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How Capable Can a Transformer Become?
A Study on Synthetic, Interpretable Tasks

Abstract

Transformers trained on huge text corpora exhibit a remarkable set of capabilities. Given
the inherent compositional nature of language, one can expect the model to learn to com-
pose these capabilities, potentially yielding a combinatorial explosion of what operations
it can perform on an input. Motivated by the above, we aim to assess in this paper “how
capable can a transformer become?”. In this work, we train Transformer models on a data-
generating process that involves compositions of a set of well-defined monolithic capabilities
and show that: (1) Transformers generalize to exponentially or even combinatorially many
functions not seen in the training data; (2) Transformers that generate the intermediate
outputs of the composition are more effective at generalizing to unseen compositions; (3)
The training data has a significant impact on the model’s ability to compose functions (4)
Attention layers in the latter half of the model seem critical to compositionality.

Keywords: Transformers, Capabilities, Mechanistic interpretability, Synthetic task

1. Introduction

Large Language Models (LLMs) showcase an impressive spectrum of capabilities (Radford
et al., 2018, 2019; Brown et al., 2020; Wei et al., 2022a, 2021; Thoppilan et al., 2022; Touvron
et al., 2023; Hoffmann et al., 2022), such as generating coherent and contextually relevant
text over extended passages or answering complex questions based on provided context.
Acquiring such a diverse set of capabilities is crucial to developing artificial intelligence
systems that are both general and flexible.

However, true generality is not simply a by-product of accumulation, but emerges when
these capabilities are combined in novel ways. Learning a set of monolithic capabilities, and
composing them together could potentially lead to a combinatorial explosion of what oper-
ations can be performed on an input. Although LLMs have shown initial “sparks” (Bubeck
et al., 2023) of compositional behavior, the underlying mechanisms and limits of this be-
havior remains elusive.

Studying compositionality directly in language models is difficult because it is (i) hard
to precisely control what set of capabilities are learnable via the training data and (ii)
difficult to train a language model once, let alone multiple times. This motivates us to
consider a minimal synthetic setup that allows us to study compositionality and characterize
phenomena relating to it. The goal of this work is similar in spirit to recent works that
study transformers on synthetic datasets (Garg et al., 2022; Liu et al., 2022; Allen-Zhu and
Li, 2023a; Li et al., 2023b).

We introduce the synthetic task of applying a sequence of mathematical operations,
such as bijections and permutations, to an input to obtain accurate outputs. Our contribu-
tions with this framework are: (1) A Synthetic setup. We propose a minimal synthetic
setup to study compositions of capabilities in transformers. We define two different types
of compositions and find that step-by-step compositions seem to generalize compositionally
in more scenarios compared to direct compositions. (2) Demonstration of exponen-
tial explosion of capabilities. We find that transformers compositionally generalize to
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exponentially or even combinatorially many functions – which would be considered ”out-
of-distribution”. (3) Mechanistic study of attention layers. Attention layers between
layers 6-10 show a large increase in probe accuracy, suggesting their importance in compo-
sitional generalization.

2. Preliminaries

To make progress on the question of how capable a Transformer can become, we aim to
evaluate its ability to compose skills acquired via pretraining. To this end, we first present
a definition of compositionality and categorize different types of compositionality.

2.1. Definitions

The term capability in our setup refers to the ability of a model to accurately implement
a function f : Xk 7→ Xk that maps a sequence of tokens x ∈ Xk to another sequence in
the same domain, i.e., an automorphism. This is motivated by the fact that the input and
output of language models is the same. We would like to understand the set of capabilities—
or the set of functions—that a Transformer can implement by composing together such
capabilities. The notions of compositionality most relevant to our work are systematicity
and productivity (Fodor, 1975), i.e., a model is compositional if it can accurately compute a
set of functions F and also compose them together (in a mathematical sense). We formalize
this as follows.

Definition 1 (Compositional model) We define a model M : FL × Xk 7→ Xk to be
compositional if for any sequence of functions (fi)

L
i=1 ∈ FL, the model M satisfies

M((f1, f2, · · · fL), x) = fL ◦ fL−1 ◦ · · · ◦ f1(x).

f [5]
3 f [4]

3 f [3]
2 f [2]

4 f [1]
1 (x)

(a). Step-by-step composition:

(b). Direct composition:

X6 X5 X6 X4 X6 X9

X0 X7 X0 X5 X0 X8

f [1]
1e.g.) bijection: 

step-by-step intermediate outputs
S  f1-1 f2-4 f3-2 f4-3 f5-3  X6X5X6X4X6X9  X0X7X0X5X0X8  X8X6X8X9X8X3  X3X7X3X8X3X4  X1X2X1X4X1X6  X9X7X9X4X9X0

S  f1-1 f2-4 f3-2 f4-3 f5-3  X6X5X6X4X6X9  X9X7X9X4X9X0

Figure 1: Step-by-step composition v.s. Di-
rect composition. (a) Transformers
can compose functions while generating
intermediate outputs. (b) Alternately,
the model can compose the functions
without the intermediate outputs.

Consider a family of functions F
containing N × L different functions.
Each function in this set is uniquely in-

dexed by f
[l]
n where n ∈ {1, . . . N} and

level l ∈ {1 . . . , L}. We would like to
select L functions from this family to
compose together.

In appendix A, we define two dif-
ferent ways to compose L functions to-
gether from the set of N ×L functions:
in-order and out-of-order (fig. 4). We
use this characterization to study how
the types of compositions in the train-
ing data influence the nature of compositional generalization.

2.2. Data Generating Process

We consider two types of functions f : Xk 7→ Xk that map from a sequence of tokens to
another of tokens: bijections and permutations. The rationale for this choice is that both
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Figure 2: Transformers can generalize to an exponential (a) or combinatorial (b)
number of new functions. We plot the accuracy averaged over all compositions
of 5 bijections, where each level of composition has 4+1 choices – with one of them
being the identity function. Each curve corresponds to training data generated
by a different subset of functions and the Transformer is trained using the step-
by-step prompt format. (a) The choice of 5 functions are different at different
levels of composition – there are 21 different functions (1 identity) which can be
composed (in-order) in 3125 different ways. (b) The choice of 5 functions are
identical across all 4 levels of compositions which means there are 3125 different
ways to compose them; only 1365 of them are unique. Both figures are evidence
that one can train on a small number of compositions of functions (around 31-
100) and generalize to exponentially (a) and combinatorially (b) many functions
that would be considered ”out-of-distribution”.

these functions form groups with composition as the group operator. The co-domain and
range of functions are guaranteed to match and the composition of functions will always
yield a member of the group.

The vocabulary consists of two types of tokens, task tokens denoted by XF and the
regular tokens denoted by the set X. The task tokens specify the composition of functions
to apply on the input x ∈ Xk. We consider two types of prompts to test compositionality in
transformers (see fig. 1). The first is the step-by-step composition prompt that consists of a
sequence of task tokens, the input which is an element from Xk, followed by the output of
every intermediate step of the function compositions. The second is the direct composition
prompt which consists of a sequence of task tokens, the input which is an element from Xk,
followed by the final output of the composition of all the functions–without the intermediate
steps.

3. Results

We systematically investigate the capabilities of a transformer trained on synthetic tasks
with compositional structure. We find that: (1) Transformers generalize to an exponential
set of compositions (fig. 2(a)) and partially to a combinatorial set of compositions (fig. 2(b))
not present in the training data; (2) Compositional generalization often fails in the direct
prompt format compared to the step-by-step format (figs. 3 and 7); (3) The compositions
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in the training data influence the extent of in-order (exponential) and out-of-order (com-
binatorial) generalization (fig. 4); (4) The compositions in the training data determine if
composition of many functions are learnt before compositions of few of them (fig. 8); (5) A
linear probe reveals that attention layers 6-10 seem critical to compositional generalization
(fig. 9). We present results (1) and (2) below with the rest presented in appendix E.

Combinatorial explosion and exponential growth in capabilities Do transformers
only generalize to functions present in the training data or do they reflect compositional
structure present in data? In fig. 2 we train on data consisting of a small subset of (in-order)
compositions of functions, in the step-by-step prompt format.

We consider two scenarios which both consider the composition of 5 functions (or 5
levels) in figs. 2(a) and 2(b). The composition of functions at each level can be one of 4
choices, with the 4 choices at each level being different in fig. 2(a) and the same in fig. 2(b).
In addition, any of the levels can also assume the identity function.
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Figure 3: Compositional generalization
is less frequently seen in the di-
rect prompt format compared
to the step-by-step format. We
train a Transformer on 20+1 bijec-
tions with 5 levels of compositions
with 4 choices at each level. The
Transformer fails to generalize to all
3125 compositions even if it trained
on 2000 such functions.

The training data for fig. 2 has two ma-
jor variations. The set of functions ran-
dom, considers a random set of composi-
tions of functions from the set of all possible
in-order compositions. The set of functions
21 base, considers each of the 4 functions
at each of the 5 levels and the identity func-
tion, totalling to 21 functions. The set 21
base excludes all compositions of 2 or more
functions.

We find that Transformers capture the
compositional structure in data and gener-
alize to an exponential and combinatorial
set of functions in figs. 2(a) and 2(b), de-
spite being trained on a small subset of func-
tion compositions. A transformer trained
on just 30-100 compositions of bijections
generalizes to 3125 unseen compositions of
these bijections almost perfectly. This could
explain why language models show signa-
tures of compositionality.

Direct vs. Step-by-step composition
In fig. 3, we consider the setup identical
to fig. 2(a) and train on a different num-
ber of random functions. Transformers fail
to generalize to new in-order compositions
with direct compositions when we consider
compositions of bijections. We observe this failure even if we train of 2000 of the 3125
possible in-order compositions of functions (see appendix E.2). In fig. 7(b), we see that
step-by-step compositions show compositional generalization in the same scenario.
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Appendix A. Preliminaries: In-order and Out-of-order Compositions

An in-order composition is a sequence of L functions denoted by (f
[1]
k , . . . , f

[L−1]
j , f

[L]
i ) such

that the lth element in the tuple is selected from one of the N different choices available to

it from the set {f [l]
n }Nn=1. An out-of-order composition is a sequence of L functions, where

each element in the sequence is allowed to be any element from F .

Figure 4: Data generating process for in-order and out-of-order compositions.

(a) Each of the L = 5 levels is associated with N = 4 functions f
[l]
i , in addition

to an identity function, resulting in a total of 5 × 4 + 1 = 21 basis functions
for composition. (b) The in-order compositions select functions within the same
level l while (c) out-of-order compositions allow for selecting functions across
levels. Each level also include the identity function since it allows us to compute
compositions of fewer than L = 5 functions. In the examples presented in (c),
displaced functions are surrounded by a black line, and we then count the number
of displaced functions.

Definition 2 (In-order Generalization) A model is said to generalize in-order if the
model generalizes to a test dataset with both the training and test datasets constructed with

in-order compositions of functions adhering to the structure of f
[L]
i ◦f [L−1]

j ◦ . . .◦f [1]
k , where

i, j, . . . , k ∈ {1, 2, . . . , N}.

Definition 3 (Out-of-order Generalization) A model is said to generalize out-of-order
if it generalizes to a test set constructed using out-of-order compositions and a training set
with in-order compositions, i.e., the test contains out-of-order compositions of the form

f
[l]
i ◦ f [l′]

j ◦ . . . ◦ f [l′′]
k , where l, l′, l′′ ∈ {1, 2, . . . , L}.

Note that if the set of functions at every level l ∈ {1, . . . , L} are identical, then in-order and
out-of-order compositions correspond to the same set.

Per the definitions above, if a Transformer with N capabilities can perform in-order
generalization, its set of capabilities will in fact grow to exponentially many functions—
NL of them to be precise. Further, the ability to compose and generalize out-of-order can
increase this set combinatorially, i.e., proportional to (N ×L)L, growing even more quickly
compared to the set of in-order compositions. Such an “explosion of capabilities” would
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imply perfect knowledge of what all tasks a pretrained model can perform is rather difficult
to characterize, especially since its pretraining data is generally unknown and hence it is
hard to characterize even what monolithic capabilities a model possesses. Our synthetic
setup described in Sec.2.2 however endows us the ability to characterize the model’s ability
to compose. We thus define the following notion of displacement, which serves as a useful
tool in our discussion.

Definition 4 (Displacement) The displacement of an out-of-order composition, repre-
sented by an L-tuple (f1, . . . , fL), is defined as the number of elements fl that do not belong

to the set {f [l]
n }Nn=1.

g1 h2 x

f2(x)

f2 f2(x)

g1(f2(x)) h1((g1(f2(x)))

g h xf

h(g(f(x)))
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Figure 5: Step-by-step composition v.s. Direct composition. (a) Transformers can
compose functions while generating intermediate outputs. (b) Alternately, the
model can compose the functions without the intermediate outputs.

Appendix B. Related Work

Capabilities in a Transformer. Prior work evaluating language models pretrained on
large-scale, web-crawled text datasets demonstrate very general capabilities, often achieving
highly competitive performance on a variety of tasks such as primitive arithmetic, question
answering, commonsense knowledge, stylistic transformation of a piece of text, and even
multimodal reasoning Radford et al. (2018, 2019); Brown et al. (2020); Bubeck et al. (2023);
Wei et al. (2022a, 2021); Rae et al. (2021); Chowdhery et al. (2022); Austin et al. (2021);
Chen et al. (2021); (FAIR); Bommasani et al. (2021). However, this generality can come
at the cost of a model also learning capabilities that are undesirable Bommasani et al.
(2021); Tamkin et al. (2021); Chan et al. (2023), e.g., producing sensitive, biased, or toxic
outputs in the pursuit of solving a task Weidinger et al. (2021); McGuffie and Newhouse
(2020); Garrido-Muñoz et al. (2021); Lin et al. (2021); Jiang et al. (2021); Abid et al. (2021);
Parrish et al. (2021); Xu et al. (2021); Huang et al. (2019); Sheng et al. (2019); Gehman
et al. (2020); Xu et al. (2020); Tamkin et al. (2021). We are in fact motivated by this

11



Extended Abstract Track
latter position in the current work. For example, if a model possesses the capability to
produce biased text, can it compose that capability with the ability to perform reasoning
and yield biased reasoning? To get a hold on this question, we argue first an evaluation that
demonstrates the extent to which a model can compose its capabilities is necessary—our
work is focused on making progress on this front.

Compositionality. While compositionality has been debated since Fodor’s hypothesis on
its implications in human intelligence (Fodor, 1975), there are several related notions that
the term now sees use for both in and outside the purview of machine learning (Valvoda
et al., 2022; Johnson et al., 2017; Hosseini et al., 2022; Lepori et al., 2023; Frankland and
Greene, 2020; Phillips and Wilson, 2010; Goodman et al., 2008). However, we specifically
highlight the work by Hupkes et al. (2020), who ground two important notions that relate
to our work: systematicity and productivity. Systematicity is akin to “out-of-distribution”
generalization, whereby structured variations of data should affect a system’s outputs pre-
dictably; e.g., changing the color of a dog should still lead the system to predict that it
is a dog. Meanwhile, productivity is closer to the mathematical notion of chaining two
functions, provided their domain and co-domain match.

Understanding transformers via synthetic tasks. Several intriguing works have
recently utilized synthetic tasks to assess the limits of Transformers trained on autoregres-
sive, distribution modeling tasks such as learning formal grammars, hidden markov models,
and even board games (Allen-Zhu and Li, 2023b; Liu et al., 2022, 2023; Zhao et al., 2023;
Hahn and Goyal, 2023; Nanda et al., 2023; Liu et al., 2022; Xie et al., 2021; Valvoda et al.,
2022; Liu et al., 2023; Li et al., 2023a). We emphasize that such works, including ours,
do not aim to unveil accurate justifications for the success of large-scale models; instead,
the goal is to develop mechanistic and behavioral hypotheses that can be useful to develop
grounded theories or tools to capture relevant phenomenology seen in large-scale models,
hopefully leading to progress on characterizing the models at-scale themselves (Lieberum
et al., 2023; Wu et al., 2023; Eldan and Li, 2023).

Appendix C. Discussion

In this work, we explored whether transformers are capable of generalizing to a combina-
torial or exponential number of functions not present in the training data by exploiting
the compositional structure in data. We conducted a systematic study of composition-
ality using synthetic data and provide credence to the hypothesis that languages models
could generalize to novel compositions of functions not seen in the training data through
compositionality.

Understanding transformers Our work raises questions about why transformers ex-
hibit compositionality. While we find preliminary evidence for the importance of attention
layers, future directions include further mechanistic interpretability analysis to elucidate
the circuit-level mechanisms that drive compositionality. Another unanswered question in
this work is a precise understanding of which types of functions can transformers learn to
compose, both through direct composition and through step-by-step composition. We find
that Transformers with direction compositions are able to compose bijections and permu-
tations but not bijections with other bijections and it would be interesting to understand
why this is the case. Apart from studying different functions, another related direction for
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exploration is to verify if compositionality is seen across different prompt formats, like the
one used in Garg et al. (2022).

Caveats to using Synthetic data Synthetic data offers a promising approach to quickly
(and cheaply) falsify or verify potential hypotheses. It allows us to work with a precise set
of claims since the properties of the data are interpretable and controllable unlike natural
language data. However, synthetic setups also present a number of challenges that need to
be acknowledged. The primary challenge is to build faithful setups that correctly reproduce
the phenomena observed at scale.

Implications for large language models The fact that Transformers can potentially
generalize to combinatorial or exponentially many functions implies that language mod-
els are capable of doing the same. However, it is hard to characterize compositionality in
natural language data which makes it hard to verify that language models exhibit compo-
sitional behavior of any kind. Overall, this study establishes a foundational framework for
further precise and systematic studies of compositional generalization in Transformer-based
autoregressive models.

Appendix D. Experimental Details

Data The inputs contains a sequence of elements from a vocabulary X of size 10. Each
input x ∈ X6 is a sequence of 6 elements. When generating prompts, x is generated by
sampling 6 elements from X uniformly at random and with replacement. Similarly, the
sequence of task-tokens are draw uniformly at random from the set of functions seen during
training.

The training data consists of 100,000 sequences for all training datasets. Each training
data point is generated according to the format described in section 2.2.

When evaluating the trained Transformers, we evaluate on 100 different inputs for every
single function. Since fig. 6 requires us to evaluate on a combinatorial set of functions, we
sampled 1000 functions (or the total number of functions, whichever was lower) from each
cell and compute the accuracy averaged of those functions to populate the cell.

Transformer architecture We train nanoGPT using an auto-regressive next-token pre-
diction objective on the entire sequence. The transformer consists of 12 layers and 12 heads
with an embedding dimension of 120. The input is tokenized to be a one-hot vector and the
context size is at most 64. The model makes use of no dropout and no biases in the Layer
norm layers. Finally, we make use of mixed-precision training (bf16 in torch) to speedup
training.

Optimizer The transformers are typically trained for 100 epochs with a cosine-annealed
scheduled with warmup. We use an initial learning rate of 3e-4 annealed eventually to 6e-5.
We use AdamW as the optimizer with weight decay 1e-3 and a batch-size of 512. We also
make use of gradient clipping with a magnitude of 1.

Linear probe Due the weight tying, the initial and final layer of the transformer share
their weights. We make use of these weights to compute the linear probe accuracy after
every attention and MLP layer. Note that the linear probe is applied to the output of the
attention or MLP layer summed with the output from the residual connection.

13



Extended Abstract Track
Appendix E. Additional Experiments

E.1. In-order vs. Out-of-order generalization
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Figure 6: The training data determines if the Transformer generalizes to an expo-
nential (in-order generalization) or combinatorial (out-of-order gener-
alization) number of functions. Each sub-plot uses a different subset of bijec-
tions to generate the training and evaluate them on combinatorial set of functions
generated from 20+1 functions (one of them being identity). The x-axis varies
the number of levels of compositions that consider out-of-order functions and the
y-axis varies the number of compositions – equivalently the number of functions
that aren’t identity. We make the following observations: (1) A Transformer
trained on just 31 functions (top-middle) generalize to nearly exponentially many
or 3125 compositions of functions. (2) All the above configurations do not gener-
alize perfectly to the entire combinatorial set. They however partially generalize
to nearly 4 million compositions of functions. The generalization is worse if we
decrease the number of identity functions or the number of displacements in the
out-of-order composition. (see fig. 4 for pictorial description of displacements)

Are Transformers capable of in-order and out-of-order generalization and how does it
depend on the nature of training data? For the functions in fig. 2(a), the number of in-
order compositions is 55 = 3125 and the number of out-of-order compositions is a whopping
(21)5 = 4084101; most of these functions are different from the ones seen in the training
data. Like in section 3, we only consider Transformers trained with the step-by-step prompt
format.
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In fig. 6, we consider the training data to have functions from 21 base, some in-order and
out-of-order compositions. We fail to see in-order or out-of-order generalization unless the
data also includes in-order or out-of-order compositions respectively. However, a small
number of in-order (10 of them) or out-of-order compositions (100 of them) in
the training data is enough for in-order generalization and limited out-of-order
generalization.

Finally, all scenarios in fig. 6 do not fully generalize to out-of-order compositions. This
indicates that out-of-order compositions may require a lot more data compared to in-order
compositions.

E.2. Different types of compositions

Both section 3 and appendix E.1 use step-by-step compositions but do these results also
hold for direct composition? Figures 3 and 11 answer this question in the negative.

In fig. 3, we consider the setup identical to fig. 2(a) and train on a different number of
random functions. Transformers fail to generalize to new in-order compositions
with direct compositions when we consider compositions of bijections. We observe
this failure even if we train of 2000 of the 3125 possible in-order compositions of functions.
In contrast, in fig. 2(a), 100 compositions in the step-by-step format suffices to generalizes
to all possible in-order compositions of functions.
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Figure 7: Compositional generalization is less frequently seen in the direct
prompt format compared to the step-by-step prompt format. (a) We
train a Transformer on 20+1 bijections with 5 levels of compositions with 4 choices
at each level. The Transformer fails to generalize to all 3125 compositions even
if it trained on 2000 such functions. (b) We train the Transformer on a com-
position of two functions, with one function being one of 25 bijections and the
other function being one of 25 permutations (totalling to 625) compositions. The
Transformer is able to compose previously unseen combinations of functions when
trained on 250 of these functions in this scenario.
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On the other hand, we see in-order generalization if the Transformer is

trained on a composition of a bijection and a permutation. In fig. 7(b), we train
on a composition of one of 25 bijections, with one of 25 permutations and find 250 compo-
sitions in the training data is enough for the Transformer to generalize to all 625 possible
compositions of the bijections and permutations. We note that bijection and permutations
operate on orthogonal features of the input: bijections operate on the value of the token
while permutations operate on the position of the token.

Direct compositions occur less frequently compared to step-by-step compositions and
this could be indicative of why chain-of-thought is a popular prompting strategy (Nye
et al., 2021; Wei et al., 2022b). A precise answer when such direct compositions succeed or
fail remains unclear though.

Why is out-of-order generalization harder for direct compositions? We believe
that direct compositions are unlikely to generalize to the out-of-order compositions or at
least require more samples. For example, consider functions f and g and consider a Trans-
former that computes the function g ◦f . Since g ◦f is computed using a single forward pass
through the transformer for direct compositions, g must occur in a layer after f (as shown
in fig. 5(b)). As a result, the Transformer cannot generalize to f ◦ g since f occurs after g
in the layers of the transformer. Hence, the Transformer may have to learn copies of f and
g at multiple layers of the transformer if it is going to generalize to f ◦ g and g ◦ f .

E.3. Analyzing trained Transformers

Training dynamics In fig. 8, we consider a fine-grained version of fig. 2(a) to under-
stand if the Transformer generalizes to composition of fewer functions before it generalizes
compositions of many functions. We find that the answer depends on the nature of the
training data.

If the training data consists of 21 base and very few in-order compositions, then the
Transformer generalizes to fewer compositions (more identities) first before generalizing to
compositions of multiple functions. On the other hand, if the Transformer is trained on
25 random in-order compositions, then the Transformer is better at generalizing to more
complex compositions of these functions; this trend is lost when we train on 50 random in-
order compositions.

Linear probe In fig. 9, we use a linear probe (frozen to the last linear layer of the
transformer) to analyze the importance of attention layers and contrast them with the
MLP layers. We use a Transformer trained on 100 random in-order compositions of 5
functions identical to the model in fig. 2(a). We find that attention in layers 5-10 have
high linear prove accuracy and we hypothesize that they are critical to compositionality in
Transformers.
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Figure 8: A Transformer trained on a random subset of functions generalizes
first to a composition of more functions before it generalizes to a com-
position of few of them. Each line is the average accuracy over all composition
of k functions and each subplot is a Transformer trained on a different subset of
functions. The 21 base is trained on the individual functions and these Trans-
formers learn to compose a smaller set of functions (more functions in composition
are identity) before learning to compose many of them. The opposite is true when
the Transformer is trained on a random subset of 25 compositions of functions.
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Figure 9: Attention layers between layers 6-10 see a high increase in probe ac-
curacy, hinting at its importance in compositional generalization. We
compute the linear probe accuracy — averaged over all in-order compositions of
functions — after the MLP and attention layers at every layer of the Transformer.
(a) The accuracy increases sharply at layers 6 and around layers 8-10. (b) The
increase in accuracy shows that the MLP is important around layer 9-10. The
attention layers have a larger contribution to an increase in accuracy. While these
plots are not conclusive evidence, they indicate that the attention is important
for compositional generalization.
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Figure 10: This is a fine-grained version of fig. 2(a). Model trained on 50 random com-
positions generalizes poorly compositions of small number of functions while a
model trained on the 21 base generalizes poorly to composition of 4 or 5 func-
tions.
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Figure 11: Another failure of direct compositions. The curve depicts the accuracy
over all 625 in-order compositions of two bijections (25 choices for each bijection)
when trained on different subsets of in-order compositions. The model is trained
with direct composition. Even if we train on 500 such compositions, the model
fails to generalize to the remaining 125 compositions. This is additional evidence
that the model is incapable composing bijections through direction composition.
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Figure 13: Systematicity. We consider trained models from fig. 2(a). We analyze the
accuracy of each of the 20 functions when averaged all instances in which a
particular function was used to compute some composition. Models typically
learn all functions equally well.
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Figure 14: Training different numbers of random functions. We train on a different
number of random functions ranging from 5-70 in steps of 5. These plots are
the accuracies averaged over all in-order compositions of 5 bijections over the
course of training.
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Figure 15: Number of compositions in the data. The figure plots the accuracy on all
in-order compositions against the number of training iterations. Each sub-plot
considers compositions of size exactly 2, 3, 4, 5, respectively in the training
data. The model is able to generalize to most in-order compositions only if the
training data consists of compositions of size at least 3 (bottom-right).
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Figure 16: We consider 3 different metrics for evaluating the models. The left column
considers the average accuracy when the model generatesThe choice of metric
doesn’t change qualitative trends. Each sub-plot considers compositions of
only size 2, 3, 4, 5, respectively. In each plot, we vary the number of such
functions that are present int he training data. One exception is when we
train on compositions of size 2. In this case, the guided generation accuracy
is high, but the free generation accuracy is not.
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