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ABSTRACT

Due to the rise in antimicrobial resistance, identifying novel compounds with an-
tibiotic potential is crucial for combatting this global health issue. However, tra-
ditional drug development methods are costly and inefficient. Recognizing the
pressing need for more effective solutions, researchers have turned to machine
learning techniques to streamline the prediction and development of novel an-
tibiotic compounds. While foundation models have shown promise in antibiotic
discovery, current mainstream efforts still fall short of fully leveraging the poten-
tial of multimodal molecular data. Recent studies suggest that contrastive learning
frameworks utilizing multimodal data exhibit excellent performance in represen-
tation learning across various domains. Building upon this, we introduce CL-
MFAP, an unsupervised contrastive learning (CL)-based multimodal foundation
(MF) model specifically tailored for discovering small molecules with potential
antibiotic properties (AP) using three types of molecular data. This model em-
ploys 1.6 million bioactive molecules with drug-like properties from the ChEMBL
dataset to jointly pretrain three encoders: (1) a transformer-based encoder with ro-
tary position embedding for processing SMILES strings; (2) another transformer-
based encoder, incorporating a novel bi-level routing attention mechanism to han-
dle molecular graph representations; and (3) a Morgan fingerprint encoder using a
multilayer perceptron, to achieve the contrastive learning purpose. The CL-MFAP
outperforms baseline models in antibiotic property prediction by effectively uti-
lizing different molecular modalities and demonstrates superior domain-specific
performance when fine-tuned for antibiotic-related property prediction tasks.

1 INTRODUCTION

Bacteria play a pivotal role in a diverse array of diseases within the human body, serving as either
the primary cause or a contributing factor. A promising and sometimes sole treatment for these
diseases is antibiotics, a specialized class of drugs designed to target pathogenic bacteria. Despite
advancements, a lack of antibiotics for many pathogenic bacteria persists, and antibiotic resistance
allows bacteria to survive once effective treatments. Consequently, there is a pressing demand for
the continual development of antibiotics. However, traditional antibiotic discovery faces two major
issues: 1) it is extremely costly and 2) it is very time-consuming. Artificial Intelligence (AI) and
Machine Learning (ML) methods can combat these issues and thus, have been employed over the
past couple of years to aid in antibiotic discovery for a wide range of conditions. Deep learning (DL)
tools including convolutional, recurrent, and graph neural networks have been leveraged to explore
high-dimensional data and design compounds with desired antibiotic properties (Cesaro et al., 2023).

Large Language Models (LLMs) have increasingly stood out in recent years due to their exceptional
performance, garnering widespread attention. As such, they have been implemented and fine-tuned
to target pathogenic bacteria. For an LLM dedicated to the domain of antibiotic discovery, utiliz-
ing an extensive general molecular dataset for model training may not be a computationally cost-
effective choice. By employing domain-specific training, the model can be taught to learn the unique
characteristics, patterns, and nuances relevant to the field. Gu et al. (2021) support this assertion,
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arguing that for fields like biomedicine, which have a large amount of unlabeled text, pretraining a
model from scratch yields greater benefits than continual pretraining of a general-domain LLM.

Contrastive learning, an effective method for utilizing large amounts of unlabeled data, has made
significant progress in the field of ML in recent years. For antibiotic-related property prediction,
contrastive learning significantly enhances model performance. Rather than relying on limited la-
beled molecular property data, this method leverages the vast amount of unlabeled molecular data
available, helping identify patterns that contribute to a compound’s properties. The resulting molec-
ular representations are thus more robust as they include patterns that may be missed by traditional
supervised learning approaches. This leads to more accurate predictions, better generalization to
novel chemical spaces, and ultimately increases the success rate of identifying potential antibiotic
candidates.

In this study, we introduce a novel approach to streamline antibiotic discovery by leveraging a con-
trastive learning framework with multimodal data to train a domain-specific LLM. We propose
CL-MFAP, an unsupervised contrastive learning (CL)-based multimodal foundation (MF) model
specifically tailored for discovering small molecules with potential antibiotic properties (AP). CL-
MFAP integrates a transformer-based encoder with rotary position embedding for SMILES strings, a
transformer-based encoder using a novel Bi-Level Routing Attention (BRA) mechanism for molec-
ular graphs, and a multilayer perceptron for Morgan fingerprint embeddings. This model is pre-
trained on 1.6 million bioactive molecules with drug-like properties from the Chemical Database of
Bioactive Molecules (ChEMBL) (Gaulton et al., 2011), a smaller, domain-specific dataset. Our
comprehensive evaluation demonstrates that CL-MFAP outperforms baseline models trained on
large-scale general datasets for antibiotic property prediction, while also exhibiting superior domain-
specific performance when fine-tuned on targeted downstream tasks.

2 RELATED WORK

Transformers. Among the current mainstream LLMs, the most representative architecture is the
transformer. A transformer is a DL architecture primarily based on a multi-head attention mecha-
nism containing two major components: the encoder and the decoder. Architectures derived either
independently or jointly from these two parts form the transformer family. Examples include the
Bidirectional Encoder Representations from Transformers (BERT) series based solely on the en-
coder (Devlin et al., 2018), the Generative Pre-trained Transformer (GPT) series based solely on
the decoder (Radford & Narasimhan, 2018), and the Text-to-Text Transfer Transformer (T5) series
utilizing both the encoder and decoder (Raffel et al., 2020). The core mechanisms of the transformer
include self-attention computation and positional encoding (?). The former is used to capture the
semantic dependencies between the target word and the context and then determine its importance,
while the latter understands the syntax and sequence information of the word by recording its po-
sition in the sequence. LLMs based on the transformer architecture have been widely proven to
exhibit superior performance in capturing sequence semantics.

LLMs for Molecular Property Prediction. LLMs have recently gained popularity in molecu-
lar property prediction due to their enhanced success. MolFormer is a successful unsupervised
transformer-based LLM that accurately captures sufficient chemical and structural information to
predict a diverse range of chemical properties (Ross et al., 2022). ChemBERTa is a stack of bidi-
rectional encoders that uses representations from transformers for molecular property prediction
(Chithrananda et al., 2020) and is fine-tuned to better predict drug-target interactions (Kang et al.,
2022). MolBERT is a self-supervised model, consisting of the bidirectional attention mechanism-
based BERT architecture (Fabian et al., 2020). It is one of the most efficient pre-trained models for
molecular property prediction that can be easily generalized to different molecular property predic-
tion tasks via fine-tuning. All these examples of successful LLMs take in the structure of compounds
in Simplified Molecular Input Line Entry System (SMILES) format for predictions.

Contrastive Learning Models for Molecular Representation Learning. As the field of drug de-
velopment continues to advance, the integration and utilization of multimodal data have become
essential for improving the performance of molecular property prediction LLMs. Contrastive learn-
ing can enhance a model’s feature extraction capabilities by learning different representations of
molecular data in the absence of labeled data. For example, MolCLR employs three distinct molec-
ular graph augmentations to achieve contrastive learning, significantly improving the model’s ability
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Figure 1: Illustration of the proposed approach.

to learn molecular representations (Wang et al., 2022). UniCorn combines several pretraining meth-
ods: 2D graph masking, 2D-3D contrastive learning, and 3D denoising, to depict molecular views
from three different levels, resulting in superior performance compared to traditional models (Feng
et al., 2024).

3 PROPOSED APPROACH

3.1 MODEL DEVELOPMENT

We designed a multimodal contrastive learning model based on molecular SMILES, Morgan finger-
prints, and molecular graphs to comprehensively capture different chemical characteristics. The
input data is SMILES representations, which describe the linear form of a molecule, including
information about its composition, bond types, and functional groups, used to depict the overall
connectivity of the molecular structure. From the SMILES representation, Morgan fingerprints and
molecular graphs are constructed. Morgan fingerprints provide a quantitative representation of the
molecule’s features, encoding its structure as a high-dimensional binary vector that captures the pres-
ence and distribution of various substructures and functional groups. Specifically, a radius size of 2
was determined through ablation studies detailed in Appendix A.1 (Table A1), and a 2048-bit vec-
tor was chosen as it is large enough to minimize hash collisions (where different structural features
map to the same bit) while being computationally efficient. The graph representation of a molecule
describes its topology through nodes (atoms) and edges (chemical bonds), including details about
the atom types, bond characteristics, and overall connectivity. Ablation studies were performed to
validate the inclusion of these three modalities, detailed in Appendix A.2 (Table A2). Altogether,
the model receives a widespread in-depth representation of each compound, allowing it to learn the
specificities and patterns of the compounds that influence their antibiotic-related properties.

Figure 1 illustrates the overall architecture of our model, which learns the three molecular feature
modalities mentioned above through different embedding pathways. First, the model employs a
transformer-based graph encoder with a novel bidirectional relation aggregation (BRA) mechanism
to learn the molecular graph features. Second, the transformer encoder with rotary positional em-
bedding is used to learn the SMILES features of the molecule. This self-attention-based encoder
excels at capturing global information in sequential data and handling complex contextual depen-
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dencies. Finally, to encode Morgan fingerprints, we use a multilayer perceptron (MLP), a classical
feedforward neural network capable of processing high-dimensional data and extracting complex
features.

3.1.1 ROTARY POSITIONAL EMBEDDING

Rotary Positional Embedding (RoPE) is an improved positional encoding method used in trans-
former models (Su et al., 2024). The rotation transformation effectively integrates positional infor-
mation into each token and helps the model capture dependencies between distant tokens. Together,
this preserves the relative position relationships between elements and improves prediction accuracy.
This method is particularly suitable for processing molecular data with complex structural depen-
dencies, as it improves the model’s ability to understand sequential structural relationships. In the
two-dimensional case, the formula for implementing rotary positional encoding through complex
multiplication is as follows:

g(xm, xn,m− n) = Re
[
(Wqxm)(Wkxn)

∗ei(m−n)θ
]

(1)

where m and n are tokens, q is the query, k is the key, Wq is the query projection matrix, Wk is
the key projection matrix, Re[·] is the real part of a complex number, (Wqxm) represents the com-
plex conjugate, and (xm, xn) denotes the representation in a two-dimensional coordinate system.
Through this rotation formula, a rotational transformation is achieved, generating the rotary posi-
tional encoding. The original linear attention formula is expressed as follows, where φ(·) and ϕ(·)
are typically non-negative functions:

Attention(Q,K, V )m =

∑N
n=1 ϕ(qm)Tϕ(kn)vn∑N
n=1 ϕ(qm)Tϕ(kn)

(2)

where vn is the value of nth token, qm is the query, and kn is the key.

Combining both equations 1 and 2 gives equation 3. RoPE injects positional information through
rotation, which keeps the norm of hidden representations unchanged. Thus, RoPE is combined with
linear attention by multiplying the rotation matrix with the outputs of the non-negative function as
follows:

Attention(Q,K, V )m =

∑N
n=1(R

d
Θ,mϕ(qm))T (Rd

Θ,nϕ(kn))vn∑N
n=1 ϕ(qm)Tϕ(kn)

(3)

where Rd
Θ is an orthogonal matrix that ensures stability during the process of encoding position

information.

3.1.2 BI-LEVEL ROUTING ATTENTION

The Bi-level Routing Attention (BRA) mechanism is crucial, as it partitions the attention mechanism
into two phases: an initial focus on global relationships followed by a more detailed scrutiny of local
specifics. In conventional applications within computer vision, the BRA mechanism first identifies
critical areas within an image and then focuses on local details. For instance, in an image featuring
a dog, the model would initially identify the most prominent features, such as the dog’s head, across
the entire image, and then subsequently focus on local details such as the eyes and nose within the
defined window.

In molecular graphs, diverse structural features are exhibited by different molecules, and these fea-
tures significantly influence the functional performance of the molecules. For antibiotic molecules,
complex cyclic structures represent a typical characteristic, the importance of which often surpasses
other local structures in medicinal functionality, making precise understanding by the model crucial.
In our model, through the Window-to-Window Attention mechanism of BRA, the model efficiently
identifies and focuses on key structures and functional groups within the molecular graph that are
central to functionality, such as cyclic structures. Concurrently, for peripheral structures or less likely
node-edge combinations that have minimal impact on molecular functionality, the model minimizes
their importance or filters them out through a dynamic adjustment mechanism, thereby achieving a
clear prioritization in feature learning.
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The BRA mechanism has been proven effective in handling long-range dependencies in images
within the field of computer vision, and the same theory applies to molecular graphs (Dong et al.,
2023). Compared to the traditional approach of graph transformers which use classical attention, the
BRA first filters out irrelevant key-value pairs at a coarse regional level, significantly reducing the
number of potential interactions that need to be considered in the subsequent fine-grained token-to-
token attention phase. This two-step filtering process ensures that attention is focused on areas most
relevant to the query, enhancing the model’s ability to manage long-range dependencies without the
computational overhead of attending to all token pairs.

Window-to-Window Level Routing. This mechanism efficiently computes attention across regions
of a feature map while considering local context. Beginning with a 2D feature map, X ∈ RH×W×C ,
a linear transformation is applied to create three tensors: Q (query), K (key), and V (value), as
shown in Equation 4.

Q = XWq,K = XWk, V = XWv (4)

where Wq , Wk, and Wv are the learnable projection weights, each of size RC×C .

To perform window-to-window level routing, the feature map is divided into S x S non-overlapping
windows, each containing HW

S2 feature vectors, resulting in reshaped Q′, K ′ and V ′. The window
size S is set to 7, based on ablation studies explained in Appendix A.1 (Table A3). Within each
window, the Q′, K ′, and V ′ tensors are used to compute the average, resulting in Qw and Kw,
which are the window-level representations for each non-overlapping window. These are then used
to calculate the window-to-window score matrix (containing window-to-window attention scores)
as shown in Equation 5.

Aw = Qw(Kw)T (5)

In the score matrix, each row contains the indexes of the top-k windows that are most relevant to the
corresponding window.

Pixel-to-Pixel Level Attention. For window I , its top-k relevant windows are scattered across the
feature map. To gather these windows together, we use the following equation to collect Kg and
V g:

Kg = gather(K, Iw), V g = gather(V, Iw) (6)

Kg and V g represent the collected Key and Value tensors containing features from the top-k win-
dows relevant to the current window I . For a given pixel j within a window I , the pixel will attend
to all pixels in the top-k windows most relevant to window I . This ensures a fine-grained attention
mechanism, allowing the model to refine feature representations at the individual pixel level.

Algorithm 1 Bi-Level Routing Attention
1: #Graph:
2: graphTokenFeature, nodeFeature← processSmilesToGraph(smilesString)
3: graphNodeFeature← concatenate(graphTokenFeature, nodeFeature)
4: nodeFeatureMatrix← createNodeFeatureMatrix(graphNodeFeature)

5: #Bi-Level Routing Attention:
6: #Window-to-Window Level Routing:
7: windows← divideIntoWindows(nodeFeatureMatrix)
8: distances← calculateDistancesBetweenWindows(windows)
9: topKWindows← selectTopKWindows(windows, distances, k)

10: #Pixel-to-Pixel Level Attention:
11: attentionEmbedding ← gather(pixelLevelAttention(topKWindows))

Algorithm 1 presents the basic architecture of the Bi-Level Routing Attention (BRA) algorithm,
including the processing of input data and the implementation logic of BRA. To our knowledge, this
is the first time BRA has been introduced into the attention mechanism for processing molecular
graphs. We utilize a transformer-based graph encoder, equipped with 8 attention heads and 12
encoder layers, a configuration particularly suited for analyzing and interpreting complex molecular
structures (Ying et al., 2024).
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3.1.3 MULTIMODAL CONTRASTIVE LEARNING

The advantage of a multimodal model lies in its ability to integrate information from different modal-
ities, thus obtaining a more comprehensive understanding of molecular structure that enhances the
robustness and generalization of the model. Contrastive learning is an approach that enhances fea-
ture learning by pulling similar pairs closer together while pushing dissimilar pairs apart. This
approach significantly improves representation quality as it facilitates learning similarities and asso-
ciations across different modalities. It also aids in the limited data issue commonly associated with
antibiotic property discovery by leveraging the unlabeled molecular data available.

Algorithm 2 Multimodal Contrastive Learning
1: function CONTLEARNINGMODEL(smilesBatch, fpBatch, graphBatch)
2: smilesOutput← SmilesEncoder(smilesBatch)
3: fpOutput← FpEncoder(fpBatch)
4: if BiGraphormerEncoder with MPNN then
5: graphOutput← MPNNEncoder(graphBatch) + BiGraphormerEncoder(graphBatch)
6: else if BiGraphormerEncoder without MPNN then
7: graphOutput← BiGraphormerEncoder(graphBatch)
8: else if BiGraphormerEncoder without Bi-level routing attention then
9: graphOutput← MPNNEncoder(graphBatch) + GraphormerEncoder(graphBatch)

10: end if
11: return smilesOutput, fpOutput, graphOutput
12: end function

13: function COMPUTELOSS(smilesOutput, fpOutput, graphOutput)
14: //Loss Function (Initial Weight w1, w2, w3)
15: lossSmilesFP ← NT-Xent(smilesOutput, fpOutput)
16: lossSmilesGraph← NT-Xent(smilesOutput, graphOutput)
17: lossFPGraph← NT-Xent(fpOutput, graphOutput)
18: totalLoss← w1 · lossSmilesFP + w2 · lossSmilesGraph+ w3 · lossFPGraph
19: return totalLoss
20: end function

Algorithm 2 illustrates the basic architecture and loss computation of the multimodal contrastive
learning model. In our model, SMILES, Morgan fingerprints, and molecular graphs are encoded
using dedicated encoders and the representations are then processed through a contrastive learning
framework, using Normalized Temperature-Scaled Cross-Entropy (NT-Xent) as the fundamental
loss function to compare pairs across modalities (Equation 7)(You et al., 2020). NT-Xent Loss
learns well-distributed feature representations by maximizing the similarity of similar samples (pos-
itive pairs) and minimizing the similarity of dissimilar samples (negative pairs). The function takes
the concatenated vectors of two modalities for two molecules as input and calculates the loss for
each pair of modalities. For example, for SMILES and molecular graphs, we first compute the con-
catenated vector of the SMILES embedding and the graph embedding, then compute a similarity
matrix for all pairwise samples for the two modalities, and finally calculate the loss between two
modalities. To enable the use of NT-Xent loss with different modalities, we project the represen-
tations from different modalities into the same vector space. In each iteration, different modalities
of the same molecule are treated as positive pairs, while representations from different molecules
are treated as negative pairs. NT-Xent loss is advantageous as it effectively measures the similar-
ity between high-dimensional embeddings from different modalities, emphasizing the alignment of
directions rather than absolute values, which is crucial for robust multimodal learning.

Lc = −log
exp(

sim(x,x′
i)

τ )∑n
j=1 exp(

sim(x,yi)
τ )

(7)

The total loss is defined in Equation 8, where i and j represent two different molecules, and m and
n denote different data modalities. For each modality pair, we assign a weight, and the total loss is
calculated as the weighted sum of these individual losses.

L =
∑
mn

wmn

(∑
(Lc(xim + xin, xjm + xjn) + Lc(xim + xin, x

′
im + x′

in))
)

(8)
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3.2 PRETRAINING PROCESS

Dataset and Pre-processing. The ChEMBL24 database was downloaded after the removal of salts,
charge neutralization, removal of molecules with SMILES strings longer than 100 characters, re-
moval of molecules containing any element other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br, and
I, and removal of molecules with a larger ECFP4 similarity than 0.323 compared to a holdout set
consisting of 10 marketed drugs (celecoxib, aripiprazole, cobimetinib, osimertinib, troglitazone,
ranolazine, thiothixene, albuterol, fexofenadine, mestranol) (Gaulton et al., 2011) (Fiscato et al.,
2018). Pre-processing was then applied to the raw molecular data, which included de-duplication,
normalization via conversion to canonical SMILES using RDKit (rdk), and removal of entries with
over 123 tokens, as these molecules are exceedingly rare in practical applications (Ross et al., 2022).
After processing, we obtained 1,591,020 SMILES for model training. The preprocessed data was
divided into 80% − 10% − 10% for training, validation, and testing, respectively. Given the input
data of SMILES strings, CL-MFAP generates Morgan fingerprints and molecular graphs using RD-
Kit (rdk) and all three types of data are subsequently used to train the model. pretraining CL-MFAP
using ChEMBL was validated via ablation studies detailed in Appendix A.1 (Table A4).

Domain-specific. Our target domain contains bioactive molecules with drug-related like compounds
from ChEMBL, whereas other large-scale databases, such as PubChem, typically include much
more widely used, commercially available molecules (Lyubishkin et al., 2022) (Kim et al., 2016).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Environment. All implementations were conducted on the PyTorch platform using an NVIDIA
A100 GPU. All models were trained using a learning rate of 1e-4, over 20 epochs, with batch size
8 and 4 worker processes. The Adam optimizer and gradient clipping were also applied during
training, limiting the gradient norm to 1.0. For the bi-level routing attention, the window size is 7,
the number of top k windows is 4, and there are 16 pixels per window and 8 attention heads.

Pre-trained CL-Models. To analyze the contribution of each component along the molecular graph
embedding path—graph transformer encoder (GTE) and the newly introduced BRA—as well as
to test whether combining this GTE with a message-passing neural network (MPNN) can further
enhance the model’s ability to capture global information, we pre-trained five models within the
overall framework of multimodal contrastive learning which differ in structural configurations along
the graph embedding path. Aside from CL-MFAP, the other four models are labeled as Contrastive
Learning Baseline 1-4 (CL-BL1-4). The labels and structures of all the models pre-trained under the
multimodal contrastive learning framework are presented in Table 1.

Table 1: Proposed pre-trained models with different graph embedding paths

Model Name Structural Configuration Graph Embedding Description

CL-MFAP Proposed Model GTE + BRA
CL-BL1 CL-MFAP w/ MPNN GTE + BRA + MPNN
CL-BL2 CL-MFAP w/ MPNN w/o BRA GTE + MPNN
CL-BL3 CL-MFAP w/o BRA GTE
CL-BL4 CL-MFAP w/ MPNN w/o BRA w/o GTE MPNN

Model Size. Moreover, we measured the size of our models in terms of Params and FLOPs to
further evaluate their performance and cost efficiency. Params refer to the number of trainable
parameters in a model. This is directly related to the structure of the model, representing each
learnable weight, including weights and biases in different layers. As such, it serves as a measure of
the model’s complexity and storage requirements (Han et al., 2024). FLOPs refer to the number of

7
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floating-point operations performed during a single forward pass of the model. This metric measures
the computational complexity and cost of the model, providing insight beyond just the number
of parameters. FLOPs are closely related to the model’s inference speed and the computational
resources required for its operation (Han et al., 2024).

4.2 DOWNSTREAM PROPERTY PREDICTIONS

Datasets. Six datasets were used for downstream property prediction: MIC activity against E. coli
(E. coli MIC) dataset curated from COADD database (Desselle et al., 2017), MIC activity against
H. influenzae (H. influenzae MIC) dataset curated from ChEMBL database (Gaulton et al., 2011),
BACE (Wu et al., 2018), Blood-Brain Barrier Penetration (BBBP) (Wu et al., 2018), Parallel Arti-
ficial Membrane Permeability Assay (PAMPA) (Siramshetty et al., 2021), and Bioavailability (Ma
et al., 2008). All datasets were divided into 80%− 10%− 10% for training, testing and validation,
respectively. More details can be found in Appendix A.1.

Baseline Models. We selected MolFormer, ChemBERTa-2, MolBERT , MolCLR, and FP-GNN as
baselines to evaluate the performance of CL-MFAP. MolFormer is trained on a large-scale general
molecular dataset, containing 1 billion molecules from the ZINC database and another 111 mil-
lion molecules from the PubChem database (Ross et al., 2022). ChemBERTa-2 is an LLM with
a BERT-based structure comprised of 12 encoders (Ahmad et al., 2022). This model utilizes the
standard attention mechanism and absolute positional encoding, pre-trained on a dataset containing
approximately 77 million compounds from the PubChem database (Kim et al., 2016). MolBERT is
another model with a BERT-based structure, composed of 12 encoders, standard attention mecha-
nism, and absolute positional encoding (Fabian et al., 2020). However, this model was trained on a
relatively small-scale dataset from ChEMBL, which contains approximately 1.6 million molecules.
MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks) employs
three molecular graph augmentations: atom masking, bond deletion, and subgraph removal and
subsequently uses contrastive learning and graph neural network encoders for molecular property
prediction tasks. It is trained on approximately 10 million unique unlabeled SMILES collected by
ChemBERTa from PubChem (Wang et al., 2022). FP-GNN (fingerprints and graph neural network)
is a multimodal deep learning framework that integrates two types of molecular data, molecular
graph generated from SMILES and molecule fingerprints, for molecular property prediction (Cai
et al., 2022).

Mean Reciprocal Rank. To more intuitively evaluate the overall performance of each model across
all downstream tasks, we employed the mean reciprocal rank (MRR) method, a statistical approach
that synthesizes the rankings of all models on various downstream tasks (Wu et al., 2011). This
method assigns a corresponding score to each model, with higher scores indicating superior overall
performance. We first recorded the rank of each model’s ROC-AUC metric in comparison to the
other models for each task and then used the ranks to calculate the model’s MRR value using the
following equation:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(9)

where i denotes the task index and Q represents the total number of tasks.

4.3 RESULTS

The performance of CL-MFAP on downstream property prediction tasks was compared against all
baselines. Using Area under the Receiver Operating Characteristic Curve (ROC-AUC) as the eval-
uation metric, the experimental results are summarized in Table 2. Notably, CL-MFAP outper-
forms all other baseline models on the E. coli MIC dataset (ROC-AUC: 0.854±0.037), which is
particularly relevant for antibiotic drug discovery as it predicts the antibacterial activity of com-
pounds against E. coli. In addition, it performs second best on the H. influenzae MIC dataset
(ROC-AUC:0.874±0.015), with negligible difference from the best performing model, MolFormer
(ROC-AUC:0.876±0.017). We noted similar performance for pre-trained chemical language models
(CL-MFAP, MolFormer, MolBERT, and ChemBERTa-2) that outperform models without pretrain-
ing (MolCLR and FP-GNN). Together, these results show the ability of CL-MFAP to exceed in
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antibacterial activity prediction, regardless of sample size. Thus, our model can also predict an-
tibacterial activity for less studied bacterial strains with less data. On the remaining datasets, our
model demonstrates consistently strong performance, ranking among the top 2 or 3 models, unlike
other baselines that excel in only 1–2 datasets. This highlights the robustness and generalizability
of CL-MFAP across diverse tasks.

When ranked by MRR scores, CL-MFAP significantly outperforms the other models (Figure 2). The
elevated MRR scores underscore the model’s superior overall performance, reaffirming its effective-
ness and broad applicability.

Table 2: ROC-AUC of CL-MFAP vs. baseline models on downstream property prediction datasets

Model E. coli
MIC

H. influenzae
MIC BBBP PAMPA Bioavail-

ability BACE

CL-MFAP 0.85±0.04 0.87±0.02 0.93±0.01 0.76±0.03 0.60±0.03 0.88±0.01
MoLFormer 0.71±0.01 0.88±0.02 0.93±0.01 0.72±0.03 0.72±0.06 0.87±0.02
MolBERT 0.77±0.00 0.87±0.03 0.97±0.01 0.73±0.05 0.75±0.08 0.89±0.02
ChemBERTa-2 0.74±0.03 0.86±0.02 0.97±0.01 0.67±0.03 0.70±0.07 0.81±0.01
MolCLR 0.71±0.01 0.86±0.02 0.93±0.01 0.76±0.02 0.63±0.16 0.86±0.01
FP-GNN 0.75±0.02 0.87±0.02 0.94±0.01 0.75±0.01 0.75±0.04 0.87±0.01

Figure 2: Mean reciprocal rank (MRR) of the average performance for CL-MFAP versus baseline
models. CL-MFAP demonstrates superior overall performance.

4.4 ABLATION STUDIES

Overall Performance Ranking of CL-based Models. We compared the performance of five pre-
trained CL models to verify the effectiveness of different components in the graph embedding path.
We evaluated the performance of these pre-trained CL models on the downstream tasks using ROC-
AUC (Table A5) and then ranked the performance of each model across all tasks based on these
findings. As shown in Table 3, CL-MFAP outperforms the model variations in 5 out of 6 down-
stream tasks. To further assess model performance and cost efficiency, an MRR analysis of the
overall model rankings was performed. The model size, represented via Params (Figure 3A) and
FLOPs (Figure 3B), was plotted against the MRR score. CL-MFAP’s top-left position in Figure 3A
highlights its superior performance with fewer parameters.

Ablation study on the BRA. We conducted an ablation analysis on the contribution of BRA by
comparing CL-MFAP vs. CL-BL3, and CL-BL1 vs. CL-BL2. The former compares the impact of
BRA in the absence of MPNN, while the latter compares the effect of BRA when MPNN and GTE
are used together. In both cases, models with BRA consistently outperform their counterparts (Table
3, Figure 3). Therefore, BRA plays a significant role in enhancing model performance.

9
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Table 3: Overall performance ranking on downstream property prediction datasets for all pre-trained
CL models

Model E. coli
MIC

H. influenzae
MIC BBBP PAMPA Bioavai-

lability BACE

CL-MFAP (GTE, BRA) 1 1 1 1 5 1
CL-BL1 (GTE, BRA, MPNN) 3 4 2 2 2 3
CL-BL2 (GTE, MPNN) 4 2 4 3 1 4
CL-BL3 (GTE) 2 3 3 5 4 2
CL-BL4 (MPNN) 5 5 5 4 3 5

Figure 3: Mean reciprocal rank (MRR) of the ROC-AUC rankings for all CL models on downstream
property prediction datasets plotted against (3A) Params, and (3B) FLOPs. Models closer to the top
left corner demonstrate better performance with fewer parameters (3A) and lower FLOPs (3B).

Ablation study on the MPNN. The value of MPNN was also evaluated. As we initially hypoth-
esized that introducing MPNN could help further capture comprehensive information (Cai et al.,
2023), we introduced an MPNN path running parallel to GTE in the graph embedding process.
However by comparing the results of CL-MFAP vs. CL-BL1 and CL-BL3 vs. CL-BL2, introducing
MPNN weakens the performance of the model and thus was not incorporated (Table 3, Figure 3).

Ablation study on the GTE. We also analyzed whether GTE is replaceable. A comparison between
CL-BL3 and CL-BL4 shows that replacing GTE with MPNN for molecular graph encoding signifi-
cantly decreases model performance. Also, when comparing CL-BL2 and CL-BL4, despite MPNN
weakening the performance of GTE, the combination of GTE and MPNN still outperforms MPNN
alone (Table 3, Figure 3). Thus, GTE is essential for encoding molecular graphs in our model.

In addition, additional ablation analyses (to analyze the effects of window size, data modalities, pre-
training CL-MFAP, and Morgan fingerprint radius on model performance), Representation-Property
Relationship Analysis (RePRA), and a case study were performed, detailed in Appendix A.1 (Table
A1-A4), A.4 (Table A6, Figure A1), and A.5 (Table A7-A8), respectively.

5 CONCLUSION

In this work, we present CL-MFAP, a novel multimodal contrastive learning framework. The model
combines and compares molecular information from three modalities - SMILES, molecular graphs
and fingerprints - to efficiently learn representations of molecules that improve its performance in
predicting antibiotic-related properties. We also, for the first time, incorporate the BRA mechanism
to enhance the quality of molecular representation learning. Experimental results demonstrate that
CL-MFAP achieves outstanding performance in predicting drug molecule properties. In the future,
we aim to integrate this model with other cross-domain potential modules and further refine its
multimodal contrastive learning algorithm to enhance its generalization capabilities.

All code can be found at https://github.com/CLMFAP/CLMFAP.
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A APPENDIX

A.1 ADDITIONAL ABLATION STUDIES

Ablation study on Morgan Fingerprint Radius. We performed an additional ablation study to
investigate the effect of the Morgan fingerprint radius size on CL-MFAP’s predictive capabilities.
CL-MFAP was tested with five fingerprint radius sizes (0, 1, 2, 3, 4, and 5) 1. As shown in Table
A1, a radius of size 2 has the best overall performance, achieving the highest results in 5 of the 6
downstream datasets, proving that it is the best radius size for CL-MFAP.

Table A1: ROC-AUC of CL-MFAP models with varying Morgan fingerprint radius sizes on down-
stream property prediction datasets. Models are named based on their respective fingerprint radius
sizes in the format MR fingerprint radius size.

Model Fingerprint
Radius Size

E. coli
MIC

H. influenzae
MIC BBBP PAMPA Bioavailability BACE

MR 0 0 0.827 0.846 0.905 0.747 0.535 0.886
MR 1 1 0.843 0.857 0.900 0.721 0.523 0.880
MR 2 2 0.854 0.855 0.928 0.747 0.605 0.882
MR 3 3 0.849 0.853 0.913 0.738 0.546 0.880
MR 4 4 0.852 0.858 0.900 0.719 0.553 0.868

Ablation study on Data Modalities. We removed each of the three data modalities from CL-MFAP
individually and assessed its performance on downstream property prediction tasks to determine
their individual impact. As shown in Table A2, We observe that removing either the SMILES or the
molecular fingerprints results in a certain degree of performance decline. This suggests that both
data modalities contribute approximately equally to the overall model performance, with the impact
of removing Fingerprints being slightly greater than removing SMILES. However, when we remove
the molecular graph modality, the model performance experiences a significant drop. This indicates
that the primary contributor to our model’s performance is the molecular graph, processed through
the GTE integrated with the BRA mechanism, which aligns well with our assumptions.

Table A2: ROC-AUC of CL-MFAP models with varying data modalities on downstream property
prediction datasets. Models are named based on their missing modalities in the format M missing
modality.

Model Missing
Modality

E. coli
MIC

H. influenzae
MIC BBBP PAMPA Bioavai-

lability BACE

M none NA 0.875 0.855 0.941 0.784 0.559 0.891

M noSMI SMILES 0.834 0.741 0.920 0.720 0.568 0.877

M noFP Fingerprint 0.784 0.859 0.903 0.725 0.622 0.878

M noGraph Graphs 0.541 0.512 0.656 0.633 0.647 0.625

Ablation study on Window Size. We tested several different window sizes in our CL-MFAP to
study their impact and determine the most optimal choice. Six distinct window sizes (2, 3, 5, 7, 9,
and 11) were evaluated for CL-MFAP, and their performance on downstream property prediction
tasks was assessed. As shown in Table A3, a window size of 7, representing a moderate configu-
ration, achieved the best performance in 4 out of 5 tasks. In contrast, performance tends to decline

1Due to time constraints, all of these fine-tuning evaluations were performed for 3 epochs, as compared to
20 epochs used for our final CL-MFAP model.
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when the window size is either too large or too small. This was predicted as when the window size is
too small, the BRA mechanism is confined to focusing on highly local regions, overly emphasizing
fine-grained details, and, to some extent, losing the ability to capture long-range dependencies. On
the other hand, when the window size is too large, the sparsity of the BRA mechanism becomes
excessive, leading to the dilution of some critical local information, which partially undermines the
effectiveness of routing and aggregation. As a result, we set the default window size to 7.

Table A3: ROC-AUC of CL-MFAP models with varying window sizes on downstream prop-
erty prediction datasets. Models are named based on their respective window sizes in the format
MW window size.

Model Window Size E. coli
MIC

H. influenzae
MIC BBBP PAMPA Bioavai-

lability BACE

MW S2 2 0.847 0.840 0.913 0.715 0.557 0.856
MW S3 3 0.844 0.849 0.909 0.717 0.564 0.851
MW S5 5 0.831 0.841 0.902 0.754 0.507 0.890
MW S7 7 0.875 0.855 0.941 0.784 0.559 0.891
MW S9 9 0.830 0.848 0.914 0.731 0.632 0.872
MW S11 11 0.837 0.845 0.928 0.715 0.526 0.887

Ablation study on Pretraining CL-MFAP. We performed an ablation study to investigate whether
pretraining on the larger ChEMBL dataset improves model performance. CL-MFAP with and with-
out ChEMBL pretraining was trained/finetuned on all downstream property prediction datasets. As
shown in Table A4, in 5 of 6 tasks, dropping the pretraining slightly weakens model performance,
although not significantly. This indicates that while pretraining enhance model performance and
represents the ideal scenario, our algorithm and novel methodology are still able to achieve excel-
lent results even without pretraining. In scenarios where cost-effectiveness is prioritized in training
resource consumption, the model can handle the intended use cases to a similar extent without pre-
training.

Table A4: ROC-AUC of CL-MFAP with ChEMBL dataset pretraining vs. no pretraining on down-
stream property prediction datasets

Dataset CL-MFAP with
ChEMBL pretraining

CL-MFAP without
ChEMBL pretraining

E. coli MIC 0.854 0.824
H. influenzae MIC 0.874 0.850

BBBP 0.933 0.900
PAMPA 0.759 0.728

Bioavailability 0.599 0.549
BACE 0.881 0.882

A.2 DOWNSTREAM PROPERTY PREDICTION DATASETS

The choice of the downstream property prediction datasets was based on the availability of good
quality data and biological relevance to antibiotic properties. The most relevant antibiotic property is
antibacterial activity, and thus the E. coli and H. influenzae MIC datasets were curated from COADD
(Desselle et al., 2017) ChEMBL (Gaulton et al., 2011), respectively, to analyze CL-MFAP’s ability
to predict antibacterial activity. The other datasets were obtained from trusted databases (Molecu-
leNet (Wu et al., 2018) and Therapeutics Data Commons (Huang et al., 2021)) and are commonly
used in ML models to benchmark model performance in drug discovery.

E. coli MIC Dataset. This dataset describes compound ability to inhibit Escherichia coli (E. coli).
Obtained from COADD (Desselle et al., 2017), each compound has an associated Minimum In-
hibitory Concentration (MIC) value, which represents the antibacterial activity against E. coli. The
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compounds were binarized as active (1) if MIC≤ 8 ug/mL and inactive (0) if MIC > 8 ug/mL. Size:
∼100,000 compounds.

H. influenzae MIC Dataset. This dataset describes the ability of compounds to inhibit Haemophilus
influenzae (H. influenzae). Obtained from ChEMBL (Gaulton et al., 2011), each compound has
an associated MIC value, which represents the antibacterial activity against H. influenzae. The
compounds were binarized as active (1) if MIC≤ 4 ug/mL and inactive (0) if MIC > 4 ug/mL. Size:
3,341 compounds.

BACE Dataset. This dataset from MoleculeNet (Wu et al., 2018) assesses compounds’ binding
ability for a set of inhibitors for β-secretase 1. The compound is labeled active (1) if it is a potential
inhibitor of B-secretase 1, 0 otherwise. Size: 1,512 compounds.

Blood-Brain Barrier Penetration (BBBP) Dataset. This MoleculeNet (Wu et al., 2018) dataset
assesses compounds’ capacity to traverse the blood-brain barrier. The compound is labeled ”p” if it
can penetrate the barrier and “np” if it cannot. Size: 2,038 compounds.

Parallel Artificial Membrane Permeability Assay (PAMPA) Dataset. This dataset evaluates
compounds’ permeability across the cell membrane based on the PAMPA assay. The compound
is labeled 1 if it has high permeability, and 0 if it has low permeability. Size: NCATS set – 2,035
compounds; Approved drugs set - 142 drugs (Siramshetty et al., 2021).

Bioavailability. This dataset contains the oral bioavailability of different drugs, defined as “the
rate and extent to which the active ingredient or active moiety is absorbed from a drug product and
becomes available at the site of action” (Chen et al., 2001). Size: 640 compounds (Ma et al., 2008).

A.3 EVALUATION OF CL-BASED MODELS ON DOWNSTREAM PROPERTY PREDICTION
DATASETS

In Table A5 below are the ROC-AUC values for all pre-trained CL models on the downstream
property prediction datasets

Table A5: ROC-AUC of all pre-trained CL models on downstream property prediction datasets

Model E. coli
MIC

H. influenzae
MIC BBBP Pampa Bioavai-

lability BACE

CL-MFAP 0.85±0.04 0.87±0.02 0.93±0.01 0.76±0.03 0.60±0.03 0.88±0.01
CL-BL1 0.80±0.01 0.86±0.02 0.93±0.01 0.75±0.04 0.69±0.05 0.86±0.02
CL-BL2 0.80±0.01 0.87±0.02 0.92±0.00 0.75±0.02 0.72±0.05 0.86±0.01
CL-BL3 0.82±0.04 0.87±0.02 0.93±0.01 0.72±0.03 0.65±0.05 0.87±0.01
CL-BL4 0.78±0.01 0.86±0.02 0.92±0.01 0.73±0.04 0.67±0.06 0.85±0.00

A.4 REPRA - EVALUATION OF PRE-TRAINED MODELS

We primarily applied the Representation-Property Relationship Analysis (RePRA) method to evalu-
ate CL-MFAP against its model variations and all baselines (MolFormer, MolBERT, ChemBERTa-2,
MolCLR, and FP-GNN). RePRA, a novel method introduced by Zhang et al. in 2023, draws inspi-
ration from the concepts of Activity Cliffs (ACs) and Scaffold Hopping (SH) (Zhang et al., 2024).
It assesses the quality of molecular representations extracted by pre-trained models and visualizes
the relationship between these representations and molecular properties. RePRA generalizes ACs
and SH from the structure-activity context to the representation-property context, defining an ideal
relationship between molecular representations and their properties as a boundary condition. This
condition drives the ACs and SH regions to a borderline state without observed data points, allow-
ing for the calculation of ACs and SH thresholds based on these constraints. By using the detected
ACs and SH, RePRA generates a map showing the distances between pairs of representations and
molecular properties, thereby evaluating the quality of the representations.

RePRA Map. The RePRA map serves as a visualization tool for assessing the quality of molecu-
lar representations produced by a pre-trained model. Its x-axis denotes the similarity between the
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representations of a pair of target molecules, while the y-axis indicates the difference between the
properties of this pair of molecules. Typically, a RePRA map is partitioned into four main regions,
with shadowed ACs and SH zones that should ideally be avoided by the data points on the map.

Activity Cliffs. This region is delineated by scenarios in which a pair of molecules showcases
markedly different properties beyond the y-axis threshold of ACs, while their representations ex-
hibit a noticeable similarity surpassing the x-axis threshold of ACs. A predominance of data points
clustered in this area indicates that the model’s representations are too similar to adequately capture
the diverse range of molecular properties, thus indicating a limited ability of the pre-trained model
to differentiate between molecular properties.

Scaffold Hopping. This region is characterized by instances where a pair of molecules exhibit
fairly similar properties beyond the y-axis threshold of SH, yet their representations demonstrate a
significant disparity surpassing the x-axis threshold of SH. A prevalence of data points clustered in
this zone suggests that the model tends to generate highly various representations that correspond to
a narrow range of similar molecular properties, indicative of subpar representation quality from the
pre-trained model.

Evaluation Scores. Two evaluation scores, average deviation (SAD) and improvement rate (SIR),
are derived from the RePRA Map to assess the performance of the models. SAD quantifies the
average deviation by considering the ratio of data points situated in ACs and SH, adjusting for noise
points in the remaining ideal regions; a lower SAD value indicates better performance. On the other
hand, SIR is computed by comparing the numbers of data points in ACs and SH between a standard
baseline (ECFP) and the pre-trained model under evaluation. Again, a lower SIR value signifies
superior performance.

Visualization of Cosine Similarities. In addition to the RePRA map, a visualization of cosine
similarities is also presented to analyze the distribution of similarities using CosineSim as a metric
between pairs of molecules. This visualization aids in identifying if there are common substructures
shared among most molecular pairs.

Datasets. For the RePRA measurement, we employed the Estimated SOLubility (ESOL) dataset,
which includes the measured log solubility (mol/L) for 902 compounds (Niwa et al., 2009). The
”measured log solubility in mols per liter” data from the ESOL dataset was utilized as labels for
molecular properties. Initially, the distance between each pair of labels was computed, followed by
calculating the distance between each pair of logits. These labels and logits were then collectively
inputted into the RePRA algorithm to generate the map.

Results. All models were evaluated using the RePRA test, with the scores presented in Table A6.
For the SAD parameter, it can be observed that the CL-MFAP model has the lowest result, indicating
fewer noise data points with detected ACs and SH, which suggests a better representation-property
relationship. For the SIR parameter, the CL-MFAP model also has the lowest score, demonstrating
an improvement in representation quality compared to the traditional ECFP method and indicating
that CL-MFAP generates better representations compared to the other models. Since lower SAD and
SIR scores jointly indicate superior molecular embedding and representation quality, it is unsurpris-
ing that the CL-MFAP model, enhanced by the BRA, excels in this test. Notably, all CL models
utilizing GTE outperformed the baseline models, highlighting the inherent advantage of contrastive
learning frameworks trained on multimodal data in effectively learning molecular representations.
The results of the RePRA map are shown in Figure A1.

A.5 Escherichia coli CASE STUDY

Escherichia coli (E. coli) is a gram-negative bacterium commonly found in the gut microbiome of
humans that is usually harmless. However, it can become pathogenic under certain conditions or
pathogenic E. coli can be ingested and cause a variety of issues in humans. The issues can range
from traveler’s diarrhea and pneumonia (Mueller & Tainter, 2024) to playing a part in Inflamma-
tory Bowel Disease (Martinez-Medina & Garcia-Gil, 2014). Although antibiotics exist for E. coli,
many strains develop antibiotic resistance, thus showcasing the need for new antibiotic compounds
effective against E. coli.
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Table A6: RePRA scores of all pre-trained CL models and baseline models

Model SAD SIR

CL-MFAP 0.008 1.317
CL-BL1 0.013 1.501
CL-BL2 0.011 1.431
CL-BL3 0.010 1.395
CL-BL4 0.019 1.753
MoLFormer 0.017 1.607
MolBERT 0.016 1.758
ChemBERTa-2 0.020 1.904
MolCLR 0.016 1.267
FP-GNN 0.007 1.434

Figure A1: RePRA measurement of all pre-trained CL models and baseline models. The shaded
areas in the top right and bottom left represent the ACs region and the SH region, respectively.

In this case study, we employ CL-MFAP to identify novel antibiotic compounds that are highly
likely to be effective against E. coli.

Model Training. CL-MFAP was finetuned on Minimum Inhibitory Concentration (MIC) data
against E.coli (Anti-E. coli Activity) described in Appendix A.2. Obtained from the COADD
database, each compound has its associated MIC value, which represents the antibacterial activ-
ity, against E. coli. The compounds were binarized as active (1) if MIC ≤ 8 ug/mL and inactive (0)
if MIC > 8 ug/mL.

Virtual Screening. Based on the finetuned CL-MFAP model, virtual screening was performed using
the ZINC database. ZINC is a free database containing over 230 million commercially available
compounds in ready-to-dock, 3D formats (Irwin et al., 2020). Due to its massive size, we used the
ZINCK250k dataset (Basu, 2021), a subset of 250,000 compounds from ZINC. From this, 9389
compounds were identified with predicted activity 1 (predicted to be effective at inhibiting E. coli)
with 100% probability and were chosen for further property testing.
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Pharmacokinetic and ADMET Property Predictions. For the 9389 compounds identified via
virtual screening, their pharmacokinetic and ADMET (Absorption, Distribution, Metabolism, Ex-
cretion, and Toxicity) properties were predicted using ADMET-SAR (Yang et al., 2018). These
properties allow us to identify compounds that have necessary molecular properties and are most
likely to perform well as antibiotics. From this, we filtered to only include compounds that follow
the Lipinski Rule of 5 (molecular weight ≤ 500 Da, logP ≤ 5, number of hydrogen bond acceptors
≤ 10, and number of hydrogen bond donors ≤ 5) with a maximum of 1 violation. In addition, their
topological surface area had to be between 20-130 Å2 and their aqueous solubility range had to be
between -1 and -5. As a result, 7358 compounds remained. Then, an ADMET score was generated
for each remaining compound based on 18 properties related to absorption, toxicity, and metabolism.
We followed the ADMET-score method proposed by Guan et al. (2018).

Similarity to existing E. coli antibiotic compounds. To validate the compounds with predicted
anti-E. coli activity and ideal pharmacokinetic and ADMET properties, we compared their simi-
larity to existing FDA-approved E. coli antibiotic compounds include Levofloxacin (Drago et al.,
2001), and Ciprofloxacin (Jakobsen et al., 2020). We first selected the top 1000 compounds with the
highest predicted probabilities and ADMET scores and they were split into 4 groups: level 1 (top 1-
250 compounds), level 2 (top 251-500 compounds), level 3 (top 501-750 compounds and level 4 (top
751-1000 compounds). For each group, the number of Bemis-Murcko scaffolds and the number of
Bernis-Murcko scaffolds per compound were evaluated. As shown in Table A7, the identified com-
pounds show structural diversity, an essential feature in drug discovery to ensure coverage of broad
chemical space. Results also show that molecules ranked higher (those with more favorable ADMET
properties) have larger diversity than the molecules ranked lower. We also calculated the Tanimoto
similarity (also known as Jaccard Index) based on the MACCs and MAP4C fingerprints between
the top 1000 selected compounds and known antibiotics, Levofloxacin and Ciprofloxacin. Among
these, two candidates were identified to have high MACCs and low MAP4C similarity with exist-
ing E. coli antibiotic compounds: C22H22ClNO4 (ZINC ID: ZINC20591249) and C25H25ClN4O2
(ZINCID: ZINC8758881). As shown in Table A8, they have high MACCs similarity scores and low
MAP4C similarity scores to the existing antibiotics. MACCS keys are well-suited for functional
group-based similarity searching, allowing us to identify compounds that share key pharmacophoric
features and common medicinal chemistry substructures. MAP4C captures more detailed struc-
tural information, such as atom types and bonding patterns, which is more relevant for identifying
structural similarities between compounds. The high MACCs similarity scores with low MAP4C
similarity scores confirm that our identified compounds possess functional similarity to the existing
antibiotics while maintaining structural novelty. This outcome not only validates our approach but
also suggests potential candidates for further investigation in antibiotic development.

Table A7: Bemis-Murcko Scaffolds results of top 1000 compounds predicted to be active against
Escherichia coli using CL-MAP

Level Compounds Included
(By Ranking)

Number of
Bemis-Murcko Scaffolds

Number of Bemis-Murcko
Scaffolds per Compound

Level 1 1-250 245 0.980
Level 2 251-500 241 0.964
Level 3 501-750 236 0.944
Level 4 751-1000 236 0.944

Table A8: Fingerprint similarity scores of potential Escherichia coli antibiotic compounds with
existing Escherichia coli antibiotics

Compound MACCs MAP4C
Levofloxacin Ciprofloxacin Levofloxacin Ciprofloxacin

C22H22ClNO4 0.739 0.696 0.030 0.032
C25H25ClN4O2 0.716 0.623 0.023 0.018
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