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Abstract

Generative models of biological sequences are a powerful tool for learning from
complex sequence data, predicting the effects of mutations, and designing novel
biomolecules with desired properties. The problem of measuring differences
between high-dimensional distributions is central to the successful construction
and use of generative probabilistic models. In this paper we propose the KSD-B,
a novel divergence measure for distributions over biological sequences that is
based on the kernelized Stein discrepancy (KSD). As for all KSDs, the KSD-B
between a model and dataset can be evaluated even when the normalizing constant
of the model is unknown; unlike any previous KSD, the KSD-B can be applied to
arbitrary distributions over variable-length discrete sequences, and can take into
account biological notions of mutational distance. Our theoretical results rigorously
establish that the KSD-B is not only a valid divergence measure, but also that it
detects convergence and non-convergence in distribution. We outline the wide
variety of possible applications of the KSD-B, including (a) goodness-of-fit tests,
which enable generative sequence models to be evaluated on an absolute instead of
relative scale; (b) measurement of posterior sample quality, which enables accurate
semi-supervised sequence design; and (c) selection of a set of representative points,
which enables the design of libraries of sequences that are representative of a given
generative model for efficient experimental testing.

1 Introduction
Generative models of biological sequences have wide and growing application, including in phylo-
genetic analysis, variant effect prediction, and protein design among many other areas [Hopf et al.,
2017, Riesselman et al., 2018, Russ et al., 2020, Shin et al., 2021, Frazer et al., 2020, Davidsen et al.,
2019]. A central challenge in constructing and using generative biological sequence models, as for
all generative models, is evaluating divergences between distributions. Divergences can enable, for
instance, careful measurement of mismatch between the model and the data, or mismatch between the
model and samples that have been drawn from the model using some approximate sampling procedure.
Constructing divergences between distributions over the space of biological sequences – taking into
account the fact that sequences can have different lengths – presents unique challenges [Weinstein,
2022]. In particular, although many useful divergences have been constructed over Euclidean space
(i.e. Rd), biological sequence space differs in that it is both discrete (there are a finite number of
amino acids/nucleotides) and infinite (sequences can be arbitrarily long). Moreover, notions of
distance in biological sequence space differ substantially from standard Euclidean distance metrics:
two sequences that differ by a single insertion/deletion would be considered close in biological
sequence space, whereas “insertions” and “deletions” are not even well-defined concepts in standard

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Euclidean space. These issues present a major barrier to the application of a wide variety of valuable
divergence-based methods to generative biological sequence models.

In this paper we construct the KSD-B, a divergence between distributions of sequences based on the
kernelized Stein discrepancy (KSD) [Gorham and Mackey, 2017, Liu et al., 2016]. The KSD-B can
be tractably computed for two distributions p and q given only unnormalized probabilities from p
and samples from q. Moreover, the KSD-B can account for biologically relevant notions of sequence
distance, through the choice of kernel [Ben-Hur et al., 2008]. Finally, the KSD-B comes with strong
theoretical guarantees: it is faithful – it is zero if and only if q and p are equal – and it detects
convergence and non-convergence – converges to zero if and only q1, q2, . . . converge to p.

These properties of the KSD-B make it uniquely able to address a number of challenging practical
problems in evaluating and using generative biological sequence models. First, the KSD-B enables
construction of nonparameteric goodness-of-fit tests; here the faithfulness of the KSD-B is crucial.
Goodness-of-fit tests allow generative biological sequence models to be evaluated on an absolute
scale, determining whether they match the data rather than just whether one model is better than
another (as is the case, for instance, with standard held-out log likelihood evaluation). Second, the
KSD-B enables measurement of the quality of a sequence of approximate samples from a posterior;
here, the facts that the KSD-B can be applied to unnormalized probabilities, and can detect non-
convergence, are crucial. Sampling from a posterior over sequences is central to the problem of
semi-supervised sequence design and ancestral sequence reconstruction among other applications,
but standard Markov chain convergence metrics cannot be used to check whether the samples in fact
reflect the complete posterior distribution. Third, the KSD-B allows a set of representative sequences
to be chosen from a distribution; here, the ability of the KSD-B to detect non-convergence is again
crucial. When designing libraries of sequences to synthesize and test experimentally using generative
models, choosing a set of representative points provides an efficient way of exploring the full range of
model predictions in the laboratory. All of these applications and more make the KSD-B a valuable
tool for working with generative biological sequence models.

Stein discrepancies have been previously developed for Euclidean space [Gorham et al., 2016,
Gorham and Mackey, 2017, Gorham et al., 2020, Liu et al., 2016] and some finite discrete spaces
with certain structures [Shi et al., 2022, Yang et al., 2018, Han et al., 2020]. We develop our method
to give guarantees for distributions on the space of all sequences, which in particular is both discrete
and infinite. We start by defining a Stein operator, replacing the gradient – which comes from the
Langevin diffusion infinitesimal generator Gorham et al. [2016]– with locally balanced sampling
Zanella [2020]. The domain of Stein discrepancies in Euclidean space can be interpreted as vector
fields, so we define the domain of our Stein operator to also be vector fields, rather than functions, of
sequences. Defining an integral probability metric with our Stein operator then gives us a divergence
that is computationally tractable for a wide range of distributions, the KSD-B. Finally, we delineate
assumptions that hold for many biologically relevant kernels and distributions, and show that they
lead to strong theoretical guarantees for the KSD-B.

2 A novel discrepancy for biological sequence distributions
In this section we will define the KSD-B, a novel discrepancy for biological sequences, and show
how it can be tractably calculated. The KSD-B builds on and extends the existing notion of a Stein
discrepancy, a particular type of integral probability metric.

Integral probability metrics Let S be the infinite space of sequences, i.e. the set of all finite length
strings drawn from a fixed alphabet (such as the 20 amino acids or the 4 nucleotides). We will start by
considering a probability distribution p on S and data X1, . . . , XN ∈ S. We can represent the data
as an empirical distribution q = 1

N

∑N
n=1 δXn where δXn is the distribution that has all its mass on

{Xn}, and then compare the distributions p and q. One general method for measuring a discrepancy
between distributions p and q is an Integral Probability Metric (IPM), defined as supf∈F |Eqf−Epf |
for a chosen family F of functions on S, where Ep is the expectation under p.

If F is large enough, an IPM can detect if p ̸= q for any p and q, making it useful for building a
consistent goodness-of-fit test. IPMs are a particularly useful choice of discrepancy measure for
biological sequence models, where the ultimate goal is often to synthesize and test samples from a
distribution p in the laboratory: so long as the (unknown) laboratory genotype-to-phenotype map
f∗ falls in the class F , a small IPM guarantees that samples from p will have similar phenotypes to
samples from q, as |Eqf

∗ − Epf
∗| ≤ supf∈F |Eqf − Epf | [Weinstein et al., 2021, 2022].
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Stein discrepancies. Unfortunately, depending on the family F , evaluating Epf for f ∈ F may
require samples or normalized probabilities from p, which are not always available (for instance, if p
is an energy-based model, or the posterior of a complex Bayesian model). The Stein discrepancy
solves this problem using a transformation Tp on functions of S, known as the Stein operator, such
that EpTpf = 0 for all f ∈ F . Then, replacing F with Tp(F), the IPM is simply supf∈F EqTpf
which is potentially much easier to compute.

A Stein discrepancy for biological sequences. Existing approaches to constructing Stein discrep-
ancies typically employ Stein operators that rely on gradients of p(x) and f(x) with respect to x
Liu et al. [2016]. As the space S is neither continuous nor finite, such approaches cannot be applied
directly and are nontrivial to generalize. In order to construct a Stein operator for biological sequences
we build on the generator method of Barbour [1990], which constructs a Stein operator Tp using a
continuous-time Markov process with stationary distribution p Gorham et al. [2016], Shi et al. [2022].
The basic intuition behind the generator method is that if we evolve the data distribution q according
to an infinitesimal step of the Markov process, the only way for the expectation of all functions f ∈ F
to be constant is if the data distribution q matches the stationary distribution p exactly. Whereas the
gradients in standard Stein discrepancies arise from the use of overdamped Langevin diffusion as
the Markov process, we rely on Markov processes appropriate for biological sequence space, with
infinitesimal transitions corresponding to substitutions, insertions and deletions.

Our first step is to expand the standard definition of Stein discrepancies: instead of letting each f ∈ F
take as input a single sequence X , we let each f ∈ F take as input two sequences. This extension
will allow us to endow F with enough additional structure to construct tractable Stein discrepancies,
while remaining flexible enough to detect differences between any two distributions p and q. Define a
relation M on S such that X and Y are related if Y can be reached from X via a single mutation -
either a single substitution, a single insertion of a single letter, or a single deletion of a single letter.
We will write this as (X,Y ) ∈ M or XMY . Following Chow et al. [2017] we will define vector
fields on S to be functions f : M → R such that f(X,Y ) = −f(Y,X) for all (X,Y ) ∈ M , i.e. f
must satisfy an anticommutativity property. We will work with families F consisting of vector fields
f . For any g : S → R, we also define the vector field ∇g(X,Y ) = g(Y )− g(X) for (X,Y ) ∈ M .
This provides our generalized notion of a gradient in biological sequence space.

Now we will define our Stein operator and use it construct an IPM. To construct the Markov process
over sequences, we build on locally balanced sampling procedures [Zanella, 2020, Shi et al., 2022].
Consider a continuous non-negative function χ with the property that χ(t) = tχ(1/t) for all t > 0
and χ(0) = 0; examples include χ(t) =

√
t and χ(t) = min{t, 1} the latter of which is used in

Metropolis Hastings correction steps. Let p be a distribution on S. For (X,Y ) ∈ M with p(X) > 0,
define the infinitesimal transition probability

Tp,X→Y = #{single mutations taking X to Y }χ
(
p(Y )

p(X)

)
.

Let Tp,X→Y = ∞ on the rest of M . Thus, by our choice of χ, the Markov process satisfies detailed
balance, i.e. Tp,X→Y p(X) = Tp,Y→Xp(Y ) where we define ∞ × 0 = 0 throughout. Define the
Stein operator Tp taking vector fields to functions on the support of p, supp(p) = {X | p(X) > 0},
such that for a vector field f on S,

(Tpf)(X) =
∑

Y ∈S | YMX

Tp,X→Y f(X,Y ).

Comparing pairs (X,Y ) and (Y,X) in M , we have informally, applying the antisymmetry property,
EpTpf =

1

2

∑
(X,Y )∈M

p(X)Tp,X→Y f(X,Y ) + p(Y )Tp,Y→Xf(Y,X) = 0.

Thus, if we select a family of vector fields F , we can define the IPM on Tp(F), supf̃∈Tp(F) |Eq f̃ −
Epf̃ | = supf∈F |EqTpf − EpTpf | = supf∈F EqTpf. To compute EqTpf for a given f , one only
needs samples from q to take the expectation and unnormalized probabilities from p to calculate Tpf .

The KSD-B: A kernelized Stein discrepancy for biological sequences. Next, we need to choose a
specific family of vector fields F to apply our Stein operator to; this family should be sufficiently
large to guarantee that the Stein discrepancy can detect differences between any two distributions,
but also provide sufficient structure such that the Stein discrepancy is computationally tractable. A
standard existing approach is to use a reproducing kernel Hilbert space (RKHS), Hk, where k is a
symmetric positive definite kernel defined over the data space. One can then take F to be the unit ball
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in the RKHS, {f | ∥f∥k ≤ 1}, where ∥ · ∥k is the norm on the RKHS [Gorham and Mackey, 2017,
Liu et al., 2016]. In our case, however, we need the RKHS to consist of vector fields. Thus, we define
a vector field kernel as a kernel k on M such that all f ∈ Hk are vector fields. We will discuss in
appendix A.4 how to build vector field kernels. Given a vector field kernel k, we define the kernelized
Stein discrepancy for biological sequences (KSD-B) as KSD-Bp,k(q) = sup∥f∥k≤1 EqTpf.
Previous works on Stein discrepancies for finite discrete spaces did not use vector fields, instead
working with scalar fields, defining kernels on the space of fixed-length sequences and using Stein
operators of the form Tp∇ [Shi et al., 2022, Yang et al., 2018]. This approach is a special case of our
KSD-B, using a particular choice of vector field kernel k∇ for a kernel k on S, as shown in Proposition
A.2. We will see in Section 3 that in the infinite discrete setting relevant for biological sequences, the
scalar field approach cannot provide strong theoretical guarantees except with pathological kernels.

Finally we show that the KSD-B is computationally tractable and formalize our previ-
ous argument that EpTpf = 0 . We say a distribution q on S is p, k-integrable if
EX∼q

∑
Y ∈S | YMX Tp,Y→X

√
k((X,Y ), (X,Y )) < ∞. Note this implies supp(q) ⊆ supp(p).

Proposition 2.1. Say k is a vector field kernel and q is a p, k-integrable distribution on S.

KSD-Bp,k(q) = EX,X′∼q

∑
YMX,Y ′MX′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)). (1)

If p is p, k-integrable, then for all f ∈ Hk, EpTpf = 0.
Equation 1 can be computed if one can sample from q and has unnormalized probabilities from p.
3 Detecting convergence and non-convergence of distributions
In this section we will demonstrate the theoretical properties of KSD-Bs that make them useful for
goodness-of-fit tests, evaluating sample quality, and choosing representative points. Much of our
results are inspired by techniques developed in Gorham et al. [2016], Gorham and Mackey [2017].

KSD-B is faithful. For the KSD-B to be useful as a nonparametric goodness-of-fit test, it must be
able to detect if a model distribution p matches a data distribution q. In particular, the divergence must
be faithful, that is, KSD-Bp,k(q) → 0 ⇐⇒ p = q. Given the KSD-B is an IPM, faithfulness will
hold provided Hk is large enough. For KSDs on continuous spaces, faithfulness is usually guaranteed
via a universality assumption on the kernel k, namely that Hk is dense in some function space. In
discrete space, however, kernels may satisfy a more powerful condition: their RKHS may include
all delta functions, in which case we say the kernel is “deltable”. Deltability is formally defined in
Definition A.5. In the following proposition, we show deltability ensures faithfulness, and thus so
long as we use a deltable kernel, our KSD-B provides a consistent goodness-of-fit test.
Proposition 3.1. Say supp(p) is connected. If k is a deltable vector field kernel or k is a deltable
scalar field kernel on S and supn Eq

∑
YMX Tp,Y→X < ∞ then KSD-Bp,k(q) = 0 only if p = q.

KSD-B detects convergence and non-convergence. For the KSD-B to be useful in evaluating
sample quality, it must be able to determine whether or not a sequence of empirical distributions
q1, q2, . . . (corresponding to the samples) converges to a distribution p (corresponding to the model).
Formally, we hope that the KSD-B converges to zero, i.e. KSD-Bp,k(qn) → 0, if and only if qn
converges to p by some natural metric of convergence, such as convergence in distribution. The same
concern holds if we are choosing a set of representative points: as we optimize KSD-Bp,k(qn) with
respect to the empirical distribution qn, we hope that KSD-Bp,k(qn) → 0 implies qn converges to p
and vice versa, i.e. our chosen points reflect p more and more accurately.

We start by showing that the KSD-B detects non-convergence, i.e. KSD-Bp,k(qn) → 0 implies qn
converges to p in distribution. In Proposition A.9 we give an example that demonstrates that if p has
"non-uniformly" decreasing tails, the KSD-B may not detect non-convergence. We will thus need to
assume that p has "uniformly" decreasing tails (Assumption A.10): after a certain length, longer and
longer sequences are sufficiently less likely under p. This assumption holds for some models and
not others (Section A.3). In Propositions A.11 and A.12 we show that the KSD-B may also fail to
detect non-convergence if we allow k to have thin tails. In particular, for scalar field KSDs, k cannot
be allowed to be bounded; thus no non-pathological choice of k will give us scalar field KSD-Bs
that can detect non-convergence. We thus further assume that k has thick (possibly unbounded) tails
in Assumption A.13. We provide examples of kernels that satisfy all our required assumptions in
Section A.4.3. With these assumptions, we can guarantee that the KSD-B detects non-convergence.
Theorem 3.2. Say p is a distribution on S obeying assumption A.10 and k is a deltable vector field
kernel obeying Assumption A.13 A or a deltable kernel on S obeying Assumption A.13 B. Say (qn)n
is a sequence of distributions on S. If KSD-Bp,k(qn) → 0 then qn converges to p in distribution.
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Finally, we show that the KSD-B detects convergence, i.e. if qn converges to p in some (weighted)
total variation metric, then KSD-Bp,k(qn) → 0.
Proposition 3.3. Say k is a vector field kernel and p, q1, q2, . . . are p, k-integrable distributions on
S. Call A(X) =

∑
YMX Tp,Y→X

√
k((X,Y ), (X,Y )). If

∑
X |p(X) − qn(X)|A(X) → 0 then

KSD-Bp,k(qn) → 0.

Note if one is working with a scalar field KSD-B then k must be unbounded, and thus the weight A
larger, making more difficult to detect convergence.
4 Conclusion
In this paper we’ve defined a novel, computationally tractable discrepancy on the space of biological
sequences, the KSD-B, and established theoretical results showing it can be used for goodness-of-
fit testing, evaluating the quality of approximate samples from a posterior, and choosing a set of
representative points from a distribution. In future work we aim to illustrate these applications on
simulated and real data. We believe that the KSD-B can serve as a valuable tool for generative
biological sequence modeling broadly, helping to ensure that generative models are accurate, reliable
and trustworthy as they see growing use across biology, biotechnology and biomedicine.
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A Proofs

In this appendix we prove our assertions made in the main text. First in section A.1 we lay out our
notation. Next, in section A.2 we prove results about the ability of the KSD-B to detect convergence
and non-convergence. In section A.3 we describe whether or not certain distributions over sequences
satisfy the assumption that they have "uniformly thin tails" made in section A.2. Finally, in section
A.4, we lay out examples of kernels that may be used to create KSD-Bs that are able to detect
convergence and non-convergence.
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A.1 Notation

Let our alphabet, B, be a finite set at the set of all sequences be defined as S = ∪∞
i=0Bi where B0 is

defined to only contain the empty string ∅. If p is a distribution on S let supp(p) = {X | p(X) > 0}
and Mp,p = {(X,Y ) ∈ M | X,Y ∈ supp(p)}. We will say p has connected support if supp(p) is
a connected set in the graph with vertices S and edges M . Finally, for X ∈ S, define fluxp(X) =∑

YMX Tp,X→Y .

We define the set of bounded functions on S Cb(S), the set of functions on S vanishing at infinity
C0, and the set of functions on S that are non-zero at only finitely many points and CC(S). We also
define the set of all vector fields that are non-zero on only finitely many points in M as CC,vf (M).
We define ∥ · ∥∞ as the infinity norm on Cb(S). For two distributions µ, ν on S, call ∥ν−µ∥TV their
distance in total variation.

For two sequences of real numbers (an)n∈N, (bn)n∈N, both possibly undefined for small n, we write
an ≲ bn to mean that there is a positive constant C such that eventually an ≤ Cbn. We write
an ∼ bn when an ≲ bn and an ≳ bn. We write an = O(bn) if an ≲ bn and an = o(bn) if |an|

|bn| → 0.
We define a ∧ b as the minimum of a and b, and a ∨ b as the maximum.

A kernel on a set H is a symmetric function k : H × H → R that is "non-negative definite", i.e.
for all X1, . . . , XN ∈ H , α1, . . . , αN ∈ R,

∑N
n=1

∑N
n′=1 αnαn′k(Xn, Xn′) ≥ 0. We also require

that k(X,X) > 0 for all X ∈ S. For every X ∈ S define the function kX = k(X, ·). Define the
dot product (·|·)k on linear combinations of these functions with (kX |kY ) = k(X,Y ) and call the
associated norm ∥ · ∥k. Let Hk be the Hilbert space completion of the span of {kX}X∈H under
(·|·)k and call this the reproducing kernel Hilbert space (RKHS) of k. Elements of the RKHS can be
understood as functions on H by (f |kX) = f(X).

Say k is a kernel on a space H and A : H → (0,∞). We call kA(X,Y ) = A(X)k(X,Y )A(Y )
the kernel k "tilted" by A. kA is a kernel on H and the transformation that takes g ∈ Hk to
X 7→ g(X)A(X) is a unitary isomorphism to HkA .

A.2 Proofs for properties of KSD-Bs

In this section we prove the results described in the main text for KSD-Bs. We will first look at how
to compute KSD-Bs in section A.2.1. In this section we will also show that scalar field KSD-B may
be written as an instance of vector field KSD-Bs. Next, in section A.2.2 we will look at a stochastic
process related to the KSD-B. We will show that this process exists and list some of its properties
that will be useful in later proofs. In section A.2.3 we look at conditions under which the KSD-B is
faithful. In section A.2.4 we look at when the KSD-B can detect convergence and non-convergence.
We will look at several examples in which the KSD-B cannot detect non-convergence, motivating
further assumptions on the distribution and kernel we consider. We state these assumptions and
show that, with them, the KSD-B can detect non-convergence. Finally we show that the KSD-B
can also detect convergence. In section A.2.5 we will construct and prove the properties of the
examples described in section A.2.4. Finally, in section A.2.6 we look at approximating the KSD-B
by quantities that are more cheaply computable such that we can bound our error.

A.2.1 Scalar and vector field KSD-Bs and their computability

In this section we demonstrate that KSD-Bs are computable and that scalar field KSD-Bs can be
understood as an instance of vector field KSD-Bs.

We first write the KSD-B in two other forms, one of which is easily computable, and the other of
which is of theoretical use.
Proposition A.1. Say k is a vector field kernel and q is a p, k-integrable distribution on S. Then for
all f ∈ Hk,

EqTpf =
1

2

∑
(X,Y )∈Mp,p

p(Y )Tp,Y→X

(
q(X)

p(X)
− q(Y )

p(Y )

)
f(X,Y ) (2)

and
KSD-Bp,k(q)

2 = EX,X′∼q

∑
YMX,Y ′MX′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)). (3)
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If p is p, k-integrable, then for all f ∈ Hk, EpTpf = 0.

Proof. Say q is p, k-integrable. Define ϕq : Hk → R | f 7→ EqTpf For f ∈ Hk,

ϕq(f) =EX∼q

∑
YMX

Tp,X→Y (f |k(X,Y ))k

≤∥f∥kEX∼q

∑
YMX

Tp,X→Y

√
k((X,Y ), (X,Y )).

(4)

Thus ϕq is a bounded linear operator on Hk and is thus a member of Hk. As well, KSD-Bp,k(q) =
∥ϕk∥k.

(ϕq|ϕq)k =ϕq(ϕq)

=EX∼q

∑
YMX

Tp,X→Y ϕq(k(X,Y ))

=EX∼q

∑
YMX

Tp,X→Y EX′∼q

∑
Y ′MX′

Tp,X′→Y ′k(X,Y )(X
′, Y ′)

=EX,X′∼q

∑
YMX

∑
Y ′MX′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)).

Note that since all quantities in the expectation and sum are positive, equation 5 shows the absolute
integrability of the expectation and sum. Thus we can rearrange terms to get

ϕq(f) =EX∼q

∑
YMX

Tp,X→Y f(X,Y )

=
∑

(X,Y )∈Mp,p

q(X)Tp,X→Y f(X,Y )

=
1

2

∑
(X,Y )∈Mp,p

(q(X)Tp,X→Y f(X,Y ) + q(Y )Tp,Y→Xf(Y,X))

=
1

2

∑
(X,Y )∈Mp,p

p(Y )Tp,Y→X

(
q(X)

p(X)
− q(Y )

p(Y )

)
f(X,Y ).

The statement about p follows from the above equation with p = q noting q(X)
p(X) = q(Y )

p(Y ) for all
(X,Y ) ∈ Mp,p.

Equation 2 gives some intuition on the effect of the kernel on the value of the KSD-B: note that,
for (X,Y ) ∈ Mp,p, Tp,Y→X ≥ 0, so the KSD-B uses vector fields f ∈ Hk to detect non-zero

"differences in slopes" p(Y )
(

q(X)
p(X) −

q(Y )
p(Y )

)
= q(X)

(
p(Y )
p(X) −

q(Y )
q(X)

)
. A kernel with a large enough

Hk can thus detect more subtle differences in these slopes.

We end the section by demonstrating that scalar field KSD-Bs can be written as an instance of vector
field KSD-Bs.
Proposition A.2. For a kernel k on S, define the kernel

k∇((X,Y ), (X ′, Y ′)) = k(Y, Y ′)− k(X,Y ′)− k(Y,X ′) + k(X,X ′)

for (X,Y ), (X ′, Y ′) ∈ M . k∇ is a vector field kernel and if q is a p, k∇-integrable distribution on
S then

sup
∥f∥k∇≤1

EqTpf = sup
∥f∥k≤1

EqTp∇f.

Proof. k∇ is non-negative definite as if (X1, Y1). . . . , (XN , YN ) ∈ M and α1, . . . , αN ∈ R then,
calling f =

∑
n αnkXn

and g =
∑

n αnkYn
,∑

n,m

αnαmk∇((Xn, Yn), (Xm, Ym)) = (g|g)k − (f |g)k − (g|f)k + (f |f)k = ∥f − g∥k ≥ 0.
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One can also verify that k∇(X,Y ) = −k∇(Y,X) for all (X,Y ) ∈ M , so for every f ∈ Hk∇ ,

f(X,Y ) = (f |k∇(X,Y ))k∇ = −(f |k∇(Y,X))k∇ = −f(Y,X).

Define, similar to Proposition A.1, ϕ̃q : Hk → R | f 7→ EqTp∇f . Note k∇((X,Y ), (X,Y )) =
k(X,X)− 2k(X,Y ) + k(Y, Y ) = ∥kX − kY ∥2k. For f ∈ Hk,

ϕ̃q(f) =EX∼q

∑
YMX

Tp,X→Y (f |kY − kX)k

≤∥f∥kEX∼q

∑
YMX

Tp,X→Y ∥kY − kX∥k

≤∥f∥kEX∼q

∑
YMX

Tp,X→Y

√
k∇((X,Y ), (X,Y )).

(5)

Thus ϕ̃q is a bounded linear operator on Hk and is thus a member of Hk. As well,(
sup∥f∥k≤1 EqTp∇f

)2
= ∥ϕk∥2k.

(ϕ̃q|ϕ̃q)k =ϕ̃q(ϕ̃q)

=EX∼q

∑
YMX

Tp,X→Y

(
ϕ̃q(kY − kX)

)
=EX∼q

∑
YMX

Tp,X→Y

×

(
EX′∼q

∑
Y ′MX′

Tp,X′→Y ′ ((kY (Y
′)− kX(X ′))− (kY (X

′)− kX(X ′)))

)
=EX,X′∼q

∑
YMX,Y ′MX′

Tp,X→Y Tp,X′→Y ′k∇((X,Y ), (X ′, Y ′))

=KSD-Bp,k(q)
2.

A.2.2 Stochastic processes on sequences

As described above, the KSD-B is connected with a particular stochastic process defined by transition
rates Tp,X→Y which depend on p and g. In this section we prove that this process is well defined
given an integrability condition and prove some properties of this process that will be of use in
proving result about the KSD-B.

First we rigorously define this process. Let p be a distribution on S. Define Lp = Tp∇; this is a
matrix indexed by supp(p) defined by Lp,X,Y = Lp(δX)(Y ). We have that Lp,X,Y = Tp,X→Y ≥ 0
if X ̸= Y and Lp,X,X = −

∑
Y ̸=X Lp,X→Y = −fluxp(X). Such a matrix is called a Q-matrix and

can define a Markov process as follows. First let KX→Y = Lp,X,Y /fluxp(X) if X ̸= Y and 0 if
X = Y . The entries of K are positive and its rows sum to 1 so it defines a discrete-time stochastic
process (Z0, Z1, . . . ) known as the "underlying stochastic process". Now define the transition times
τn ∼ Exp(fluxp(Zn)) and the process (Xt)t where Xt = Zn if τn−1 ≤ t < τn. This defines a family
of transition probabilities (Pt)t where Pt(X) is a positive measure on S describing the distribution of
Xt given X0 = X for any t,X . Now if f ∈ CC(S), we can define the function Ptf(X) = EPt(X)f .
These functions are continuously differentiable in t and the backwards Kolmogorov equation holds,
i.e. d

dtPtf(X) = LpPtf(X) (see section 2.5 of Liggett [2010]).

Unfortunately, the above results do not rule out some possible pathologies when supp(p) is infinite.
This is because (Xt)t may "explode", i.e. transition infinitely many times in finite time. This can
manifest in

∑
Y Pt(X)(Y ) < 1 or the forward Kolmogorov equation - d

dtPtf(X) = PtLpf(X)
- failing to hold. To avoid these pathologies, we add an integrability condition on p, namely that
Epfluxp < ∞. The below lemma shows that in this case Pt are valid probability distributions and
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the forward Kolmogorov equation holds. We also list some consequences of these results that will
help prove future results.

Let us also introduce a definition: for a Markov Matrix P , we call a measure p on S invariant if
EpPf = Epf for all f ∈ CC(S). The following lemma proves that the above described stochastic
process exists and lists some of its properties.

Lemma A.3. Say p has connected support and Epfluxp < ∞.

(A) There is a Markov process (Xt)t on supp(p) such that for all f ∈ CC(S), defining Pt(f)(X) =
E[f(Xt)|X0 = X], Ptf(X) is continuously differentiable in t and d

dtPtf(X) = LPtf(X) =
PtLf(X).

(B) Pt are stationary for p and if q is another distribution with Eqfluxp < ∞ then q = p if and only
if EqLpf = 0 for all f ∈ CC(S).

(C) If f ∈ CC(S), f(Xt) −
∫ t

0
Lpf(Xs)ds is a Martingale in t conditional on X0 = X for every

X ∈ supp(p).

Proof. Take K, (Zn)n, (τn)n, (Xt)t and Pt defined as above. (Zn)n is an irreducible Markov
chain by definition as supp(p) is connected. To show that the Pt indeed define probability dis-
tributions, note that ν = fluxpp is a finite measure on S that is stationary with respect to K
since fluxp(X)p(X)KX→Y = fluxp(Y )p(Y )KY→X . This implies that (Zn)n will visit each
X ∈ supp(p) infinitely many times almost surely. To see this, assume (Zn)n, starting at some
point, visits an X ∈ supp(p) only finitely many times with positive probability. Since (Zn)n is
irreducible, every time Zn hits X there is a fixed chance that it never hits X again, so, almost surely,
Zn hits X only finitely many times. Let ν̂ = ν(X)/ν(S) so, since ν̂ is stationary for K,

ν̂(X) =

∫
dν̂(Y )(Km)Y→X = EZ0∼ν̂ [1(Zm = X)] → 0

as m → ∞ by dominated convergence, a contradiction. Thus, by Corollary 2.34 (b) of Liggett [2010],
Pt are distributions on S and

∑
n τn = ∞ almost surely, that is, (Xt)t is a well defined Markov

process. We also have that Ptf(X) = E[f(Xt)|X0 = X] for all X, t.

For the second claim, first note Eqfluxp < ∞ implies supp(q) ⊆ supp(p) since if X ̸∈ supp(X),
Tp,X→Y is defined to be ∞. By equation 2.40 of Liggett [2010], if q is a distribution on S such that
Eqfluxp(X) < ∞, q is stationary for all Pt if and only if EqLpδX = 0 for all X ∈ supp(p). In
particular, p is stationary for all Pt. On the other hand, by our construction of (Xt)t, since supp(p)
is connected, by Proposition 2.6 of Hairer [2021], each Pt has at most one stationary distribution for
t > 0. Thus, p = q if and only if EqLpf = 0 for all f ∈ CC(S).

To show that we also have the forward Kolmogorov equation it suffices by Theorem 2.39 of Liggett
[2010] to show that Ptfluxp(X) < ∞ for all t,X . To see this, note by the fact that p is stationary for
Pt,

Epfluxp ≥ Ep (fluxp ∨N) = EpPt (fluxp ∨N) → EpPtfluxp

as N → ∞ by monotone convergence so that Ptfluxp(X) < ∞ for all t > 0, X ∈ supp(p).

The statement about Martingales holds by the backwards and forwards Kolmogorov equations and
theorem 3.32 of Liggett [2010].

We will also note the following theorem from Hairer [2021] which will help us determine the
convergence rates of the stochastic processes.

Theorem A.4. (theorem 4.1 of Hairer [2021]) Say p has connected support and Epfluxp < ∞. Say
V : S → [1,∞) is a function such that V (X) → ∞ as |X| → ∞. LpV ≤ K − φ ◦ V on supp(p)
for some strictly concave φ : [0,∞) → [0,∞) with ϕ(0) = 0 and increasing to infinity. Now define
H(u) =

∫ u

1
φ(s)−1ds. Then there is a C > 0 such that for all X ∈ supp(p),

∥Pt(X)− p∥TV ≤ CV (X)

H−1(t)
+

C

φ ◦H−1(t)
.
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Proof. All conditions of the theorem are obviously satisfied except for the fact that V (X(t)) −∫ t

0
ds (K − φ ◦ V (X(s))) is a local super-martingale conditioned on X0 = X for some X ∈

supp(p). This follows from Theorem 3.4 of Douc et al. [2009] if Mt = V (Xt) −
∫ t

0
LV (Xs)ds

defines a local Martingale when X0 = X for all X ∈ supp(p).

To show this, for every number N and X ∈ S, call V N (X) = V (X) if V (X) ≤ N and V N (X) = 0
otherwise so that VN ∈ CC(S). Also define TN = inf{t | ∃Y s.t. Y MXt and V (Y ) ≥ N}. TN is a
stopping time and TN → ∞ almost surely. By Lemma A.3, MN

t = V N (Xt)−
∫ t

0
LV N (Xs)ds is a

Martingale conditioned on X0 = X for any X ∈ supp(p) and, by the definition of TN , Mt = MN
t

for all t ≤ TN . Thus, (Mt)t is a local Martingale.

A.2.3 Faithfulness and deltability

In this section we will begin to look at when KSD-Bs can detect non-convergence. We will show
that KSD-B can detect tight non-convergence, that is KSD-Bp,k(qn) ̸→ 0 if qn ̸→ p and (qn)n is
uniformly tight, whenever it is faithful. To show that KSD-B is faithful, we will need an assumption
that essentially asks that Hk is large enough.

We now describe this assumption.

Definition A.5. If k is a vector field kernel, then we say k is deltable if δ̃(X,Y ) ∈ Hk for all
(X,Y ) ∈ M , where we define δ(X,Y ) to be the vector field on M that is 1 on (X,Y ), −1 on (Y,X)

and 0 elsewhere. If k is a kernel on S, then we say k is deltable if δ̃X ∈ Hk for all X ∈ S, we define
δX to be the function that is 1 on X and 0 elsewhere.

We will describe in section A.4 how to build deltable scalar and vector field kernels. To see that
deltability implies that Hk is large, note that a vector field kernel k is deltable if and only if
CC,vf (M) ⊂ Hk and a scalar field kernel is deltable if and only if CC(S) ⊂ Hk. We can also
connect deltability with another notion of the size of Hk: if k is deltable, Hk is dense in any space
for which CC,vf (M) or CC(S) is dense and is in particular C0 and Lp - universal Sriperumbudur
et al. [2011].

This assumption is also where our study of vector field and scalar field KSD-Bs diverge as if k is a
kernel on S, k∇, definined in Proposition A.2 is not deltable as the next proposition shows.

Proposition A.6. Say k is a kernel on S. Then k∇ is not deltable.

Proof. Let X1, X2, X3 three distinct sequences in S such that X1MX2MX3. For any (X,Y ) ∈ M ,
calling f = k∇(X,Y )

f(X1, x2) + f(X2, X3) + f(X3, X1) =(ky|(kX2 − kX1) + (kX3 − kX2) + (kX1 − kX3))k
− (ky|(kX2 − kX1) + (kX3 − kX2) + (kX1 − kX3))k

=0.

Thus, for all f ∈ Hk∇ , f(X1, x2) + f(X2, X3) + f(X3, X1) = 0. However,

δ(X1,X2)(X1, x2) + δ(X1,X2)(X2, X3) + δ(X1,X2)(X3, X1) = 1.

Now we will look at proving the faithfulness and detection of tight non-convergence in proposition
3.1. Our assumption of deltability will allow us to see that if KSD-Bp,k(q) = 0 then Eqf = 0
for all f in Tp(CC,vf (M)) or Tp∇(CC(S)). The next lemma demonstrates that this implies q = p.
Considering f ∈ Tp(CC,vf (M)) the proof will simply follow from the logic of equation 2. However,
the same logic cannot be used for f ∈ Tp(∇CC(S)) as Hk∇ cannot be deltable. Instead we will
make use of Lemma A.3 (B).

Lemma A.7. Say p has connected support and q is a distribution on S. If EqTpf ̸= ∞ for all
f ∈ CC,vf (M) or EqTp∇f ̸= ∞ for all f ∈ CC(S) then supp(q) ⊆ supp(p). If EqTpf = 0 for all
f ∈ CC,vf (M) or Eqfluxp < ∞, Epfluxp < ∞, and EqTp∇f = 0 for all f ∈ CC(S) then q = p.
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Proof. Assume EqTpf is well defined and finite for all f ∈ CC,vf (M). If supp(q) ̸⊆ supp(p) then
there is a X ∈ supp(q) \ supp(p) such that there is a YMX such that q(Y ) = 0 or Y ∈ supp(p);
in either case, by equation 2,

EqTpδ(X,Y ) = q(X)Tp,X→Y − q(Y )Tp,Y→X = ∞,

since the later term is 0 and, recall, Tp,X→Y is defined to be ∞ when X ̸∈ supp(p), a contradiction.
Thus supp(q) ⊆ supp(p). Next assume EqTp∇f ̸= ∞ for all f ∈ CC(S). Again pick X ∈
supp(q) \ supp(p) such that there is a YMX such that q(Y ) = 0 or Y ∈ supp(p).

EqTp∇δY = −q(Y )fluxp(Y ) +
∑
ZMY

q(Z)Tp,Y→Z ,

and in either case the first term is 0 and the second is ∞, a contradiction.

Now say Say EqTpf = 0 for all f ∈ CC,vf (M). If X ∈ supp(q), Y ∈ supp(p), Y MX ,

0 = EqTpδ(X,Y ) = q(X)Tp,Y→X

(
p(Y )

p(X)
− q(Y )

q(X)

)
so we have q(Y )/q(X) = p(Y )/p(X). Thus supp(q) = supp(p) and q(Y )/q(X) = p(Y )/p(X)
for all (X,Y ) ∈ Mp,p. Since the support of p in connected this implies that q = p.

Now if Epfluxp < ∞ and EqTp∇f = 0 for all f ∈ CC(S) then q = p by Lemma A.3 (B).

Now we use this lemma to show detection of tight non-convergence and faithfulness of the KSD-B,
in particular proving Proposition 3.1.
Proposition A.8. Say supp(p) is connected and (qn)n is a tight sequence of distributions on S
satisfying KSD-Bp,k(q) → 0. If k is a deltable vector field kernel or k is a deltable kernel on
S, Epfluxp < ∞, and supn Eqnfluxp < ∞ then qn → p in distribution. In particular, if k is a
deltable vector field kernel or k is a deltable kernel on S, Epfluxp < ∞, and Eqfluxp < ∞, then
KSD-Bp,k(q) = 0 only if p = q.

Proof. Assume k is a deltable vector field kernel. Say KSD-Bp,k(q) → 0 but (qn)n does not
converge in distribution to p for a sequence of distributions on S (qn)n. Since (qn)n is tight, we can
pass to a sub-sequence (qnk

)k that converges in distribution to a distribution q on S. Since for all
f ∈ CC,vf (M), Tpf is non-zero on only finitely many points, EqTpf = limk Eqnk

Tpf = 0 since
f ∈ Hk by assumption. By lemma A.7, q = p, a contradiction.

The situation is similar if k is a deltable kernel on S after using Fatou’s lemma to conclude

Eqfluxp ≤ lim inf
k

Eqnk
fluxp < ∞.

Note in particular that if supp(p) is finite since any sequence (qn)n with KSD-Bp,k(q) → 0 must
have supp(qn) ⊂ supp(p) eventually by Lemma A.7, we automatically have supn Eqnfluxp < ∞
and (qn)n uniformly tight. Thus if supp(p) is finite, the KSD-B can detect non-convergence.

A.2.4 Detection of non-convergence

We will now prove results that describe conditions under which the KSD-B detect convergence and
non-convergence. We will see through some counter examples that for arbitrary p, k, the KSD-B
actually cannot detect non-convergence. These counter examples will motivate extra assumptions
that must be placed on p – namely that it have "uniformly decreasing" tails – and k – namely that it
have "thick tails".

In our first counter example, proven in section A.2.5 we will show an example of a distribution p
for which the KSD-B does not detect non-convergence. The p in this example has tails that do not
"decrease uniformly" with the length of the sequence as there are (X,Y ) ∈ M with |Y | > |X| and
p(Y ) ̸< p(X).
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Proposition A.9. Let p(X) ∝ |B|−Le−µL for some µ > 0 if |X| = L or |X| = L+1 for even L, and
say k is a bounded vector field kernel. Then there is a sequence (qn)n such that KSD-Bp,k(qn) → 0
and qn does not converge to p in distribution.

Thus we place an assumption on p that will essentially ask that it has tails decrease uniformly with
the length of the sequence. First we define the quantities

delp(X) =
∑

|Y |=L−1,XMY

Tp,X→Y

insp(X) =
∑

|Y |=L+1,XMY

Tp,X→Y

gapp(L) = inf
X∈S | |X|=L

delp(X)− insp(X).

Define delp(L) = ∞, and insp(X) = 0 if X ̸∈ supp(p). delp(X) describes the propensity to gain a
deletion, insp(L) the propensity to gain an insertion. We now assume that gapp(L) is "big enough"
as L grows, We measure how big gapp(L) using a "Foster-Lyapunov" function Vp that we will show
later controls the convergence of the stochastic process described in section A.2.2.

Assumption A.10. We assume p has connected support, Epfluxp < ∞, and there is some concave
function Vp : [0,∞) → [0,∞) such that limL→∞ Vp(L) = ∞ and

gapp(L) ≳
Vp(L)

1+ϵV
2+ϵV

Vp(L)− Vp(L− 1)

for some ϵV > 0.

We now rewrite the asymptotic inequality in more interpretable forms for several examples of Vp.
Note that the since Vp is concave and goes to ∞, the right hand side is eventually less than

Vp(L)
1+ϵV
2+ϵV

V ′
p(L)

=
Vp(L)

V ′
p(L)

Vp(L)
− 1

2+ϵV =

(
(log Vp)

′(L)V
1

2+ϵV
p (L)

)−1

. (∗)

Note that this quantity is larger when Vp grows more slowly. As well, we will see later that a
slower growing Vp results in faster convergence of our process described in section A.2.2. Let’s
now focus on three example choices of Vp to see how fast gapp must increase. First consider
Vp = Lα for some 0 < α ≤ 1 for which (∗) is L

1− α
2+ϵV . Thus if gapp(L) ≳ Lβ for some

β > 1/2 then assumption A.10 is satisfied for Vp = Lα for some 0 < α ≤ 1. Another option is

Vp(L) = (log(L))β for some β > 0, in which case (∗) is L log(L)
1− β

2+ϵV . We can thus pick such a
Vp for a β > 2 for example if gapp(L) ≳ L. Finally, if we define log(N) as log composed with itself

N times, Vp(L) = (log(N)(L))β corresponds to gapp ≳
(∏N−1

n=0 log(n)(L)
)
(log(N)(L))

1− β
2+ϵV .

In particular, if gapp(L) ≳ Lα for some α > 1, then we can pick a Vp that grows as slowly as desired.
Also note that this is satisfied by supp(p) being finite. Thus, in general, the faster gapp increases, the
slower we can make Vp increase.

Now we turn to requirements on our kernel k, first considering two motivating counter examples, both
proved in section A.2.5. For our first counter example, note that if k is a kernel on S bounded by a
number N and f ∈ Hk with ∥f∥k ≤ 1, then for all X ∈ S, f(X) = (f |kX)k ≤ ∥f∥k

√
k(X,X) ≤

N . Thus ∥f∥∞ ≤ N . Our first counter example now shows that any bounded scalar field kernel
cannot result in a KSD-B that detect non-convergence.

Proposition A.11. There is a distribution p on S such that gapp(L) ∼ L but
sup∥f∥∞≤1 EqnTp∇f → 0 for a sequence of distributions qn that does not converge in distribution
to p.

Now we turn to vector field kernels. Our next example is an illustration of a case where vector field
kernels with thin tails cannot detect non-convergence. The construction is similar in idea to the
example of theorem 6 of Gorham and Mackey [2017].
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Proposition A.12. Let p(X) ∝ e−µ|X||B|−|X| for some µ > 0 and k be a vector field kernel such
that, for (X,Y ), (X ′, Y ′) ∈ M with |X| = |X ′|,

|k((X,Y ), (X ′, Y ′))| ≤ C(dH(X,X ′) + 1)−4−ϵ

for some C, ϵ > 0 where dH is the hamming distance. Then there is a sequence of distributions (qn)n
in S such that KSD-Bp,k(qn) → 0 but qn doesn’t converge to p.

Motivated by these last two examples, we now make an assumption on the kernel k that asks that there
exists a function in its RKHS that has thick tails. We will call such a kernel coercive. In particular,
we ask that there is a f̃ such that Tpf̃ is increasing sufficiently quickly with respect to the tails of p.
Assumption A.13. Say p is a distribution on S that satisfies assumption A.10 with Vp. We say a kernel
k is coercive if (A) k is a vector field kernel such that there is a f̃ ∈ Hk with lim|X|→∞ Tpf̃(X) = ∞
and ∑

L

inf |X|=L Tpf̃(X)(
sup|X|=L insp(X)

)
Vp(L+ 1)

= ∞. (6)

(B) k is a kernel on S such that supp(p) is finite or there is a f̃ ∈ Hk with lim|X|→∞ Tp∇f̃(X) = ∞
and ∑

L

CL ∧ CL+1 = ∞ where CL =
inf |X|=L Tp∇f̃(X)(

sup|X|=L fluxp(X)
)
Vp(L+ 1)

. (7)

To understand this condition intuitively, first consider assumption (A). The denominator in the sum
is the maximum propensity for insertions

(
sup|X|=L insp(X)

)
, multiplied by our Foster-Lyapunov

function Vp(L+1) so that if p has thinner tails we expect this quantity to be smaller and assumption (A)
to be easier to satisfy. In section A.4.3, we construct f̃ such that inf |X|=L Tpf̃(X) ≳ gapp(|X|)f̃(X).

If we assume gapp(|X|) ≳ insp(X) then the assumption is satisfied if
∑

L
inf|X|=L f̃(X)

Vp(L+1) = ∞, that
is, f itself have thick tails.

Assumption (B) is very similar to (A) with the exceptions of 1) the use of the operator Tp∇ instead of
Tp, 2) insp terms having been replaced by a possibly much larger fluxp term, and 3) the sum being of
minima of sequential terms. The last difference (3) simply says that the sequence C1, C2, . . . cannot
alternate between large and small.

With these assumptions we can now prove the the KSD-B detects non-convergence. Our approach is
inspired by the proof of theorem 8 of Gorham and Mackey [2017]. First we will use our assumption
on p to prove the following lemma which is similar to theorem 5 of Gorham et al. [2016].
Lemma A.14. Say p is a distribution on S obeying assumption A.10. If g ∈ Cb(S) and g(X) = 0 for
X ̸∈ supp(p), then there is a fg : S → R such that fg(X) = 0 for X ̸∈ supp(p), Tp∇fg = g−Epg,
and fg(X) ≤ CVp(X)∥g∥∞ for a universal constant C.

Proof. Lp = Tp∇ is the infinitesimal generator for a semi-group (Pt)t. Also define ∆Vp,L =
Vp(L)− Vp(L− 1) and Vp(X) as Vp(|X|). If X ∈ supp(p) with |X| = L,

LVp(X) =
∑

YMX,|Y |=|X|+1

Tp,X→Y ∆Vp,L+1 −
∑

YMX,|Y |=|X|−1

Tp,X→Y ∆Vp,L

=insp(X)∆Vp,L+1 − delp(X)∆Vp,L

≤insp(X) (∆Vp,L+1 −∆Vp,L)− gapp(L)∆Vp,L

Since Vp in concave, the first term is negative. As well, by assumption, gapp(L)∆Vp,L ≳ φ(Vp(L−
1)) where φ(x) = x(1+ϵ)/(2+ϵ). Thus there are constants C1, C2 such that for all X ∈ supp(p),

LVp(X) ≤ C1 − C2φ ◦ Vp(X).

By theorem A.4, with H =
∫ u

1
dsφ−1(s) = C3(u

1
2+ϵ − 1), we have

∥Pt(X)− p∥TV ≲ Vp(X)t−(2+ϵ) + t−(1+ϵ).
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Now assume g ∈ Cb(S). We have that

|Ptg(X)− Epg| ≤ ∥g∥∞∥Pt(X)− p∥TV

so
∫∞
0

dt|Ptg(X) − Epg| ≤ C ′∥g∥∞Vp(X) for some C ′ > 0 for large enough X . Thus we can
define

fg(X) =

∫ ∞

0

dt (Epg − Ptg(X))

with |fg|(X) ≤ C ′∥g∥∞Vp(X). Because we have absolute integrability, and by Lemma A.3 (A) we
can also write

Lfg(X) =

∫ ∞

0

dt (−LPtg(X)) =

∫ ∞

0

dt

(
− d

dt
Ptg(X)

)
= g(X)− Epg.

Finally we show that the KSD-B can detect non-convergence.

Theorem A.15. Say p is a distribution on S obeying assumption A.10 and k is a deltable vector
field kernel obeying assumption A.13 (A) or k a deltable kernel on S obeying assumption A.13 (B).
Say (qn)n is a sequence of distributions on S. If KSD-Bp,k(qn) → 0 then qn converges to p in
distribution.

Proof. First note that by Lemma A.7, supp(qn) ⊂ supp(p) for all n eventually. Let g ∈ Cb(S) with
g(X) = 0 for X ̸∈ supp(p) and ∥g∥∞ ≤ 1, so by lemma A.14, there is an fg : S → R such that
fg ≤ C̃Vp for some C̃ > 0 and Tp∇fg = g−Epg. We will show that Eqng−Epg = EqnTp∇fg → 0,
which will be enough to prove the theorem. We will do so by picking a sequence of hm ∈ Hk such
that supn Eqn |Tphm − Tp∇fg| → 0 as m → ∞. This will show that

|EqnTp∇fg| ≤ |EqnTphm|+Eqn |Tphm−Tp∇fg| ≤ ∥hm∥kKSD-Bp,k(qn)+Eqn |Tphm−Tp∇fg|

which goes to zero as n → ∞ and m → ∞ slow enough.

First assume k is a deltable kernel obeying assumption A.13 (A). Let f̃ ∈ Hk satisfy equation 6 and
have Tpf̃(X) → ∞ as |X| → ∞. There is thus a ζ ∈ R such that Tpf̃(X) + ζ > 0 for all X ∈ S.
For a sequence v = (v1, v2, . . . ) of numbers 0 ≤ vn ≤ 1 such that vn is eventually equal to 0, define
the vector field on M hv(X,Y ) = v|X|∧|Y |∇fg(X,Y ). Since v is eventually 0, by the deltability of
k, hv ∈ Hk. Then

Tphv(X) = v|X|Tp∇fg(X) + (v|X|+1 − v|X|)
∑

YMX,|Y |=|X|+1

Tp,X→Y ∇fg(X,Y ).

The first term is a better and better approximation of Tp∇fg as v → 1. We now use our assumption
A.13 (A) to bound the second term by EqnTpf̃ ≤ ∥f̃∥kKSD-Bp,k(qn). Note

∣∣∣∣∣∣
∑

YMX,|Y |=|X|+1

Tp,X→Y ∇fg(X,Y )

∣∣∣∣∣∣ ≤ 2C̃Vp(|X|+ 1)insp(X).
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Now call ∆vL = |vL+1 − vL| and RL :=
Vp(L+1) sup|X|=L insp(X)

inf|X|=L Tpf̃(X)+ζ
, so,

Eqn |Tphv − Tp∇fg| ≤Eqn [(1− v|X|)|Tp∇fg|] + Eqn

[
∆v|X|2C̃Vp(|X|+ 1)insp(X)

]
≤2∥g∥∞Eqn [1− v|X|] + 2C̃Eqn

[(
Tpf̃ + ζ

)
∆v|X|

Vp(|X|+ 1)insp(X)

Tpf̃ + ζ

]
≤2Eqn [1− v|X|] + 2C̃Eqn

[
Tpf̃ + ζ

]
sup
L

(∆vLRL)

≤2Eqn

[
Tpf̃ + ζ

]
sup
L

1− v|X|

Tpf̃ + ζ
+ 2C̃Eqn

[
Tpf̃ + ζ

]
sup
L

(∆vLRL)

=Eqn

[
Tpf̃ + ζ

](
2 sup

L

1− v|X|

Tpf̃ + ζ
+ 2C̃ sup

L
(∆vLRL)

)

≤
(
∥f̃∥kKSD-Bp,k(qn) + ζ

)(
2 sup

L

1− v|X|

Tpf̃ + ζ
+ 2C̃ sup

L
(∆vLRL)

)

≲ sup
L

1− v|X|

Tpf̃ + ζ
+ sup

L
(∆vLRL) .

By assumption Tpf̃ + ζ → ∞ and
∑

L R−1
L = ∞. For ϵ, L′ > 0 define vϵ,L

′

L = 1 for L ≤ L′ and
∆vL = ϵR−1

L ∧ (vL) for l ≥ L. By assumption
∑

L R−1
L = ∞ so vϵ,L

′
is eventually 0. We thus have

supL

(
∆vϵ,L

′

L RL

)
= ϵ and supL

1−vϵ,L′
|X|

Tpf̃+ζ
≤ 1

inf|X|≥L Tpf̃+ζ
. By our assumption that Tpf̃ → ∞,

both of these quantities go to 0 as L′ → ∞ and ϵ → 0.

Now assume k is a deltable kernel obeying assumption A.13 (B). The case that supp(p) is finite was
shown in Proposition 3.1 so assume supp(p) is infinite. The proof is very similar. This time, for a
sequence v = (v1, v2, . . . ) of decreasing numbers 0 ≤ vn ≤ 1 such that vn is eventually equal to
0, define the function on S, hv(X) = v|X|fg(X). Since v is eventually 0, by the deltability of k,
hv ∈ Hk. Then, by similar reasoning to the previous case,

Tp∇hv(X) =v|X|Tp∇fg(X) + (v|X|+1 − v|X|)
∑

YMX,|Y |=|X|+1

Tp,X→Y ∇fg(X,Y )

+ (v|X|−1 − v|X|)
∑

YMX,|Y |=|X|−1

Tp,X→Y ∇fg(X,Y ).

Note that since Vp is increasing, the sum of the later two terms is upper bounded by

2C̃∆̃vLVp(|X|+ 1)fluxp(X)

defining ∆̃vL = |vL+1 − vL| ∨ |vL − vL−1|. Now call R̃L :=
Vp(L+1) sup|X|=L fluxp(X)

inf|X|=L Tp∇f̃(X)+ζ
, so,

Eqn |Tp∇hv − Tp∇f | ≤Eqn [(1− v|X|)|Tp∇fg|] + Eqn

[
∆̃v|X|2C̃Vp(|X|+ 1)fluxp(X)

]
≤2Eqn

[
Tp∇f̃ + ζ

](
sup
L

1− v|X|

Tp∇f̃ + ζ
+ 2C̃ sup

L

(
∆̃vLR̃L

))

≤
(
∥f̃∥kKSD-Bp,k(qn) + ζ

)(
2 sup

L

1− v|X|

Tp∇f̃ + ζ
+ 2C̃ sup

L

(
∆̃vLR̃L

))

≲ sup
L

1− v|X|

Tp∇f̃ + ζ
+ sup

L

(
∆̃vLR̃L

)
.

By assumption Tpf̃ + ζ → ∞ and
∑

L R̃−1
L ∧ R̃−1

L+1 = ∞. For ϵ, L′ > 0 define vϵ,L
′

L = 1

for L ≤ L′ and vL = vL−1 − ϵR̃−1
L−1 ∧ R̃−1

L ∧ (vL−1) for l ≥ L. Thus ∆̃vL ≤ ϵR̃−1
L . By

assumption
∑

L R̃−1
L ∧ R̃−1

L+1 = ∞ so vϵ,L
′

is eventually 0. We thus have supL

(
∆̃vϵ,L

′

L R̃L

)
= ϵ
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and supL
1−vϵ,L′

|X|

Tpf̃+ζ
≤ 1

inf|X|≥L Tpf̃+ζ
. By our assumption that Tpf̃ → ∞, both of these quantities go

to 0 as L′ → ∞ and ϵ → 0.

Finally we prove that the KSD-B can detect convergence as in proposition 3.3.

Proposition A.16. Say k is a vector field kernel and p, q1, q2, . . . are p, k-integrable distributions on
S. Call A(X) =

∑
YMX Tp,Y→X

√
k((X,Y ), (X,Y )).∑

X

|p(X)− qn(X)|A(X) → 0 =⇒ KSD-Bp,k(qn) → 0.

Proof. Say f ∈ Hk.

|EpTpf − EqTpf | ≤ ∥f∥k
∑
X

|p(X)− qn(X)|
∑

YMX

Tp,Y→X

√
k((X,Y ), (X,Y ))

which proves the result.

A.2.5 Proofs of examples

Proposition A.17. (Proposition A.9) Let p(X) ∝ |B|−Le−µL for some µ > 0 if |X| = L or
|X| = L+ 1 for even L, and say k is a bounded vector field kernel. Then there is a sequence (qn)n
such that KSD-Bp,k(qn) → 0 and qn does not converge to p in distribution.

Proof. Define, for even L, q̃L = p1|X|≤L and qL = q̃L/
∑

X q̃L(X). Call qL(L′) = qL(X) for any
|X| = L′. Call NL = {(X,Y ) ∈ M | |X| = L, |Y | = L+ 1}. The terms of the sum in Equation 2
are non-zero only for (X,Y ) ∈ NL. Thus,

KSD-Bp,k(qn)
2 =

 sup
∥f∥k≤1

∑
(X,Y )∈NL

qL(X)Tp,X→Y f(X,Y )

2

=qL(L)
2

 sup
∥f∥k≤1

f

∣∣∣∣∣ ∑
(X,Y )∈NL

Tp,X→Y k(X,Y )


k

2

=qL(L)
2

∥∥∥∥∥∥
∑

(X,Y )∈NL

Tp,X→Y k(X,Y )

∥∥∥∥∥∥
2

k

=qL(L)
2

∑
(X,Y )∈NL

∑
(X′,Y ′)∈NL

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)).

If (X,Y ) ∈ NL, then Tp,X→Y ≤ L+ 1. Thus, if k is bounded by a number C > 0,

KSD-Bp,k(qn)
2 ≤ qL(L)

2(L+ 1)2|B|2LC =

(
qL(L)

e−µL|B|−L

)2

e−2µL(L+ 1)2C → 0

as qL(L)
e−µL|B|−L =

(∑
|X|≤L p̃(X)

)−1

→ 1.

Proposition A.18. (Proposition A.11) There is a distribution p on S such that gapp(L) ∼ L but
sup∥f∥∞≤1 EqnTp∇f → 0 for a sequence of distributions qn that does not converge in distribution
to p.

Proof. Let p be the distribution supported on {∅, A,AA,AAA, . . . } for A ∈ B with p(L) = p(L×
A) = 2−(L+1) for any number L. Define r =

(
p(L)

p(L−1)

)
= (1/2) for any L and r̃ =

(
p(L−1)
p(L)

)
= (2)
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for any L (with r̃0 = 0). Thus, r < 1 ≤ r̃ for all L. Say q is a distribution supported on finitely many
{∅, A,AA,AAA, . . . }, and f is a function on S with ∥f∥∞ ≤ 1,

EqTp∇f =

∞∑
L=0

q(L) ((L+ 1)r(f(L+ 1)− f(L)) + Lr̃(f(L− 1)− f(L)))

=

∞∑
L=0

f(L)

(
q(L+ 1)(L+ 1)r̃ + q(L− 1)Lr

− q(L) (Lr̃L + (L+ 1)r)

)
=

∞∑
L=0

f(L)

(
q(L+ 1)(L+ 1)r̃ − q(L)Lr̃

+ q(L− 1)Lr − q(L)(L+ 1)r

)
.

Let q̃m,n(L) = L−1 for m ≤ L ≤ n and q̃m,n(L) = 0 for L > n and L < m. Now let
qm,n = q̃m,n/Zm,n where Zm,n =

∑n
L=m L−1 which goes to ∞ as n → ∞. Thus,

Eqm,n
Tp∇f =f(m− 1)Z−1

m,nr̃ − f(n)Z−1
m,nr̃

+

n∑
L=m+1

f(L) (qm,n(L− 1)Lr − qm,n(L)(L+ 1)r)

− f(m)qm,n(m+ 1)r + f(n+ 1)qm,n(n)(n+ 1)r

=Zm,n
−1

(
r̃f(m− 1)− r̃f(n)− f(m)

m+ 1

m
+ f(n+ 1)

n+ 1

n

)
+

n∑
L=m+1

f(L)r

(
1− (L+ 1)(L− 1)

L2

)
≤6r̃Zm,n

−1 + sup
L>m

Lr

∣∣∣∣1− (1− 1

L2

)∣∣∣∣
=6r̃Zm,n

−1 + r/m.

(8)

This expression goes to 0 as n,m → ∞.

Proposition A.19. (Proposition A.12) Let p(X) ∝ e−µ|X||B|−|X| for some µ > 0 and k be a vector
field kernel such that, for (X,Y ), (X ′, Y ′) ∈ M with |X| = |X ′|,

|k((X,Y ), (X ′, Y ′))| ≤ C(dH(X,X ′) + 1)−4−ϵ

for some C, ϵ > 0 where dH is the hamming distance. Then there is a sequence of distributions (qn)n
in S such that KSD-Bp,k(qn) → 0 but qn doesn’t converge to p.

Proof. First note that for (X,Y ) ∈ M , calling (eµ|B|) = c, Tp,X→Y ≤ c(|X| + 1). For distinct
points X1, . . . , XN ∈ BL let q = 1

N

∑N
n=1 δXn

. Call R = minn̸=m dH(Xn, Xm) > 0 and say k is
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bounded by a number C. Then by equation 1,

KSD-Bp,k(q)
2 ≤c2(L+ 1)2

N2

N∑
n=1

N∑
m=1

∑
YMXn

∑
Y ′MXm

|k((Xn, Y ), (Xm, Y ′))|

=
c2(L+ 1)2

N2

( N∑
n=1

∑
YMXn

∑
Y ′MXn

|k((Xn, Y ), (Xn, Y
′))|

+
∑
n ̸=m

∑
YMXn

∑
Y ′MXm

|k((Xn, Y ), (Xm, Y ′))|
)

≲
(L+ 1)2

N2

(
NL2 +N2L2R−(4+ϵ)

)
=O

(
L4
(
N−1 +R−(4+ϵ)

))
.

We now pick, for each L, X1, . . . , XNL
∈ BL to be the largest set of sequence such that

minn ̸=m dH(Xn, Xm) > RL = L
20|B| . We will show L4N−1

L → 0, so that we will have

L4
(
N−1

L +R
−(4+ϵ)
L

)
→ 0 and the proof will be complete. For X ∈ BL, r > 0, define the

Hamming ball B(X, r) = {Y ∈ BL | dH(X,Y ) ≤ r}. Thus BL ⊂ ∪nB(Xn, RL), otherwise we
could add another sequence to (Xn)n. Thus |B|L ≤

∑
n |B(Xn, RL)| = NL|B(X1, RL)|. Let Z be

a Binomial random variable with parameters L and |B|−1. Then |B(X1, RL)|/|B|L = P (Z ≤ RL).

On the other hand, calling t = − log
(

RL|B|
L

)
= log 20,

P (Z ≤ RL) =P (e−tZ ≥ e−tRL)

≤etRLEe−tZ

=etRL
(
|B|−1e−t + (1− |B|−1)

)L
=etRL

(
1 + |B|−1(e−t − 1)

)L
≤ exp

(
tRL + L|B|−1(e−t − 1)

)
=exp

(
RL(1 + t)− L|B|−1

)
=exp

(
−L|B|−1

(
1− 1

20
(1 + log 20)

))
≤ exp

(
−1

2
L|B|

)
.

Thus, NL ≥ e
1
2L|B| so that L4N−1

L → 0 as L → ∞.

A.2.6 Efficient approximate kernelized Stein discrepancies

We have shown that the KSD-B is computable by equation 1. However this expression may be
expensive to evaluate; namely, the terms inside the expectation,∑

XMY

∑
X′MY ′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)) (†)

cost O(|X||X ′|) to evaluate as each sequence X has up to |B|(|X|+1)+(|B|−1)|X|+|X| neighbours
in M . Instead we can approximate the sum as follows. As in section A.2.2, we define the Markov
matrix KX→Y = Tp,X→Y /fluxp(X) if X ̸= Y and 0 if X = Y and let (Z0, Z1, . . . ), (Z

′
0, Z

′
1, . . . )

be two independent Markov processes following K. Then we can rewrite (†) as

fluxp(X)fluxp(X
′)
∑

XMY

∑
X′MY ′

KX→Y KX′→Y ′k((X,Y ), (X ′, Y ′))

=fluxp(X)fluxp(X
′)EZ0=XEZ′

0=X′k((X,Z1), (X
′, Z ′

1)).

(9)
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Now we can approximate the expectations in a variety of ways. If Tp,X→Y are cheap to evaluate, we
may sampling YX,m ∼ Z1|Z0 = X for m = 1, . . . ,MX and use the approximation

fluxp(X)fluxp(X
′)

1

MXMX′

∑
m,m′

k((X,YX,m), (X ′, YX′,m′))

which only involves M,M ′ kernel evaluations, potentially much smaller than O(|X||X ′|). If Tp,X→Y

are expensive, we may approximate the expectation by sampling from an approximate distribution,
say using Gibbs with Gradients Grathwohl et al. [2021] or uniform sampling; however we will not
explore this later approach further.

Now we ask how large MX must be to achieve a good approximation. We consider two scenarios. In
the first we consider arbitrary q and show that if MX is O(|X|), although potentially much smaller
than the number of neighbours of |X|, we achieve a bound on the error of the approximation. In the
second, we consider q to be a set of point masses 1

n

∑n
i=1 δXi

. In this case, we show that MX can
be O (log (maxi |Xi|) log(n)), likely substantially lower than O(|X|). The proofs of these results in
either scenario are roughly based on the use of a sub-Gaussian concentration inequality as used in
theorem 4 of Gorham et al. [2020].

Now we consider the first of these scenarios.

Proposition A.20. Let p be a distribution on S and k is a bounded vector field kernel. For each X,n,
let (YX,n,m)

MX,n

m=1 be iid samples distributed as Z1|Z0 = X . Define the approximate KSD

KSD-B,̂n
p,k(q)

2 = EX,X′∼qfluxp(X)fluxp(X
′)

1

MX,nMX′,n

∑
m,m′

k((X,YX,n,m), (X ′, YX′,n,m′)).

Say (qn)n is a sequence of distributions on S with supn Eqnfluxp < ∞.

If MX,n ≥ C|X|n(log n)2 for some C > 0 then
∣∣∣KSD-Bp,k(qn)− KSD-B,̂n

p,k(qn)
∣∣∣→ 0.

Proof. Let MX,n be a family of numbers such that MX,n ≥ C|X|n(log n)2 for some C > 0. Call
p(Y |X) = KX→Y . Sample (YX,n,m)

MX,n

m=1 iid from p(Y |X) for all X ∈ S. Call p̂n(Y |X) =
1

MX,n

∑MX,n

m=1 δYX,n,m
. Since k is bounded, say by some number M ,

EX∼qfluxp(X)Ep̂n(Y |X)

√
k((X,Y ), (X,Y )) ≤ MEX∼qfluxp(X) < ∞.

Then the functional ϕn : Hk → R | f 7→ EX∼qfluxp(X)Ep̂n(Y |X)f(X,Y ) is bounded, and is thus
in Hk. As in the proof of proposition 2.1,

KSD-B,̂n
p,k(q) = ∥ϕn∥k = sup

f∈F
EX∼qTp(X)Ep̂n(Y |X)f(X,Y ).

We will show that supX ∥p(Y |X)− p̂n(Y |X)∥TV → 0 as n → ∞ almost surely later; for now,
assume this is the case. Thus, since ∥f∥k ≤ 1 implies that ∥f∥∞ ≤ M ,∣∣KSD-Bp,k(qn)−KSD-B,̂n

p,k(qn)
∣∣

≤ sup
∥f∥k≤1

EX∼qnfluxp(X)
∣∣Ep(Y |X)f(X,Y )− Ep̂n(Y |X)f(X,Y )

∣∣
≤MEX∼qnfluxp(X) ∥p(Y |X)− p̂n(Y |X)∥TV

≤M (EX∼qnfluxp(X)) sup
X

∥p(Y |X)− p̂n(Y |X)∥TV

→0.

Now we will show that supX ∥p(Y |X)− p̂n(Y |X)∥TV → 0 almost surely. Pick a sequence of
positive numbers ϵ1, ϵ2, . . . . Let X ∈ supp(p) with |X| = L and call N(X) = {Y ∈ S | YMX}.
Call FX = {f : N(X) → {−1, 1}} so

∥p(Y |X)− p̂n(Y |X)∥TV = max
f∈FX

Ep(Y |X)f(Y )− Ep̂n(Y |X)f(Y ).
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Note for each f ∈ FX , Ep̂n(Y |X)f(Y ) is an average of MX,n iid random variables that take values
{−1, 1} and is thus a sub-Gaussian random variable with variance-proxy C ′/

√
MX,n for some C ′.

Then by a maximal concentration inequality (theorem 1.14 of Rigollet and Hütter [2019]), since
|F| = 2CL for some C > 0,

P (∥p(Y |X)− p̂n(Y |X)∥TV > ϵn) ≤ C1L exp
(
−C2MX,nϵ

2
n

)
for some constants C1, C2 > 0. Thus for some constant C3 > 0, if ϵn decreases slowly enough, for
large enough n,∑

X,n

P (∥p(Y |X)− p̂n(Y |X)∥TV > ϵn)

≤C1

∑
L,n

L|B|L exp
(
−C2CLn(log n)2ϵ2n

)
≲
∑
L,n

exp
(
−C3Ln(log n)

2ϵ2n
)

≲
∑
n

∫ ∞

0

dL exp
(
−C3Ln(log n)

2ϵ2n
)

≲
∑
n

1

n(log n)2ϵ2n
< ∞.

By the Borel-Cantelli lemma, the probability that ∥p(Y |X)− p̂n(Y |X)∥TV > ϵn for infinitely many
L, n is 0. Thus, with probability 1, as n → ∞,

sup
X

∥p(Y |X)− p̂n(Y |X)∥TV → 0.

We finish the section by considering the second situation where q is a sum of point masses.

Proposition A.21. Let p be a distribution on S, (qn)n a sequence of distributions on S with qn =
1
n

∑n
i=1 δXn

i
for Xn

i ∈ S and k is a bounded vector field kernel. For each X,n, let (Yi,n,m)
Mi,n

m=1 be
iid samples distributed as Z1|Z0 = X . Define the approximate KSD

KSD-B,̂n
p,k(q)

2 =
1

n2

∑
i,j

fluxp(X
n
i )fluxp(X

n
j )

1

Mi,nMj,n

∑
m,m′

k((Xn
i , Yi,n,m), (Xn

j , Yj,n,m′)).

Defining Ln = maxi |Xn
i |, for some large enough C,

if Mi,n ≥ C log(Ln)(log n) then
∣∣∣KSD-Bp,k(qn)− KSD-B,̂n

p,k(qn)
∣∣∣→ 0.

Proof. Let Mi,n be a family of number such that Mi,n ≥ C log(Ln)(log n). Again, call p(Y |X) =

KX→Y , sample (Yi,n,m)
Mi,n

m=1 iid from p(Y |Xn
i ), and call p̂n(Y |Xn

i ) =
1

Mi,n

∑Mi,n

m=1 δYi,n,m
. As in

the proof of Proposition A.20,∣∣KSD-Bp,k(qn)−KSD-Bˆp,k(qn)
∣∣

≤ sup
∥f∥k≤1

EX∼qnfluxp(X)
∣∣Ep(Y |X)f(X,Y )− Ep̂n(Y |X)f(X,Y )

∣∣
≤EX∼qnfluxp(X) ∥p(Y |X)− p̂n(Y |X)∥TV .

We will again show that supi ∥p(Y |Xn
i )− p̂n(Y |Xn

i )∥TV → 0 as n → ∞ almost surely, which will
complete the proof.

Pick a sequence of positive numbers ϵ1, ϵ2, . . . . Then again by a maximal concentration inequality
(theorem 1.14 of Rigollet and Hütter [2019]),

P (∥p(Y |Xn
i )− p̂n(Y |Xn

i )∥TV > ϵn) ≤ C1|Xn
i | exp

(
−C2Mi,nϵ

2
n

)
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for some constants C1, C2 > 0. Thus, if C is large enough, for some constant C3 > 1, if ϵn decreases
slowly enough,∑

i,n

P (∥p(Y |Xn
i )− p̂n(Y |Xn

i )∥TV > ϵn)

≤C1

∑
n

nLn exp
(
−C2C logLn log(n)ϵ

2
n

)
≲
∑
n

exp
(
−C3(logLn + 1) log(n)ϵ2n

)
≲
∑
n

n−C3ϵ
2
n < ∞.

By the Borel-Cantelli lemma, the probability that ∥p(Y |Xn
i )− p̂n(Y |Xn

i )∥TV > ϵn for infinitely
many i, n is 0. Thus, with probability 1, as n → ∞,

sup
i

∥p(Y |Xn
i )− p̂n(Y |Xn

i )∥TV → 0

A.3 Distributions and their uniform tails

In this section we will consider some examples of distributions on S to see if they satisfy the
assumptions made above. In particular we will be interested in calculating gapp, insp,delp, and
fluxp. This will allow us to see if they satisfy assumption A.10 and are p, k integrable for reasonable
choices of k. We will start with an example illustrating how finite-lag autoregressive models may not
satisfy assumption A.10. We then look at some simple examples that do satisfy assumption A.10.
Finally, we demonstrate that profile hidden Markov models (pHMMs), which are ubiquitously used
in biological sequence analysis, satisfy assumption assumption A.10 for a choice of g.

First we illustrate how an autoregressive model may fail to satisfy assumption A.10. In the next
example, we create a lag 2 autoregressive model such that, for letters A,B ∈ B, the motif ABA is
high probability while AAA is low probability. Thus a sequence such as X = AAAA may increase
in probability by gaining an insertion of B and so delp(X) < insp(X).
Proposition A.22. Let A ̸= B ∈ B. Let X ∼ p such that X:2 = AA and XL ∼ p(b|XL−2:L)
where p(A|AA) = 0.1, p(B|AA) = 0.8, p($|AA) = 0.1, p(A|AB) = 0.8, p(B|AB) = 0.1,
p($|AB) = 0.1, p(A|BA) = 0.8, p(B|BA) = 0.1, and p($|BA) = 0.1 where $ represents the
end of the sequence. Then gapp(L) < 0 for large enough L and in particular, p does not satisfy
assumption A.10.

Proof. Call X = L×A. p(X) = 0.1L−1, so delp(X) = L(0.1). However, p(L1×A+B+L2×A) =
0.1L1+L2−2−10.83, so, if L1 + L2 = L, p(L1 ×A+B + L2 ×A)/p(L×A) = 0.830.1−2. Thus,
insp(X) ≥ (L− 2)(0.830.1−2) ≥ delp(X) for large enough L.

On the other hand there are obvious examples of distributions that do satisfy assumption A.10, such
as if p(X) ∝ |B|−Le−µL, where gapp(L) ∼ L and p(X) ∝ |B|−LL!−1 where gapp(L) ∼ L2.

We now consider pHMMs, which we now define and show satisfy assumption A.10. We also show
that pHMMs are subexponential, i.e. if p is a pHMM then Epe

t|X| < ∞ for any t small enough;
this will be useful for determining if we have p, k integrability with certain kernels. To define a
pHMM, we start with a Markov model with "letter" states s = {s1, s2, . . . , sL̃}, "insertion" states
i = {i0, i1, . . . , iL̃}, a start state s0, and killing state ∆. sl and il may only transfer to sl′ for l′ > l
or il′ for l′ ≥ l. Then each of these hidden states, except s0 and ∆, emits a b ∈ B with probability
p(b|Z) for a state Z. Thus a probability of a sequence X with |X| = L can be written as

p(X) =
∑
Z∈IL

p(Z)p(X|Z) =
∑
Z∈IL

p(Z|X|+1|Z|X|)

L∏
l=1

p(Zl|Zl−1)p(Xl|Zl)

where the sum is over, where we define IL = {(Z0, Z1, . . . , ZL+1) | Zi ∈s ∪i for 1 ≤ i ≤
L,ZL+1 = ∆, Z0 = s0}.
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We add a few conditions to our pHMM: The first is that infinite length sequences are not allowed,
namely that supl p(il|il) ≤ µ for some µ < 1. We also impose that p(b|Z) > 0 for all states Z
and b ∈ B and call η = minb,Z p(b|Z). Finally, we ask that if p(Z|il) > 0 for some state Z and
p(il|sl′) > 0, then p(Z|sl) > 0, that is, if a state can be reached by sl′ by first adding an insertion,
then it can be reached by sl′ directly as well. This last condition guarantees that removing an insertion
from any sequence of states Z does not make the sequence probability 0.

Proposition A.23. If p is a pHMM and χ(t) = t∧1 then gapp(L) ≳ L. Also, insp(X) ≲ delp(X) ∼
fluxp(X) ∼ |X| and Epe

t|X| < ∞ for any t < − logµ−.

Proof. Let X be a sequence with |X| = L > 3L̃. Also call, for every L̂, l, IL̂,s(l) = {Z ∈
IL̂ | Zl ∈s} and IL̂,i(l) = {Z ∈ IL̂ | Zl ∈i}.

insp(X) =
∑

|Y |=L+1,XMY

Tp,X→Y =
1

p(X)

L∑
l=0

∑
b∈B

p(Xb,+l)

where Xb,+l is the sequence X with an inserted letter b at position l. Now we use the sum over B to
marginalize out the emission at position l:∑

b∈B

p(Xb,+l) =
∑
b∈B

∑
Z∈IL+1

p(Z)p(Xb,+l|Z)

=
∑
b∈B

∑
Z∈IL+1

p(Z)

(
l−1∏
l′=0

p(Xb,+l,l′ |Zl′)

L∏
l′=l

p(Xb,+l,l′+1|Zl′+1)

)
p(Xb,+l,l|Zl)

=
∑

Z∈IL+1

p(Z)

l−1∏
l′=0

p(Xl′ |Zl′)

L∏
l′=l

p(Xl′ |Zl′+1)

(∑
b∈B

p(b|Zl)

)
=

∑
Z∈IL+1

p(Z)p(X|Z̃)

where, for Z ∈ IL+1, Z̃ ∈ IL is defined to be Z but with Zl removed. The idea of the proof is
to show that the leading terms of the last sum are ones in which Zl is in the middle of a multiple
insertion. For these Z, Z 7→ Z̃ is an injection and we can replace p(Z) with its upper bound µp(Z̃).
Now summing over Z̃ just gives us µp(X) and finally summing over l and dividing by p(X) gives
our bound Lµ.

First we will consider Z with a letter in position l, i.e. Z ∈ IL+1,s(l). For each Z ∈ IL+1,s(l)
pick a position lZ such that ZlZ = ZlZ+1 = ZlZ−1 ∈i, i.e. lZ is in the middle of a multiple
insertion. Define Ẑ ∈ IL,s(l− 1) ∪ IL,s(l) to be Z with lZ removed. First note, by our choice of lZ ,
p(Z)/p(Ẑ) < 1. As well, since Ẑ differs from Z̃ in at most 2L̃ positions, p(X|Z̃) ≤ p(X|Ẑ)η−2L̃.
Finally, note that at most L̃+ 1 Z map to the same Ẑ. Now write

∑
Z∈IL+1,s(l)

p(Z)p(X|Z̃) =
∑

Z∈IL+1,s(l)

p(Z)

p(Ẑ)

p(X|Z̃)

p(X|Ẑ)
p(Ẑ)p(X|Ẑ)

≤η−2L̃
∑

Z∈IL+1,s(l)

p(Ẑ)p(X|Ẑ)

≤η−2L̃(L̃+ 1)
∑

Z∈IL,s(l−1)∪IL,s(l)

p(Z)p(X|Z)

=η−2L̃(L̃+ 1)p(X,Z ∈ IL,s(l − 1) ∪ IL,s(l))

=η−2L̃(L̃+ 1) (p(X,Zl ∈s) + p(X,Zl−1 ∈s)) .
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For the first term in the sum write

1

p(X)

L∑
l=0

η−2L̃(L̃+ 1)p(X,Zl ∈s) =η−2L̃(L̃+ 1)

L∑
l=0

p(Zl ∈s |X)

=η−2L̃(L̃+ 1)

L∑
l=0

E [1(Zl ∈s)|X]

=η−2L̃(L̃+ 1)E

[
L∑

l=0

1(Zl ∈s)

∣∣∣∣X
]

≤η−2L̃(L̃+ 1)(L̃+ 1) = O(1)

Where the last inequality follows from the fact that if p(Z) > 0, then at most L̃+ 1 states are letters.
The second term is similar.

Next we consider Z ∈ IL+1,i(l). Note that at most L̃ + 1 Z in IL+1,i(l) map to the same Z̃ and
that by the fact that p(Z) = p(Z1|Z0) × . . . p(ZL+2|ZL+1) and our assumptions, there is a M ′

such that p(Z)/p(Z̃) ≤ M ′ for all Z ∈ IL+1,s(l). We will split IL+1,s(l) into two parts: define
A1 = {Z ∈ IL+1,i(l) | Zl−1 ̸= Zl+1} and A2 = {Z ∈ IL+1,i(l) | Zl−1 = Zl+1}. That is, if
Z ∈ A2 then Zl−1 = Zl = Zl+1, so Zl must by in i and so position l is in a multiple insertion. Thus,
if Z ∈ A2, then p(Z)/p(Z̃) ≤ µ, and, Z 7→ Ẑ is injective on A2. On the other hand, if Z ∈ A1 then
Z̃l−1 ̸= Z̃l. Thus,∑

Z∈A1

p(Z)p(X|Z̃) ≤M ′
∑
Z∈A1

p(Z̃)p(X|Z̃) ≤ (L̃+ 1)M ′p(X,Zl−1 ̸= Zl)∑
Z∈A2

p(Z)p(X|Z̃) ≤µ
∑
Z∈A2

p(Z̃)p(X|Z̃) ≤ µp(X)

and,

1

p(X)

L∑
l=0

∑
Z∈A1

p(Z)p(X|Z̃) ≤(L̃+ 1)M ′E

[
L∑

l=0

1(Zl−1 ̸= Zl)

∣∣∣∣X
]
≤ (L̃+ 1)M ′(2L̃+ 2)

1

p(X)

L∑
l=0

∑
Z∈A2

p(Z)p(X|Z̃) ≤µL.

Combining the above results we finally have

insp(X) ≤ Lµ+O(1)

Considering deletions now, we have

delp(X) =
∑

|Y |=L−1,XMY

Tp,X→Y =
1

p(X)

L∑
l=1

p(X−l)

with X−l defined to be X with position l deleted. In this case,

p(X−l) =
∑

|Z|=L

p(Z)

l−1∏
l′=0

p(Xl′ |Zl′)

L+1∏
l′=l+1

p(Xl′ |Zl′−1).

For Z ∈ IL−1,i(l − 1), let Z̃ be Z but with an extra ik in position l if Zl−1 = ik. For Z ∈
IL−1,i(l − 1), p(Z)/p(Z̃) ≥ µ−1 ≥ µ−1p(Xl|Z̃l) and Z 7→ Z̃ is a bijection to elements Z ′ of IL
such that Z ′

l−1 = Z ′
l ∈i. Thus we have,

1

p(X)
p(X−l) ≥ µ−1 1

p(X)

∑
Z∈IL,i(l−1)

p(Z̃)p(X|Z̃) = µ−1p(Zl−1 = Zl ∈i |X).
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Now let R =
∑L

l=0 1(Zl−1 = Zl ∈i), which is lower bounded by L− 3L̃. Thus

delp(X) ≥
∑

|Y |=L−1,XMY

Tp,X→Y ≥ µ−1Ep [R|X] ≥ µ−1
(
L− 3L̃

)
= Lµ−1 −O(1).

On the other hand, letting, for a z ∈s ∪i, Zl,z be Z but with an extra z in position l, there is an
M ′′ > 0 such that p(Z)/

(∑
z∈s∪i

p(Zl,z)
)
≤ M ′′ and for any z, p(Xl|Zl,z)

−1 ≤ η−1. Finally note
that taking each Z ∈ IL−1 to the set {Zl,z}z∈s∪i

, each Z ∈ IL is counted exactly once. Thus,

1

p(X)
p(X−l) ≤ η−1M ′′ 1

p(X)

∑
Z∈IL−1

∑
z∈s∪i

p(Zl,z)p(X|Zl,z) = η−1M ′′.

Thus, as above, delp(X) ≤ η−1M ′′L. Thus we have insp(X) ≲ delp(L) ∼ fluxp(X) ∼ |X| and
gapp(L) ≥

(
Lµ−1 −O(1)

)
− (Lµ+O(1)) ≳ L.

Also note that

(µ+ o(1))
∑

|X|=L

p(X) ≥ 1

L+ 1

∑
|X|=L

p(X)
1

p(X)

L∑
l=0

∑
b∈B

p(Xb,+l) =
∑

|X|=L+1

p(X)

so p(|X| = L) ≲ e−tL if e−t > µ. In particular, if t < − logµ, then Epe
t|X| =

∑
L p(|X| =

L)etL < ∞.

Thus by our discussion of assumption A.10, we gain the following corollary.

Corollary A.24. If p is a pHMM and χ(t) = t ∧ 1 then assumption A.10 is satisfied for Vp(L) =
(logL)2+ϵ for any ϵ > 0. Also, Epfluxp(X) < ∞.

A.4 Building kernels for the KSD-B

We’ve shown that kernels that are deltable and coercive result in KSD-B’s with theoretical guarantees
outlined above. In this section we describe how to build deltable and coercive scalar and vector field
kernels. First in section A.4.1 we will describe some examples of deltable scalar field kernels. One
example will be the alignment kernel for which we will present new results describing the thickness
of its tails. Then in section A.4.2 we describe how to build vector field kernels from scalar field
kernels. Finally, in section A.4.3 we describe five examples of deltable kernels that are coercive for
pHMMs described in section A.3. In section A.4.4 we prove the results we described in section A.4.1.

A.4.1 Deltable scalar field kernels

Before describing specific scalar field kernels, we review some basic results about deltability in the
next lemma.

Lemma A.25. (Propositions ... in ...) If k is a deltable kernel and A : S → (0,∞), then the tilted
kernel kA is deltable. If k, k′ are deltable kernels, the tensorized kernel k ⊗ k′((X,Y ), (X ′, Y ′)) =
k(X,X ′)k′(X ′, Y ′) is deltable. If k is a deltable kernel and k′ is a kernel then k + k′ is deltable. If
k is a deltable kernel and S′ ⊆ S then k restricted to S′ is deltable.

We now describe three scalar field kernels we will use as build deltable and coercive kernels. We first
define the inverse multiquadratic Hamming kernel (IMQ-H) as

kH(X,Y ) = (1 + dH(X,Y ))1/2

where dH is the Hamming distance considering all sequences as ending with infinitely many stop
symbols $. We also define the embedding kernel as

kF (X,Y ) = exp

(
− 1

2σ2
∥F (X)− F (Y )∥22

)
for some F : S → RD for some D,σ. ... showed that kH is deltable and under general conditions
kF is deltable as well.
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We spend the rest of this section considering the alignment kernel. We will first define two kernels
that we will use to define alignments: one for comparing individual bases and the other for penalizing
insertions. To compare bases let ks(X,Y ) = |B|−1δX(Y )× 1(|X| = 1) be the identity kernel on
B, that is, it is only positive if X and Y are the same length one sequence. To penalize insertions,
let kI(X,Y ) = exp (−µ(|X|+ |Y |)−∆µ (1(|X| ≥ 1) + 1(|Y | ≥ 1))) for 0 < µ < ∞ and 0 ≤
∆µ ≤ ∞. In this case, sequences compared under kI are interpreted as insertions, penalized with
insertion start penalty ∆µ and insertion extension penalty µ. Also define the insertion kernel without
start penalty k̃I(X,Y ) = exp (−µ(|X|+ |Y |)).
We define the alignment kernel, for a "decay parameter" γ > 0, as

k̃(X,Y ) =
∑

l,X1+···+X2l+1=X,Y1+···+Y2l+1=Y

γlkI(X1, Y1)

l∏
i=1

ks(X2i, Y2i)kI(X2i+1, Y2i+1)

(10)
where the sum is over all numbers l and partitions of X and Y into l aligned letters
X2, X4, . . . , Y2, Y4, . . . and l + 1 insertions X1, X3, . . . , Y1, Y3, . . . . We also define the alignment
kernel without insertion starts at the ends of the sequence

k̃ne(X,Y ) =
∑

γlk̃I(X1, Y1)

(
l−1∏
i=1

ks(X2i, Y2i)kI(X2i+1, Y2i+1)

)
ks(X2l, Y2l)k̃I(X2l+1, Y2l+1).

Let ζ = 2µ+ log γ − 2 log |B|. Deltability of k and kne depends on ∆µ and ζ.

Proposition A.26. (Theorems 22 and 25 of ...) k̃ and k̃ne are deltable if and only if ∆µ = ∞, or
∆µ > 0 and ζ ≥ 0, or ∆µ = 0 and ζ > 0.

Unlike the IMQ-H and embedding kernels, alignment kernels are not normalized, i.e. k̃(X,X)
depends on X . This is usually dealt with by working with the tilted kernel k(X,Y ) =

k̃(X,X)−1/2k̃(Y, Y )−1/2k̃(X,Y ). However, it is difficult to discern if this kernel is coercive. In-
stead we first tilt k̃, k̃ne into more convenient forms: define k = k̃Ã, k = k̃Ãne for Ã(X) = exp(µ|X|).
This form will allow us to find an upper bound for

√
k(X,X) and find a h ∈ Hk with thick tails.

Finally we will decide an appropriate tilting function A such that
√
kA(X,X) = A(X)

√
k(X,X)

is not too large to preclude a distribution p from being p, k integrable, and hA still has thick enough
tails to be coercive for reasonable p.

We now must find a bound for
√
k(X,X) and a g ∈ Hk with thick tails. These results are different

when ∆µ < ∞ and ∆µ = ∞. We first consider the case when ∆µ < ∞. To state these results, we
will need to define ξ = 1− e−∆µ < 1 and the function

r1(x, ξ) =
1

2

(
1 + x+

√
(1 + x)2 − 4ξx

)
.

To get a deltable kernel, we must have ζ ≥ 0, in which case r1(e
ζ/2|B|, ξ) ≥ r1(e

ζ/2, ξ) > 1. Now
we state our results on the tails of the alignment kernel, which will be proven in section A.4.4.
Proposition A.27. Say ∆µ < ∞, then

L1/2r1(e
ζ/2|B|, ξ)|X| ≤

√
k(X,X) ≤ r1(e

ζ/2|B|, ξ)|X|

and for any π < 1, there is a h ∈ Hk such that h(X) depends only on |X| and

h(X) = r1(πe
ζ/2, ξ)|X| +O(|X|).

As well, for any X ∈ S, kx ≲ h.

To achieve a bounded kernel, we may pick A = r1(e
ζ/2|B|, ξ)−|X|, in which case kA(X,X) ≤ 1.

However, in this case A(X)g(X) ∼
(

r1(πe
ζ/2,ξ)

r1(eζ/2|B|,ξ)

)|X|
which decays exponentially and is thus

unlikely to be coercive. We will further discuss how to tilt this kernel to get a coercive kernel in
section A.4.3.

We now finish the section considering the case when ∆µ = ∞ and pick ζ = − log |B|. In this case
k(X,Y ) = 0 if X ̸= Y so k is not interesting. However this is not the case for kne. In fact, kne can
be interpreted as an infinite k-mer spectrum kernel, i.e. it uses the counts of k-mers in each sequence
as its features.
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Proposition A.28. Say ∆µ = ∞ and ζ = − log |B|. For a Y,X ∈ S call ϕY (X) the number of
times Y appears in X . Then kne(X,X ′) =

∑
Y ∈S ϕY (X)ϕY (X

′). Now let A(X) = |X|−3/2.
kAne is a bounded C0 kernel, i.e. for all f ∈ Hk, f ∈ C0(S). kAne is also non-vanishing, i.e.√
kne(X,X) ̸→ 0 as |X| → ∞. As well, letting h =

∑
X∈B kAne,X then h(X) depends only on |X|

and h(X) = |X|−1/2 + C|X|−3/2 + o(|X|−3/2) for some constant C.

A.4.2 Vector field kernels for KSDs

We now describe how to build vector field kernels from scalar filed kernels. Our main tool will be a
correspondence between kernels on some space and vector field kernels. To state this correspondence,
we will need the following definition.
Definition A.29. A sign on M is a σ : M → {−1, 1} such that σ(X,Y ) = −σ(Y,X) for
all (X,Y ) ∈ M . Define Mσ = {(X,Y ) ∈ M | σ(X,Y ) = 1}. For a (X,Y ) ∈ M , define
(X,Y )σ = (X,Y ) if σ(X,Y ) = 1 and (Y,X) otherwise. Say σ is proper if σ(X,Y ) = 1 if
|Y | = |X| − 1 for (X,Y ) ∈ M .
Proposition A.30. Let σ be a sign on M . There is a correspondence between kernels on Mσ and
vector field kernels such that a kernel on Mσ , k, corresponds to the vector field kernel

((X,Y ), (X ′, Y ′)) 7→ σ(X,Y )σ(X ′, Y ′)k((X,Y )σ, (X ′, Y ′)σ)

and a vector field kernel corresponds to its restriction to Mσ . Deltable kernels k on Mσ , i.e. kernels
such that δ(X,Y ) ∈ Hk for all (X,Y ) ∈ Mσ , correspond to deltable vector field kernels.

Proof. The first statement, including the bijectivity of the correspondence, is clear except that the
mapping from a kernel Mσ to a vector field kernel defines a non-negative definite vector field kernel.
We will now show this. Let k be a kernel on Mσ, (Zn)

N
n=1 ⊂ M be distinct, and (αn)

N
n=1 ⊂ R.

For Z ∈ M , call αZ = αn if Z = Zn and 0 if Z ̸= Zn for any n. For (X,Y ) ∈ M , call
(X,Y )−σ = (Y,X) if σ = 1 and (X,Y ) otherwise.∑

n

∑
m

σ(Zn)σ(Zm)αnαmk(Zσ
n , Z

σ
m)

=
∑
Z∈M

∑
Z′∈M

σ(Z)σ(Z ′)αZαZ′k(Zσ, Z ′σ)

=
∑

Z∈Mσ

∑
Z′∈Mσ

(αZ − αZ−σ ) (αZ′ − αZ′−σ ) k (Z,Z ′) ≥ 0.

To check that this defines a vector field kernel, call k̃ the extension of the kernel k to M . Then if
f ∈ Hk̃,

f(X,Y ) =

(
f

∣∣∣∣k̃ ((X,Y ), ·)
)

k̃

= −
(
f

∣∣∣∣k̃ ((Y,X), ·)
)

k̃

= −f(Y,X).

The second statement follows from the fact that if k is a kernel on Mσ and k̃ is its corresponding
vector field kernel, then if f ∈ Hk then there is a f̃ ∈ Hk̃ such that f̃(X,Y ) = σ(X,Y )f((X,Y )σ).
To see this note that k(X,Y ) 7→ k̃(X,Y ) can define a unitary linear transformation on finite linear
combinations of {k(X,Y )}(X,Y )∈Mσ . This transformation takes f that are finite linear combinations
of {k(X,Y )}(X,Y )∈Mσ to the above defined f̃ and can be extended to all of Hk to obey the same
property.

We can now use this correspondence to build vector field kernels by building kernels on Mσ .
Proposition A.31. Let k, k′ be kernels on S. The following are kernels on Mσ .

((X,Y ), (X ′, Y ′)) 7→ k(X,X ′)k′(Y, Y ′)

((X,Y ), (X ′, Y ′)) 7→ (k(X,X ′) + k′(Y, Y ′))
2

((X,Y ), (X ′, Y ′)) 7→ k(X + Y,X ′ + Y ′)

((X,Y ), (X ′, Y ′)) 7→ k(X,X ′)

((X,Y ), (X ′, Y ′)) 7→ k(X,X ′)1(|X| ≠ |Y |, |X ′| ≠ |Y ′|).
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If k, k′ are deltable then the corresponding vector field kernels of the first two of these kernels are
deltable.

Proof. That the first four of these kernels are non-negative definite because they are restrictions of
non-negative definite kernels on S × S. The last kernel can be constructed by first defining the kernel
((X,Y ), (X ′, Y ′)) 7→ k(X,X ′) on S × S, restricting to {(X,Y ) ∈ Mσ | |X| ≠ |Y |} and then
extending to the rest of Mσ by setting k(X,Y ) = 0 if |X| = |Y |.

If k, k′ are deltable, the first kernel described above is deltable by Lemma A.25 as it is the restriction
of k⊗k′ on S×S. The second kernel is also deltable by Lemma A.25 as (k(X,X ′) + k′(Y, Y ′))

2
=(

k(X,X ′)2 + k(Y, Y ′)2
)
+2k⊗k′((X,Y ), (X ′, Y ′)) so that is the sum of two kernels, one deltable.

A.4.3 Coercive vector field kernels with delta functions

We will now use the above tools to describe three scalar field kernels and two vector field kernels that
are deltable and coercive for pHMMs. In this section we will assume χ(t) = t ∧ 1 so that the result
sof Proposition A.23 and Corollary A.24 hold. To demonstrate that our kernels are coercive we will
use the following lemma.

Lemma A.32. Say p is a pHMM and f is a vector field such that f(X,Y ) = 0 if |X| = |Y |.
Call f(L) = f(X,Y ) for |X| = L and |Y | = L − 1 and assume f(L + 1) ≲ f(L), that is, f
does not increase super-exponentially. Say g is another vector field with g(X,Y ) = o(f(|X|))
as |X| → ∞; in particular, g = 0 satisfies this condition. Say f is eventually positive and
(sup|X|=L insp(X)) (f(L)− f(L+ 1)) > −(1 − ϵ)gapp(L)f(L) eventually for some ϵ > 0; in
particular the later condition is satisfied if f is non-increasing in L. Then Tp(f + g)(X) ≥
1
2ϵgapp(L)f(L) eventually.

Proof. Say X ∈ S and |X| = L. Since fluxp(X) ∼ gapp(|X|) by proposition A.23,

Tp(f + g)(X) =− insp(X)f(L+ 1) + delp(X)f(L) + fluxp(X)o(f(L) + f(L+ 1))

≥gapp(L)f(L) + insp(X) (f(L)− f(L+ 1)) + fluxp(X)o(f(L))

≥gapp(L)f(L)(ϵ+ o(1)).

In this case, with the notation of the lemma, since insp(X) ≲ gapp(|X|) ∼ fluxp(X) and we can set
Vp(X) = (log |X|)2+ϵ for some ϵ > 0 by Proposition A.23 and Corollary A.24,∑

L

inf |X|=L Tp(f + g)(X)(
sup|X|=L fluxp(X)

)
Vp(L)

≳
∑
L

f(L)

(logL)2+ϵ
.

Thus, if we can find f, g such that f(L) ≳ L−(1−δ) for some δ > 0 then we can satisfy coercitivity
for pHMMs.

As well, recall from Proposition A.23 that Epe
t|X| < ∞ for small enough t and fluxp(X) ∼ |X| so

that any kernel with
√
k(X,X) ≤ et

′|X| for small enough t′ will be such that p is p, k integrable.

Now we introduce our examples of kernels. For the rest of this section, assume σ is a proper ordering.
We may for example let σ be the lexicographic ordering for some ordering of the letters in B.

Unboundedly tilted IMQ-H. Our first scalar field kernel will be the unboundedly tilted IMQ-H
(UT IMQ-H):

k(X,Y ) = A(X)kH(X,Y )A(Y )

for A(X) = (|X| + 1)3/2. k is deltable and
√

k(X,X) = (|X| + 1)3/2, so if p is a pHMM, p is
p, k-integrable. Let h = −k∅, so h(X) = −|X| − 1. ∇h(X,Y ) = |X| − |Y |, so, by Lemma A.32
with f = ∇h and g = 0 and the following discussion, k is coercive for pHMMs.
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Unboundedly tilted alignment kernel with gaps. Our second scalar field kernel will be the
unboundedly tilted alignment kernel with gaps (UT AwG):

k(X,Y ) = A(X)k(X,Y )A(Y )

for ∆µ < ∞, ζ ≥ 0 and A(X) = r1(e
ζ/2, ξ)

−(1−ϵ)|X|
for some small ϵ > 0. Let h be as defined in

Proposition A.27 picking π < 1 such that r1(πe
ζ/2,ξ)

r1(eζ/2,ξ)1−ϵ = 1 + δ for a small δ. h is a function only

of the length of the sequence and h(X) = (1 + δ)|X| + o(1). Call f = −∇
(
X 7→ (1 + δ)|X|) and

g = f −∇(−h) = o(1).
f(X,Y ) = 0 if |X| = |Y |

f(X,Y ) = δ(ϵ)(1 + δ)|X|−1 if |Y | = |X| − 1

f(X,Y )− f(Z, Y ) = −δ2(1 + δ)|X|−1 = −δ2(1 + δ)−1h(X) if |Y | < |X| < |Z|.
Thus, if (

sup
|X|=L

insp(X)

)
δ2(1 + δ)−1 ≤ (1− ϵ′)gapp(L)

eventually for some ϵ′ > 0, i.e. δ is small enough, then k is coercive for pHMMs by Lemma A.32
with f and g. However, by Proposition A.27,

L−1/2

(
r1(e

ζ/2|B|, ξ)
r1(eζ/2, ξ)1−ϵ

)L

≤ sup
|X|=L

√
k(X,X).

One can check that this ratio is minimized in the limit ϵ = 0, ξ = 0, ζ = 0 in which case

r1(e
ζ/2|B|, ξ)

r1(eζ/2, ξ)1−ϵ
≥ r1(|B|1/2, 0)

r1(1, 0)
=

|B|1/2 + 1

2
.

This may be too large for some pHMMs to have p, k integrability given that 1
2

(
|B|1/2 + 1

)
is 3/2 in

the case when B is the set of nucleotide where |B| = 4 and approximately 2.74 in the case when B is
the set of amino acids where |B| = 20.

Unboundedly tilted alignment kernel without gaps. Our third scalar field kernel will be the
unboundedly tilted alignment kernel without gaps (UT AwoG):

k(X,Y ) = kne(X,Y )

with ∆µ = ∞ and ζ = −|B|. In this case, k is deltable and
√
k(X,X) ∼ L3/2 so that if p is

a pHMM, it has p, k-integrability. Finally, Let h be as defined in Proposition A.28 so that h is a
function only of sequence length and h(X) = |X|+ C ′ + o(1) for come C > 0. Now by Lemma
A.32 with f(X,Y ) = |X| − |Y | and g = ∇(−h)− f = o(1), k is coercive for pHMMs.

IMQ-H plus alignment. We define our first vector field kernel to be the IMQ-H plus alignment
kernel (IMQ-H+A). Our strategy will be to add a thick tailed IMQ-H kernel that is not deltable with a
thin tailed alignment kernel that is. First define the Hamming to be

k1((X,Y ), (X ′, Y ′)) = kH(X,X ′)1(|X| ≠ |Y |, |X ′| ≠ |Y ′|)
on Mσ . Next define the alignment component to be

k2((X,Y ), (X ′, Y ′)) = (kA(X,X ′) + kA(Y, Y ′))2

where kA(X,X ′) = A(X)A(X ′)kÃ(X,X ′) where k is the alignment kernel with ∆µ < ∞ and

∆µ > 0 or ζ > 0 for A(X) =
(
r1(e

ζ/2|B|1/2, ξ)
)−|X|

on Mσ. Now define k = k1 + k2. k is
deltable as k2 is deltable by Lemma A.25. k is also bounded as k1, k2 are. Let h = −k(∅,A) for some
A ∈ B. Now let f = −k1,(∅,A) so that f(X,Y ) = (|Y |+ 1)−1/2 if |Y | < |X| and f(X,Y ) = 0 if
|X| = |Y |. Finally define g = h− f = k2,(∅,A) Let h̃ be as defined in Proposition A.27 for some
0 < π < 1. We have that

kA(X,X ′) ≲ h(X)A(X) ∼
(

r1(πe
ζ/2, ξ)

r1(eζ/2|B|1/2, ξ)

)
exp(−c|X ′|)

for some c > 0 when |X| = 0 or |X| = 1. Thus, g(X,Y ) = O(e−c|X|). Thus, the kernel is coercive
for pHMMs by Lemma A.32 with f and g.
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Alignment without gaps plus alignment. We define our final vector field kernel to be the alignment
without gaps plus alignment kernel (AwoG+A). First define the coercive alignment-without-gaps
component to be

k1((X,Y ), (X ′, Y ′)) = A(X)A(X ′)kÃne(X,X ′)1(|X| ≠ |Y |, |X ′| ≠ |Y ′|)

where kne is the alignment kernel with ∆µ = ∞ and A(X) = L−3/2. Next define the alignment
component to be the same as above,

k2((X,Y ), (X ′, Y ′)) = (kA(X,X ′) + kA(Y, Y ′))2

where kA(X,X ′) = A(X)A(X ′)kÃ(X,X ′) where k is the alignment kernel with ∆µ < ∞ and

∆µ > 0 or ζ > 0 for A(X) =
(
r1(e

ζ/2|B|1/2, ξ)
)−|X|

on Mσ. Now define k = k1 + k2. Again, k
is deltable as k2 is deltable. k is also bounded as k1, k2 are. Let h = −

∑
X∈B k(X,X+X). Now let

f = −
∑

X∈B k1,(X,X+X) so that, by Proposition A.28, f(X,Y ) = (|Y |+1)−1/2 if |Y | < |X| and
f(X,Y ) = 0 if |X| = |Y |. Finally define g = h − f = −

∑
X∈B k2,(X,X+X) As in the previous

example, g(X,Y ) = O(e−c|X|). Thus, the kernel is coercive for pHMMs by Lemma A.32 with f
and g.

We will also combine these last two kernels with an embedding kernel.

A.4.4 Proofs for]’ the alignment kernel

In this section we will be interested in bounding
√

k(X,X) and finding a thick tailed h ∈ Hk where
k is the alignment kernel. We will also do the same for the alignment kernel without an affine gap
penalty at the ends of sequences kne.

Let us review some results for the case when |B| = 1 that will be useful. If B = {A}, call
k(L,L′) = k(L × A,L′ × A). ... showed that there is an orthogonal basis (eL)L such that
∥eL∥k = e−ζ/2 where ζ = 2µ+ log γ in this case, (eL′ , kL)k ≥ 0 for all L,L′ and (eL′ , kL)k = 0
if L′ > L. Then, defining the infinite upper triangular matrix M such that ML′,L = (eL′ , kL)k, we
get

k(L,L′) = (kL|kl′)k =

(∑
L′′

ML′′,Le
ζeL′′

∣∣∣∣∑
L′′

ML′′,L′eζeL′′

)
k

=

∞∑
L′′=0

ML′′,LML′′,L′eL
′′ζ .

(11)
The same equation holds for kne for another matrix Mne.

The exact values of the entries of the matrices M,Mne will be important to achieve bounds on the
tails of the alignment kernel. ... showed that if we define ξ = 1 − e−∆µ, fξ(y) = 1−ξy

1−y , and the
formal power series

Fξ(x, y) =
fξ(y)

1− xyfξ(y)
=

1− ξy

1− (1 + x)y + ξxy2

Fξ,ne(x, y) = xy

(
1

1−y

)2
1− xyfξ(y)

+
1

1− y
=

xy

(1− y)2 (1− (1 + x)y + ξxy2)
+

1

1− y

then ML′,L = [xL′
yL]Fξ(x, y) and Mne,L′,L = [xL′

yL]Fξ,ne(x, y) where [xL′
yL] denotes the

coefficient in front of the term xL′
yL of the following formal power series.

We now show that we can write the size of k(X,X) and h(X) in terms of Fξ, Fξ, ̸=.

Proposition A.33. Calling CL = [yL]Fξ(e
ζ/2|B|1/2, y), L−1/2CL ≤ sup|X|=L

√
k(X,X) ≤ CL

and the same inequality is true for kne and Fξ,ne.

Proof. First of all, by equation 10, if A ∈ B, we clearly have k(X,X) ≤ k(|X| × A, |X| × A).
ks(A,A) = |B|−1, so k restricted to {∅, A,AA,AAA, . . . } is identical to the string kernel in the
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case |B| = 1 and with decay parameter γ|B|−1. Thus, by equation 11 with 2µ + log
(
γ|B|−1

)
=

ζ + log |B|,

k(L,L) =

L∑
L′=0

eζL
′
|B|L

′
M2

L′,L

≤

( ∞∑
L′=0

eζL
′/2|B|L

′/2ML′,L

)2

=

( ∞∑
L′=0

(
eζ/2|B|1/2

)L′

[xL′
yL]Fξ(x, y)

)2

=
(
[yL]Fξ(e

ζ/2|B|1/2, y)
)2

.

The result is identical with Fξ,ne. On the other hand,

k(L,L) =L

(
1

L

L∑
L′=0

(
eζL

′/2|B|L
′/2ML′,L

)2)

≥L

(
1

L

L∑
L′=0

eζL
′/2|B|L

′/2ML′,L

)2

=
1

L

(
[yL]F (eζ/2|B|1/2, y)

)2
.

Now we build h.
Proposition A.34. Say 0 < π < 1. There is an h ∈ Hk such that (h|kX)k = [y|X|]Fξ

(
πeζ/2, y

)
.

There is a h ∈ Hkne
such that (h|kne,X)k = C + [y|X|]Fξ,ne

(
eζ/2π, y

)
for some constant C. As

well, for any X ∈ S, kX ≲ h.

Proof. Define kL = |B|L
∑

|X|=L kX . If Y, Y ′ ∈ S and |Y | = |Y ′| = L′, we have, by Proposition
21 of ..., that (kL|kY )k = (kL|kY ′)k, thus (kL|kY )k = (kL|kL′)k. Now note that ... showed in
Theorem 23 that k restricted to {k0, k1, . . . } is is identical to the string kernel in the case |B| = 1
with decay parameter γ|B|−2. We will create a h for this kernel with (h|kL)k = [yL]Fξ

(
eζ/2π, y

)
and the Proposition will follow from the fact that (h|kY )k = (h|k|Y |)k.

We define h =
∑

L αLkL for some α. Note that since k(X,Y ) ≥ 0 for all X,Y , kX ≲ h for any X .
Now write

(h|eL′)k =
∑
L

αL[xL′
yL]Fξ(x, y) = [xL′

]Fξ(x, α).

Thus, since Fξ(x, y) = fξ(y)(1− xyfξ(y))
−1 = f(y)

∑∞
L=0 x

L(yfξ(y))
L,

∥h∥2k =
∑
L

eζL
(
[xL]Fξ(x, α)

)2
=fξ(α)

2
∑
L

eζL (αfξ(α))
2L

which is finite as long as π = αfξ(α)e
ζ/2 < 1. We can pick α to let π be any positive value < 1. In

this case
(h|kL′)k =

∑
L

eζL(h|eL′)kML,L′

=
∑
L

eζL
(
fξ(α)(αfξ(α))

L
)
[xLyL

′
]Fξ(x, y)

=fξ(α)
∑
L

(
πeζ/2

)L
[xLyL

′
]Fξ(x, y)

=fξ(α)[y
L′
]Fξ

(
πeζ/2, y

)
.
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We now turn to the very similar case of hne. The norm of h =
∑

l α
lkne,l is∑

L

eζL
(
[xL]Fξ,ne(x, α)

)2
=

(
α

1− α

)2

+

(
α

(1− α)2

)2 ∞∑
L=1

eζL (αfξ(α))
2(L−1)

which is finite again as long as π = αfξ(α)e
ζ/2 < 1.

(h|kne,L′)k =
∑
L

eζLMne,L,L′
(
[xL]Fξ(x, α)

)
=

1

1− α
Mne,0,L′ +

α

(1− α)2αfξ(α)

∞∑
L=1

eζL/2Mne,L,L′πL

=
1

1− α
− α

(1− α)2αfξ(α)
+

α

(1− α)2αfξ(α)
[yL

′
]Fξ,ne(e

ζ/2π, y).

Thus, to analyze the tails of the alignment kernel, we will need to analyze [yL]F (x, y) and
[yL]Fξ,ne(x, y). The coefficients of F, Fξ,ne will depend on the polynomial 1− (1 + x)y+ ξy2. We
rewrite the polynomial 1− (1 + x)y + ξy2 = (1− r1y)(1− r2y) for r1(ξ, x) ≥ r2(ξ, x), which are

1

2

(
1 + x±

√
(1 + x)2 − 4ξx

)
.

These values are decreasing with ξ, positive, and distinct when ξ < 1 since (1 + x)2 − 4ξx > (1 +
x)2−4x = (x−1)2 ≥ 0. When ξ < 1, r1 is also always > 1 since it is > 1

2 (1 + x+ |x− 1|) = x∨1.
When ξ = 0, r1 = x+ 1, r2 = 0. We now see that if ∆µ < ∞ then the coefficients of Fξ and Fξ,ne

grow exponentially. However, if ∆µ = ∞ the coefficients may grow or shrink exponentially or, in
the case of Fξ,ne grow exponentially or polynomially.

Proposition A.35. If ξ < 1 and x ≥ 0, both [yL]Fξ(x, y) and [yL]Fξ,ne(x, y) are equal to
Cr1(x, ξ)

L + O(L) for some (different) C > 0 . If ξ = 1 then [yL]F1(x, y) = xL and if x > 1,
[yL]F1,ne(x, y) = xL + O(L) otherwise if x < 1, [yL]F1,ne(x, y) = CL + C ′ + o(1) for some
C > 0, C ′ and if x = 1, [yL]F1,ne(x, y) = L(L− 1)/2 + 1.

Proof. First let us consider the case of ξ = 0.

F0(x, y) =
1

1− (1 + x)y
=

∞∑
L=0

(1 + x)LyL

F0,ne(x, y) =
xy

(1− y)2(1− (1 + x)y)
+

1

1− y
.

By partial fraction decomposition, for some A,B,C with A,B ̸= 0 and C ̸= 1, constant c1, c2,

F0,ne(x, y) =
Axy

1− (1 + x)y
+

xy(By − C)

(1− y)2
+

1

1− y

=c0 + c1y +

∞∑
L=2

(
Ax(1 + x)L+1−1 +Bx

(
L+ 1− 2

1

)
−BCx

(
L− 1

1

)
+ 1

)
yL.

The leading term in the brackets is Ax(1 + x)L−1 and, since the coefficients of F0,ne are positive,
A > 0.

Now we consider the case when 0 < ξ < 1.

Fξ(x, y) =
(1− ξy)

(1− r1y)(1− r2y)

so by partial fraction decomposition, for A,B ̸= 0,

Fξ(x, y) = (1− ξy)

(
A

1− r1y
+

b

1− r2y

)
= c1

∞∑
L=0

(
ArL1 −AξrL−1

1 +BrL2 −BξrL−1
2

)
yL.
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Since r1 > 1 > ξ, the leading term in the brackets is A(1 − ξ/r1)r
L
1 . Similarly, [yL]Fξ,ne =

CrL1 +O(L) for some C > 0.

Now we look at when ξ = 1. Here fξ(y) = 1. Thus,

F1(x, y) =
1

1− xy
=

∞∑
L=0

xLyL

F1,ne(x, y) =
xy

(1− y)2(1− xy)
+

1

1− y
.

If x ̸= 1, again, by partial fraction decomposition, By partial fraction decomposition, for some
A,B,C with A,B ̸= 0 and C ̸= 1, constant c1, c2,

F1,ne(x, y) =
Axy

1− xy
+

Bxy(y − C)

(1− y)2
+

1

1− y

=c0 + c1y +

∞∑
L=2

(
AxL +Bx

(
L+ 1− 2

1

)
−BCx

(
L+ 1− 1

1

)
+ 1

)
yL

So that the leading term is AxL if x > 1 or Bx
(
L−1
1

)
− BCx

(
L
1

)
if x < 1. since C ̸= 1, the later

term is = CL+ C ′ for some C,C ′ > 0. If x = 1,

F1,ne(x, y) =1 +

∞∑
L=1

((
L+ 1− 1

2

)
+ 1

)
yL

so that [yL]F1,ne(x, y) = L(L− 1)/2.

Now combining the results of these last three propositions, we have proven Proposition A.27. To
begin proving Proposition A.28, we first tighten our estimate of

√
k(X,X) in the case ∆µ = ∞.

Proposition A.36. Say ∆µ = ∞. sup|X|=L

√
k(X,X) =

(
eζ/2|B|1/2

)L
and

sup|X|=L

√
kne(X,X) is ∼

(
eζ/2|B|1/2

)L
if eζ/2|B|1/2 > 1, is ∼ L3/2 if eζ/2|B|1/2 = 1, and is

∼ L if eζ/2|B|1/2 < 1.

Proof. When ∆µ = ∞, M is the identity matrix, so that

k(L×A,L×A) = eLζ |B|L.

On the other hand, Mne,0,L = 1 for all L and, since, for L ≥ L′ > 0,

[xL′
yL]F1,ne(x, y) = [yL]

y

(1− y)2
yL

′−1 = [yL−L′
](1− y)−2 = L− L′ + 1.

Thus, calling λ = eζ |B|,

k(L×A,L×A) =1 +

L∑
L′=1

λL′
(L− L′)2

=1 + λL+1
L∑

L′=1

λ−(L−L′+1)(L− L′ + 1)2

=1 + λL+1
L∑

L′=1

λ−L′
L′2.

If λ > 1, the sum is increasing and bounded, so, k(L×A,L×A) = 1 + CλL(1 + o(1)) for some
C > 0. If λ = 1, we have k(L×A,L×A) = 1+CL3(1+ o(1)) for some C > 0. Finally, if λ < 1,
since

k(L×A,L×A) = 1 + L2
L∑

L′=1

λL′
(
1− L′

L

)2

,

the sum is increasing and bounded with L so that k(L×A,L×A) = 1 + CL2(1 + o(1)) for some
C > 0.
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Next we must look at when a tilted alignment kernel is C0.

Proposition A.37. Say Ã : N → (0,∞) and A(X) = Ã(|X|). If kA is a bounded kernel, then it is
C0 if and only if Ã(L)[yL]Fξ(πe

ζ/2|B|1/2, y) → 0 for any π < 1 if and only if the same condition
holds for any π > 0.

Proof. Let b ∈ B and define g = C
∑

L αLkL×b for some α,C. By the same logic as Proposition
A.34, for any 0 < π < 1, we can pick α,C, such that gπ ∈ Hk and gπ(L× b) = [yL]F (πeζ/2|B|, y).
Thus gπA ∈ HkA . Since kA is bounded, if it is C0 then gπA must be in C0(S). On the other hand if
gπA ∈ C0(S) for some π,

sup
|X|=L,|Y |=L′

kA(X,Y ) = Ã(L)Ã(L′)k(L× b, L′ × b) ≤ Ã(L)Ã(L′)(CαL)−1gπ(L
′) → 0

as L′ → ∞ so kAX ∈ C0(S) for all X . Finally, gπA ∈ C0(S) if and only if
Ã(L)[yL]Fξ(πe

ζ/2|B|1/2, y) → 0.

Finally we prove Proposition A.28
Proposition A.38. (Proposition A.28) Say ζ = − log |B| and ∆µ = ∞. For a Y,X ∈ S call
ϕY (X) the number of times Y appears in X . Then kne(X,X ′) =

∑
Y ∈S ϕY (X)ϕY (X

′). Now
let A(X) = |X|−3/2. kAne is a bounded C0 kernel, i.e. for all f ∈ Hk, f ∈ C0(S). kAne is also
non-vanishing, i.e.

√
kne(X,X) ̸→ 0 as |X| → ∞. As well, letting h =

∑
X∈B kAne,X then h(X)

depends only on |X| and h(X) = |X|−1/2 + C|X|−3/2 for some constant C.

Proof. First note that since ∆µ = ∞ the insertion penalty kernel kI defined in section A.4.1 has
kI(X,Y ) = 0 unless X = Y = ∅. Thus,

kne(X,Y ) = eµ(|X|+|Y |)
∑

X2=Y2

γlk̃I(X1, Y1)|B|−lk̃I(X3, Y3)

where the sum is over numbers l, and partitions X1 +X2 +X3 = X and Y1 + Y2 + Y3 = Y where
X2 = Y2 and |X2| = |Y2| = l. Note k̃I(X1, Y1)k̃I(X3, Y3) = e−µ(|X|−|X2|+|Y |−|Y2|, so,

kne(X,Y ) =
∑

X2=Y2

γl|B|−leµl.

Since γ|B|−1eµ = eζ |B| = 1, kne(X,Y ) is simply a sum of matching substrings of X and Y , which
is equal to

∑
Y ∈S ϕY (X)ϕY (X

′).

First note eζ/2|B|1/2 = 1, so, by proposition A.36, sup|X|=L

√
kne(X,X) = CL3/2 + C ′ + o(1)

for some C > 0, C ′. Thus, kAne is bounded and non-vanishing. On the other hand, if π < 1,
[yL]Fξ(πe

ζ/2|B|1/2, y) ∼ L, so, by Proposition A.37, kAne is C0.

Finally, letting h =
∑

X∈B kne,X and noting that if X ∈ B, kne,X(Y ) = #(X in Y ) + 1 (the plus
one for ϕ∅), we have that h(Y ) = |Y |+ 4.
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