
tively: simple visual perception (A- in red), weak imagination (B-
in pink) and strong imagination (C- in blue) presented through a
lower (top row) and right lateral (bottom row) view. Activation
maps were generated by comparing the “test” and “rest” condi-
tions, using the same statistical threshold for each test (T-score
=5).

The results of the first test (A) show that the brain regions
involved in normal visual perception are, as expected, the
primary and secondary visual areas in the occipital lobe, the
superior parietal lobule and the bottom of the temporal lobe.

Weak imagination (B) involves occipital primary visual ar-
eas in a much weaker way. Instead, there is an activation of
the basal temporal associative visual areas (fusiform gyrus)
involved in mental imagery. The latter are partially over-
lapped with brain areas involved in visual perception.

Strong imagination (C) involves even more brain areas dis-
tinct from visual cortex, with a strong activation in prefrontal
regions, involved in the strategy of generating and control-
ling mental imagery. There is also an incomplete overlap of
activations between visual perception and imagination in the
temporal lobe, mainly limited to the fusiform gyrus, espe-
cially in the right hemisphere, more specialized in the face
processing (as this result was obtained during the portrait
imagination test).

These results justify the need for a specialised dataset for
imagination relative to visual perception, given that the
regions most active during the different tests are not quite
the same.

We thus devise three masks that will be used to select the
voxels of the brain that are given as input to the fMRI-to-
Image model. Mask A (based on the activations during
visual stimuli), Mask B (based on the activations during
weak imagination), and Mask A∪B (union of A and B,
englobing areas associated to visual perception and weak
imagination).

5.2. Can we reconstruct images from weak imagination /
memory?

We present curated results of the images generated by our
model from weak imagination in Fig.3.

In the exploration of weak imagination, where the subject is
asked to recall previously seen images, our results show the
capacity of the model to identify to the original class of the
images. Specifically, if a subject recalled a face portrait, the
reconstructed image is almost always a face portrait, and
similarly for nature landscapes. This observation suggests a
the ability of the model to grasp the category of the imagined
content accurately within the BOLD data.

First, as a quick assessment of the performance, we fine-tune
a pretrained ResNet50 model (He et al., 2016) to classify
images as either face portraits or nature landscapes using
the images in our dataset. We apply this classifier to the
reconstructed images from the weak imagination tasks of
the validation set. We obtain, on our best performing model
trained with Mask A∪B, a classification accuracy of 91% in
correctly identifying the reconstructed images as belonging
to their original categories of either portraits or landscapes.
This level of accuracy demonstrates the model’s ability in
capturing the category information within the neural activity
during weak imagination.
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Stimuli & Dataset Low-Level High-Level

Model PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓

Vision results on NSD dataset

MindEye (Scotti et al., 2023) .309 .323 94.7% 97.8% 93.8% 94.1% .645 .367

Weak imagination on Surrealism dataset

Mind-to-Image (Mask A) .177 .051 57.8% 53.0% 58.4% 57.9% .718 .079
Mind-to-Image (Mask B) .082 .023 54.8% 51.6% 55.1% 54.9% .797 .098
Mind-to-Image (Mask A∪B) .165 .052 65.1% 66.4% 61.4% 68.5% .764 .065

Table 1. Quantitative comparison of Mind-to-Image reconstruction performance against other models trained on different datasets,
computed on usual metrics in the field. The results are not directly comparable, but are given to provide an element of comparison on the
ranges of the values of the metrics. PixCorr is the pixel-level correlation of reconstructed and groundtruth images. SSIM (Wang et al.,
2004) is the structural similarity index metric. AlexNet(2) and AlexNet(5) are the 2-way comparisons of the second and fifth layers of
AlexNet (Krizhevsky et al., 2012), respectively. Inception is the 2-way comparison of the last pooling layer of InceptionV3 (Szegedy
et al., 2016). CLIP is the 2-way comparison of the output layer of the CLIP-Vision model (Radford et al., 2021). EffNet-B and SwAV are
distance metrics gathered from EfficientNet-B (Tan & Le, 2019) and SwAV-ResNet (Caron et al., 2020) models, respectively.

Figure 3. Results for weak imagination on the validation dataset.
Top row: images from the validation set of our surrealism image
dataset, which were recollected from memory by the subject in
the fMRI scanner. Bottom row: reconstructed images from the
fMRI-to-Image model based on the brain data associated to the
recollection of the images in the top row.

Then, we provide in Tab.1 the usual metrics to quantitatively
assess the performance of reconstruction from weak imagi-
nation. We compare our results with MindEye (Scotti et al.,
2023) Note that the comparisons are not apples-to-apples:
(Scotti et al., 2023) provide results for visual stimuli experi-
ments (not for weak imagination) on a large-scale (approx.
10x size) dataset that uses another image domain (realistic
images), explaining the big gap in performance. Our re-
sults, while inferior to those of reconstructions from visual
stimuli, show that we are able to have significantly better

than chance results on reconstruction from weak imagina-
tion. The best results are obtained when using Mask A∪B,
showing the usefulness of considering both the visual areas
and weak imagination areas of the brain. Specifically, our
results indicate that the importance of visual area is supe-
rior relative to the imagination areas, as the model trained
with Mask A outperforms the one trained with Mask B.
We noted two main outliers on our quantitative results: we
get poor results on the SSIM metric, and excellent results
on the SwAV metric. We posit that the difference comes
from the nature and diversity of images we used (narrow
surrealist images compared to more various natural images),
but further investigation remain needed to better understand
this surprising result.

Qualitatively, while the model demonstrated a robust ability
to regenerate the broad category of the original images,
the fidelity of content reconstruction within these images
presented a more varied outcome. Some reconstructions
were visually semantically close to the remembered images.
However, others diverged more significantly, indicating a
variability in the model’s ability to precisely capture and
reconstruct the nuanced details of each imagined scene. We
provide uncurated reconstructions in Fig.5 in Appendix.
This variance in reconstruction fidelity can be attributed, in
part, to the limitations imposed by the dataset’s size and
the duration of the fMRI scanning sessions. With only 6
hours of scans and 1200 images constituting the dataset, the
goal for training a model from scratch to achieve perfect
reconstruction is out of reach. Nevertheless, these initial
results are promising, suggesting a capacity for accurate
content reproduction. It is reasonable to anticipate that
with an expanded dataset, the fidelity of the reconstructed
images to their original counterparts would see important
improvement, enhancing both the precision and consistency
of the content reproduction in future iterations.
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5.3. Can we reconstruct images from strong imagination
/ pure imagination?

We present curated results of the images generated by our
model from strong imagination in Fig.4.

Figure 4. Results from strong imagination. The subject is given
an instruction on the fMRI screen, such as ”Imagine a portrait
representing optimism”. Then, the subject purely imagines such
image, giving an oral description. Then, the associated brain data
is fed to the fMRI-to-Image model to produce a reconstruction,
which is then evaluated compared to the oral description.

In the phase dedicated to strong imagination, we employed
the previously trained and then frozen fMRI-to-Image model
to process BOLD data obtained while subjects engaged in
pure imagination tasks, such as imagining a portrait or land-
scape related to a broad concept like optimism. We thus
rely on transfer learning, leveraging a model trained exclu-
sively on weak imagination data to interpret and generate
visual outputs from the distinct context of strong imagina-
tion, without fine-tuning. Indeed, we do not have tangible
images to serve as direct training data for strong imagina-
tion, since these images exist solely within the mind of the
subject. Hence we employ transfer learning from the weak
imagination process to generate from strong imagination.
Remarkably, the application of the fine-tuned ResNet50 clas-
sifier to the generated images resulted in an 88% accuracy
rate in categorizing the images according to the instructions
provided to the subjects. This accuracy in category gen-
eration demonstrates the effectiveness of transfer learning
from weak to strong imagination, which represent our main
contribution.

Determining the content accuracy of images generated from
strong imagination poses a unique challenge, as the ’ground
truth’ images solely exist in the subject’s mental imagery, in-

accessible for direct comparison. To navigate this, we based
our evaluation on subjects’ descriptions of their imagined
scenes, collected during or following the scanning sessions.
The variability in the reconstructed content ranges from
highly accurate renditions of specific imagined elements,
like a tree, dark-haired woman, or flowers, to more abstract
interpretations or plain errors. This also reflects the subjec-
tive nature of this task. Given the reliance on subjective de-
scriptions and the inherent open-endedness of strong imagi-
nation, the results should be interpreted with caution. While
it’s challenging to draw definitive conclusions about the
model’s capacity for precise content reconstruction in this
context, the instances of recognisable elements emerging in
the reconstructions indicate that what could be achievable
with increased data volume and further model refinement.

6. Discussion
6.1. Ethical considerations

As we explore further into the capabilities of decoding and
reconstructing visual content from brain activity, we get
closer to the boundaries of personal thought and imagina-
tion, a concept known as ”mind privacy”. The ability to
visualise an individual’s mental imagery raises questions
about consent, mental autonomy, and the potential for mis-
use of such technologies. On the one hand, such technol-
ogy provides potential for good, opening avenues for novel
communication methods for those unable to speak or write,
enhancing creative expression, and deepening our under-
standing of the human brain and its processes. On the other
hand, it introduces the possibility of invasive breaches of
personal thought, where the most private mental images
and ideas could be exposed without consent. This requires
a careful, deliberate approach to ensure that the develop-
ment and application of these technologies are governed by
ethical principles that prioritise individual privacy and auton-
omy. Currently, the barriers to entry, including the need for
explicit consent and the use of expensive and sophisticated
MRI machinery, provide a layer of protection.

6.2. Future work

Future directions for this line of research include the ac-
quisition of more extensive data to improve the accuracy
and specificity of content match in the reconstructed images.
A refined experimental protocol for both weak and strong
imagination tasks could lead to insights into the brain’s
imaging processes, while improved evaluation methods for
strong imagination would enhance our understanding of the
model’s effectiveness in capturing the depth and detail of
imagined content.

Additionally, the question of whether MRI technology can
be replaced or complemented by EEG is promising. Re-
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cent studies suggest the feasibility of reconstructing visual
stimuli from brain activity using EEG (Benchetrit et al.,
2023), which offers a more accessible, and cost-effective
alternative to MRI.

Finally, in our experiments, the subject clearly expressed
that the imagined images were getting more clearer and
more precise as he repeatedly attempted to imagine the
same image. This opens a potentially promising avenue
for ”training” one’s own mental imagery, which could be
applied to subjects presenting various degrees of aphantasia
(Zeman et al., 2015), i.e. the degree of their inability to
create mental imagery. A set of experiments directed toward
this question is thus a potential future work.

7. Conclusion
In our work, we introduced and applied two novel data
collection protocols: weak and strong imagination. These
protocols were designed to study visual imagery and create
training datasets for fMRI-to-Images models. We imple-
mented them during a 6-hour scanning session to create a
comprehensive dataset. This dataset then served as the basis
for training our fMRI-to-image model. Initially, the model
was trained using data from the weak imagination protocol,
which involved reconstructing images that the subject had
previously seen. Subsequently, the same model, now frozen,
was applied to data from the strong imagination protocol,
where the subject was asked to imagine new images based
on a written instruction. Our study demonstrates that the
model successfully distinguishes between broad categories
such as portraits and landscapes, effectively grasping the
category of the content imagined by the subject. Accurately
capturing the detailed contents of these imagined images
was partly successful, but proved to be more challenging.
This research provides a promising path towards the genera-
tion of visual representations directly from human thought.
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A. Uncurated samples for weak imagination

Figure 5. Uncurated results for weak imagination on the validation dataset. In each example, we present an image from the validation set
of our surrealism image dataset, which is recollected from memory by the subject in the fMRI scanner, and the reconstructed image from
the fMRI-to-Image model based on the brain data associated to the recollection of the original image.

In Fig.5, we present uncurated results from the validation dataset.


