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ABSTRACT

Automated Machine Learning (AutoML) approaches encompass traditional meth-
ods that optimize fixed pipelines for model selection and ensembling, as well
as newer LLM-based frameworks that autonomously build pipelines. While
LLM-based agents have shown promise in automating machine learning tasks,
they often generate low-diversity and suboptimal code, even after multiple itera-
tions. To overcome these limitations, we introduce Tree-Search Enhanced LLM
Agents (SELA), an innovative agent-based system that leverages Monte Carlo
Tree Search (MCTS) to optimize the AutoML process. By representing pipeline
configurations as trees, our framework enables agents to conduct experiments in-
telligently and iteratively refine their strategies, facilitating a more effective ex-
ploration of the machine learning solution space. This novel approach allows
SELA to discover optimal pathways based on experimental feedback, improving
the overall quality of the solutions. In an extensive evaluation across 20 machine
learning datasets, we compare the performance of traditional and agent-based Au-
toML methods, demonstrating that SELA achieves a win rate of 65% to 80%
against each baseline across all datasets. These results underscore the signifi-
cant potential of agent-based strategies in AutoML, offering a fresh perspective
on tackling complex machine learning challenges. The code will be open-sourced
upon publication.

1 INTRODUCTION

Automated Machine Learning (AutoML) is a rapidly evolving field that seeks to automate the pro-
cess of designing reliable machine learning solutions with minimal human intervention. Traditional
AutoML frameworks, such as Auto-WEKA (Thornton et al., 2013), Auto-Sklearn (Feurer et al.,
2015; 2020), AutoGluon (Tang et al., 2024b), and H2O AutoML (LeDell & Poirier, 2020), rely on
predefined search spaces and routines. These frameworks primarily focus on optimizing hyperpa-
rameters and model ensembling to find the best model configuration. However, this fixed and static
approach often lacks the adaptability needed to handle diverse and dynamic data scenarios, resulting
in suboptimal performance in more complex settings. Additionally, the traditional focus on model
training leaves other crucial stages of the machine learning pipeline, such as data preprocessing and
feature engineering, underexplored, thereby limiting the overall effectiveness of these systems.

Recently, large language model (LLM)-based agents have emerged as promising tools for automat-
ing machine learning tasks by leveraging natural language processing capabilities to generate code.
These systems typically begin with a natural language prompt describing the dataset and the prob-
lem, after which an LLM generates an end-to-end solution. Early efforts, such as Zhang et al.
(2024), experimented with prompting LLMs to generate machine learning solutions, while Hong
et al. (2024) introduced agents equipped with Hierarchical Graph Modeling and Programmable
Node Generation to address complex and dynamic workflows. Despite these advances, LLM-based
solutions often fall short in generating diverse and highly optimized workflows, as their search pro-
cess remains limited to a single pass or trial. Without iterative refinement or the ability to explore
alternative strategies, these solutions frequently converge on suboptimal results, even when multiple
attempts are allowed.

A critical shortcoming of both traditional AutoML and LLM-based frameworks lies in their inability
to mimic the nuanced problem-solving approach of human experts. When approaching a machine
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learning task, an expert does not simply execute a fixed pipeline. Instead, they explore various
potential configurations, systematically conduct experiments, analyze results, and iteratively refine
their understanding of each component’s effectiveness. This iterative, feedback-driven process al-
lows experts to explore diverse solutions and improve them incrementally until they arrive at the
optimal configuration.
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Figure 1: SELA’s abstraction compared to other agent-based AutoML frameworks. There are two
main types of agent-based approaches to AutoML problems. The first approach (Hong et al., 2024)
divides a machine learning task into multiple stages, proposing a plan for each stage, and generating
and executing code step by step according to the plan, with no refinement after the solution is com-
pleted. The second (Schmidt et al., 2024) generates the entire solution in one step and iteratively
refines it as a whole. SELA integrates both approaches, enabling stage-wise planning while itera-
tively exploring better solutions at each stage level.

Inspired by this human-centered approach, we propose Tree-Search Enhanced LLM Agents
(SELA) for automated machine learning, a novel framework that integrates the strengths of LLM
agents with a structured search and refinement process modeled on how experts solve machine learn-
ing problems. As illustrated in Figure 1, our framework combines the benefits of stage-wise plan-
ning, where each stage (e.g., Exploratory Data Analysis, Data Preprocessing, Feature Engineering,
and Model Training) is handled sequentially, with an iterative refinement mechanism. In SELA, the
search space of a machine learning problem is conceptualized as a tree, where each branch repre-
sents a potential solution path. This tree-based structure enables the agent to systematically explore
and refine solutions, much like an expert who tests and improves their strategy based on continuous
feedback.

To navigate this search space, we employ Monte Carlo Tree Search (MCTS) (Browne et al., 2012)
as the core decision-making engine, leveraging its ability to balance exploration (testing new strate-
gies) and exploitation (improving known good strategies). MCTS allows the agent to efficiently
explore large decision spaces, collect and process experimental results, and intelligently select the
next promising configuration to test. By iterating through this cycle of experimentation and refine-
ment, SELA incrementally improves its solutions, offering a more dynamic and flexible approach
than static AutoML frameworks.

We rigorously evaluated SELA using 20 diverse datasets from the AutoML benchmark, comparing
its performance against both traditional AutoML systems and agent-based AutoML approaches. The
results demonstrate that SELA consistently delivers superior performance across a wide range of
machine learning tasks, validating its effectiveness and adaptability.

Our research makes the following contributions:

1. We introduce a novel approach that empowers LLM agents to address machine learning
challenges through an iterative, feedback-driven process. This mirrors the methodology of
human experts, enabling continuous exploration of various configurations and improving
outcomes through multiple rounds of refinement. This iterative exploration yields more
diverse and optimized solutions than single-pass strategies.

2. We present a robust system that intelligently selects and executes experiments to generate
high-performance pipelines. At the heart of this framework is the conceptualization of the
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machine learning search space as a tree, navigated using Monte Carlo Tree Search (MCTS).
This approach allows the agent to systematically explore complex solution landscapes and
adapt its strategy based on intermediate feedback, enabling the efficient discovery of effec-
tive solutions.

3. We provide a comprehensive comparison of agent-based AutoML systems with traditional
AutoML frameworks, highlighting the significant untapped potential of agentic approaches
in solving machine learning problems. Our findings suggest that this emerging paradigm
offers a promising direction for future research, with considerable advantages in flexibility,
adaptability, and performance.

2 RELATED WORKS

Tree Search and Its Integration with LLMs Tree search algorithms have significantly advanced
problem-solving in artificial intelligence, with Monte Carlo Tree Search (MCTS) emerging as a
leading technique. These algorithms have been successfully applied across various domains, includ-
ing robotics (Best et al., 2019; Wu et al., 2015; Clary et al., 2018), chemistry (Segler et al., 2018),
and gaming (Silver et al., 2016; 2017), where MCTS is used to navigate vast solution spaces and
solve complex problems. More recently, research has focused on integrating tree search with Large
Language Models (LLMs) to enhance reasoning and decision-making. Studies such as Krishna-
murthy et al. (2024) and Dwaracherla et al. (2024) explored LLMs’ capacities for efficient explo-
ration, while Tang et al. (2024a) and Hui & Tu (2024) developed strategies for exploiting previously
learned knowledge. Striking a balance between exploration and exploitation, Zhou et al. (2024) and
Chi et al. (2024) applied MCTS for planning with external or self-evaluated feedback, while Feng
et al. (2023); Wang et al. (2024) adapted AlphaZero-style tree search to LLM-based tasks. These
advancements underscore the potential of combining tree search methods with LLMs, balancing
exploration of new solutions with exploitation of prior knowledge to enhance decision-making.

Advances and Limitations in AutoML Systems Automated Machine Learning (AutoML) frame-
works were introduced to reduce the need for expert knowledge in designing machine learning
pipelines. Early AutoML efforts, such as (Feurer et al., 2020; Jin et al., 2019; Olson & Moore,
2016; Thornton et al., 2013), focused primarily on automating key pipeline components like hy-
perparameter optimization, model selection, and ensembling. These frameworks achieved notable
progress by integrating meta-learning and hyperparameter search strategies to automatically select
and tune machine learning models. More recent AutoML systems, such as (Erickson et al., 2020)
and (LeDell & Poirier, 2020), employed ensembling techniques to further improve performance,
and extensions into multi-modal data settings (Tang et al., 2024b; Jin et al., 2023) have broadened
AutoML’s applicability.

Recently, there has been growing interest in leveraging LLMs within AutoML systems to enhance
pipeline flexibility. Studies such as Hollmann et al. (2024) and Li et al. (2024) applied LLMs to
automate feature engineering, while Liu et al. (2024) introduced LLMs for hyperparameter tuning.
In addition, Luo et al. (2024) proposed embedding LLMs at each stage of the machine learning
workflow. Despite these advancements, traditional AutoML systems remain constrained by rigid
pipelines and limited flexibility to adapt to unique datasets or specific task requirements.

LLM Agents for Dynamic Machine Learning Pipelines In contrast to static pipelines, LLM-based
agents offer a more dynamic solution for addressing complex machine learning challenges. Hong
et al. (2024) introduced an LLM agent with hierarchical graph modeling and programmable node
generation, enabling the creation of sophisticated, adaptable pipelines for diverse data scenarios.
Similarly, Zhang et al. (2024) demonstrated that LLMs could effectively interpret structured inputs
and apply past experiences to solve new machine learning tasks. Guo et al. (2024) expanded on this
by introducing a data science agent that leverages case-based reasoning; however, it faces challenges
when generating solutions from scratch due to its reliance on existing codebases. Schmidt et al.
(2024) proposed an iterative approach, where the entire pipeline is generated in one step and refined
iteratively through incremental modifications.

Building on these efforts, SELA introduces an agent that integrates the strengths of both
approaches—stage-wise planning and iterative refinement—allowing it to autonomously explore
and generate machine learning solutions from the ground up. This approach offers greater flexibility
and control during the search process, enabling the generation of optimized solutions at each stage.
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Figure 2: SELA’s pipeline operates as follows: The system begins by inputting the problem descrip-
tion and dataset information into the LLM, which generates a search space of potential solutions,
encompassing data preprocessing, feature engineering, and model training. The search module,
powered by Monte Carlo Tree Search (MCTS), explores this space by selecting, expanding, and
simulating potential configurations. The LLM agent then simulates the selected configuration by
planning, coding, and executing the experiment. Feedback from the simulation is fed back into the
search module, where it is used in the backpropagation step to refine future searches. This iterative
process continues until a predefined stopping criterion is met, resulting in an optimized experimental
pipeline.

3 METHOD

As illustrated in Figure 2, SELA consists of three key components: an LLM-based insight proposer,
a search module using MCTS, and an LLM agent as the experiment executor. First, the LLM
generates insights from the problem description and dataset, defining a search space. The search
module then organizes this space into a tree structure and uses MCTS to explore promising paths.
During each cycle, the selected path is passed to the LLM agent, which translates the configuration
into an executable pipeline. The agent plans, codes, and executes the experiment, feeding the results
back to refine future searches. This iterative process continues until the termination criterion is met.
The following sections provide a detailed explanation of each component.

3.1 INSIGHT PROPOSAL AND SEARCH SPACE CREATION

To enable SELA to explore a wide range of machine learning strategies, we introduce an insight
proposer that generates diverse methods tailored to different stages of the machine learning work-
flow. Each proposed insight suggests either a single technique or a combination of methods aimed
at enhancing performance. For instance, a feature engineering insight might recommend creating
interaction features from existing variables, while a model training insight could propose a specific
algorithm or suggest running a grid search to improve accuracy.

The insight proposer takes as input the problem description p and dataset information d, such as
metadata and sample records, and generates m insights λ for each stage of the machine learning
process using a large language model M . These insights are stored in an insight pool, forming a
search space Λ for SELA to explore. We decompose the machine learning process into five stages:
Exploratory Data Analysis (τ1), Data Preprocessing (τ2), Feature Engineering (τ3), Model Training
(τ4), and Model Evaluation (τ5). For simplicity, we denote the entire set of stages as T and refer to
any specific stage as τ .

InsightProposer(p, d,M)→ Λ := {λτ
i | τ ∈ T, i = 1, . . . ,m} (1)

3.2 PIPELINE EXECUTION AND CODE GENERATION

We employ an LLM agent, referred to as the experiment executor E, to conduct each trial by building
practical experimental pipelines from natural language requirements. The agent takes two main steps
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in this process. First, given an experiment configuration c, which is a set of insights provided by the
search module (introduced in Section 3.3.2), the experiment executor translates these insights into
a detailed plan. This plan consists of a sequence of task instructions Iτ∈T corresponding to each
stage of the machine learning process. This step is referred to as Eplan.

Next, following the plan, the agent writes and executes code στ for each task τ based on the re-
spective instruction Iτ , producing the code στ∈T for the full pipeline, along with the final execution
score s. The complete set of code outputs στ∈T is concatenated into a full solution σsol to address
the problem. This phase is referred to as Ecode & execute.

Eplan(p, d, c,M)→ Iτ∈T (2)

Ecode & execute(I
τ∈T , D,M)→ (στ∈T , s) (3)

3.3 TREE SEARCH IN MACHINE LEARNING EXPERIMENTS

In order to systematically explore the different configurations in machine learning experiments, we
model the search space as a hierarchical tree. This structure allows us to apply tree search algorithms,
where each path through the tree represents a different experiment configuration. Algorithm 1 also
provides an overview of this searching process.

3.3.1 EXPERIMENT NODE

To facilitate the exploration of various strategies, we model the proposed search space as a hierar-
chical tree that is well-suited for applying search algorithms. Each node in the tree, denoted as x,
represents one insight λ in the search space Λ and contains the following attributes:

• Insight λ(x): Represents the specific insight λτ
i ∈ Λ associated with this node, where τ

denotes the stage of the machine learning pipeline.

• Depth δ(x): Indicates the stage of the machine learning process the node corresponds to
(e.g., depth 1 might represent data preprocessing, depth 2 for feature engineering, and depth
3 for model training).

• Value v(x): The cumulative score from simulations for this node and all its descendants.

• Number of Visits nvisits(x): The total number of simulations conducted for this node and
its descendants.

• Simulation Score s(x): The score for simulating this node.

• Solution Code σsol(x) The final code produced after the node simulation.

• Stage Code σstage(x): The code generated up to the node’s current stage, a part of the
solution code

By modeling the search space as a tree, each path from the root to a node x represents an experiment
configuration c(x) = {λ(x1), λ(x2), . . . , λ(x)} ⊂ Λ, where x1, x2, . . . , x are nodes along the path.
The task of finding the optimal solution can therefore be viewed as a path search within the tree,
where each path corresponds to a potential configuration of the experiment.

3.3.2 TREE SEARCH FOR ML EXPERIMENTS

We apply Monte Carlo Tree Search (MCTS) to systematically explore and identify optimal ma-
chine learning solutions within our framework. MCTS allows us to efficiently navigate the search
space across multiple stages of the machine learning pipeline—from data preprocessing to model
selection—by balancing exploration and exploitation.
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Algorithm 1 SELA using MCTS
Input: Problem description p, data information d, data D, LLM M , rollout number k.

1: Λ← InsightProposer(p, d,M)
2: Initialize Tree using Λ
3: for i = 1 to k do
4: node x← select(Tree)
5: Xchild ← expand(Tree, x)
6: Randomly sample a node xsample from Xchild
7: Retreive experiment configuration c(xsample)
8: σsol, s← simulate(c(xsample), p, d,D,M)
9: attach the simulation result σsol, s to xsample for final solution selection

10: Backpropagate(Tree, s)
11: end for
12: xdev best ← argmax

x∈Tree
(s(x))

Output: σsol(xdev best)

Algorithm 2 Simulate
Input: Experiment configuration c, problem description p, data information d, data D, LLM M .

1: Draft plans Iτ∈T ← Eplan(p, d, c,M)
2: Code and execute sequentially στ∈T , s← Ecode & execute(I

τ∈T , D,M)
3: σsol ← concatenate(στ∈T )

Output: σsol, s

The search process involves performing multiple rollouts, which include the steps of selection, ex-
pansion, simulation, and backpropagation. We conduct k rollouts to explore various paths, aiming
to identify the best solution.

Selection At each iteration, we use a modified version of the UCT (Upper Confidence Bound for
Trees) algorithm, referred to as UCT-DP (depth-preferred), to select a node from the search tree.
Unlike traditional MCTS, where simulations are often performed quickly due to a fixed action space
and negligible action time, the context of machine learning tasks presents a different challenge.
Processes such as model training introduce significant computational time, making efficient node
exploration crucial. Since model selection can heavily influence the overall machine learning per-
formance, we prioritize exploring nodes at greater depths early on.

This modification reduces the need to explore every unvisited node, allowing deeper nodes to be
reached in fewer iterations—making the approach better suited for large-scale machine learning
experiments. The modified selection algorithm is expressed as:

UCT-DP(x) =
v(x)

n(x)
+ αexplore

√
lnnvisits(xparent)

n(x)
(4)

n(x) =

{
αunvisted if nvisits(x) = 0

nvisits(x) otherwise.
(5)

Here, αunvisted is a constant between 0 and 1 controlling the selection preference for unvisited nodes,
balancing between full exploration and computational efficiency. This adjustment allows us to focus
more on deeper parts of the tree that are likely to yield better solutions.

Expansion During the expansion phase, a set of child nodes Xchild at depth δ + 1 are instantiated
from the selected node x for potential simulation. Note that a single child node xchild from x inherits
the attributes stored in x and possesses λ(xchild) → λτδ+1 , an insight of stage τδ+1 from the search
space.

6
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Simulation Once expanded, a node xsample is randomly sampled from Xchild for simulation. The path
from root to the sampled node forms a set of insights c(xsample) = {λ(x1), λ(x2), ..., λ(xsample)} ⊂
Λ, representing the experiment configuration to be simulated, where x1, x2, .., xsample are the nodes
along the path. The configuration c(xsample) is then fed to the experimenter E for execution following
Eplan and Ecode & execute, which produces a simulation score s, as illustrated in Section 3.3.1. The
score serves as the feedback for back propagation. Algorithm 2 outlines the simulation process.

Backpropagation After the simulation concludes, the performance score (e.g., based on the devel-
opment set) is retrieved and backpropagated through the tree. The score is propagated from the
simulated node up to the root, updating each parent node’s value and visit count. This allows nodes
representing more promising solutions to be prioritized in future rollouts. In addition, the solution
code is also backpropagated up to the tree, and it can be processed and saved as stage code depending
on the parent node during the update.

Backpropagation ensures that the algorithm learns which paths yield better results, guiding the
search toward higher-performing nodes as more rollouts are conducted.

3.3.3 EXPERIMENT STATE SAVING AND LOADING

To boost execution efficiency, SELA implements fine-grained code reuse by caching code at the
stage level. This caching is done according to each attempted configuration c, allowing the frame-
work to reuse as much saved code as possible if the incoming configuration cnew shares any part with
existing ones.

Given that LLMs produce non-deterministic outputs, the same instruction can yield different code,
leading to greater variance in final performance. To minimize this variance and reduce token us-
age during execution, SELA saves and loads the stage code for each node. Whenever a node is
chosen for execution, the experimenter reruns the saved stage code, ensuring consistency before
progressing to the next stage. This approach effectively conserves resources while maintaining ro-
bust performance across stages. In Appendix D, we examine the cost efficiency of this state-saving
and loading mechanism.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate SELA alongside several baselines on 20 datasets, which include 13 classi-
fication tasks and 7 regression tasks from the AutoML Benchmark (AMLB) (Gijsbers et al., 2024)
and Kaggle Competitions.

Table 3 provides detailed information on the datasets used. All datasets are split into training,
validation, and test sets with a 6:2:2 ratio. Each framework utilizes the training and validation sets
to train models and makes predictions on the test set labels.

Evaluation Metrics For the AMLB datasets, we use the default target column provided by
OpenML. For Kaggle competition datasets, we rely on the target column specified in the compe-
tition description. Performance is measured using root mean squared error (RMSE) for regression
tasks, F1 score for binary classification, and F1-weighted score for multi-class classification. To
ensure comparability across datasets with varying metrics, we introduce a normalized score (NS),
which intends to map RMSE into a range from 0 to 1.

NS(sraw) =

{
1

1+log (1+sraw)
if the metric is RMSE.

sraw otherwise.
(6)

Here, sraw represents the raw score before normalization. To evaluate SELA against other frame-
works, we employ three key metrics: average Normalized Score (NS), average rank, and average
best rank. The average rank is calculated by considering all rankings of a method across datasets,
while the average best rank focuses on the method’s best performance in each dataset. We also want

7
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to quantify how other baselines perform relative to SELA. The ”Rescaled NS” is defined as:

Rescaled NS(f) =
NSf

NSSELA
(7)

where f represents the baseline method being compared to SELA.

Baselines We compare SELA with several baseline methods, including Data Interpreter (Hong
et al., 2024), AIDE (Schmidt et al., 2024), AutoGluon (Erickson et al., 2020), and AutoSklearn
(Feurer et al., 2015; 2020).

For LLM-based methods (SELA, Data Interpreter (DI), and AIDE), we use the same initial task
prompt, which includes the dataset name, target column, and evaluation metric. Given that
DeepSeek v2.5 (DeepSeek-AI, 2024) is an open-source large language model with robust coding
capabilities and a relatively low token cost, we selected it as the base LLM for our experiments.
To promote a moderate level of diversity in the model’s outputs, we set the temperature parameter
to 0.5. AIDE performs 10 iterations per execution, while SELA uses DI as the experimenter and
completes 10 rollouts per execution.

Each method, except for AutoGluon, is run three times for each dataset. AutoGluon, being deter-
ministic, is run only once with its default settings. AutoSklearn is also run with default settings,
limited to 600 seconds per task.

Method Wins Losses Top 1 Avg. NS % ↑ Avg. Best NS % ↑ Avg. Rank ↓ Avg. Best Rank ↓
AutoGluon 7 13 4 53.2 53.2 4.4 4.4
AutoSklearn 5 15 5 46.1 47.5 7.6 6.1
AIDE 5 15 2 47.1 51.8 7.8 5.3
Data Interpreter 4 16 2 47.4 50.2 8.8 6.4
SELA - - 7 53.3 54.7 4.8 2.7

Table 1: Results of each AutoML framework on 20 tabular datasets. The “Wins” column indicates
the number of datasets where the method outperforms SELA, while “Losses” shows the number of
datasets where the method underperforms. The “Top 1” column represents the number of datasets
where the method produces the best predictions across methods.

4.2 RESULTS
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Figure 3: Rescaled NS of AutoML frameworks relative to SELA on tabular datasets. Points to
the left of the vertical line indicate poorer predictions compared to SELA. Notably, SELA often
occupies a leading position across the datasets.
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As shown in Table 1, SELA achieves the highest average Normalized Score (NS) and average
best rank among all frameworks. Notably, SELA excels in producing the highest number of top
predictions, as indicated in the “Top 1” column across all datasets. Furthermore, the “Losses”
column reveals that each competing method falls short against SELA, losing in 65-80% of the
datasets.

Interestingly, AutoGluon exhibits a marginally higher average rank than SELA. This slight discrep-
ancy may be attributed to the inherent randomness in LLMs and model training processes, which
can influence the exploration of machine learning solutions. However, SELA’s higher average NS
suggests that even when it produces solutions with lower ranks, their test scores remain competitive
and close to the best solutions.

The two agent-based methods exhibit relatively lower performance. The first method, DI, struggles
to enhance its score with multiple attempts due to its inability to refine its solution after completing
a machine learning task. The second method, AIDE, lacks a stage-specific planning module, which
hinders its capacity to improve results after a series of greedy experiments. These limitations likely
account for their weaker performance.

Figure 3 further corroborates SELA’s effectiveness, revealing that its best solutions frequently oc-
cupy leading positions across various datasets. This visual representation exhibits the method’s con-
sistent high performance and adaptability across different ML datasets. We also include a detailed
results of each method in Appendix C.

4.3 ABLATION STUDY

For the rest of the study, we employ a subset of datasets to evaluate SELA under various settings.
Our selection process involves choosing the first two datasets alphabetically for each machine learn-
ing task. Specifically, we use boston, colleges, credit-g, Click prediction small, GesturePhaseSeg-
mentationProcessed, and mfeat-factors to conduct the ablation study.

DI SELA (Random Search) SELA (MCTS)
Avg. NS ↑ 56.4 58.6 60.9
Avg. Best NS ↑ 59.0 61.4 62.4
Avg. Rank ↓ 6.9 4.8 3.3
Avg. Best Rank ↓ 4.8 2.8 1.5

Table 2: Performance results for each search setting on the chosen datasets. SELA with MCTS
consistently surpasses SELA with Random Search.

Effectiveness of Search To evaluate the effectiveness of Monte Carlo Tree Search (MCTS) in im-
proving the solution search process, we conducted an ablation study. In this study, we compared the
performance of our method using MCTS against a variant that randomly samples insights from each
stage’s insight pool. As shown in Table 2, the MCTS version achieves a higher average normal-
ized score across datasets and a better overall ranking compared to the random sampling approach.
Moreover, even the random sampling variant of our method outperforms DI, the base experimenter.
This suggests the presence of an appropriate search space and an experiment agenda is vital for
improving a machine learning agent. Our insight proposer generates relevant and useful insights,
facilitating such improvement, regardless of the selection method.

SELA’s performance with different LLMs To evaluate the robustness of our framework, we
conduct experiments using different Large Language Models (LLMs). Specifically, we compare the
performance of SELA with Claude-3.5-Sonnet (Anthropic, 2024) and GPT-4o (OpenAI,
2024) against DeepSeek V2.5 which we primarily use for evaluation. This comparison enables
us to assess how the choice of LLM affects the overall effectiveness of our approach.

As Figure 4 shown, SELA delivers similar results across different LLMs, indicating its flexibility to
be executed with various models depending on user preference and availability. We also report the
numeric results in Appendix C.2.
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Figure 4: Comparison of Normalized Scores between different base LLMs.

5 CONCLUSION

In this paper, we introduced SELA, a novel framework that integrates LLM-based agents with
Monte Carlo Tree Search (MCTS) to automate machine learning workflows. Our experimental
results, conducted on 20 machine learning datasets, demonstrate SELA’s effectiveness and high-
light its distinct advantages over both traditional AutoML frameworks and existing LLM-based ap-
proaches. The proposed methodology is not limited to machine learning but could be adapted to a
wide range of sequential decision-making problems, provided they can be represented as tree struc-
tures with scalar rewards derived from their leaf nodes. Looking ahead, future work could explore
extending this framework to other domains, including software engineering, scientific discovery,
game playing, and robotics. Furthermore, improving the efficiency and scalability of the tree search
process for larger solution spaces remains an important area for investigation. Another promising
direction is developing techniques to provide interpretable explanations of the search process and
solution rationale, enhancing the transparency and trustworthiness of the system. SELA represents
a significant advancement in automated machine learning, demonstrating the potential of combining
traditional search algorithms with the flexibility of LLMs.

REFERENCES

Anthropic. Introducing Claude 3.5 Sonnet — anthropic.com. https://www.anthropic.
com/news/claude-3-5-sonnet, 2024.

Graeme Best, Oliver M Cliff, Timothy Patten, Ramgopal R Mettu, and Robert Fitch. Dec-mcts:
Decentralized planning for multi-robot active perception. The International Journal of Robotics
Research, 38(2-3):316–337, 2019. doi: 10.1177/0278364918755924.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Yizhou Chi, Kevin Yang, and Dan Klein. Thoughtsculpt: Reasoning with intermediate revision and
search, 2024.

Patrick Clary, Pedro Morais, Alan Fern, and Jonathan Hurst. Monte-carlo planning for agile legged
locomotion. Proceedings of the International Conference on Automated Planning and Scheduling,
28(1):446–450, Jun. 2018. doi: 10.1609/icaps.v28i1.13933.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for llms, 2024.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data, 2020.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like
tree-search can guide large language model decoding and training, 2023.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In Advances in Neural Information
Processing Systems 28 (2015), pp. 2962–2970, 2015.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning, 2020.

Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas,
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A DATASETS

Table 3 outlines the detailed information of the datasets used for evaluation.

Dataset name # Features # Rows # Classes Task Type Metric Source

boston 14 506 N/A Regression RMSE OpenML (Dataset ID: 531)
colleges 48 7063 N/A Regression RMSE OpenML (Dataset ID: 42727)
concrete-strength 9 4866 N/A Regression RMSE Kaggle (playground-series-s3e9)
diamonds 10 53940 N/A Regression RMSE OpenML (Dataset ID: 42225)
house-prices 81 1460 N/A Regression RMSE Kaggle (house-prices-advanced-regression-techniques)
Moneyball 15 1232 N/A Regression RMSE OpenML (Dataset ID: 41021)
SAT11-HAND-runtime-regression 118 4440 N/A Regression RMSE OpenML (Dataset ID: 41980)
credit-g 21 1000 2 Classification F1 OpenML (Dataset ID: 31)
Click prediction small 12 39948 2 Classification F1 OpenML (Dataset ID: 42733)
icr 58 617 2 Classification F1 Kaggle (icr-identify-age-related-conditions)
jasmine 145 2984 2 Classification F1 OpenML (Dataset ID: 41143)
kc1 21 2109 2 Classification F1 OpenML (Dataset ID: 1067)
kick 33 72983 2 Classification F1 OpenML (Dataset ID: 41162)
smoker-status 23 143330 2 Classification F1 Kaggle (playground-series-s3e24)
software-defects 22 91586 2 Classification F1 Kaggle (playground-series-s3e23)
titanic 12 891 2 Classification F1 Kaggle (titanic)
GesturePhaseSegmentationProcessed 33 9873 5 Multiclass F1-weighted OpenML (Dataset ID: 4538)
mfeat-factors 217 2000 10 Multiclass F1-weighted OpenML (Dataset ID: 12)
segment 20 2310 7 Multiclass F1-weighted OpenML (Dataset ID: 40984)
wine-quality-white 12 4898 7 Multiclass F1-weighted OpenML (Dataset ID: 40498)

Table 3: Summary of the machine learning datasets used in the experiments. OpenML datasets
can be accessed using their respective dataset IDs. The Kaggle datasets are available at
https://www.kaggle.com/competitions/{source}.
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B PROMPTS

B.1 TASK PROMPT

All LLM-based methods start by receiving the same base requirement prompt at the beginning of
the task. The prompt specifies the dataset’s name, the target label column, the evaluation metric to
be used, and the dataset’s file path. Furthermore, the prompt include a path to a text file containing
the dataset’s metadata.

1 TASK_PROMPT = """
2 # User requirement
3 This is a {datasetname} dataset.
4 Your goal is to predict the target column ‘{target_col}‘.
5 Perform data analysis, data preprocessing, feature engineering, and modeling to predict the

target. Report {metric} on the eval data. Do not plot or make any visualizations.
6
7 # Data dir
8 train set (with labels): {train_path}
9 dev set (with labels): {dev_path}

10 test set (without labels): {test_path}
11 dataset description: {data_info_path}
12 (During EDA, you can use this file
13 to get additional information about the dataset)
14 """

Since AIDE automatically splits the training set into a new train set and a dev set, we combine the
original train and dev sets and provide them as input to AIDE. In both setups, the frameworks have
access to the labels for both the train and dev sets. Therefore, we believe this subtle difference does
not affect the fairness of the comparison.

B.2 INSTRUCTION PROMPT

The instruction prompt would direct the framework to save the final prediction file for evaluation.

1 DI_INSTRUCTION = """
2 ## Attention
3 1. Please do not leak the target label in any form during training.
4 2. Test set does not have the target column.
5 3. When conducting data exploration or analysis, print out the results of your findings.
6 4. You should perform transformations on train, dev, and test sets at the same time (it’s a

good idea to define functions for this and avoid code repetition).
7 5. When scaling or transforming features, make sure the target column is not included.
8 6. You could utilize dev set to validate and improve model training. {special_instruction}
9

10 ## Saving Dev and Test Predictions
11 1. Save the prediction results of BOTH the dev set and test set in ‘dev_predictions.csv‘ and ‘

test_predictions.csv‘ respectively in the output directory.
12 - Both files should contain a single column named ‘target‘ with the predicted values.
13 2. Make sure the prediction results are in the same format as the target column in the

training set.
14 - For instance, if the target column is categorical, the prediction results should be

categorical as well.
15
16 ## Output Performance
17 Print the train and dev set performance in the last step.
18
19 # Output dir
20 {output_dir}
21 """
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B.3 INSIGHT PROPOSAL PROMPT

Insight Proposer uses this prompt to generate a search space of insights for different stages of the
machine learning task.

1 DATASET_INSIGHT_PROMPT = """
2 # Dataset Description
3 {dataset}
4
5 # Dataset Metadata
6 {metadata}
7
8 # Dataset Head
9 {head}

10
11 # Instruction
12 Propose insights to help improve the performance of the model on this dataset.
13 The insights should be proposed based on the dataset description with different task types.
14 Each task type should have at least 5 insights.
15 Make sure each method is diverse enough and can be implemented separately.
16 Be specific about models’ choices, ensemble and tuning techniques, and preprocessing & feature

engineering techniques.
17
18 # Format
19 ‘‘‘json
20 [
21 {{
22 "task_type": "EDA",
23 "insights": [
24 "insight1",
25 "insight2",
26 "insight3",
27 ...
28 "insightN"
29 ]
30 }},
31 {{
32 "task_type": "Data Preprocessing",
33 "insights": [
34 "insight1",
35 "insight2",
36 "insight3",
37 ...
38 "insightN"
39 ]
40 }},
41 {{
42 "task_type": "Feature Engineering",
43 "insights": [
44 "insight1",
45 "insight2",
46 "insight3",
47 ...
48 "insightN"
49 ]
50 }},
51 {{
52 "task_type": "Model Training",
53 "insights": [
54 "insight1",
55 "insight2",
56 "insight3",
57 ...
58 "insightN"
59 ]
60 }}
61 ]
62 ‘‘‘
63 """
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C RESULTS

C.1 MAIN RESULTS

AutoGluon AutoSklearn AIDE DI SELA
Dataset Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

Click prediction small 7 7 2 1 7.3 4 11 10 7.7 6
GesturePhaseSegmentationProcessed 1 1 6.3 3 7.3 4 11 10 5.3 2
Moneyball 4 4 10 9 4 1 9 2 6 3
SAT11-HAND-runtime-regression 1 1 12 11 5.3 3 9 8 3.7 2
boston 5 5 12 11 3.7 2 9 8 4 1
colleges 1 1 12 11 6 2 8 7 4 3
concrete-strength 5 5 12 11 6.3 4 2 1 8.3 6
credit-g 4 4 10 9 10 5 5.3 1 3.7 2
diamonds 2 2 12 11 6 4 8.7 7 3 1
house-prices 1 1 12 11 6.7 5 7.3 3 4 2
icr 5 5 5.3 3 12 11 9 8 2.3 1
jasmine 7 7 6 4 8.7 5 11.3 9 2 1
kc1 10 10 2.7 1 8 5 11.3 9 5 2
kick 4 4 2 1 9.3 6 11 10 6.7 5
mfeat-factors 4 4 2 1 10 9 10.3 6 6.7 5
segment 3 3 6.3 5 11 10 9.7 7 2.3 1
smoker-status 7 7 4.7 3 11.3 9 7.7 2 4.3 1
software-defects 8 8 2 1 12 11 6 4 7.7 6
titanic 7 7 9.7 6 2.7 1 10.3 8 5.3 3
wine-quality-white 2 2 10 8 7.3 4 9 7 3.3 1

Overall Rank ↓ 4.4 4.4 7.6 6.1 7.8 5.3 8.8 6.4 4.8 2.7

Table 4: Methods’ ranking for each tabular dataset

AutoGluon AutoSklearn AIDE DI SELA
Dataset Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

Click prediction small 26.6 26.6 40.2 40.3 26.1 39.4 12.9 13.9 23.2 27.4
GesturePhaseSegmentationProcessed 69.3 69.3 67.2 68.4 56.3 68.1 60.1 64.4 67.9 69.2
Moneyball 24.3 24.3 13.1 13.8 23.8 24.6 9.5 24.5 21.9 24.5
SAT11-HAND-runtime-regression 12.6 12.6 10.3 10.3 12.0 12.1 11.4 11.9 12.2 12.5
boston 39.8 39.8 19.5 19.6 40.5 41.3 37.0 38.6 40.1 41.4
colleges 88.3 88.3 2.1 2.1 86.0 87.8 87.5 87.7 87.8 87.8
concrete-strength 28.3 28.3 17.4 17.9 28.3 28.3 28.8 29.6 28.2 28.2
credit-g 50.5 50.5 35.1 44.0 21.6 48.4 48.1 53.2 50.9 52.7
diamonds 13.8 13.8 8.7 8.7 13.7 13.7 13.5 13.6 13.7 13.8
house-prices 9.0 9.0 2.0 2.0 8.9 8.9 8.5 9.0 8.9 9.0
icr 76.2 76.2 70.4 79.2 31.7 35.9 57.8 60.6 78.7 79.2
jasmine 84.3 84.3 84.4 84.7 83.6 84.6 77.8 83.5 85.4 86.2
kc1 38.3 38.3 43.5 45.0 40.8 42.6 38.1 41.2 42.2 43.1
kick 39.6 39.6 41.8 42.1 14.9 38.6 2.8 4.2 35.9 38.7
mfeat-factors 96.7 96.7 97.1 97.5 94.4 94.5 93.0 96.0 95.7 96.2
segment 93.5 93.5 92.7 93.1 91.7 92.2 91.7 92.6 93.8 94.4
smoker-status 78.0 78.0 78.6 78.9 74.8 76.3 77.3 81.5 82.4 91.5
software-defects 51.5 51.5 61.1 61.7 49.7 49.8 54.5 57.3 52.2 53.3
titanic 78.9 78.9 76.2 78.9 81.2 83.7 76.0 78.5 78.8 79.7
wine-quality-white 65.4 65.4 60.7 61.4 62.9 65.1 61.2 61.6 65.3 66.0

Overall NS % ↑ 53.2 53.2 46.1 47.5 45.5 51.8 47.4 50.2 53.3 54.7

Table 5: Methods’ NS % for each tabular dataset
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C.2 PERFORMANCE USING DIFFERENT LLMS

GPT-4o Claude 3.5 Sonnet DeepSeek V2.5
Avg. NS ↑ 62.3 57.9 60.9
Avg. Best NS ↑ 65.5 59.2 62.4

Avg. Rank ↓ 3.7 6.3 5.0
Avg. Best Rank ↓ 1.5 4.8 3.2

Table 6: Results of SELA with different base LLMs on the selected tabular datasets.
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D COST-EFFECTIVENESS ANALYSIS

We conduct multiple trials of execution of each method to estimate the average running cost for the
LLM-based baselines. As shown in Table 7, all methods incur relatively low costs to complete a
single machine learning task. Among these, AIDE exhibits the lowest execution cost, due to the
lack of stage-wise planning, resulting in fewer token generations compared to the other approaches.
Additionally, SELA, which employs Data Interpreter as its base experimenter, is less costly than
Data Interpreter itself. This efficiency is largely due to SELA’s state-saving and loading mechanism,
which reduces the generation of repeated tasks and code.

Cost per ML task ($)

Data Interpreter (k=10) 0.07
AIDE (k=10) 0.01
SELA (k=10) 0.05

Table 7: Estimated costs of agent-based frameworks utilizing DeepSeekV2.5 on a single machine
learning dataset over k iterations/rollouts.
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E CASE STUDY

E.1 MCTS PROCESS OVERVIEW

1 Number of simulations: 10
2 [Node 0]
3 Plans:
4 1. Perform exploratory data analysis on the train and dev datasets
5 2. Preprocess the train, dev, and test datasets
6 3. Perform feature engineering on the train, dev, and test datasets
7 4. Train multiple models and evaluate their performance
8 5. Train a weighted ensemble model using the best performing models
9 6. Evaluate the ensemble model on the dev set and save predictions

10 7. Generate predictions for the test set and save them
11 Simulated: True
12 Score: avg score: 0.6150206840685731, simulated score: {’train_score’: 1.0, ’dev_score’:

0.6855841857240594, ’test_score’: 0.6814818772150697, ’score’: 0.6855841857240594},
Visits: 10

13
14 [Node 0-0]
15 Plans:
16 3. Perform feature engineering on the train, dev, and test datasets by creating new

features that calculate the magnitude of the vectorial velocities and accelerations
to capture the overall movement intensity.

17 Simulated: True
18 Score: avg score: 0.6507249985568175, simulated score: {’train_score’: 0.982920964830782,

’dev_score’: 0.6420233166755841, ’test_score’: 0.647550336228104, ’score’:
0.6420233166755841}, Visits: 2

19
20 [Node 0-0-0]
21 Plans:
22 4. Train a Random Forest classifier to leverage its ability to handle

high-dimensional data and capture non-linear relationships, and evaluate its
performance

23 Simulated: False
24 Score: avg score: 0, simulated score: {}, Visits: 0
25
26 [Node 0-0-1]
27 Plans:
28 4. Train multiple models, including a Support Vector Machine (SVM) with a radial

basis function (RBF) kernel, and evaluate their performance.
29 Simulated: False
30 Score: avg score: 0, simulated score: {}, Visits: 0
31
32 [Node 0-0-2]
33 Plans:
34 4. Implement a Neural Network with multiple layers to capture the hierarchical

patterns in the data and evaluate its performance
35 Simulated: True
36 Score: avg score: 0.6594266804380511, simulated score: {’train_score’: 1.0,

’dev_score’: 0.6594266804380511, ’test_score’: 0.6702614538699305, ’score’:
0.6594266804380511}, Visits: 1

37
38 [Node 0-0-3]
39 Plans:
40 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine

them, and evaluate their performance
41 Simulated: False
42 Score: avg score: 0, simulated score: {}, Visits: 0
43
44 [Node 0-0-4]
45 Plans:
46 4. Train multiple models, perform hyperparameter tuning using Grid Search or Random

Search, and evaluate their performance
47 Simulated: False
48 Score: avg score: 0, simulated score: {}, Visits: 0
49
50 [Node 0-1]
51 Plans:
52 3. Perform feature engineering on the train, dev, and test datasets by generating

time-based features, such as the difference between consecutive frames, to capture
the rate of change in movements.

53 Simulated: True
54 Score: avg score: 0.6464940718972336, simulated score: {’train_score’: 1.0, ’dev_score’:

0.5985614604756948, ’test_score’: 0.5857379626419719, ’score’: 0.5985614604756948},
Visits: 2

55
56 [Node 0-1-0]
57 Plans:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

58 4. Train a Random Forest classifier to leverage its ability to handle
high-dimensional data and capture non-linear relationships

59 Simulated: False
60 Score: avg score: 0, simulated score: {}, Visits: 0
61
62 [Node 0-1-1]
63 Plans:
64 4. Train multiple models, including a Support Vector Machine (SVM) with a radial

basis function (RBF) kernel, and evaluate their performance to model the complex
decision boundaries between different gesture phases.

65 Simulated: True
66 Score: avg score: 0.6944266833187726, simulated score: {’train_score’: 1.0,

’dev_score’: 0.6944266833187726, ’test_score’: 0.6928451194338062, ’score’:
0.6944266833187726}, Visits: 1

67
68 [Node 0-1-2]
69 Plans:
70 4. Implement a Neural Network with multiple layers to capture the hierarchical

patterns in the data and evaluate its performance
71 Simulated: False
72 Score: avg score: 0, simulated score: {}, Visits: 0
73
74 [Node 0-1-3]
75 Plans:
76 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine

them, and evaluate their performance
77 Simulated: False
78 Score: avg score: 0, simulated score: {}, Visits: 0
79
80 [Node 0-1-4]
81 Plans:
82 4. Train multiple models and perform hyperparameter tuning using techniques like Grid

Search or Random Search to optimize and evaluate their performance.
83 Simulated: False
84 Score: avg score: 0, simulated score: {}, Visits: 0
85
86 [Node 0-2]
87 Plans:
88 3. Perform feature engineering on the train, dev, and test datasets by creating features

that represent the spatial relationships between different body parts, such as the
distance between the hands and the head.

89 Simulated: True
90 Score: avg score: 0.6296836159165489, simulated score: {’train_score’:

0.7619969104124632, ’dev_score’: 0.5997286931710517, ’test_score’:
0.604077566134264, ’score’: 0.5997286931710517}, Visits: 3

91
92 [Node 0-2-0]
93 Plans:
94 4. Train a Random Forest classifier to leverage its ability to handle

high-dimensional data and capture non-linear relationships, and evaluate its
performance

95 Simulated: False
96 Score: avg score: 0, simulated score: {}, Visits: 0
97
98 [Node 0-2-1]
99 Plans:

100 4. Train multiple models, including a Support Vector Machine (SVM) with a radial
basis function (RBF) kernel, and evaluate their performance to model the complex
decision boundaries between different gesture phases.

101 Simulated: True
102 Score: avg score: 0.6446610772892973, simulated score: {’train_score’:

0.9952809245924918, ’dev_score’: 0.6372459669415207, ’test_score’:
0.6423549137767338, ’score’: 0.6372459669415207}, Visits: 2

103
104 [Node 0-2-1-0]
105 Plans:
106 5. Train a weighted ensemble model using the best performing models from task 4
107 Simulated: False
108 Score: avg score: 0, simulated score: {}, Visits: 0
109
110 [Node 0-2-1-1]
111 Plans:
112 5. Using the models that performed best in task 4, train a weighted ensemble

model to improve overall performance.
113 Simulated: False
114 Score: avg score: 0, simulated score: {}, Visits: 0
115
116 [Node 0-2-1-2]
117 Plans:
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118 5. Develop a weighted ensemble model by integrating the top-performing models
from task 4, ensuring to evaluate and adjust the weights for optimal
performance.

119 Simulated: True
120 Score: avg score: 0.6520761876370741, simulated score: {’train_score’: 1.0,

’dev_score’: 0.6520761876370741, ’test_score’: 0.6563435152603494, ’score’:
0.6520761876370741}, Visits: 1

121
122 [Node 0-2-1-3]
123 Plans:
124 5. Train a weighted ensemble model by combining the predictions of the

top-performing models from task 4 to improve overall performance.
125 Simulated: False
126 Score: avg score: 0, simulated score: {}, Visits: 0
127
128 [Node 0-2-1-4]
129 Plans:
130 5. Develop a weighted ensemble model by combining the top-performing models from

task 4, ensuring to optimize the weights for improved performance.
131 Simulated: False
132 Score: avg score: 0, simulated score: {}, Visits: 0
133
134 [Node 0-2-2]
135 Plans:
136 4. Implement a Neural Network with multiple layers to capture the hierarchical

patterns in the data and evaluate its performance
137 Simulated: False
138 Score: avg score: 0, simulated score: {}, Visits: 0
139
140 [Node 0-2-3]
141 Plans:
142 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine

them, and evaluate their performance
143 Simulated: False
144 Score: avg score: 0, simulated score: {}, Visits: 0
145
146 [Node 0-2-4]
147 Plans:
148 4. Perform hyperparameter tuning using Grid Search or Random Search to train multiple

models and evaluate their performance
149 Simulated: False
150 Score: avg score: 0, simulated score: {}, Visits: 0
151
152 [Node 0-3]
153 Plans:
154 3. Apply feature selection techniques such as Recursive Feature Elimination (RFE) or

SelectKBest to identify and retain the most important features in the train, dev,
and test datasets.

155 Simulated: True
156 Score: avg score: 0.49056683315196203, simulated score: {’train_score’:

0.9988177730410426, ’dev_score’: 0.51620611302976, ’test_score’: 0.525989891002361,
’score’: 0.51620611302976}, Visits: 2

157
158 [Node 0-3-0]
159 Plans:
160 4. Train a Random Forest classifier to leverage its ability to handle

high-dimensional data and capture non-linear relationships, and evaluate its
performance.

161 Simulated: False
162 Score: avg score: 0, simulated score: {}, Visits: 0
163
164 [Node 0-3-1]
165 Plans:
166 4. Train multiple models, including a Support Vector Machine (SVM) with a radial

basis function (RBF) kernel, and evaluate their performance to model the complex
decision boundaries between different gesture phases.

167 Simulated: True
168 Score: avg score: 0.4649275532741641, simulated score: {’train_score’:

0.7299159411193588, ’dev_score’: 0.4649275532741641, ’test_score’:
0.4631598897487413, ’score’: 0.4649275532741641}, Visits: 1

169
170 [Node 0-3-2]
171 Plans:
172 4. Implement and train a Neural Network with multiple layers to capture hierarchical

patterns in the data and evaluate its performance
173 Simulated: False
174 Score: avg score: 0, simulated score: {}, Visits: 0
175
176 [Node 0-3-3]
177 Plans:
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178 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine
them, and evaluate their performance

179 Simulated: False
180 Score: avg score: 0, simulated score: {}, Visits: 0
181
182 [Node 0-3-4]
183 Plans:
184 4. Train multiple models, perform hyperparameter tuning using techniques like Grid

Search or Random Search, and evaluate their performance
185 Simulated: False
186 Score: avg score: 0, simulated score: {}, Visits: 0
187
188 [Node 0-4]
189 Plans:
190 3. Create interaction features by combining existing features, such as the product of

velocity and acceleration, to capture complex relationships in the train, dev, and
test datasets

191 Simulated: False
192 Score: avg score: 0, simulated score: {}, Visits: 0
193
194 Generated 29 unique codes.
195 Best node: 0-1-1, score: {’train_score’: 1.0, ’dev_score’: 0.6944266833187726, ’test_score’:

0.6928451194338062, ’score’: 0.6944266833187726}
196 Dev best node: 0-1-1, score: {’train_score’: 1.0, ’dev_score’: 0.6944266833187726,

’test_score’: 0.6928451194338062, ’score’: 0.6944266833187726}

The MCTS process in this case study consists of a structured exploration of the machine learning
pipeline, executed in the following steps:

Step 1: Initialization (Node 0)
The process begins by defining high-level tasks, such as data analysis, data pre-processing, fea-
ture engineering, and model training. These general steps establish the overall framework for the
machine learning workflow.

Step 2: Feature Engineering Exploration (Selection and Expansion)
MCTS then explores specific feature engineering techniques. For instance, Node 0-0 introduces
features like the magnitude of vectorial velocities, Node 0-1 generates time-based features, and
Node 0-2 creates spatial relationship features between body parts. These feature engineer methods
aim to improve data representation, which is crucial for enhancing model accuracy.

Step 3: Model Training (Expansion)
At this point, the process tests various machine learning models. For example, Node 0-1-1 applies
a Support Vector Machine (SVM) with a radial basis function (RBF) kernel, while Node 0-0-2
evaluates a Neural Network. The models are trained and evaluated based on performance across
training, development, and test datasets.

Step 4: Performance Evaluation (Simulation)
Each node is scored based on model performance. MCTS retains and further explores the best-
performing nodes, using prior successful results to guide the search for improved solutions.

Step 5: Nodes Update (Backpropagation)
After the simulation, the performance score is retrieved and backpropagated through the tree. For
example, after simulating Node 0-1-1, MCTS backpropagates the result up the tree, updating parent
nodes like Node 0-1 and Node 0.

Step 6: Best Model Selection
In the final step, MCTS selects the best-performing solution. In this case, Node 0-1-1, using the
SVM with RBF kernel, achieved the highest scores across datasets, effectively combining feature
engineering and model selection to optimize the machine learning pipeline.
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