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Abstract

While most existing works on LLM prompting001
techniques focus only on how to select a better002
set of data samples inside one single prompt003
input (In-Context Learning or ICL), why can004
not we design and leverage multiple prompt005
inputs together to further improve the LLM per-006
formance? In this work, we propose In-Context007
Sampling (ICS), a low-resource LLM prompt-008
ing technique to produce confident predictions009
by optimizing the construction of multiple ICL010
prompt inputs. Extensive experiments with two011
open-source LLMs (FlanT5-XL and Mistral-012
7B) on four NLI datasets (e-SNLI, Multi-NLI,013
ANLI, and Contract-NLI) illustrate that ICS014
can consistently enhance LLM’s prediction per-015
formance. An in-depth evaluation with three016
proposed data similarity-based ICS strategies017
suggests that these strategies can further ele-018
vate LLM’s performance, which sheds light on019
a new yet promising future research direction.020

1 Introduction021

Large Language Models (LLMs) with billions022

of parameters, such as FLAN-T5 (Chung et al.,023

2022), LLaMA (Touvron et al., 2023b,d), and Mis-024

tral (Jiang et al., 2023), have demonstrated excep-025

tional natural language interpretation capability in026

terms of understanding versatile prompt inputs1. In027

comparison with much smaller language models028

like BERT (Devlin et al., 2018) and GPT (Radford029

et al., 2018), such LLMs can understand not only030

more complex and detailed task narratives but also031

a few task examples with annotations within the032

prompt inputs, namely few-shot In-Context Learn-033

ing (ICL) (Brown et al., 2020; Shin et al., 2022).034

As a prominent prompting strategy to exploit035

LLMs’ task-solving capabilities especially for un-036

seen tasks, ICL inserts a few data examples as well037

1We use “prompt input” to refer to the composition of
prompt structures, including the task narrative instructions,
plus in-context examples, and the targeting data for inference.

Figure 1: Our proposed ICS paradigm comprises three
steps: 1) sample representative ICL demonstration can-
didates, 2) augment different ICL prompt inputs from
the sampled candidates and acquire LLM’s prediction
for each input correspondingly, and 3) vote and deter-
mine LLM’s most confident prediction.

as their corresponding annotations into the prompt 038

input. The data examples, along with their anno- 039

tations, serve as demonstrations2 for the targeting 040

task and are expected to facilitate LLMs’ better 041

understanding of the task narrative, the expected 042

outputs, and potentially the underlying rationales 043

needed for solving the task. Several recent works 044

2We use “examples” and “demonstrations” interchange-
ably to refer to the few-shot data examples in ICL within the
prompt inputs.
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investigate the influence of different ICL setups, in-045

cluding the number, ordering, and combinations of046

demonstrations (Wang et al., 2022; Lu et al., 2022;047

Yoo et al., 2022). However, there is no common048

ground for the best ICL strategy yet.049

Additionally, despite LLMs’ superb natural lan-050

guage interpretation and generation capability, real-051

world tasks requiring extensive domain expertise052

remain challenging for LLMs (e.g., children’s ed-053

ucation and mental issue detection (Chen et al.,054

2023a; Xu et al., 2023)), and thus, how to exploit055

LLMs’ ability with ICL for solving these tasks is056

an under-explored topic but holds great promise.057

We hypothesize that different ICL demonstra-058

tions provide LLMs with distinct knowledge about059

the task, leading to disparate understanding and060

predictions for the same data. Consequently, a061

research question emerges: Can we augment mul-062

tiple ICL prompt inputs efficiently to facilitate063

more accurate and confident LLM predictions?064

To address this question, we propose In-Context065

Sampling (ICS), a low-resource methodology in-066

spired by the query-by-committee strategy (Seung067

et al., 1992; Liere and Tadepalli, 1997) and the few-068

shot In-Context Learning approach. ICS follows a069

three-step pipeline as shown in Figure 1:070

1. Sample demonstration candidates;071

2. Augment ICL prompt inputs and predictions;072

3. Vote the most confident label.073

We also propose three data similarity-based ICS074

strategies inspired by established data sampling075

strategies for Active Learning (Settles, 2009). We076

believe ICS can be a more reliable prompting077

paradigm than the traditional ICL, better squeez-078

ing LLM’s task-solving capabilities and seamlessly079

supporting “plug-and-play” customizations.080

Our evaluation of the ICS paradigm comprises081

bi-fold. First, we benchmark the effectiveness082

of a baseline random ICS strategy with the tradi-083

tional ICL approach with two open-source LLMs 3084

(FLAN-T5-XL (Chung et al., 2022) and Mistral-085

7B (Jiang et al., 2023)) over four natural language086

inference (NLI) (Bowman et al., 2015) datasets.087

The four datasets include three general-domain088

NLI datasets of increasing difficulty (namely e-089

SNLI (Camburu et al., 2018), Multi-NLI (Williams090

et al., 2017), and ANLI (Nie et al., 2019)), and091

Contract-NLI (Koreeda and Manning, 2021a), a092

domain-specific NLI dataset for the real-world con-093

3We also experimented with Llama2 (Touvron et al.,
2023d) and discussed its limited performance in Appendix E

tract review task. We also investigate how different 094

sample sizes and the number of ICL prompt inputs 095

affect performance enhancement. Results indicate 096

that ICS can consistently improve prediction accu- 097

racy and robustness despite LLMs demonstrating 098

different levels of ICL capabilities. 099

We further investigate the additional advantages 100

provided by three proposed ICS strategies through 101

simulations with the best-performing setting from 102

the previous experiment, compared with the ran- 103

dom ICS and traditional ICL approaches on the 104

aforementioned four datasets. Despite being con- 105

ceptually straightforward, all three types of data- 106

based strategies can effectively and consistently 107

improve LLM performance, leading to a broader 108

research scope to exploit ICS in the future. 109

2 Related Work 110

2.1 Large Language Models 111

Large Language Models (LLMs) (Brown et al., 112

2020; Touvron et al., 2023a,c; OpenAI, 2023) 113

show impressive capability in understanding free- 114

form instructions and generating high-quality con- 115

tent in a variety of tasks (Wei et al., 2021; Sanh 116

et al., 2021; Chung et al., 2022). For instance, 117

Wei et al. (2021) proposed FLAN-T5, a model 118

trained to follow natural language instruction on 119

over 60 NLP tasks. Ouyang et al. (2022) proposed 120

a pipeline to instruction-finetune LLM with Re- 121

inforcement Learning from Human Feedback. In 122

addition, various prompting methods such as Chain- 123

of-Thoughts (Wei et al., 2023; Chung et al., 2022) 124

and In-Context Learning (ICL) (Brown et al., 2020) 125

have been developed to exploit LLMs’ potential, 126

where the former technique asks models to generate 127

a sequence of rationales, and the latter methodol- 128

ogy allows LLMs to learn from few-shot examples 129

in the input context. Our ICS paradigm extends 130

the traditional ICL approach to improve the perfor- 131

mance and confidentiality of LLM predictions. 132

2.2 In-Context Learning Optimization 133

Optimizing ICL performance has garnered signifi- 134

cant attention recently. Dong et al. (2023) summa- 135

rized three categories for different ICL optimiza- 136

tion approaches: fine-tuning with ICL, ICL sample 137

selection, and analyzing order sensitivity. Fine- 138

tuning with ICL generally requires a significant 139

amount of computing resources and effort to tune 140

model parameters, such that Wei et al. (2021) pro- 141

posed an instruction tuning method that improves 142
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both zero-shot and few-shot In-Context Learning143

performance. Sample selection in ICL has been144

demonstrated to have a considerable impact on145

model performance (Zhang et al., 2022b; Rubin146

et al., 2022; Li et al., 2023). Zhang et al. (2022b)147

initiated a reinforcement learning technique to se-148

lect more advantageous samples for in-context149

demonstration. Rubin et al. (2022) proposed a150

two-staged method with an unsupervised retriever151

followed by a supervised model. Some work fo-152

cused on reducing LLM’s ICL order sensitivity153

issue. Lu et al. (2022) proposed multiple sample154

sorting methods, while Liu et al. (2022) introduced155

a method for arranging examples based on their156

semantic similarity. A few other works attempted157

to exploit the benefits of the ICL pipeline to im-158

prove model performance, better alignment, and159

minimize reliance on external demonstrations (Yu160

et al., 2023; Lin et al., 2023; Kim et al., 2022).161

2.3 Sampling Strategies162

The data sampling strategy is a key element of163

many low-resource learning paradigms that attempt164

to select the most representative examples, such165

as Active Learning (AL) (Settles, 2009). Follow-166

ing established works, the data sampling strate-167

gies have been mainly categorized into three cate-168

gories: model-based, data-based, and hybrid (Set-169

tles, 2009; Olsson, 2009; Fu et al., 2013; Schröder170

and Niekler, 2020; Ren et al., 2021; Zhang et al.,171

2022c; Schröder et al., 2022).172

Model-based strategies aim to find the data with173

the most model uncertainty (Wang et al., 2017;174

Zeng et al., 2019). For instance, Margatina et al.175

(2021) and Zhang et al. (2022a) explored using the176

divergence of a model’s prediction as a measure-177

ment of model uncertainty. Data-based strategies,178

on the other hand, aim to find the most diverse179

or representative data in the data space (Erdmann180

et al., 2019; Prabhu et al., 2019; Karamcheti et al.,181

2021). Such that Deng et al. (2018); Sinha et al.182

(2019) leveraged adversarial learning to select the183

most representative data. In contrast to model-184

based strategies, data-based strategies are generally185

model-agnostic and demand fewer computational186

resources but necessitate the analysis of unlabeled187

samples. Hybrid or ensemble Sampling Strategies188

integrate various strategy types in unison (Krogh189

and Vedelsby, 1994; Tang et al., 2002; Melville190

and Mooney, 2004; Donmez et al., 2007; Zhu et al.,191

2008; Ambati et al., 2011). For instance, Qian192

et al. (2020) proposed a combined approach of a193

diversity-based and an uncertainty-based tactic to 194

benefit from both strategies. 195

3 ICS Prompting Paradigm 196

Given a natural language task instruction I and a 197

datum to predict x ∈ D, LLMs can take the In- 198

Context Learning (ICL) input format, denoted as: 199

{I + (xicl1 , yicl1 ) + ...+ (xiclm , yiclm ) + x} (1) 200

where (xiclm , yiclm ) denotes an oracle-annotated in- 201

context demonstration. We believe in-context 202

demonstrations can provide LLMs with two types 203

of knowledge: 1) explicit insights to interpret the 204

task instruction I and expected outputs through 205

(yicl1 , ..., yiclm ) and 2) implicit guidance for how to 206

solve the task via demonstrations (xiclm → yiclm ). 207

We hypothesize that different sets of ICL demon- 208

strations provide LLMs with disparate implicit 209

knowledge about the task; thus, LLMs may alter 210

their predictions for the same data x given different 211

ICL prompt inputs, but the predictions will eventu- 212

ally converge to a most confident result. 213

Our hypothesis stands on the shoulder of the 214

query-by-committee (Seung et al., 1992; Liere and 215

Tadepalli, 1997) strategy that has been around for a 216

long time. The original concept is to ask a commit- 217

tee of models to vote on whether the unlabeled data 218

needs to be annotated, where the voting models 219

focus on competing hypotheses. However, most 220

existing works focused on measuring the disagree- 221

ments among committee models (Engelson and 222

Dagan, 1996; McCallum et al., 1998) and creating 223

different committees with probabilistic and non- 224

probabilistic models (Dagan and Engelson, 1995; 225

Freund and Schapire, 1997; Abe and Mamitsuka, 226

1998; Melville and Mooney, 2004; Tomanek and 227

Hahn, 2009; Sarawagi and Bhamidipaty, 2002). 228

In this work, we present In-Context Sampling 229

(ICS), a low-resource paradigm for LLMs through 230

effectively augmenting ICL prompt inputs, as 231

shown in Figure 1. We view the ICS strategy as 232

exploring efficient approaches to create committee 233

ICL prompt inputs and query LLMs for the most 234

confident prediction. ICS consists of three steps: 235

1. Sample demonstration candidates and acquir- 236

ing oracle annotations, 237

2. Augment prompt inputs and label predictions 238

with different ICL combinations, and 239

3. Vote the most confident label as the final pre- 240

diction from augmented labels. 241
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Before diving deep into the details of each step242

in ICS, we want to emphasize that our prototyped243

ICS strategies in this work are model-agnostic. We244

will demonstrate the consistent effectiveness of a245

random baseline ICS strategy over the traditional246

ICL approach across four datasets and two LLMs247

in Section 4.1. More importantly, our ICS supports248

“plug-and-play” customizations by switching to249

different sampling, augmenting, and voting strate-250

gies with minimum effort. In addition to justifying251

the effectiveness of our proposed ICS pipeline and252

investigating the influence of different factors on253

performance improvement and robustness, we pro-254

pose three types of model-agnostic ICS strategies255

and demonstrate their further improvements over256

the random ICS pipeline in Section 4.2. The fol-257

lowing sections illustrate each ICS step in detail258

as well as our proposed three data similarity-based259

ICS strategies: diversity, similarity, and hybrid. We260

also leave a broad research area to explore strategy261

variations in future work.262

3.1 Demonstration Candidate Sampling263

How to effectively select unlabeled examples to264

benefit model performance shares the same spirit265

as the Active Learning (AL) data sampling strat-266

egy (Settles, 2009), where an AL strategy itera-267

tively samples few examples for annotation and268

fine-tuning the model. The AL strategies are often269

categorized into three types, as illustrated above in270

Section 2: data diversity-based, model probability-271

based, and hybrid strategies. Existing work stated272

that the effectiveness of model-based strategies273

might differ from model to model (Yao et al., 2023),274

which could introduce irreverent factors when we275

benchmark our ICS versus the traditional ICL ap-276

proach. In this work, we implement three different277

data similarity-based, model-agnostic strategies for278

ICS and evaluate their effectiveness in Section 4.2,279

in addition to the baseline Random strategy where280

we demonstrate the effectiveness compared with281

traditional ICL approach in Section 4.1. The math-282

ematical notations of our proposed strategies are283

illustrated in Algorithm 1.284

Diversity This strategy adheres to established285

cluster-based strategies (i.e., core-set) (Sener and286

Savarese, 2017; Yao et al., 2023), aiming to iden-287

tify examples representative of all unlabeled288

data while maximizing the diversity among289

these selected instances. The concept of ensur-290

ing data diversity derives from the established291

Algorithm 1 Proposed Data-based ICS Strategies

1: function ICS_STRATEGY(D,n, strategy) ▷
D : array of data content; n : sample size;
strategy : strategy type

2: A← (s(Di, D))i∈[1,|D|] ▷ Average score
3: S ← argsort(A) ▷ Descending order
4: if strategy = “diversity” then
5: t =

⌊
|D|
n

⌋
▷ Step

6: Return (Si) i||t
1≤i≤|D|

7: else if strategy = “similarity” then
8: Return (Si)i∈[1,n)
9: else if strategy = “hybrid” then

10: t =
⌊

|D|
(n/2)

⌋
11: Rdiv = (Si) i||t

1≤i≤|D|
12: S′ = S ⊖Rdiv ▷ Array subtract.
13: Rsim = (S′

i)i∈[1,n/2)
14: Return Rdiv ⊕Rsim ▷ Array concat.
15: end if
16: end function

density-weighted sampling strategies (Settles and 292

Craven, 2008; Shen et al., 2004). They assume 293

the instances that can provide the most helpfulness 294

should be the ones that are representative of the 295

input space (He et al., 2023). In other words, the di- 296

versity among selected data should be maximized. 297

Specifically, our strategy calculates the cosine sim- 298

ilarity for each data xi, encoded with sentence- 299

transformer (Reimers and Gurevych, 2019), with 300

the following formula, where embed represents 301

sentence-transformer embedding: 302

s(xi,D) = cos
(
embed(xi),

1
|D|

∑|D|
j=1 embed(xj)

)
(2) 303

Subsequently, we rank the data by similarity score 304

and retrieve n examples with the same interval, 305

ensuring the sampling diversity. for instance, to 306

sample 4 demonstrations from 10 ranked unlabeled 307

data, we choose the 1st, 4th, 7th, and 10th data. 308

Similarity The similarity strategy shares the 309

same procedure as the diversity strategy of calculat- 310

ing the averaged similarity score for each unlabeled 311

data. Nevertheless, the similarity strategy aims to 312

find examples that are of the highest similarity 313

to the whole unlabeled training data space so 314

that the sampled data will most likely be similar 315

to the actual testing data. The underlying concept 316

of this strategy is analogous to a family of density- 317

weighted sampling strategies that look for the ones 318
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that appear most in the unlabeled data space or are319

most similar to unlabeled data (Fujii et al., 1999;320

Xu et al., 2003; Haffari and Sarkar, 2009). We321

follow the same mathematical procedure 2 above322

to calculate and rank the unlabeled data by the av-323

eraged similarity score. Then, differing from the324

diversity strategy, we retrieve n highest-ranked ex-325

amples from the ranked list.326

Hybrid Similar to the aforementioned line of en-327

semble strategies that incorporate different strate-328

gies altogether in Section 2, our hybrid strategy ex-329

pects to benefit from both above-mentioned strate-330

gies, which aims to locate examples that are either331

representative of the sampling space or of the high-332

est similarity to the whole space. Subsequently,333

this hybrid strategy comprises two steps: first, sam-334

ple n/2 examples following the diversity strategy,335

then sample n/2 examples following the similarity336

strategy from the remaining list.337

3.2 ICL Prompt Inputs Augmentation338

As described in Section 3 and shown in Figure 1339

above, ICS augments label predictions for the same340

data by constructing multiple disparate ICL combi-341

nations from the demonstration candidates sampled342

in the previous step. Many recent works (Chen343

et al., 2023b; Levy et al., 2023; Zhang et al., 2022b;344

Rubin et al., 2022; Nguyen and Wong, 2023; Lu345

et al., 2022; Liu et al., 2022) attempted different346

ICL constructions by altering the demonstrations’347

numbers, orderings, prompts, or sampling strate-348

gies. Nevertheless, there’s no commonly recog-349

nized best strategy yet, and we believe models will350

learn disparate implicit guidance for solving the351

task via different demonstrations. In this work,352

we utilize four Natural Language Inference (NLI)353

datasets of varying difficulties and fix three as the354

number of demonstrations per prompt input, con-355

sistent with the number of NLI categories.356

Still, the computation could be massive if we357

permutate every combination of the candidates. for358

example, 50 demonstration candidates can result359

in 19, 600 3-demonstration ICL combinations. We360

believe, however, that ICS does not need every ICL361

combination to find the model’s most confident la-362

bel. Analogous to the query-by-committee concept,363

where a few representative committee models vote364

for the best prediction, we plan to investigate a365

reasonable amount of “committees” (i.e., prompt366

inputs) that balance between establishing robust367

and reliable predictions and minimizing costs (i.e.,368

computational resources, time, annotation efforts. 369

The task of augmenting ICL prompt inputs can 370

be naturally viewed as a variation of the candidate 371

sampling task for the previous step, where the un- 372

derlying concept for both steps attempts to sample 373

a few examples that could be potentially helpful 374

to LLMs through different approaches. Despite 375

that, the optimal strategy for candidate sampling 376

may not be optimal for augmenting prompt inputs 377

in terms of effectiveness and helpfulness. In this 378

work, we benchmark ICS over traditional ICL with 379

a random strategy for augmenting prompt inputs 380

in Section 4.1. Analogous to the sampling step, 381

we implement and evaluate three similarity-based, 382

model-agnostic strategies proposed in Section 4.2 383

to iteratively select demonstrations for each prompt 384

input. Specifically, for each data to be predicted, 385

we iteratively sample three demonstrations from 386

the candidate list with a certain strategy for k times, 387

constructing k different prompt inputs and, thus, 388

acquiring k predicted labels. At every iteration, 389

we remove previously selected examples from the 390

candidate list to avoid using each demonstration 391

multiple times. For ICS strategy evaluation, we 392

leverage the best-performing parameters from the 393

benchmark experiment, where n=100 and k=10. 394

3.3 Confident Prediction Voting 395

Once we acquire a set of predicted labels from the 396

abovementioned ICS steps for each datum to be pre- 397

dicted, we can apply different voting algorithms to 398

find LLM’s most confident prediction. A straight- 399

forward design could be a majority vote algorithm 400

to select the prediction with the most appearances 401

among all the predictions for the current data, 402

which is analogous to finding the mode value math- 403

ematically: yfinal = mode(yics1 , ..., yicsk ), where 404

yicsk denotes the prediction for each augmented 405

prompt input of data x. In this work, we leverage 406

the majority vote algorithm in our prototyped ICS 407

pipelines. We can further consider the model’s dif- 408

ferent prediction confidences for a more complex 409

algorithm design. Additionally, we can envision 410

ICS to provide model-confident unsupervised 411

labels to iteratively fine-tune LLM in resource- 412

deficient scenarios where expert annotations are 413

difficult and expensive to access. 414

4 Evaluations 415

The evaluation of our proposed ICS paradigm 416

comprises bi-fold. First, in Section 4.1, we ex- 417
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ecute a benchmark experiment between the ran-418

dom ICS strategy and traditional ICL approach419

on four datasets with two LLMs to demonstrate420

the paradigm effectiveness. Additionally, we at-421

tempt to identify a sample size and the amount422

of augmented ICL combinations that strike a bal-423

ance across three perspectives: 1) encompass suffi-424

cient diversity to represent the underlying data ade-425

quately, 2) possess robustness toward confident pre-426

dictions, and 3) minimize annotation costs. Subse-427

quently, in Section 4.2, we pick the best-performing428

parameters from the first experiment to compare429

the additional advantages of the three proposed ICS430

strategies described above in Section 3.1.431

4.1 Benchmark Evaluation: ICS vs. ICL432

4.1.1 Setup433

We conduct benchmark experiments to demonstrate434

the effectiveness of our ICS pipeline with a random435

sampling strategy for both sampling demonstra-436

tion candidates and augmenting ICL prompt inputs,437

compared with the traditional ICL approach with438

the same amount of demonstrations in each prompt439

input. Specifically, we employ two open-source440

LLMs (FLAN-T5-XL (Chung et al., 2022) and441

Mistral-7B (Jiang et al., 2023)) and experiment on442

three generic NLI tasks of increasing difficulties: e-443

SNLI (Camburu et al., 2018), Multi-NLI (Williams444

et al., 2017), and ANLI (Nie et al., 2019), as well445

as Contract-NLI (Koreeda and Manning, 2021a), a446

domain-specific NLI task (dataset statistics in Ap-447

pendix B). We originally considered Llama2 (Tou-448

vron et al., 2023d) but eventually excluded it be-449

cause our preliminary experiment, discussed in Ap-450

pendix E, shows that Llama2 tends to output the451

“neutral” category regardless of the inputs on ANLI.452

We intended to manipulate and investigate two453

controlled variables of ICS: the size of sam-454

pled demonstration candidates n, where n ∈455

{50, 100, 250, 500}, and the number of aug-456

mented prompt inputs k for each data to be pre-457

dicted, where k ∈ {3, 5, 10, 20}. We fix the num-458

ber of demonstrations in each prompt input as three459

across all methodologies and experiments. The460

baseline is the vanilla ICL approach with randomly461

chosen three examples, denoted as baseline in Fig-462

ure 2 and ICL in tables from Appendix C. We con-463

sider 500 annotations a reasonable budget cap for464

various real-world, low-resource scenarios. Addi-465

tionally, each setting is repeated and averaged over466

10 trials to counter the sampling randomness. All467

(a) e-SNLI (Camburu et al., 2018)

(b) Multi-NLI (Williams et al., 2017)

(c) ANLI (Nie et al., 2019)

(d) Contract-NLI (Koreeda and Manning, 2021a)

Figure 2: Benchmark experiment of FLAN-T5-XL and
Mistral-7B on four datasets with 100 sampled demon-
stration candidates (n=100) for random ICS strategy
compared with the baseline ICL approach.

the detailed experiment settings, including the task 468

instruction narrative, are reported in Appendix A. 469

4.1.2 Results 470

The complete evaluation results for every setting 471

are reported in Appendix C as tables for the actual 472

numerical prediction accuracy and in Appendix D 473

as diagrams. We notice that the accuracy improve- 474
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Sampling
Strategy

Prompting
Strategy

e-SNLI
(Camburu et al., 2018)

Multi-NLI
(Williams et al., 2017)

ANLI
(Nie et al., 2019)

Contract-NLI
(Koreeda and Manning, 2021a)

Diversity Diversity 73.28 (↑ 8.54) 62.10 (↑ 5.20) 42.78 (↑ 2.36) 87.66 (↑ 8.83)
Diversity Random 73.68 (↑ 8.94) 62.27 (↑ 5.37) 42.77 (↑ 2.35) 89.42 (↑ 10.59)
Random Diversity 73.47 (↑ 8.73) 61.21 (↑ 4.31) 42.33 (↑ 1.91) 87.53 (↑ 8.70)

Similarity Similarity 73.63 (↑ 8.89) 61.79 (↑ 4.89) 42.47 (↑ 2.05) 90.44 (↑ 11.61)
Similarity Random 74.11 (↑ 9.37) 62.09 (↑ 5.19) 42.60 (↑ 2.18) 90.48 (↑ 11.65)
Random Similarity 73.74 (↑ 9.00) 62.17 (↑ 5.27) 42.63 (↑ 2.21) 88.88 (↑ 10.05)

Hybrid Hybrid 73.86 (↑ 9.12) 62.52 (↑ 5.62) 42.59 (↑ 2.17) 88.85 (↑ 10.02)
Hybrid Random 73.96 (↑ 9.22) 62.41 (↑ 5.51) 42.56 (↑ 2.14) 89.73 (↑ 11.90)
Random Hybrid 73.95 (↑ 9.21) 62.39 (↑ 5.49) 42.45 (↑ 2.03) 89.06 (↑ 10.23)

Random Random 72.57 (↑ 7.83) 61.17 (↑ 4.27) 42.22 (↑ 1.80) 86.69 (↑ 7.86)

ICL (Baseline) 64.742 56.905 40.420 78.83

Table 1: Comparison of different ICS strategies versus the ICL baseline on four datasets with Mistral-7B (Jiang
et al., 2023). We implement different strategy combinations and average each score over 40 trials. The change in
prediction accuracy compared with the traditional ICL approach is reported in the parenthesis.

ment becomes insignificant once n goes beyond475

100. This observation implies that a sample size476

over 100 can be considered diverse and represen-477

tative enough for the NLI task we experimented478

with, and selecting more data would have only a479

marginal effect on representativeness. In Figure 2,480

we present the prediction accuracy of baseline ICL481

and our ICS strategy for every model and dataset482

when n = 100. We report the prediction accu-483

racy as colored bars, where the green bars denote484

FLAN-T5-XL and the blue bars denote Mistral-7B.485

By comparing the accuracy differences in ev-486

ery diagram between the baseline ICL approach487

and our ICS strategy for each model, we can ob-488

serve that ICS, even just benchmarked with a ran-489

dom sampling strategy, can consistently improve490

both LLMs’ prediction performance in every491

(n, k) combination, justifying the validity of our492

proposed ICS paradigm. It is not difficult to notice493

that the accuracy improvement provided by the ICS494

strategy for FLAN-T5-XL is much less than that495

for Mistral-7B, where Mistral-7B illustrates more496

than 5% average improvement across all datasets497

with our ICS strategy. Additionally, we observe498

that FLAN-T5-XL results in extremely poor perfor-499

mance on Contract-NLI, implying that the model500

lacks domain knowledge to solve this task. We501

discuss the potential reasons for the disparate per-502

formance between models in Section 5.503

4.2 ICS Strategy Evaluation504

4.2.1 Setup505

Given the observations from the previous bench-506

mark experiment, the best-performing ICS setting507

in terms of the candidate sampling size and the size 508

of augmented prompt inputs is when n=100 and 509

k=10. In this ICS strategy evaluation experiment, 510

we utilize this set of parameters and further investi- 511

gate the effectiveness of different ICS strategies we 512

introduced in Section 3.1 over the random ICS and 513

baseline ICL strategies. We implement different 514

ICS strategy combinations to conduct an in-depth 515

analysis of the sampling strategies at each ICS step: 516

sampling demonstration candidates and augment- 517

ing the prompt inputs. We determine Mistral-7B 518

as the backbone because it performs higher effec- 519

tiveness toward ICL and more robust performance 520

on the domain-specific dataset from the benchmark 521

experiment, compared with FLAN-T5-XL. 522

Because of the massive size of e-SNLI and Multi- 523

NLI (540k and 390k in train splits, correspond- 524

ingly) , we borrow the concept from Active Learn- 525

ing simulations (Yao et al., 2023) to efficiently eval- 526

uate the strategies with a reasonable amount of data 527

and acquire the averaged score over multiple trials. 528

Specifically, for each trial, we randomly sample 529

3, 000 and 1, 000 data from the train and test split 530

correspondingly as the actual train and test data 531

for the current trial. We then conduct each setting 532

40 trials to minimize the randomness provided by 533

subsampling training and testing data and report 534

the averaged prediction accuracy in Table 1. 535

4.2.2 Results 536

In addition to the prediction accuracy of differ- 537

ent ICS strategy combinations, we also report the 538

change in prediction accuracy compared with the 539

baseline ICL approach in the parenthesis, where 540

green denotes improvement. We can easily observe 541
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that all three ICS sampling strategies (diversity,542

similarity, and hybrid) can consistently and sig-543

nificantly improve the prediction accuracy of544

Mistral-7B compared with the baseline setting,545

with more than 9% improvement on e-SNLI and546

two-digits elevation on Contract-NLI. It is worth547

noticing that all the ICS settings with non-random548

strategies in at least one ICS step can outperform549

the benchmark ICS setting that utilizes the random550

strategy for both sampling and prompt augmen-551

tation. As we compare the effectiveness across552

different ICS strategies, we can observe that no sin-553

gle best strategy exists, even for the same NLI task.554

This observation is aligned with our motivation555

and the aforementioned existing works that differ-556

ent ICL demonstrations provide distinct knowledge557

about the task, and there’s no single best ICL strat-558

egy yet. Specifically, the diversity strategy stands559

out on ANLI, whereas the hybrid strategy outper-560

forms the other strategies on Multi-NLI, and the561

similarity strategy surpasses the others on e-SNLI562

as well as Contract-NLI.563

Additionally, we observe that non-random strate-564

gies do not lead to consistent performance improve-565

ment for augmenting ICL prompt inputs by com-566

paring them with the random strategy. For exam-567

ple, leveraging the random strategy for augmenting568

prompt inputs outperforms the similarity strategy569

on all four datasets, implying that high similarity570

among the demonstrations within each prompt571

input is not preferred. On the other hand, we can572

observe a significant performance improvement in573

leveraging non-random strategies demonstration574

candidate sampling compared to the random strat-575

egy, leading to the conclusion that all three strate-576

gies demonstrate more contributions during demon-577

stration candidate sampling compared with aug-578

menting ICL prompt inputs. We also hypothesize579

that more carefully curated strategies are needed580

to sample ICL combinations effectively, leaving a581

broader avenue for future research.582

Furthermore, we notice the improvement pro-583

vided by ICS sampling strategies is inversely584

proportional to the difficulty of the tasks. If585

we consider the model’s baseline ICL performance586

from Section 4.1 as a faithful indicator of dataset587

difficulty, we can conclude the dataset ordering in588

ascending order of task difficulty will be e-SNLI,589

Multi-NLI, and ANLI, where the performance im-590

provement provided by ICS strategies is the small-591

est on ANLI and the largest on e-SNLI.592

Our evaluation of different ICS strategies illus-593

trates promising results that fundamental similarity- 594

based algorithms can effectively increase ICS en- 595

hancement, leading to broader future research av- 596

enues in exploiting the benefits of more carefully 597

curated ICS strategies with LLMs. 598

5 Discussion 599

FLAN-T5-XL We observe FLAN-T5-XL results 600

in poor performance on Contract-NLI from Fig- 601

ure 2, despite it can perform adequately well on 602

the other three generic-domain NLI datasets. We 603

conduct an ablation study with FLAN-T5-XL for 604

ICL to investigate the potential reasons and report 605

in Appendix F. Given the ablation study results, 606

we hypothesize several possible reasons: 1) FLAN- 607

T5-XL falls short of properly interpreting long text 608

sequences; 2) FLAN-T5-XL was not fine-tuned to 609

elevate the ability to interpret ICL demonstrations, 610

and 3) FLAN-T5-XL lacks the necessary domain 611

knowledge to solve the Contract-NLI task. 612

ICS-Related Work A very recent work attempts 613

multiple ICL methodologies to investigate whether 614

LLMs can beat domain-specific fine-tuned mod- 615

els in the medical domain (Nori et al., 2023). The 616

Choice Shuffling Ensemble technique in their pro- 617

posed ensemble methodology shares a similar con- 618

cept with our proposed ICS paradigm, but the au- 619

thors only focus on shuffling the answer choices for 620

selecting robust predictions. Nevertheless, we be- 621

lieve that ICS depicts vast prospects and potential 622

to exploit the capabilities of LLMs. 623

6 Conclusion 624

This work presents In-context Sampling (ICS), a 625

novel In-Context Learning paradigm for probing 626

confident predictions by sampling demonstration 627

candidates and augmenting different ICL prompt 628

inputs. Our experiments show that even ICS with 629

the random strategy can lead to consistent accuracy 630

improvement compared with the traditional ICL 631

approach, and further illustrate the additional help- 632

fulness provided by three fundamental but effective 633

data similarity-based sampling strategies with ICS. 634

Our work lays the foundation for implementing 635

ICL-based applications to support non-expert users 636

in the real world, as they do not know how to write 637

a single perfect prompt to get their work done but 638

often write multiple prompt inputs (Zamfirescu- 639

Pereira et al., 2023). Our method aligns well with 640

such user scenarios. 641
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7 Limitations642

The primary focus of this paper is to propose and643

demonstrate the effectiveness of our ICS pipeline644

compared with the traditional ICL approach. We645

further illustrate the potential of three proposed646

similarity-based ICS strategies, which, despite fun-647

damental, can further exploit LLM’s capability and648

boost the prediction performance. Thus, we do649

not compare with other prompting strategies, such650

as Chain-of-Thoughts. Our experiments showed651

that ICS can improve the model’s performance (in652

prediction accuracy) even with a random strategy.653

However, despite extensive experiments with654

different n and k combinations, several potential655

variables require further analysis. For instance,656

although we considered four datasets of different657

difficulties and each ICL combination is arbitrary,658

all four datasets are NLI tasks. The generalizability659

of the ICS paradigm to other types of tasks goes660

beyond the scope of this paper, and we are working661

on this interesting and substantial research question662

as a follow-up work.663

Besides, we only implement and evaluate the664

same three strategies for both steps of sampling665

demonstration candidates and augmenting prompt666

inputs in ICS because the data similarity-based667

strategies are model agnostic and generally re-668

quire fewer computing resources than model-based669

strategies. We are also aware that the optimal strat-670

egy for demonstration candidate sampling may not671

be optimal for prompt input augmentations, and672

we leave the analysis of strategy optimization for673

future work.674

In addition, we do not perform an in-depth anal-675

ysis of optimizing time consumption and reducing676

computing resources in this work, though we are677

aware that ICS may require more time than the678

traditional ICL approach. Lastly, our experiment679

comprises three open-source LLMs as the original680

plan but excludes Llama2 due to its over inclina-681

tion to predict the “neutral” category (Appendix E).682

We identify that there are still a variety of other683

instructional-finetuned LLMs we do not include684

in this work, such as InstructGPT (Ouyang et al.,685

2022). We also do not include close-sourced and686

commercial-oriented LLMs such as GPT-4 (Ope-687

nAI, 2023) in this work.688
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A Experiment Setup1133

All four datasets included in our work (e-SNLI,1134

Multi-NLI, ANLI, and Contract-NLI) are of the1135

same natural language inference task. Thus, we1136

leverage the same instruction narrative across all1137

the experiments: Determine whether a hypoth-1138

esis is entailment, neutral, contradiction giving1139

a premise. For Contract-NLI, the original dataset1140

only consists of annotations for the “entailment”1141

and “contradiction” categories. Thus, we only eval-1142

uate the performance of those data.1143

All the experiments are computed on one of two1144

resources: 1) an NVIDIA A100 40G graphic card1145

or 2) an NVIDIA 3090 24G graphic card. For1146

Llama2 and Mistral-7B, we load both models in1147

fp16 precision to fit them in both graphic cards and1148

limit to generate a maximum of 10 tokens.1149

B Dataset Statistics1150

Dataset Train Validation Test

e-SNLI
Camburu et al. (2018)

549, 367 9, 842 9, 824

Multi-NLI
Williams et al. (2017)

392, 702 9, 815 9, 832

ANLI
Nie et al. (2019)

16, 946 1, 000 1, 000

Contract-NLI
Koreeda and Manning
(2021b)

3, 999 555 1, 113

Table 2: Datasets involved in our experiment. Contract-
NLI only comprises annotations of “entailment” and
“contradiction” categories.

C Complete Evaluation Results1151

Here, we report the complete results of our evalua-1152

tion (Section 4) in Table 5 and Table 6 for FlanT5-1153

XL (Chung et al., 2022) and Mistral-7B (Jiang et al.,1154

2023), correspondingly. We acquire an average pre-1155

diction accuracy score over 10 trials of each setting.1156

n denotes the amount of demonstration candidate1157

data we sampled, and k denotes the number of ICL1158

combinations for each test data.1159

D Results Diagrams1160

Additionally, we plot the LLM’s prediction accu-1161

racy and the standard deviation across 10 experi-1162

ment trials for different settings in Figure 3, 4, 5, 61163

on e-SNLI, Multi-NLI, ANLI, and Contract-NLI.1164

We can observe that the ICS strategy can consis-1165

tently improve LLMs’ performance compared with1166

the traditional ICL baseline; in addition, FLAN-T5- 1167

XL is much less sensitive than Mistral toward the 1168

improvement provided by the ICS strategy. From 1169

the diagrams, k = 10 and n = 100 are the best- 1170

performing parameters that maximize the perfor- 1171

mance improvement and minimize the standard 1172

deviations. 1173

E Analysis on Llama2 1174

Llama2 Inst. 1 Inst. 2 Inst. 3 Ground-truth

entailment 75 202 151 334
neutral 808 668 785 333
contradiction 117 130 64 333

Table 3: Analysis of Llama2 performance on ANLI.

We conducted an initial inference experiment 1175

with Llama2 (Touvron et al., 2023d) on ANLI uti- 1176

lizing three different natural language instructions: 1177

i Determine whether a hypothesis is entailment, 1178

neutral, contradiction giving a premise. 1179

ii Classifying a pair of premise and hypothesis 1180

sentences into three classes: entailment, neu- 1181

tral, contradiction 1182

iii Predict the relationship between the premise 1183

and hypothesis by entailment, neutral, contra- 1184

diction 1185

The results are reported in Table 3. We can easily 1186

observe that Llama2 tends to overly predict “neu- 1187

tral” over the other two categories despite chang- 1188

ing instruction narratives, whereas the ground-truth 1189

distribution is even across categories. Thus, we 1190

omit Llama2 in our work. There could be differ- 1191

ent reasons contributing to this issue; for example, 1192

Llama2 was overfitted to the NLI task or similar 1193

tasks that share the same set of targeting categories: 1194

“entailment”, “neutral”, and “contradiction”. 1195

F Ablation on FLAN-T5-XL with 1196

Contract-NLI 1197

We design and conduct an ablation study with 1198

FLAN-T5-XL for ICL to verify our hypothesis. 1199

The experiment is conducted on the Contract-NLI 1200

dataset. Specifically, we start with the zero-shot 1201

setting to examine whether FLAN-T5-XL can prop- 1202

erly solve the task without demonstrations. Then, 1203

we experiment with both ICS and ICL approaches 1204

and gradually increase the number of demonstra- 1205

tions from 1 to 3. The demonstrations are randomly 1206

selected from the training split, and each ICL set- 1207

ting is repeated 3 times to acquire the average score. 1208

14



Setting zero-shot 1-shot 2-shot 3-shot
ICL 2.48 19.39 23.80 22.88
ICS / 20.03 24.54 23.34

Table 4: ICL ablation experiment of FLAN-T5-XL on
Contract-NLI.

From table 4, we can observe that FLAN-T5-XL1209

can hardly interpret the dataset and solve it with1210

a zero-shot setting. Since we leverage the same1211

prompt narrative as the one for the other NLI tasks1212

that FLAN-T5-XL performs relatively well, we can1213

imply that the lack of domain knowledge might be1214

the primary reason for such low performance. Nev-1215

ertheless, we can observe that the 1-shot setting1216

can significantly improve the model performance,1217

although the overall accuracy is still very low. It1218

is worth noticing that the improvement becomes1219

relatively trivial once we add more demonstrations1220

to the prompt inputs, which implies that FLAN-1221

T5-XL falls short of interpreting longer and more1222

complex ICL format, possibly due to its relatively1223

short training input length limit. Moreover, our1224

random ICS strategy can still outperform the ICL1225

baseline across all settings.1226
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FlanT5-XL k=3 k=5 k=10 k=20

n = 50
ICL 83.82 83.82 83.77 83.79
ICSours 83.99 84.00 84.06 84.10

n = 100
ICL 83.79 83.77 83.77 83.73
ICSours 83.91 83.99 84.04 84.03

n = 250
ICL 83.80 83.76 83.80 83.79
ICSours 83.94 83.95 84.06 84.04

n = 500
ICL 83.75 83.79 83.81 83.64
ICSours 83.90 84.06 84.09 84.11

(a) e-SNLI

FlanT5-XL k=3 k=5 k=10 k=20

n = 50
ICL 69.58 69.43 69.47 69.64
ICSours 69.87 69.92 69.97 70.13

n = 100
ICL 69.58 69.66 69.53 69.51
ICSours 69.91 70.05 70.13 70.04

n = 250
ICL 69.71 69.54 69.54 69.69
ICSours 70.02 70.06 70.11 70.10

n = 500
ICL 69.59 69.51 69.41 69.58
ICSours 69.90 70.00 70.08 70.16

(b) Multi-NLI

FlanT5-XL k=3 k=5 k=10 k=20

n = 50
ICL 40.38 39.95 40.47 40.15
ICSours 40.52 40.40 40.56 40.31

n = 100
ICL 40.68 40.75 40.05 40.12
ICSours 40.68 40.76 40.18 40.39

n = 250
ICL 40.35 40.25 40.02 40.10
ICSours 40.36 40.28 40.50 40.38

n = 500
ICL 40.10 40.22 40.65 40.11
ICSours 40.41 40.49 40.66 40.58

(c) ANLI

FlanT5-XL k=3 k=5 k=10 k=20

n = 50
ICL 24.44 23.98 23.16 23.62
ICSours 24.72 24.44 24.72 25.18

n = 100
ICL 25.00 24.35 22.33 23.06
ICSours 26.56 25.09 22.33 25.55

n = 250
ICL 24.44 23.98 24.08 23.34
ICSours 26.19 25.55 25.00 25.64

n = 500
ICL 23.80 23.52 23.89 23.25
ICSours 25.18 24.72 25.09 25.64

(d) Contract-NLI

Table 5: Evaluation result for FlanT5-XL.

Mistral-7B k=3 k=5 k=10 k=20

n = 50
ICL 64.26 64.61 65.01 64.71
ICSours 68.82 70.28 71.97 73.82

n = 100
ICL 65.15 65.59 65.11 64.30
ICSours 69.17 71.95 72.57 74.94

n = 250
ICL 65.09 65.02 64.25 64.73
ICSours 69.76 71.82 73.23 74.95

n = 500
ICL 64.76 64.97 64.66 64.97
ICSours 69.21 71.36 73.56 75.06

(a) e-SNLI

Mistral-7B k=3 k=5 k=10 k=20

n = 50
ICL 57.38 57.58 57.82 56.62
ICSours 60.31 61.50 61.90 60.56

n = 100
ICL 57.26 57.43 56.68 57.24
ICSours 60.15 61.13 61.90 63.42

n = 250
ICL 57.32 56.53 57.01 56.70
ICSours 60.26 60.57 62.82 62.62

n = 500
ICL 56.88 59.38 56.96 56.70
ICSours 59.78 60.93 62.11 61.96

(b) Multi-NLI

Mistral-7B k=3 k=5 k=10 k=20

n = 50
ICL 40.57 40.25 40.71 41.27
ICSours 42.03 42.18 42.31 42.77

n = 100
ICL 40.23 41.01 40.47 40.22
ICSours 41.56 42.59 43.13 43.25

n = 250
ICL 40.81 40.51 40.14 41.28
ICSours 42.09 41.90 43.26 43.27

n = 500
ICL 40.52 40.57 41.24 39.86
ICSours 40.95 42.20 42.85 42.65

(c) ANLI

Mistral-7B k=3 k=5 k=10 k=20

n = 50
ICL 78.90 80.25 79.97 77.05
ICSours 80.97 85.01 88.23 89.37

n = 100
ICL 79.92 79.33 78.83 80.18
ICSours 82.02 85.05 88.54 90.20

n = 250
ICL 79.62 78.64 79.12 78.02
ICSours 89.63 84.99 88.43 90.83

n = 500
ICL 79.62 78.61 79.15 78.70
ICSours 81.86 84.29 88.03 90.38

(d) Contract-NLI

Table 6: Our evaluation result for Mistral-7B.
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(a) n=50 (b) n=100

(c) n=250 (d) n=500

Figure 3: Evaluation results with FlanT5-XL and Mistral on e-SNLI (Camburu et al., 2018) dataset.

(a) n=50 (b) n=100

(c) n=250 (d) n=500

Figure 4: Evaluation results with FlanT5-XL and Mistral on Multi-NLI (Williams et al., 2017) dataset.
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(a) n=50 (b) n=100

(c) n=250 (d) n=500

Figure 5: Evaluation results with FlanT5-XL and Mistral on ANLI (Nie et al., 2019) dataset.

(a) n=50 (b) n=100

(c) n=250 (d) n=500

Figure 6: Evaluation results with Mistral on Contract-NLI (Koreeda and Manning, 2021b) dataset.
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