
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELA: TREE-SEARCH ENHANCED LLM AGENTS FOR
AUTOMATED MACHINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated Machine Learning (AutoML) approaches encompass traditional meth-
ods that optimize fixed pipelines for model selection and ensembling, as well
as newer LLM-based frameworks that autonomously build pipelines. While
LLM-based agents have shown promise in automating machine learning tasks,
they often generate low-diversity and suboptimal code, even after multiple itera-
tions. To overcome these limitations, we introduce Tree-Search Enhanced LLM
Agents (SELA), an innovative agent-based system that leverages Monte Carlo
Tree Search (MCTS) to optimize the AutoML process. By representing pipeline
configurations as trees, our framework enables agents to conduct experiments in-
telligently and iteratively refine their strategies, facilitating a more effective ex-
ploration of the machine learning solution space. This novel approach allows
SELA to discover optimal pathways based on experimental feedback, improving
the overall quality of the solutions. In an extensive evaluation across 20 machine
learning datasets, we compare the performance of traditional and agent-based Au-
toML methods, demonstrating that SELA achieves a win rate of 65% to 80%
against each baseline across all datasets. These results underscore the signifi-
cant potential of agent-based strategies in AutoML, offering a fresh perspective
on tackling complex machine learning challenges. The code will be open-sourced
upon publication.

1 INTRODUCTION

Automated Machine Learning (AutoML) is a rapidly evolving field that seeks to automate the pro-
cess of designing reliable machine learning solutions with minimal human intervention. Traditional
AutoML frameworks, such as Auto-WEKA (Thornton et al., 2013), Auto-Sklearn (Feurer et al.,
2015; 2020), AutoGluon (Tang et al., 2024b), and H2O AutoML (LeDell & Poirier, 2020), rely on
predefined search spaces and routines. These frameworks primarily focus on optimizing hyperpa-
rameters and model ensembling to find the best model configuration. However, this fixed and static
approach often lacks the adaptability needed to handle diverse and dynamic data scenarios, resulting
in suboptimal performance in more complex settings. Additionally, the traditional focus on model
training leaves other crucial stages of the machine learning pipeline, such as data preprocessing and
feature engineering, underexplored, thereby limiting the overall effectiveness of these systems.

Recently, large language model (LLM)-based agents have emerged as promising tools for automat-
ing machine learning tasks by leveraging natural language processing capabilities to generate code.
These systems typically begin with a natural language prompt describing the dataset and the prob-
lem, after which an LLM generates an end-to-end solution. Early efforts, such as Zhang et al.
(2024), experimented with prompting LLMs to generate machine learning solutions, while Hong
et al. (2024) introduced agents equipped with Hierarchical Graph Modeling and Programmable
Node Generation to address complex and dynamic workflows. Despite these advances, LLM-based
solutions often fall short in generating diverse and highly optimized workflows, as their search pro-
cess remains limited to a single pass or trial. Without iterative refinement or the ability to explore
alternative strategies, these solutions frequently converge on suboptimal results, even when multiple
attempts are allowed.

A critical shortcoming of both traditional AutoML and LLM-based frameworks lies in their inability
to mimic the nuanced problem-solving approach of human experts. When approaching a machine

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

learning task, an expert does not simply execute a fixed pipeline. Instead, they explore various
potential configurations, systematically conduct experiments, analyze results, and iteratively refine
their understanding of each component’s effectiveness. This iterative, feedback-driven process al-
lows experts to explore diverse solutions and improve them incrementally until they arrive at the
optimal configuration.

R

A1 A2 A3

B1 B2 B3

C2 C3

Check the data columns

C1

Update the
one-hot encoding

Scale the
numeric
columns

Use PCAApply polynomial
features

Derive a new
feature

Impute
with
medians

Experiment
with LR and
RF

Use a stacking
classifier as an
ensemble

Use k-fold
bagging to avoid
overfitting

Data
Preprocess

Feature
Engineering

Model
Training

Explonary
Data Analysis

Multi-step Generation
Propose a multi-step plan and
generate the ML solution step

by step.

One-step Generation + Iterative Refinement
Generate the whole ML solution within one
step and then iteratively refine and improve

the whole solution.

Refine
1

Refine
1

Refine
2

Solution 1

Solution 2

Solution 3

Our Method
To generate a multi-step ML solution, we utilize an LLM
to propose the search space for different ML stages. We

then apply MCTS to search for an optimized solution.

Figure 1: SELA’s abstraction compared to other agent-based AutoML frameworks. There are two
main types of agent-based approaches to AutoML problems. The first approach (Hong et al., 2024)
divides a machine learning task into multiple stages, proposing a plan for each stage, and generating
and executing code step by step according to the plan, with no refinement after the solution is com-
pleted. The second (Schmidt et al., 2024) generates the entire solution in one step and iteratively
refines it as a whole. SELA integrates both approaches, enabling stage-wise planning while itera-
tively exploring better solutions at each stage level.

Inspired by this human-centered approach, we propose Tree-Search Enhanced LLM Agents
(SELA) for automated machine learning, a novel framework that integrates the strengths of LLM
agents with a structured search and refinement process modeled on how experts solve machine learn-
ing problems. As illustrated in Figure 1, our framework combines the benefits of stage-wise plan-
ning, where each stage (e.g., Exploratory Data Analysis, Data Preprocessing, Feature Engineering,
and Model Training) is handled sequentially, with an iterative refinement mechanism. In SELA, the
search space of a machine learning problem is conceptualized as a tree, where each branch repre-
sents a potential solution path. This tree-based structure enables the agent to systematically explore
and refine solutions, much like an expert who tests and improves their strategy based on continuous
feedback.

To navigate this search space, we employ Monte Carlo Tree Search (MCTS) (Browne et al., 2012)
as the core decision-making engine, leveraging its ability to balance exploration (testing new strate-
gies) and exploitation (improving known good strategies). MCTS allows the agent to efficiently
explore large decision spaces, collect and process experimental results, and intelligently select the
next promising configuration to test. By iterating through this cycle of experimentation and refine-
ment, SELA incrementally improves its solutions, offering a more dynamic and flexible approach
than static AutoML frameworks.

We rigorously evaluated SELA using 20 diverse datasets from the AutoML benchmark, comparing
its performance against both traditional AutoML systems and agent-based AutoML approaches. The
results demonstrate that SELA consistently delivers superior performance across a wide range of
machine learning tasks, validating its effectiveness and adaptability.

Our research makes the following contributions:

1. We introduce a novel approach that empowers LLM agents to address machine learning
challenges through an iterative, feedback-driven process. This mirrors the methodology of
human experts, enabling continuous exploration of various configurations and improving
outcomes through multiple rounds of refinement. This iterative exploration yields more
diverse and optimized solutions than single-pass strategies.

2. We present a robust system that intelligently selects and executes experiments to generate
high-performance pipelines. At the heart of this framework is the conceptualization of the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

machine learning search space as a tree, navigated using Monte Carlo Tree Search (MCTS).
This approach allows the agent to systematically explore complex solution landscapes and
adapt its strategy based on intermediate feedback, enabling the efficient discovery of effec-
tive solutions.

3. We provide a comprehensive comparison of agent-based AutoML systems with traditional
AutoML frameworks, highlighting the significant untapped potential of agentic approaches
in solving machine learning problems. Our findings suggest that this emerging paradigm
offers a promising direction for future research, with considerable advantages in flexibility,
adaptability, and performance.

2 RELATED WORKS

Tree Search and Its Integration with LLMs Tree search algorithms have significantly advanced
problem-solving in artificial intelligence, with Monte Carlo Tree Search (MCTS) emerging as a
leading technique. These algorithms have been successfully applied across various domains, includ-
ing robotics (Best et al., 2019; Wu et al., 2015; Clary et al., 2018), chemistry (Segler et al., 2018),
and gaming (Silver et al., 2016; 2017), where MCTS is used to navigate vast solution spaces and
solve complex problems. More recently, research has focused on integrating tree search with Large
Language Models (LLMs) to enhance reasoning and decision-making. Studies such as Krishna-
murthy et al. (2024) and Dwaracherla et al. (2024) explored LLMs’ capacities for efficient explo-
ration, while Tang et al. (2024a) and Hui & Tu (2024) developed strategies for exploiting previously
learned knowledge. Striking a balance between exploration and exploitation, Zhou et al. (2024) and
Chi et al. (2024) applied MCTS for planning with external or self-evaluated feedback, while Feng
et al. (2023); Wang et al. (2024) adapted AlphaZero-style tree search to LLM-based tasks. These
advancements underscore the potential of combining tree search methods with LLMs, balancing
exploration of new solutions with exploitation of prior knowledge to enhance decision-making.

Advances and Limitations in AutoML Systems Automated Machine Learning (AutoML) frame-
works were introduced to reduce the need for expert knowledge in designing machine learning
pipelines. Early AutoML efforts, such as (Feurer et al., 2020; Jin et al., 2019; Olson & Moore,
2016; Thornton et al., 2013), focused primarily on automating key pipeline components like hy-
perparameter optimization, model selection, and ensembling. These frameworks achieved notable
progress by integrating meta-learning and hyperparameter search strategies to automatically select
and tune machine learning models. More recent AutoML systems, such as (Erickson et al., 2020)
and (LeDell & Poirier, 2020), employed ensembling techniques to further improve performance,
and extensions into multi-modal data settings (Tang et al., 2024b; Jin et al., 2023) have broadened
AutoML’s applicability.

Recently, there has been growing interest in leveraging LLMs within AutoML systems to enhance
pipeline flexibility. Studies such as Hollmann et al. (2024) and Li et al. (2024) applied LLMs to
automate feature engineering, while Liu et al. (2024) introduced LLMs for hyperparameter tuning.
In addition, Luo et al. (2024) proposed embedding LLMs at each stage of the machine learning
workflow. Despite these advancements, traditional AutoML systems remain constrained by rigid
pipelines and limited flexibility to adapt to unique datasets or specific task requirements.

LLM Agents for Dynamic Machine Learning Pipelines In contrast to static pipelines, LLM-based
agents offer a more dynamic solution for addressing complex machine learning challenges. Hong
et al. (2024) introduced an LLM agent with hierarchical graph modeling and programmable node
generation, enabling the creation of sophisticated, adaptable pipelines for diverse data scenarios.
Similarly, Zhang et al. (2024) demonstrated that LLMs could effectively interpret structured inputs
and apply past experiences to solve new machine learning tasks. Guo et al. (2024) expanded on this
by introducing a data science agent that leverages case-based reasoning; however, it faces challenges
when generating solutions from scratch due to its reliance on existing codebases. Schmidt et al.
(2024) proposed an iterative approach, where the entire pipeline is generated in one step and refined
iteratively through incremental modifications.

Building on these efforts, SELA introduces an agent that integrates the strengths of both
approaches—stage-wise planning and iterative refinement—allowing it to autonomously explore
and generate machine learning solutions from the ground up. This approach offers greater flexibility
and control during the search process, enabling the generation of optimized solutions at each stage.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Select

R

A1 A2 A3

B1 B2 B3

Expand

Simulate
(by Agent)

Backprop

Problem Description &
Dataset InformationGenerated Search Space

Data
Preprocess

Insights

Feature
Engineering

Insights

Model
Training
Insights

Monte Carlo Tree Search

Dataset

LLM

3. Output
search result
for execution

2. Generate
search space

4. Plan &
execute

1. Input problem
and data info

Default start:
Explonary Data Analysis

Data Processing:
One-hot Encoding

Feature Engineering:
Polynomial Features

Model Training:
Stacking Classifier

Default end:
Model Evaluate

5. Simulation score feedback

Loop (step 3 -> 4 -> 5) until stopping condition satisfied

C1 C2

Root

Simulate and Get Feedback

A1

B2

C2

Figure 2: SELA’s pipeline operates as follows: The system begins by inputting the problem descrip-
tion and dataset information into the LLM, which generates a search space of potential solutions,
encompassing data preprocessing, feature engineering, and model training. The search module,
powered by Monte Carlo Tree Search (MCTS), explores this space by selecting, expanding, and
simulating potential configurations. The LLM agent then simulates the selected configuration by
planning, coding, and executing the experiment. Feedback from the simulation is fed back into the
search module, where it is used in the backpropagation step to refine future searches. This iterative
process continues until a predefined stopping criterion is met, resulting in an optimized experimental
pipeline.

3 METHOD

As illustrated in Figure 2, SELA consists of three key components: an LLM-based insight proposer,
a search module using MCTS, and an LLM agent as the experiment executor. First, the LLM
generates insights from the problem description and dataset, defining a search space. The search
module then organizes this space into a tree structure and uses MCTS to explore promising paths.
During each cycle, the selected path is passed to the LLM agent, which translates the configuration
into an executable pipeline. The agent plans, codes, and executes the experiment, feeding the results
back to refine future searches. This iterative process continues until the termination criterion is met.
The following sections provide a detailed explanation of each component.

3.1 INSIGHT PROPOSAL AND SEARCH SPACE CREATION

To enable SELA to explore a wide range of machine learning strategies, we introduce an insight
proposer that generates diverse methods tailored to different stages of the machine learning work-
flow. Each proposed insight suggests either a single technique or a combination of methods aimed
at enhancing performance. For instance, a feature engineering insight might recommend creating
interaction features from existing variables, while a model training insight could propose a specific
algorithm or suggest running a grid search to improve accuracy.

The insight proposer takes as input the problem description p and dataset information d, such as
metadata and sample records, and generates m insights λ for each stage of the machine learning
process using a large language model M . These insights are stored in an insight pool, forming a
search space Λ for SELA to explore. We decompose the machine learning process into five stages:
Exploratory Data Analysis (τ1), Data Preprocessing (τ2), Feature Engineering (τ3), Model Training
(τ4), and Model Evaluation (τ5). For simplicity, we denote the entire set of stages as T and refer to
any specific stage as τ .

InsightProposer(p, d,M)→ Λ := {λτ
i | τ ∈ T, i = 1, . . . ,m} (1)

3.2 PIPELINE EXECUTION AND CODE GENERATION

We employ an LLM agent, referred to as the experiment executor E, to conduct each trial by building
practical experimental pipelines from natural language requirements. The agent takes two main steps

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

in this process. First, given an experiment configuration c, which is a set of insights provided by the
search module (introduced in Section 3.3.2), the experiment executor translates these insights into
a detailed plan. This plan consists of a sequence of task instructions Iτ∈T corresponding to each
stage of the machine learning process. This step is referred to as Eplan.

Next, following the plan, the agent writes and executes code στ for each task τ based on the re-
spective instruction Iτ , producing the code στ∈T for the full pipeline, along with the final execution
score s. The complete set of code outputs στ∈T is concatenated into a full solution σsol to address
the problem. This phase is referred to as Ecode & execute.

Eplan(p, d, c,M)→ Iτ∈T (2)

Ecode & execute(I
τ∈T , D,M)→ (στ∈T , s) (3)

3.3 TREE SEARCH IN MACHINE LEARNING EXPERIMENTS

In order to systematically explore the different configurations in machine learning experiments, we
model the search space as a hierarchical tree. This structure allows us to apply tree search algorithms,
where each path through the tree represents a different experiment configuration. Algorithm 1 also
provides an overview of this searching process.

3.3.1 EXPERIMENT NODE

To facilitate the exploration of various strategies, we model the proposed search space as a hierar-
chical tree that is well-suited for applying search algorithms. Each node in the tree, denoted as x,
represents one insight λ in the search space Λ and contains the following attributes:

• Insight λ(x): Represents the specific insight λτ
i ∈ Λ associated with this node, where τ

denotes the stage of the machine learning pipeline.

• Depth δ(x): Indicates the stage of the machine learning process the node corresponds to
(e.g., depth 1 might represent data preprocessing, depth 2 for feature engineering, and depth
3 for model training).

• Value v(x): The cumulative score from simulations for this node and all its descendants.

• Number of Visits nvisits(x): The total number of simulations conducted for this node and
its descendants.

• Simulation Score s(x): The score for simulating this node.

• Solution Code σsol(x) The final code produced after the node simulation.

• Stage Code σstage(x): The code generated up to the node’s current stage, a part of the
solution code

By modeling the search space as a tree, each path from the root to a node x represents an experiment
configuration c(x) = {λ(x1), λ(x2), . . . , λ(x)} ⊂ Λ, where x1, x2, . . . , x are nodes along the path.
The task of finding the optimal solution can therefore be viewed as a path search within the tree,
where each path corresponds to a potential configuration of the experiment.

3.3.2 TREE SEARCH FOR ML EXPERIMENTS

We apply Monte Carlo Tree Search (MCTS) to systematically explore and identify optimal ma-
chine learning solutions within our framework. MCTS allows us to efficiently navigate the search
space across multiple stages of the machine learning pipeline—from data preprocessing to model
selection—by balancing exploration and exploitation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 SELA using MCTS
Input: Problem description p, data information d, data D, LLM M , rollout number k.

1: Λ← InsightProposer(p, d,M)
2: Initialize Tree using Λ
3: for i = 1 to k do
4: node x← select(Tree)
5: Xchild ← expand(Tree, x)
6: Randomly sample a node xsample from Xchild
7: Retreive experiment configuration c(xsample)
8: σsol, s← simulate(c(xsample), p, d,D,M)
9: attach the simulation result σsol, s to xsample for final solution selection

10: Backpropagate(Tree, s)
11: end for
12: xdev best ← argmax

x∈Tree
(s(x))

Output: σsol(xdev best)

Algorithm 2 Simulate
Input: Experiment configuration c, problem description p, data information d, data D, LLM M .

1: Draft plans Iτ∈T ← Eplan(p, d, c,M)
2: Code and execute sequentially στ∈T , s← Ecode & execute(I

τ∈T , D,M)
3: σsol ← concatenate(στ∈T)

Output: σsol, s

The search process involves performing multiple rollouts, which include the steps of selection, ex-
pansion, simulation, and backpropagation. We conduct k rollouts to explore various paths, aiming
to identify the best solution.

Selection At each iteration, we use a modified version of the UCT (Upper Confidence Bound for
Trees) algorithm, referred to as UCT-DP (depth-preferred), to select a node from the search tree.
Unlike traditional MCTS, where simulations are often performed quickly due to a fixed action space
and negligible action time, the context of machine learning tasks presents a different challenge.
Processes such as model training introduce significant computational time, making efficient node
exploration crucial. Since model selection can heavily influence the overall machine learning per-
formance, we prioritize exploring nodes at greater depths early on.

This modification reduces the need to explore every unvisited node, allowing deeper nodes to be
reached in fewer iterations—making the approach better suited for large-scale machine learning
experiments. The modified selection algorithm is expressed as:

UCT-DP(x) =
v(x)

n(x)
+ αexplore

√
lnnvisits(xparent)

n(x)
(4)

n(x) =

{
αunvisted if nvisits(x) = 0

nvisits(x) otherwise.
(5)

Here, αunvisted is a constant between 0 and 1 controlling the selection preference for unvisited nodes,
balancing between full exploration and computational efficiency. This adjustment allows us to focus
more on deeper parts of the tree that are likely to yield better solutions.

Expansion During the expansion phase, a set of child nodes Xchild at depth δ + 1 are instantiated
from the selected node x for potential simulation. Note that a single child node xchild from x inherits
the attributes stored in x and possesses λ(xchild) → λτδ+1 , an insight of stage τδ+1 from the search
space.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Simulation Once expanded, a node xsample is randomly sampled from Xchild for simulation. The path
from root to the sampled node forms a set of insights c(xsample) = {λ(x1), λ(x2), ..., λ(xsample)} ⊂
Λ, representing the experiment configuration to be simulated, where x1, x2, .., xsample are the nodes
along the path. The configuration c(xsample) is then fed to the experimenter E for execution following
Eplan and Ecode & execute, which produces a simulation score s, as illustrated in Section 3.3.1. The
score serves as the feedback for back propagation. Algorithm 2 outlines the simulation process.

Backpropagation After the simulation concludes, the performance score (e.g., based on the devel-
opment set) is retrieved and backpropagated through the tree. The score is propagated from the
simulated node up to the root, updating each parent node’s value and visit count. This allows nodes
representing more promising solutions to be prioritized in future rollouts. In addition, the solution
code is also backpropagated up to the tree, and it can be processed and saved as stage code depending
on the parent node during the update.

Backpropagation ensures that the algorithm learns which paths yield better results, guiding the
search toward higher-performing nodes as more rollouts are conducted.

3.3.3 EXPERIMENT STATE SAVING AND LOADING

To boost execution efficiency, SELA implements fine-grained code reuse by caching code at the
stage level. This caching is done according to each attempted configuration c, allowing the frame-
work to reuse as much saved code as possible if the incoming configuration cnew shares any part with
existing ones.

Given that LLMs produce non-deterministic outputs, the same instruction can yield different code,
leading to greater variance in final performance. To minimize this variance and reduce token us-
age during execution, SELA saves and loads the stage code for each node. Whenever a node is
chosen for execution, the experimenter reruns the saved stage code, ensuring consistency before
progressing to the next stage. This approach effectively conserves resources while maintaining ro-
bust performance across stages. In Appendix D, we examine the cost efficiency of this state-saving
and loading mechanism.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate SELA alongside several baselines on 20 datasets, which include 13 classi-
fication tasks and 7 regression tasks from the AutoML Benchmark (AMLB) (Gijsbers et al., 2024)
and Kaggle Competitions.

Table 3 provides detailed information on the datasets used. All datasets are split into training,
validation, and test sets with a 6:2:2 ratio. Each framework utilizes the training and validation sets
to train models and makes predictions on the test set labels.

Evaluation Metrics For the AMLB datasets, we use the default target column provided by
OpenML. For Kaggle competition datasets, we rely on the target column specified in the compe-
tition description. Performance is measured using root mean squared error (RMSE) for regression
tasks, F1 score for binary classification, and F1-weighted score for multi-class classification. To
ensure comparability across datasets with varying metrics, we introduce a normalized score (NS),
which intends to map RMSE into a range from 0 to 1.

NS(sraw) =

{
1

1+log (1+sraw)
if the metric is RMSE.

sraw otherwise.
(6)

Here, sraw represents the raw score before normalization. To evaluate SELA against other frame-
works, we employ three key metrics: average Normalized Score (NS), average rank, and average
best rank. The average rank is calculated by considering all rankings of a method across datasets,
while the average best rank focuses on the method’s best performance in each dataset. We also want

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

to quantify how other baselines perform relative to SELA. The ”Rescaled NS” is defined as:

Rescaled NS(f) =
NSf

NSSELA
(7)

where f represents the baseline method being compared to SELA.

Baselines We compare SELA with several baseline methods, including Data Interpreter (Hong
et al., 2024), AIDE (Schmidt et al., 2024), AutoGluon (Erickson et al., 2020), and AutoSklearn
(Feurer et al., 2015; 2020).

For LLM-based methods (SELA, Data Interpreter (DI), and AIDE), we use the same initial task
prompt, which includes the dataset name, target column, and evaluation metric. Given that
DeepSeek v2.5 (DeepSeek-AI, 2024) is an open-source large language model with robust coding
capabilities and a relatively low token cost, we selected it as the base LLM for our experiments.
To promote a moderate level of diversity in the model’s outputs, we set the temperature parameter
to 0.5. AIDE performs 10 iterations per execution, while SELA uses DI as the experimenter and
completes 10 rollouts per execution.

Each method, except for AutoGluon, is run three times for each dataset. AutoGluon, being deter-
ministic, is run only once with its default settings. AutoSklearn is also run with default settings,
limited to 600 seconds per task.

Method Wins Losses Top 1 Avg. NS % ↑ Avg. Best NS % ↑ Avg. Rank ↓ Avg. Best Rank ↓
AutoGluon 7 13 4 53.2 53.2 4.4 4.4
AutoSklearn 5 15 5 46.1 47.5 7.6 6.1
AIDE 5 15 2 47.1 51.8 7.8 5.3
Data Interpreter 4 16 2 47.4 50.2 8.8 6.4
SELA - - 7 53.3 54.7 4.8 2.7

Table 1: Results of each AutoML framework on 20 tabular datasets. The “Wins” column indicates
the number of datasets where the method outperforms SELA, while “Losses” shows the number of
datasets where the method underperforms. The “Top 1” column represents the number of datasets
where the method produces the best predictions across methods.

4.2 RESULTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rescaled NS on Test Data (relative to SELA)

Click_prediction_small
GesturePhaseSegmentationProcessed

Moneyball
SAT11-HAND-runtime-regression

boston
colleges

concrete-strength
credit-g

diamonds
house-prices

icr
jasmine

kc1
kick

mfeat-factors
segment

smoker-status
software-defects

titanic
wine-quality-white

D
at

as
et

AutoML Framework
AutoSklearn
AIDE
AutoGluon
DI
SELA Best

Figure 3: Rescaled NS of AutoML frameworks relative to SELA on tabular datasets. Points to
the left of the vertical line indicate poorer predictions compared to SELA. Notably, SELA often
occupies a leading position across the datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

As shown in Table 1, SELA achieves the highest average Normalized Score (NS) and average
best rank among all frameworks. Notably, SELA excels in producing the highest number of top
predictions, as indicated in the “Top 1” column across all datasets. Furthermore, the “Losses”
column reveals that each competing method falls short against SELA, losing in 65-80% of the
datasets.

Interestingly, AutoGluon exhibits a marginally higher average rank than SELA. This slight discrep-
ancy may be attributed to the inherent randomness in LLMs and model training processes, which
can influence the exploration of machine learning solutions. However, SELA’s higher average NS
suggests that even when it produces solutions with lower ranks, their test scores remain competitive
and close to the best solutions.

The two agent-based methods exhibit relatively lower performance. The first method, DI, struggles
to enhance its score with multiple attempts due to its inability to refine its solution after completing
a machine learning task. The second method, AIDE, lacks a stage-specific planning module, which
hinders its capacity to improve results after a series of greedy experiments. These limitations likely
account for their weaker performance.

Figure 3 further corroborates SELA’s effectiveness, revealing that its best solutions frequently oc-
cupy leading positions across various datasets. This visual representation exhibits the method’s con-
sistent high performance and adaptability across different ML datasets. We also include a detailed
results of each method in Appendix C.

4.3 ABLATION STUDY

For the rest of the study, we employ a subset of datasets to evaluate SELA under various settings.
Our selection process involves choosing the first two datasets alphabetically for each machine learn-
ing task. Specifically, we use boston, colleges, credit-g, Click prediction small, GesturePhaseSeg-
mentationProcessed, and mfeat-factors to conduct the ablation study.

DI SELA (Random Search) SELA (MCTS)
Avg. NS ↑ 56.4 58.6 60.9
Avg. Best NS ↑ 59.0 61.4 62.4
Avg. Rank ↓ 6.9 4.8 3.3
Avg. Best Rank ↓ 4.8 2.8 1.5

Table 2: Performance results for each search setting on the chosen datasets. SELA with MCTS
consistently surpasses SELA with Random Search.

Effectiveness of Search To evaluate the effectiveness of Monte Carlo Tree Search (MCTS) in im-
proving the solution search process, we conducted an ablation study. In this study, we compared the
performance of our method using MCTS against a variant that randomly samples insights from each
stage’s insight pool. As shown in Table 2, the MCTS version achieves a higher average normal-
ized score across datasets and a better overall ranking compared to the random sampling approach.
Moreover, even the random sampling variant of our method outperforms DI, the base experimenter.
This suggests the presence of an appropriate search space and an experiment agenda is vital for
improving a machine learning agent. Our insight proposer generates relevant and useful insights,
facilitating such improvement, regardless of the selection method.

SELA’s performance with different LLMs To evaluate the robustness of our framework, we
conduct experiments using different Large Language Models (LLMs). Specifically, we compare the
performance of SELA with Claude-3.5-Sonnet (Anthropic, 2024) and GPT-4o (OpenAI,
2024) against DeepSeek V2.5 which we primarily use for evaluation. This comparison enables
us to assess how the choice of LLM affects the overall effectiveness of our approach.

As Figure 4 shown, SELA delivers similar results across different LLMs, indicating its flexibility to
be executed with various models depending on user preference and availability. We also report the
numeric results in Appendix C.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Click_prediction GesturePhase boston colleges credit-g mfeat-factors
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
co

re

27.6

65.6

40.9

88.0

55.2

96.4

15.6

63.4

41.6

87.3

43.2

96.1

23.2

67.9

40.1

87.8

50.9

95.7

GPT-4o Claude-3.5-Sonnet DeepSeek-V2.5

Figure 4: Comparison of Normalized Scores between different base LLMs.

5 CONCLUSION

In this paper, we introduced SELA, a novel framework that integrates LLM-based agents with
Monte Carlo Tree Search (MCTS) to automate machine learning workflows. Our experimental
results, conducted on 20 machine learning datasets, demonstrate SELA’s effectiveness and high-
light its distinct advantages over both traditional AutoML frameworks and existing LLM-based ap-
proaches. The proposed methodology is not limited to machine learning but could be adapted to a
wide range of sequential decision-making problems, provided they can be represented as tree struc-
tures with scalar rewards derived from their leaf nodes. Looking ahead, future work could explore
extending this framework to other domains, including software engineering, scientific discovery,
game playing, and robotics. Furthermore, improving the efficiency and scalability of the tree search
process for larger solution spaces remains an important area for investigation. Another promising
direction is developing techniques to provide interpretable explanations of the search process and
solution rationale, enhancing the transparency and trustworthiness of the system. SELA represents
a significant advancement in automated machine learning, demonstrating the potential of combining
traditional search algorithms with the flexibility of LLMs.

REFERENCES

Anthropic. Introducing Claude 3.5 Sonnet — anthropic.com. https://www.anthropic.
com/news/claude-3-5-sonnet, 2024.

Graeme Best, Oliver M Cliff, Timothy Patten, Ramgopal R Mettu, and Robert Fitch. Dec-mcts:
Decentralized planning for multi-robot active perception. The International Journal of Robotics
Research, 38(2-3):316–337, 2019. doi: 10.1177/0278364918755924.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Yizhou Chi, Kevin Yang, and Dan Klein. Thoughtsculpt: Reasoning with intermediate revision and
search, 2024.

Patrick Clary, Pedro Morais, Alan Fern, and Jonathan Hurst. Monte-carlo planning for agile legged
locomotion. Proceedings of the International Conference on Automated Planning and Scheduling,
28(1):446–450, Jun. 2018. doi: 10.1609/icaps.v28i1.13933.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for llms, 2024.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data, 2020.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like
tree-search can guide large language model decoding and training, 2023.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In Advances in Neural Information
Processing Systems 28 (2015), pp. 2962–2970, 2015.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning, 2020.

Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas,
Bernd Bischl, and Joaquin Vanschoren. Amlb: an automl benchmark. Journal of Machine Learn-
ing Research, 25(101):1–65, 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Auto-
mated data science by empowering large language models with case-based reasoning, 2024.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering, 2024.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi
Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo
Zhou, Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying
Fei, Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An llm agent for data
science, 2024.

Wenyang Hui and Kewei Tu. Rot: Enhancing large language models with reflection on search trees,
2024.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search sys-
tem. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 1946–1956, 2019.

Haifeng Jin, François Chollet, Qingquan Song, and Xia Hu. Autokeras: An automl library for deep
learning. Journal of machine Learning research, 24(6):1–6, 2023.

Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context?, 2024.

Erin LeDell and Sebastien Poirier. H2O AutoML: Scalable automatic machine learning. 7th ICML
Workshop on Automated Machine Learning (AutoML), July 2020.

Dawei Li, Zhen Tan, and Huan Liu. Exploring large language models for feature selection: A
data-centric perspective, 2024.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024.

Daqin Luo, Chengjian Feng, Yuxuan Nong, and Yiqing Shen. Autom3l: An automated multimodal
machine learning framework with large language models. arXiv preprint arXiv:2408.00665, 2024.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024.

Dominik Schmidt, Yuxiang Wu, and Zhengyao Jiang. Aide: Human-level performance in data
science competitions, 2024. URL https://www.weco.ai/blog/technical-report.

11

https://openai.com/index/hello-gpt-4o/
https://www.weco.ai/blog/technical-report

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Marwin Segler, Mike Preuss, and Mark Waller. Planning chemical syntheses with deep neural
networks and symbolic ai. Nature, 555:604–610, 03 2018. doi: 10.1038/nature25978.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, L. Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 2017.

Hao Tang, Keya Hu, Jin Peng Zhou, Sicheng Zhong, Wei-Long Zheng, Xujie Si, and Kevin Ellis.
Code repair with llms gives an exploration-exploitation tradeoff, 2024a.

Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirch-
hoff, and George Karypis. Autogluon-multimodal (automm): Supercharging multimodal automl
with foundation models. arXiv preprint arXiv:2404.16233, 2024b.

Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 847–855,
2013.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong Yu.
Litesearch: Efficacious tree search for llm, 2024.

Feng Wu, Sarvapali D. Ramchurn, Wenchao Jiang, Jeol E. Fischer, Tom Rodden, and Nicholas R.
Jennings. Agile planning for real-world disaster response. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence, IJCAI’15, pp. 132–138. AAAI Press, 2015. ISBN
9781577357384.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing the
power of large language models in solving machine learning tasks, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DATASETS

Table 3 outlines the detailed information of the datasets used for evaluation.

Dataset name # Features # Rows # Classes Task Type Metric Source

boston 14 506 N/A Regression RMSE OpenML (Dataset ID: 531)
colleges 48 7063 N/A Regression RMSE OpenML (Dataset ID: 42727)
concrete-strength 9 4866 N/A Regression RMSE Kaggle (playground-series-s3e9)
diamonds 10 53940 N/A Regression RMSE OpenML (Dataset ID: 42225)
house-prices 81 1460 N/A Regression RMSE Kaggle (house-prices-advanced-regression-techniques)
Moneyball 15 1232 N/A Regression RMSE OpenML (Dataset ID: 41021)
SAT11-HAND-runtime-regression 118 4440 N/A Regression RMSE OpenML (Dataset ID: 41980)
credit-g 21 1000 2 Classification F1 OpenML (Dataset ID: 31)
Click prediction small 12 39948 2 Classification F1 OpenML (Dataset ID: 42733)
icr 58 617 2 Classification F1 Kaggle (icr-identify-age-related-conditions)
jasmine 145 2984 2 Classification F1 OpenML (Dataset ID: 41143)
kc1 21 2109 2 Classification F1 OpenML (Dataset ID: 1067)
kick 33 72983 2 Classification F1 OpenML (Dataset ID: 41162)
smoker-status 23 143330 2 Classification F1 Kaggle (playground-series-s3e24)
software-defects 22 91586 2 Classification F1 Kaggle (playground-series-s3e23)
titanic 12 891 2 Classification F1 Kaggle (titanic)
GesturePhaseSegmentationProcessed 33 9873 5 Multiclass F1-weighted OpenML (Dataset ID: 4538)
mfeat-factors 217 2000 10 Multiclass F1-weighted OpenML (Dataset ID: 12)
segment 20 2310 7 Multiclass F1-weighted OpenML (Dataset ID: 40984)
wine-quality-white 12 4898 7 Multiclass F1-weighted OpenML (Dataset ID: 40498)

Table 3: Summary of the machine learning datasets used in the experiments. OpenML datasets
can be accessed using their respective dataset IDs. The Kaggle datasets are available at
https://www.kaggle.com/competitions/{source}.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B PROMPTS

B.1 TASK PROMPT

All LLM-based methods start by receiving the same base requirement prompt at the beginning of
the task. The prompt specifies the dataset’s name, the target label column, the evaluation metric to
be used, and the dataset’s file path. Furthermore, the prompt include a path to a text file containing
the dataset’s metadata.

1 TASK_PROMPT = """
2 # User requirement
3 This is a {datasetname} dataset.
4 Your goal is to predict the target column ‘{target_col}‘.
5 Perform data analysis, data preprocessing, feature engineering, and modeling to predict the

target. Report {metric} on the eval data. Do not plot or make any visualizations.
6
7 # Data dir
8 train set (with labels): {train_path}
9 dev set (with labels): {dev_path}

10 test set (without labels): {test_path}
11 dataset description: {data_info_path}
12 (During EDA, you can use this file
13 to get additional information about the dataset)
14 """

Since AIDE automatically splits the training set into a new train set and a dev set, we combine the
original train and dev sets and provide them as input to AIDE. In both setups, the frameworks have
access to the labels for both the train and dev sets. Therefore, we believe this subtle difference does
not affect the fairness of the comparison.

B.2 INSTRUCTION PROMPT

The instruction prompt would direct the framework to save the final prediction file for evaluation.

1 DI_INSTRUCTION = """
2 ## Attention
3 1. Please do not leak the target label in any form during training.
4 2. Test set does not have the target column.
5 3. When conducting data exploration or analysis, print out the results of your findings.
6 4. You should perform transformations on train, dev, and test sets at the same time (it’s a

good idea to define functions for this and avoid code repetition).
7 5. When scaling or transforming features, make sure the target column is not included.
8 6. You could utilize dev set to validate and improve model training. {special_instruction}
9

10 ## Saving Dev and Test Predictions
11 1. Save the prediction results of BOTH the dev set and test set in ‘dev_predictions.csv‘ and ‘

test_predictions.csv‘ respectively in the output directory.
12 - Both files should contain a single column named ‘target‘ with the predicted values.
13 2. Make sure the prediction results are in the same format as the target column in the

training set.
14 - For instance, if the target column is categorical, the prediction results should be

categorical as well.
15
16 ## Output Performance
17 Print the train and dev set performance in the last step.
18
19 # Output dir
20 {output_dir}
21 """

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 INSIGHT PROPOSAL PROMPT

Insight Proposer uses this prompt to generate a search space of insights for different stages of the
machine learning task.

1 DATASET_INSIGHT_PROMPT = """
2 # Dataset Description
3 {dataset}
4
5 # Dataset Metadata
6 {metadata}
7
8 # Dataset Head
9 {head}

10
11 # Instruction
12 Propose insights to help improve the performance of the model on this dataset.
13 The insights should be proposed based on the dataset description with different task types.
14 Each task type should have at least 5 insights.
15 Make sure each method is diverse enough and can be implemented separately.
16 Be specific about models’ choices, ensemble and tuning techniques, and preprocessing & feature

engineering techniques.
17
18 # Format
19 ‘‘‘json
20 [
21 {{
22 "task_type": "EDA",
23 "insights": [
24 "insight1",
25 "insight2",
26 "insight3",
27 ...
28 "insightN"
29]
30 }},
31 {{
32 "task_type": "Data Preprocessing",
33 "insights": [
34 "insight1",
35 "insight2",
36 "insight3",
37 ...
38 "insightN"
39]
40 }},
41 {{
42 "task_type": "Feature Engineering",
43 "insights": [
44 "insight1",
45 "insight2",
46 "insight3",
47 ...
48 "insightN"
49]
50 }},
51 {{
52 "task_type": "Model Training",
53 "insights": [
54 "insight1",
55 "insight2",
56 "insight3",
57 ...
58 "insightN"
59]
60 }}
61]
62 ‘‘‘
63 """

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C RESULTS

C.1 MAIN RESULTS

AutoGluon AutoSklearn AIDE DI SELA
Dataset Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

Click prediction small 7 7 2 1 7.3 4 11 10 7.7 6
GesturePhaseSegmentationProcessed 1 1 6.3 3 7.3 4 11 10 5.3 2
Moneyball 4 4 10 9 4 1 9 2 6 3
SAT11-HAND-runtime-regression 1 1 12 11 5.3 3 9 8 3.7 2
boston 5 5 12 11 3.7 2 9 8 4 1
colleges 1 1 12 11 6 2 8 7 4 3
concrete-strength 5 5 12 11 6.3 4 2 1 8.3 6
credit-g 4 4 10 9 10 5 5.3 1 3.7 2
diamonds 2 2 12 11 6 4 8.7 7 3 1
house-prices 1 1 12 11 6.7 5 7.3 3 4 2
icr 5 5 5.3 3 12 11 9 8 2.3 1
jasmine 7 7 6 4 8.7 5 11.3 9 2 1
kc1 10 10 2.7 1 8 5 11.3 9 5 2
kick 4 4 2 1 9.3 6 11 10 6.7 5
mfeat-factors 4 4 2 1 10 9 10.3 6 6.7 5
segment 3 3 6.3 5 11 10 9.7 7 2.3 1
smoker-status 7 7 4.7 3 11.3 9 7.7 2 4.3 1
software-defects 8 8 2 1 12 11 6 4 7.7 6
titanic 7 7 9.7 6 2.7 1 10.3 8 5.3 3
wine-quality-white 2 2 10 8 7.3 4 9 7 3.3 1

Overall Rank ↓ 4.4 4.4 7.6 6.1 7.8 5.3 8.8 6.4 4.8 2.7

Table 4: Methods’ ranking for each tabular dataset

AutoGluon AutoSklearn AIDE DI SELA
Dataset Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

Click prediction small 26.6 26.6 40.2 40.3 26.1 39.4 12.9 13.9 23.2 27.4
GesturePhaseSegmentationProcessed 69.3 69.3 67.2 68.4 56.3 68.1 60.1 64.4 67.9 69.2
Moneyball 24.3 24.3 13.1 13.8 23.8 24.6 9.5 24.5 21.9 24.5
SAT11-HAND-runtime-regression 12.6 12.6 10.3 10.3 12.0 12.1 11.4 11.9 12.2 12.5
boston 39.8 39.8 19.5 19.6 40.5 41.3 37.0 38.6 40.1 41.4
colleges 88.3 88.3 2.1 2.1 86.0 87.8 87.5 87.7 87.8 87.8
concrete-strength 28.3 28.3 17.4 17.9 28.3 28.3 28.8 29.6 28.2 28.2
credit-g 50.5 50.5 35.1 44.0 21.6 48.4 48.1 53.2 50.9 52.7
diamonds 13.8 13.8 8.7 8.7 13.7 13.7 13.5 13.6 13.7 13.8
house-prices 9.0 9.0 2.0 2.0 8.9 8.9 8.5 9.0 8.9 9.0
icr 76.2 76.2 70.4 79.2 31.7 35.9 57.8 60.6 78.7 79.2
jasmine 84.3 84.3 84.4 84.7 83.6 84.6 77.8 83.5 85.4 86.2
kc1 38.3 38.3 43.5 45.0 40.8 42.6 38.1 41.2 42.2 43.1
kick 39.6 39.6 41.8 42.1 14.9 38.6 2.8 4.2 35.9 38.7
mfeat-factors 96.7 96.7 97.1 97.5 94.4 94.5 93.0 96.0 95.7 96.2
segment 93.5 93.5 92.7 93.1 91.7 92.2 91.7 92.6 93.8 94.4
smoker-status 78.0 78.0 78.6 78.9 74.8 76.3 77.3 81.5 82.4 91.5
software-defects 51.5 51.5 61.1 61.7 49.7 49.8 54.5 57.3 52.2 53.3
titanic 78.9 78.9 76.2 78.9 81.2 83.7 76.0 78.5 78.8 79.7
wine-quality-white 65.4 65.4 60.7 61.4 62.9 65.1 61.2 61.6 65.3 66.0

Overall NS % ↑ 53.2 53.2 46.1 47.5 45.5 51.8 47.4 50.2 53.3 54.7

Table 5: Methods’ NS % for each tabular dataset

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.2 PERFORMANCE USING DIFFERENT LLMS

GPT-4o Claude 3.5 Sonnet DeepSeek V2.5
Avg. NS ↑ 62.3 57.9 60.9
Avg. Best NS ↑ 65.5 59.2 62.4

Avg. Rank ↓ 3.7 6.3 5.0
Avg. Best Rank ↓ 1.5 4.8 3.2

Table 6: Results of SELA with different base LLMs on the selected tabular datasets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D COST-EFFECTIVENESS ANALYSIS

We conduct multiple trials of execution of each method to estimate the average running cost for the
LLM-based baselines. As shown in Table 7, all methods incur relatively low costs to complete a
single machine learning task. Among these, AIDE exhibits the lowest execution cost, due to the
lack of stage-wise planning, resulting in fewer token generations compared to the other approaches.
Additionally, SELA, which employs Data Interpreter as its base experimenter, is less costly than
Data Interpreter itself. This efficiency is largely due to SELA’s state-saving and loading mechanism,
which reduces the generation of repeated tasks and code.

Cost per ML task ($)

Data Interpreter (k=10) 0.07
AIDE (k=10) 0.01
SELA (k=10) 0.05

Table 7: Estimated costs of agent-based frameworks utilizing DeepSeekV2.5 on a single machine
learning dataset over k iterations/rollouts.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E CASE STUDY

E.1 MCTS PROCESS OVERVIEW

1 Number of simulations: 10
2 [Node 0]
3 Plans:
4 1. Perform exploratory data analysis on the train and dev datasets
5 2. Preprocess the train, dev, and test datasets
6 3. Perform feature engineering on the train, dev, and test datasets
7 4. Train multiple models and evaluate their performance
8 5. Train a weighted ensemble model using the best performing models
9 6. Evaluate the ensemble model on the dev set and save predictions

10 7. Generate predictions for the test set and save them
11 Simulated: True
12 Score: avg score: 0.6150206840685731, simulated score: {’train_score’: 1.0, ’dev_score’:

0.6855841857240594, ’test_score’: 0.6814818772150697, ’score’: 0.6855841857240594},
Visits: 10

13
14 [Node 0-0]
15 Plans:
16 3. Perform feature engineering on the train, dev, and test datasets by creating new

features that calculate the magnitude of the vectorial velocities and accelerations
to capture the overall movement intensity.

17 Simulated: True
18 Score: avg score: 0.6507249985568175, simulated score: {’train_score’: 0.982920964830782,

’dev_score’: 0.6420233166755841, ’test_score’: 0.647550336228104, ’score’:
0.6420233166755841}, Visits: 2

19
20 [Node 0-0-0]
21 Plans:
22 4. Train a Random Forest classifier to leverage its ability to handle

high-dimensional data and capture non-linear relationships, and evaluate its
performance

23 Simulated: False
24 Score: avg score: 0, simulated score: {}, Visits: 0
25
26 [Node 0-0-1]
27 Plans:
28 4. Train multiple models, including a Support Vector Machine (SVM) with a radial

basis function (RBF) kernel, and evaluate their performance.
29 Simulated: False
30 Score: avg score: 0, simulated score: {}, Visits: 0
31
32 [Node 0-0-2]
33 Plans:
34 4. Implement a Neural Network with multiple layers to capture the hierarchical

patterns in the data and evaluate its performance
35 Simulated: True
36 Score: avg score: 0.6594266804380511, simulated score: {’train_score’: 1.0,

’dev_score’: 0.6594266804380511, ’test_score’: 0.6702614538699305, ’score’:
0.6594266804380511}, Visits: 1

37
38 [Node 0-0-3]
39 Plans:
40 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine

them, and evaluate their performance
41 Simulated: False
42 Score: avg score: 0, simulated score: {}, Visits: 0
43
44 [Node 0-0-4]
45 Plans:
46 4. Train multiple models, perform hyperparameter tuning using Grid Search or Random

Search, and evaluate their performance
47 Simulated: False
48 Score: avg score: 0, simulated score: {}, Visits: 0
49
50 [Node 0-1]
51 Plans:
52 3. Perform feature engineering on the train, dev, and test datasets by generating

time-based features, such as the difference between consecutive frames, to capture
the rate of change in movements.

53 Simulated: True
54 Score: avg score: 0.6464940718972336, simulated score: {’train_score’: 1.0, ’dev_score’:

0.5985614604756948, ’test_score’: 0.5857379626419719, ’score’: 0.5985614604756948},
Visits: 2

55
56 [Node 0-1-0]
57 Plans:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

58 4. Train a Random Forest classifier to leverage its ability to handle
high-dimensional data and capture non-linear relationships

59 Simulated: False
60 Score: avg score: 0, simulated score: {}, Visits: 0
61
62 [Node 0-1-1]
63 Plans:
64 4. Train multiple models, including a Support Vector Machine (SVM) with a radial

basis function (RBF) kernel, and evaluate their performance to model the complex
decision boundaries between different gesture phases.

65 Simulated: True
66 Score: avg score: 0.6944266833187726, simulated score: {’train_score’: 1.0,

’dev_score’: 0.6944266833187726, ’test_score’: 0.6928451194338062, ’score’:
0.6944266833187726}, Visits: 1

67
68 [Node 0-1-2]
69 Plans:
70 4. Implement a Neural Network with multiple layers to capture the hierarchical

patterns in the data and evaluate its performance
71 Simulated: False
72 Score: avg score: 0, simulated score: {}, Visits: 0
73
74 [Node 0-1-3]
75 Plans:
76 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine

them, and evaluate their performance
77 Simulated: False
78 Score: avg score: 0, simulated score: {}, Visits: 0
79
80 [Node 0-1-4]
81 Plans:
82 4. Train multiple models and perform hyperparameter tuning using techniques like Grid

Search or Random Search to optimize and evaluate their performance.
83 Simulated: False
84 Score: avg score: 0, simulated score: {}, Visits: 0
85
86 [Node 0-2]
87 Plans:
88 3. Perform feature engineering on the train, dev, and test datasets by creating features

that represent the spatial relationships between different body parts, such as the
distance between the hands and the head.

89 Simulated: True
90 Score: avg score: 0.6296836159165489, simulated score: {’train_score’:

0.7619969104124632, ’dev_score’: 0.5997286931710517, ’test_score’:
0.604077566134264, ’score’: 0.5997286931710517}, Visits: 3

91
92 [Node 0-2-0]
93 Plans:
94 4. Train a Random Forest classifier to leverage its ability to handle

high-dimensional data and capture non-linear relationships, and evaluate its
performance

95 Simulated: False
96 Score: avg score: 0, simulated score: {}, Visits: 0
97
98 [Node 0-2-1]
99 Plans:

100 4. Train multiple models, including a Support Vector Machine (SVM) with a radial
basis function (RBF) kernel, and evaluate their performance to model the complex
decision boundaries between different gesture phases.

101 Simulated: True
102 Score: avg score: 0.6446610772892973, simulated score: {’train_score’:

0.9952809245924918, ’dev_score’: 0.6372459669415207, ’test_score’:
0.6423549137767338, ’score’: 0.6372459669415207}, Visits: 2

103
104 [Node 0-2-1-0]
105 Plans:
106 5. Train a weighted ensemble model using the best performing models from task 4
107 Simulated: False
108 Score: avg score: 0, simulated score: {}, Visits: 0
109
110 [Node 0-2-1-1]
111 Plans:
112 5. Using the models that performed best in task 4, train a weighted ensemble

model to improve overall performance.
113 Simulated: False
114 Score: avg score: 0, simulated score: {}, Visits: 0
115
116 [Node 0-2-1-2]
117 Plans:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

118 5. Develop a weighted ensemble model by integrating the top-performing models
from task 4, ensuring to evaluate and adjust the weights for optimal
performance.

119 Simulated: True
120 Score: avg score: 0.6520761876370741, simulated score: {’train_score’: 1.0,

’dev_score’: 0.6520761876370741, ’test_score’: 0.6563435152603494, ’score’:
0.6520761876370741}, Visits: 1

121
122 [Node 0-2-1-3]
123 Plans:
124 5. Train a weighted ensemble model by combining the predictions of the

top-performing models from task 4 to improve overall performance.
125 Simulated: False
126 Score: avg score: 0, simulated score: {}, Visits: 0
127
128 [Node 0-2-1-4]
129 Plans:
130 5. Develop a weighted ensemble model by combining the top-performing models from

task 4, ensuring to optimize the weights for improved performance.
131 Simulated: False
132 Score: avg score: 0, simulated score: {}, Visits: 0
133
134 [Node 0-2-2]
135 Plans:
136 4. Implement a Neural Network with multiple layers to capture the hierarchical

patterns in the data and evaluate its performance
137 Simulated: False
138 Score: avg score: 0, simulated score: {}, Visits: 0
139
140 [Node 0-2-3]
141 Plans:
142 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine

them, and evaluate their performance
143 Simulated: False
144 Score: avg score: 0, simulated score: {}, Visits: 0
145
146 [Node 0-2-4]
147 Plans:
148 4. Perform hyperparameter tuning using Grid Search or Random Search to train multiple

models and evaluate their performance
149 Simulated: False
150 Score: avg score: 0, simulated score: {}, Visits: 0
151
152 [Node 0-3]
153 Plans:
154 3. Apply feature selection techniques such as Recursive Feature Elimination (RFE) or

SelectKBest to identify and retain the most important features in the train, dev,
and test datasets.

155 Simulated: True
156 Score: avg score: 0.49056683315196203, simulated score: {’train_score’:

0.9988177730410426, ’dev_score’: 0.51620611302976, ’test_score’: 0.525989891002361,
’score’: 0.51620611302976}, Visits: 2

157
158 [Node 0-3-0]
159 Plans:
160 4. Train a Random Forest classifier to leverage its ability to handle

high-dimensional data and capture non-linear relationships, and evaluate its
performance.

161 Simulated: False
162 Score: avg score: 0, simulated score: {}, Visits: 0
163
164 [Node 0-3-1]
165 Plans:
166 4. Train multiple models, including a Support Vector Machine (SVM) with a radial

basis function (RBF) kernel, and evaluate their performance to model the complex
decision boundaries between different gesture phases.

167 Simulated: True
168 Score: avg score: 0.4649275532741641, simulated score: {’train_score’:

0.7299159411193588, ’dev_score’: 0.4649275532741641, ’test_score’:
0.4631598897487413, ’score’: 0.4649275532741641}, Visits: 1

169
170 [Node 0-3-2]
171 Plans:
172 4. Implement and train a Neural Network with multiple layers to capture hierarchical

patterns in the data and evaluate its performance
173 Simulated: False
174 Score: avg score: 0, simulated score: {}, Visits: 0
175
176 [Node 0-3-3]
177 Plans:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

178 4. Train multiple models, apply an ensemble method like Gradient Boosting to combine
them, and evaluate their performance

179 Simulated: False
180 Score: avg score: 0, simulated score: {}, Visits: 0
181
182 [Node 0-3-4]
183 Plans:
184 4. Train multiple models, perform hyperparameter tuning using techniques like Grid

Search or Random Search, and evaluate their performance
185 Simulated: False
186 Score: avg score: 0, simulated score: {}, Visits: 0
187
188 [Node 0-4]
189 Plans:
190 3. Create interaction features by combining existing features, such as the product of

velocity and acceleration, to capture complex relationships in the train, dev, and
test datasets

191 Simulated: False
192 Score: avg score: 0, simulated score: {}, Visits: 0
193
194 Generated 29 unique codes.
195 Best node: 0-1-1, score: {’train_score’: 1.0, ’dev_score’: 0.6944266833187726, ’test_score’:

0.6928451194338062, ’score’: 0.6944266833187726}
196 Dev best node: 0-1-1, score: {’train_score’: 1.0, ’dev_score’: 0.6944266833187726,

’test_score’: 0.6928451194338062, ’score’: 0.6944266833187726}

The MCTS process in this case study consists of a structured exploration of the machine learning
pipeline, executed in the following steps:

Step 1: Initialization (Node 0)
The process begins by defining high-level tasks, such as data analysis, data pre-processing, fea-
ture engineering, and model training. These general steps establish the overall framework for the
machine learning workflow.

Step 2: Feature Engineering Exploration (Selection and Expansion)
MCTS then explores specific feature engineering techniques. For instance, Node 0-0 introduces
features like the magnitude of vectorial velocities, Node 0-1 generates time-based features, and
Node 0-2 creates spatial relationship features between body parts. These feature engineer methods
aim to improve data representation, which is crucial for enhancing model accuracy.

Step 3: Model Training (Expansion)
At this point, the process tests various machine learning models. For example, Node 0-1-1 applies
a Support Vector Machine (SVM) with a radial basis function (RBF) kernel, while Node 0-0-2
evaluates a Neural Network. The models are trained and evaluated based on performance across
training, development, and test datasets.

Step 4: Performance Evaluation (Simulation)
Each node is scored based on model performance. MCTS retains and further explores the best-
performing nodes, using prior successful results to guide the search for improved solutions.

Step 5: Nodes Update (Backpropagation)
After the simulation, the performance score is retrieved and backpropagated through the tree. For
example, after simulating Node 0-1-1, MCTS backpropagates the result up the tree, updating parent
nodes like Node 0-1 and Node 0.

Step 6: Best Model Selection
In the final step, MCTS selects the best-performing solution. In this case, Node 0-1-1, using the
SVM with RBF kernel, achieved the highest scores across datasets, effectively combining feature
engineering and model selection to optimize the machine learning pipeline.

22

	Introduction
	Related Works
	Method
	Insight Proposal and Search Space Creation
	Pipeline Execution and Code Generation
	Tree Search in Machine Learning Experiments
	Experiment Node
	Tree Search for ML Experiments
	Experiment State Saving and Loading

	Experiments
	Experimental Setup
	Results
	Ablation Study

	Conclusion
	Datasets
	Prompts
	Task Prompt
	Instruction Prompt
	Insight Proposal Prompt

	Results
	Main Results
	Performance using different LLMs

	Cost-effectiveness Analysis
	Case Study
	MCTS Process Overview

