
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROTDYN: A FOUNDATION PROTEIN LANGUAGE
MODEL FOR THERMODYNAMICS AND DYNAMICS GEN-
ERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular dynamics (MD) simulation has long been the principal computational
tool for exploring protein conformational landscapes and dynamics, but its ap-
plication is limited by high computational cost. We present ProTDyn, a foun-
dation protein language model that unifies conformational ensemble generation
and multi-timescale dynamics modeling within a single framework. Unlike prior
approaches that treat these tasks separately, ProTDyn allows flexible indepen-
dent and identically distributed (i.i.d.) ensemble sampling and dynamic trajectory
simulation. Across diverse protein systems, ProTDyn yields thermodynamically
consistent ensembles, faithfully reproduces dynamical properties over multiple
timescales, and generalizes to proteins beyond its training data. It offers a scal-
able and efficient alternative to conventional MD simulations.

1 INTRODUCTION

Proteins are the fundamental building blocks of life, carrying out essential functions such as catal-
ysis, signaling, and transport. Understanding their conformation flexibility and dynamic nature is
crucial for uncovering the molecular mechanism of protein functions Whisstock & Lesk (2003).
Traditional computational methods, such as molecular dynamics (MD) simulations, have been op-
timized and widely used for decades to study biomolecular processes such as protein folding and
unfolding Shaw et al. (2010); Robustelli et al. (2018). However, MD remains computationally ex-
pensive, since the simulation time step must be orders of magnitude smaller than the timescales of
biologically relevant processes Izaguirre et al. (1999). As a result, simulating long-timescale protein
dynamics is often infeasible.

Recent advances in machine learning, particularly deep generative models, have introduced powerful
alternatives to model proteins. Generative approaches have been developed to sample equilibrium
conformational ensembles Lu et al. (2023); Lewis et al. (2025); Jing et al. (2024a); Noé et al. (2019);
Zheng et al. (2024); Wayment-Steele et al. (2024) and, separately, to learn protein dynamics Jing
et al. (2024b); Raja et al. (2025); Lelièvre et al. (2023); Du et al. (2024); Fu et al. (2022). Recent
models also incorporate the principles of statistical mechanics that correlates thermodynamics and
dynamics Raja et al. (2025); Arts et al. (2023). However, these models still rely on very small
timesteps to propagate molecular dynamics, and generalize poorly beyond training dataset. Thus,
scalable and transferable protein emulator models that can simultaneously describe both equilib-
rium conformational ensembles (thermodynamics) and conformational transitions across multiple
timescales (dynamics) are still unavailable, which limits further progress such as accurately mod-
eling protein biophysics, where both equilibrium ensembles and transition dynamics are essential
for understanding protein–protein interaction, allosteric regulation, biocondensation, and conforma-
tional heterogeneity Brandsdal & Smalås (2000); Guo & Zhou (2016).

Based on recent progress and gaps, we introduce ProTDyn, a unified framework for generative
modeling of Protein Thermodynamics and Dynamics. Unlike previous approaches that treat con-
formational ensemble generation and conformational dynamics propagation separately, ProTDyn
unifies them within a single multi-task architecture. ProTDyn is trained on hundreds of thousands
of protein sequences and over a million of conformations, leveraging both single-structure and equi-
librium MD simulation data to train the model for comprehensive understanding of protein confor-
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mational space. Moreover, ProTDyn can perform multi-timescale training which enables modeling
conformational transitions of diverse protein systems with timescale ranging from nanoseconds to
microseconds. This flexible scheduling bridges short- and long-timescale dynamics. Together, these
capabilities are mutually reinforcing: accurate thermodynamic ensembles provide stable baselines
for dynamic propagation, while realistic dynamics improve the diversity and fidelity of generated
equilibrium ensembles.

In sum, we demonstrate three key capabilities of ProTDyn:

1. Thermodynamics generation: sampling independent and identically distributed (i.i.d.).
equilibrium protein structures from the learned ensemble distributions that are consistent
with Boltzmann statistics.

2. Multiscale dynamics generation: generating temporally coherent trajectories at multiple
time-resolutions, capturing both fast local fluctuations and slow global transitions.

3. Dynamics inpainting: refining coarse time-resolution trajectories by recovering fine-
grained time-resolution, physically plausible dynamic pathways.

By unifying thermodynamics and dynamics within a single generative framework, ProTDyn enables
scalable, transferable, flexible, and computationally efficient protein modeling. In particular, com-
pared to existing protein ensemble and dynamics generators, ProTDyn offers greater flexibility in
generating conformational ensembles across diverse settings. We validate the accuracy and transfer-
ability of ProTDyn on multiple tasks, including generating conformational ensembles for proteins
outside the training dataset and simulating protein dynamics beyond the training regime. Experi-
mental results confirm that ProTDyn agrees well with reference MD simulations while generalizing
effectively to unseen systems.

2 BACKGROUND

Molecular dynamics. Molecular dynamics (MD) simulates the time evolution of a molecular sys-
tem by integrating Newton’s equations of motion. For each particle i in a molecular configuration
x = (x1, . . . ,xN ) ∈ R3N , the equations are

Miẍi = −∇xiU(x1, . . . ,xN ), (1)

where Mi is the mass of particle i and U : R3N → R is the potential energy that is often modeled
by a force field. By construction, an MD simulation at a fixed temperature T will converge to the
Boltzmann distribution of the system,

P (x) ∝ e−U(x)/kBT , (2)

where kB is the Boltzmann constant.

Deep generative modeling for proteins. Recent advances in deep generative modeling have opened
new opportunities to simulate protein conformational ensembles. These models can generate con-
formational ensembles and transitions within hours, offering an efficient alternative to conventional
MD simulations. One line of work targets thermodynamics, directly learning the stationary Boltz-
mann distribution P (x|s) over conformations from structural databases or equilibrium MD trajec-
tories Lu et al. (2023); Lewis et al. (2025); Jing et al. (2024a); Noé et al. (2019); Zheng et al.
(2024); Wayment-Steele et al. (2024). Such models recover equilibrium ensembles but lack dynam-
ical information. In addition to modeling thermodynamics, complementary approaches focus on
dynamics, learning the transition density P (xt+∆t | xt, s) to accelerate MD Jing et al. (2024b);
Raja et al. (2025); Lelièvre et al. (2023); Du et al. (2024); Fu et al. (2022). Although these methods
can predict short-time kinetics, they are often trained on limited MD data, restricting their ability to
generalize to rare or long-timescale transitions. Despite rapid progress, current approaches remain
specialized in either thermodynamics or dynamics, overlooking their intrinsic connection based on
statistical mechanics. A unified foundation model capable of predicting both equilibrium ensembles
and transition dynamics across scales has yet to be established.

Protein conformation representation. Although proteins are inherently three-dimensional objects,
recent advances have shown that conformations can also be represented as sequences of discrete
tokens, enabling the use of powerful sequence modeling techniques. In this work, we adopt the
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Figure 1: An illustrative framework of ProTDyn. ProTDyn is a protein language model that operates
on discretized representations of protein sequence and structure. It leverages a powerful autoregres-
sive transformer architecture to simultaneously perform three tasks: (i) equilibrium conformational
ensemble generation (thermodynamics), (ii) forward trajectory generation across multiple timescales
(dynamics), and (iii) recovery of fine-grained trajectories from coarse trajectories (dynamics inpaint-
ing).

pretrained ESM3 Hayes et al. (2025) structure tokenizer to map protein conformations to tokenized
sequences c ∈ ZN , where each residue is assigned one of the 4,096 structure tokens (plus 4 special
tokens). These tokens provide a compact, learned representation of the local structural neighbor-
hood around each residue. The discretization is performed with a VQ-VAE encoder Van Den Oord
et al. (2017), while a paired decoder reconstructs the generated token sequences back into three-
dimensional coordinates.

3 METHOD

In this section, we will introduce the high-level framework of ProTDyn, as illustrated in Fig. 1.
ProTDyn is a multi-task protein language model designed to perform three complementary tasks
within a single framework: (i) equilibrium conformation ensemble generation (thermodynamics),
(ii) multi-timescale dynamic trajectory generation (dynamics), and (iii) fine-grained trajectories re-
covery from coarse time-resolution trajectories (dynamics inpainting). The model operates by au-
toregressively predicting the structure tokens of successive residues. Its architecture builds upon the
state-of-the-art protein language model ESM3, and additionally incorporates a temporal positional
embedding to encode dynamic transition information.

3.1 OBJECTIVE

We represent protein conformations in a discrete tokenized space and define three complementary
learning objectives:
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1. Thermodynamics: the thermodynamics head of ProtDyn aims to learn the equilibrium dis-
tribution of conformations Pθ(c | s). Specifically, it models the equilibrium conformation
distributions autoregressively as

Pθ(c | s) =
N−1∏
i=0

Pθ(ci | c<i, s), (3)

where ci denotes the structure token of residue i, and c<i represents all preceding residues.
The thermodynamics head is learned by minimizing the cross entropy between Pθ and the
observed protein equilibrium conformation ensemble distribution:

Lthermo(θ) = −E(s,c)∼D

[
N−1∑
i=0

logPθ(ci | c<i, s)

]
, (4)

where D denotes the dataset of protein sequences and their equilibrium conformations.
2. Dynamics: the dynamics head aims to learn the temporal correlations across multiple

timescales Pθ

(
C | s

)
, where C = (c0, . . . , cMδt) is a trajectory segment of length M

with time step δt. We factorize the trajectory distribution as

Pθ(C | s) =
M∏
j=0

Pθ(c
jδt | C<t, s), (5)

where C<t represents all preceding conformations up to time step t−1. Each conformation
cjδt = (cjδt0 , . . . , cjδtN−1) is further decomposed residue-wise as

Pθ(c
jδt | C<t, s) =

N−1∏
i=0

Pθ(c
jδt
i | cjδt<i ,C

<t, s). (6)

The model parameters are optimized by minimizing the negative log-likelihood of observed
trajectory data:

Ldyn(θ) = −E(s,C)∼D

[
M∑
j=0

logPθ(c
jδt | C<t, s)

]
, (7)

where D denotes the dataset of protein sequences paired with dynamic segments of length
M . In this project, we aim to capture protein dynamical behaviors at multiple timescales.
Specifically, we let the model learn δt = 1 ns, 10 ns, and 100 ns resolution. Additionally,
we set a memory kernel of M = 10, which corresponds to effective timescales of 10 ns,
100 ns, and 1000 ns, respectively.

3. Dynamic inpainting: The dynamics head enables trajectory generation with large
timesteps, but this comes at the cost of losing fine-grained temporal resolution. To ad-
dress this, we introduce a dynamic inpainting head that reconstructs physically plausible
transition sequences between metastable conformational states. Formally, the inpainting
task is to recover fine-resolution conformations trajectory C between two states c0 and
cMδt, modeled from coarse trajectories Pθ(C | c0, cMδt, s). Similar to dynamics head,
the dynamic inpainting between two states c0 and cMδt is formulated as an autoregressive
conditional generation problem:

Pθ(C | c0, cMδt, s) =

M−1∏
j=1

Pθ(c
jδt | C<t, c0, cMδt, s), (8)

and the training objective is:

LdynI(θ) = −E(s,C)∼D

[
M−1∑
j=1

logPθ(c
jδt | C<t, c0, cMδt, s)

]
, (9)

The choice of time step is 1 ns and 10 ns and memory kernel follows the same as training
of dynamics head.
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Together, these objectives enable the model to simultaneously generate equilibrium ensembles and
reproduce protein dynamics at multiple timescales. During training, ProTDyn is optimized to mini-
mize losses from all three heads. The losses are combined using hyperparameter weights:

LProTDyn = ω1Lthermo + ω2Ldyn + ω3LdynI. (10)
where ω1, ω2, and ω3 are hyperparameters.

3.2 TRANSFORMER ARCHITECTURE

We adopt a transformer backbone following ESM3 Hayes et al. (2025). In particular, we use Pre-
LN instead of Post-LN, rotary positional embeddings (RoPE) Su et al. (2024) instead of absolute
positional embeddings, and SwiGLU activations instead of ReLU. To encode both residue- and
temporal-level positional information, we introduce a two rotary embedding scheme. The residue-
embedding layer encodes positions along the protein sequence by assigning integer indices to se-
quential residues (1 for the first residue, 2 for the second, and so on). Residue-embeddings are
applied to both sequence tokens and structure tokens. To incorporate temporal information for mod-
eling multiscale dynamics, we introduce an additional temporal-embedding layer. The temporal
embedding is defined such that the smallest temporal unit corresponds to 1 ns, which is the finest
time resolution accessible to our model. For structure tokens, all tokens in the first structural seg-
ment are assigned a temporal value of 0, those in the second segment are assigned δt, those in the
third segment are assigned 2δt, and so forth. The temporal-embedding layer is applied to structure
tokens before the residue-embedding layer, and is not applied to sequence tokens. The training data
incorporates δt = 1, 10, 100 ns. At inference time, any integer timestep between 1 and 100 ns will
work.

4 EXPERIMENT

In this section, we describe the details of our training and evaluation setup. Our results demon-
strate that ProTDyn achieves performance equivalent to, or even surpassing, state-of-the-art protein
ensemble generators in equilibrium ensemble generation, while additionally capable of capturing
long-timescale dynamics. To demonstrate the effectiveness of unifying the thermodynamics and
dynamics heads within a single model, we additionally train a model with same architecture and
model parameters using only the dynamics information. We show that the unified model achieves
significantly better performance on all dynamic prediction tasks, indicating that incorporating ther-
modynamic signals provides complementary information that improves dynamic inference.

4.1 TRAINING SETUP

Data Following BioEmu Lewis et al. (2025), we combine single-structure and equilibrium MD
datasets for thermodynamics training. For the single-structure dataset, we use the Swiss-Prot subset
from the AlphaFold database, which contains 542,378 sequence–structure pairs. For equilibrium
MD simulations, we include two sources: mdCath and BioEmu. For dataset construction and simu-
lation details, we encourage readers to read both sources for a comprehensive understanding.

• mdCath Mirarchi et al. (2024): 5,398 proteins with simulation lengths up to 500 ns.
• BioEmu Lewis et al. (2025): prolonged simulations of diverse protein systems. The

BioEmu corpus includes several subsets:
– Octapeptides Charron et al. (2025): 1,100 peptides of length 8, each simulated for

5 µs.
– CATH1 Charron et al. (2025); Sillitoe et al. (2021): 50 CATH domains, each simu-

lated for 100 µs.
– CATH2 Sillitoe et al. (2021): 1,100 CATH domains, each simulated for 39 µs.
– MEGAsim Tsuboyama et al. (2023): extended simulations of 271 wild-type proteins,

together with 1 µs simulations for each of 22,118 single-point mutants.

For dynamics and dynamics inpainting training, we use simulations from mdCath at temporal reso-
lutions of 1 ns, and from the Octapeptides, CATH2, and MEGAsim subsets at temporal resolutions
of 10 and 100 ns.
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Model details For better sequence and structure representation, we use the pretrained sequence
and structure embedding head from ESM3 and freeze it throughout the training. The backbone of
ProTDyn consists of 24 transformer blocks, which together contain 1.4 billion parameters.

Optimization We trained the model using AdamW optimizer Loshchilov & Hutter (2017) with a
learning rate of 4 × 10−4 and weight decay of 1 × 10−5. We used a learning rate scheduler that
reduces the learning rate by a factor of 0.5 if the training loss does not improve for 5 consecutive
epochs.

4.2 INFERENCE SETUP

We conduct ablation studies with three types of sampling methods:

1. Thermodynamics: independent and identically distributed (i.i.d.) sampling of protein
conformational ensembles. In our experiments, we generated 2,000 ensembles for each
protein.

2. Dynamics (10 ns): forward generative simulations with a time step of 10 ns. In our ex-
periments, we generated 50 independent trajectories, each propagated for 100 steps, corre-
sponding to a total of 50 µs of simulation time and 5,000 conformational ensembles.

3. Dynamics (100 ns): Forward generative simulations with a coarse time interval of 100 ns.
To recover fine-grained details, each 100 ns interval is refined by dynamics inpainting into
ten 10 ns sub-intervals. Similarly to the “Dynamics (10 ns)” sampling head, we generate
50 independent trajectories, each propagated for 10 coarse steps and refined by inpainting,
also yielding 50 µs of simulation time and 5,000 ensembles.

For the experiment of the thermodynamics head, we generate ensembles for 50 proteins from the
CATH1 dataset. These proteins are included in the thermodynamic training set and serve primar-
ily as a benchmark against the baseline model. To further assess generalization, we also generate
ensembles for 10 octapeptides that were not included in the training dataset.

For the experiment of the dynamics head, we apply both dynamic sampling heads to 50 proteins
from the CATH1 dataset. Although these proteins are part of the thermodynamics training set, they
are excluded from dynamic and inpainting training. This setting enables a direct evaluation of the
generalization capacity of ProTDyn’s dynamic generation. We conduct same dynamic experiments
using the model trained with only dynamic data, and use the same initial structures as starting point
of dynamics during inference.

4.3 EVALUATION

Distributional similarity Our main comparison of ensemble distribution quality is against the
BioEmu model Lewis et al. (2025). We selected BioEmu as our benchmark baseline because it
represents the most recent major advance in quantitative protein conformation ensemble modeling.
In contrast, previous approaches were typically trained on very limited MD simulations of short
duration. In fairness, we used a training dataset that closely matches the one used by BioEmu.
We report the Jensen-Shannon divergence (JSD) between the reference MD simulations and pre-
dicted conformation ensembles along various collective variables (CVs). The first set of CVs are
low dimensional physical features: radius of gyration (Rg) and root mean square distance (RMSD)
w.r.t the native structure predicted by AlphaFold 3 Abramson et al. (2024). The second set of CVs
are the top 2 independent components from time-lagged independent components analysis (TICA)
Schultze & Grubmuuller (2021), representing the slowest dynamic modes of proteins. We evaluate
distributional similarity on ensembles generated by all three sampling heads.

Dynamical content We first evaluate the autocorrelation functions of the TICA components. To fur-
ther assess the accuracy of predicted dynamics, we discretize the conformational space into states
and construct Markov state models (MSMs) Husic & Pande (2018); Chodera & Noé (2014); Pande
et al. (2010); Bowman et al. (2013) to estimate transition probabilities and stationary distributions.
MSMs built from reference 100 µs MD trajectories serve as ground truth, while the MSMs con-
structed from the ProTDyn trajectories are used for evaluation. For direct comparison, we also
construct MSMs from the first 25%, 50%, and 75% of the reference MD trajectories, corresponding
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Figure 2: Free energy surface along the top two TICA components, parameterized from the back-
bone torsion angles of reference MD simulations. The TICA projection is then applied to conforma-
tional ensembles generated by the three sampling heads of ProTDyn: (1) ”Thermodynamics”, (2)
”Dynamics (100 ns)”, and (3) ”Dynamics (10 ns)”, as well as to ensembles generated by the baseline
model BioEmu.

to 25, 50, and 75 µs of simulation time, respectively. Following metrics from previous works Jing
et al. (2024b); Raja et al. (2025), we report the Jensen–Shannon divergence (JSD) between the sta-
tionary distributions of Markov states obtained from ProTDyn and those from reference MD. In
addition, we report the JSD between the corresponding transition probability matrices. We also
sample dynamic trajectories from MSM, and compute the mean negative log-likelihood (NLL) of
dynamic trajectories. (details of MSM construction and evaluation methods in Appendix A)

4.4 RESULT

Distributional similarity result We visualize the free energy surface (FES) of the TICA projection
in Fig. 2. As shown, all three ProTDyn sampling heads recover the major conformational metastable
states along with qualitatively correct energy barriers that separate them.

For quantitative assessment, we report the JSD of the conformation ensembles generated by ProT-
Dyn using the three sampling heads and BioEmu, average over all proteins in the test data in Table
1. Across all collective variables, ProTDyn shows good agreement with the reference 100 µs sim-
ulations MD distributions. Among the three sampling heads, “Thermodynamics” sampling yields
the highest-quality ensembles. This is expected, as i.i.d. samples are directly generated from the
equilibrium distribution and while the invariant probably from dynamics head may be affected by
possible error accumulation in autoregressive dynamic simulations.

Interestingly, we observe that “Dynamics (100 ns)” produces higher quality ensembles than “Dy-
namics (10 ns)”. We hypothesize that the “Dynamics (10 ns)” head, which requires many successive
steps to reach long timescales, is more susceptible to error accumulation and degradation of pre-
dictive accuracy. In contrast, the “Dynamics (100 ns)” head provides a more stable strategy: large
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Figure 3: Representative conformational metastable states and dynamic transition pathways illus-
trated on the 2D TICA free energy surface (FES) for a CATH1 protein system: 1b43A02.

time steps enable robust exploration of long-timescale conformational transitions, while dynamic
inpainting subsequently refines each interval to recover fine-grained transition details.

Another significant observation is that without training on thermodynamic information, the
dynamics-only model diverges rapidly from the ground truth. It fails to maintain the folded struc-
ture and performs substantially much worse in capturing the distribution of collective variables. This
demonstrates the importance of integrating thermodynamic signals to predict the dynamic evolution.

Finally, we evaluate the generalization of the “Thermodynamics” head on 10 octapeptides unseen
in the training dataset, with results reported in Table 2. We observe a high level of agreement with
the reference MD simulations and thermodynamic performance that is very close to the baseline
BioEmu model. Note that these 10 proteins are included in the BioEmu training dataset but not for
ProTDyn. This demonstrates the strong generalizability of ProTDyn’s thermodynamic head beyond
its training dataset.

Table 1: Distributional similarity evaluation on CATH1 test dataset. Metrics are reported as
Jensen–Shannon divergence (JSD) over the radius of gyration (Rg), root-mean-square distance
(RMSD) w.r.t the native structure, and the top two TICA components capturing slow protein dy-
namics. Evaluation is conducted for ProTDyn under three different sampling heads and for the
baseline method BioEmu.

Model Rg ↓ RMSD ↓ TICA ↓
ProTDyn-Thermodynamics 0.023 0.012 0.155
ProTDyn-Dynamics (10 ns) 0.052 0.032 0.278
ProTDyn-Dynamics (100 ns) 0.030 0.018 0.206
ProTDyn-dynamics-only (100 ns) 0.077 0.142 0.315
BioEmu 0.082 0.137 0.293

Table 2: Distributional similarity evaluation on the Octapeptide test dataset, using the same evalua-
tion metrics as in CATH1 test dataset. Note that the these proteins are used as training proteins for
the baseline model Bioemu but not for our ProTDyn model.

Model Rg ↓ RMSD ↓ TICA ↓
ProTDyn-Thermodynamics 0.034 0.020 0.207
BioEmu 0.031 0.020 0.134

8
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Dynamical content result We visualize the dynamic pathways of a test protein in CATH1 in Fig. 3,
where systems demonstrate multiple conformation states. Both ProTDyn dynamic sampling heads
can recover the conformation ensembles and the rare transition events. For qualitative analysis, we
visualize the autocorrelation of the first two TICA components over 800 ns across all test proteins in
Fig. 4. The autocorrelation functions from “Dynamics (100 ns)” sampling head closely reproduce
the reference results, whereas the autocorrelation functions from “Dynamics (10 ns)” head decay
much faster than the the reference results. This observation is consistent with our expectation that
smaller time intervals accumulate errors more rapidly, leading to a loss of long-timescale correla-
tions. Finally, we construct MSM and quantitatively evaluate the JSD of stationary distributions
and transition probability from MSM and the negative log-likelihood of dynamic paths between
full reference MD simulations, ProTDyn-generated trajectories, and different portions of the refer-
ence MD data (Table 3). The 50 µs trajectory generated with the “Dynamics (10 ns)” head recovers
MSM stationary distributions and transition probabilities with accuracy comparable to 25 µs of MD,
while the “Dynamics (100 ns)” head achieves MSM quality similar to 50 µs of MD. These results
demonstrate the strong dynamical fidelity of ProTDyn and highlight the effectiveness of combin-
ing large-timestep generation with inpainting to recover fine-scale transitions. Finally, evaluation
of the dynamic trajectories generated by the dynamics-only model demonstrates that the absence of
thermodynamic supervision results in poor dynamic performance, producing unrealistic trajectories
and failing to recover realistic stationary distributions and transition probabilities. These evaluations
highlight the necessity of unifying thermodynamics and dynamics head.
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Figure 4: Autocorrelation of the top two TICA components from 0 to 800 ns lag time, evaluated on
four test CATH1 proteins using reference MD trajectories and dynamic trajectories generated by the
two dynamic sampling heads of ProTDyn.

Table 3: Dynamical contents evaluation of ProTDyn under two dynamic sampling heads. Evalua-
tion metrics include Jensen-Shannon (JS) divergence of the stationary distribution of and transition
probability between Markov states, and mean negative log-likelihood (NLL) of 200 ns transition
paths.

Model Stationary JSD ↓ Transition JSD ↓ NLL ↓
ProTDyn-Dynamics (10 ns) 0.042 0.105 0.806
ProTDyn-Dynamics (100 ns) 0.021 0.055 0.656
ProTDyn-dynamics-only (100 ns) 0.088 0.167 1.013

25 µs MD 0.040 0.117 0.815
50 µs MD 0.018 0.049 0.682
75 µs MD 0.007 0.019 0.639

5 DISCUSSIONS

Limitations Similar to other generative models, ProTDyn is constrained by the availability and scale
of training data, especially equilibrium MD simulation data. Its performance could be improved
with access to larger and more diverse datasets. In addition, the current training procedure manually
specifies the memory kernel at each timescale, without a rigorous investigation of its optimal form.
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Recent studies have explored principled approaches to designing or learning memory kernels, and
incorporating these insights could further strengthen the model. Wu et al. (2024); Ge et al. (2024)

Opportunities Two important capabilities of ProTDyn that we have not explored in detail are transi-
tion path sampling and likelihood evaluation. Currently, ProTDyn employs transition path sampling
purely as an inpainting technique to recover short-timescale details within long-timescale generative
dynamics trajectories. However, rigorous transition path sampling requires specialized sampling
strategies such as transition interface sampling, milestoning, and string methods Van Erp & Bolhuis
(2005); Pan et al. (2008); Votapka & Amaro (2015), and general-purpose MD simulations are not
the most suitable training data for this purpose.

A key distinction of ProTDyn is that, through autoregressive modeling of discrete protein tokens,
it provides exact likelihood evaluation for both conformational ensembles and dynamic trajectories.
This contrasts with popular diffusion- or flow-based protein ensemble generators, where likelihoods
are only approximated and are often computationally prohibitive to evaluate Song et al. (2020).
Exact likelihoods create opportunities for integration with physics-based energy functions, or even
the development of a new top-down protein force field.

Finally, current generative models for proteins are not explicitly grounded in principles in statisti-
cal mechanics, such as detailed balanceTolman (1925). With its likelihood evaluation capability,
ProTDyn offers an opportunity to enforce such physical laws, thereby unifying thermodynamics
and dynamics. This could help overcome the limitations of data scarcity and enable more physically
consistent generative modeling.
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A EXPERIMENT DETAILS

A.1 DISTRIBUTIONAL SIMILARITY EVALUATION

Radius of gyration. The radius of gyration (Rg) is a fundamental descriptor of protein structure,
quantifying the overall compactness of a molecule. It is defined as the root-mean-square distance of
the constituent atoms from their common center of mass, thereby capturing how mass is distributed
around the protein’s centroid.

The radius of gyration is defined as

Rg =

√√√√ 1

N

N∑
i=1

∥ri − rcm∥2, (11)

where N is the number of atoms, ri is the position vector of the i-th atom, and rcm is the position
vector of the center of mass. This expression measures the spatial dispersion of the atomic positions
relative to the center of mass. In this work, Rg is computed using only the backbone atoms.

Root Mean Square Distance (RMSD). The root mean square distance (RMSD) is a standard metric
in structural biology for quantifying the similarity between two protein conformations. RMSD is
computed by superimposing the two structures and calculating the square root of the average squared
distance between corresponding atoms:

RMSD = min
Tg∈SE(3)

√√√√ 1

N

N∑
i=1

∥∥Tg(ri)− rrefi

∥∥2, (12)

where N is the number of atoms, ri are the atomic coordinates of the structure under comparison,
rrefi are the coordinates of the reference structure, and Tg ∈ SE(3) denotes the optimal rigid-body
transformation (rotation and translation) aligning the two structures. Lower RMSD values indicate
greater structural similarity.

Time-lagged Independent Component Analysis (TICA). TICA is a linear method for extracting
the slowest dynamical modes from time-series data, widely used in molecular dynamics. Unlike
PCA, which finds directions of largest variance, TICA identifies directions with maximal autocorre-
lation at lag time τ . It solves the generalized eigenvalue problem

Cτri = C0λiri, (13)

where C0 is the covariance matrix, Cτ is the time-lagged covariance, and λi are the time-
autocorrelations. The resulting components capture the slow collective motions that dominate long-
timescale protein dynamics. In this project, we choose the feature as protein backbone torsion
angles, and extract the top 2 TIC components.

A.2 DYNAMICAL CONTENTS EVALUATION

Autocorrelation We define the autocorrelation of each TICA component as

E
[
(yt − µ)(yt+δt − µ)

]
/σ2 (14)

where µ, σ are computed from the reference MD simulation trajectory. We conduct TICA on lag
times δt = [10, 20, . . . , 800] ns.

Markov state models Markov state models (MSMs) provide a statistical framework for describ-
ing the long-timescale dynamics of biomolecules by coarse-graining the continuous conformational
space into a finite set of metastable states. The dynamics are modeled as a discrete-time Markov
chain, where the probability of transitioning between states depends only on the current state and
a chosen lag time τ . Formally, the state-to-state transition probabilities are encoded in a transition
matrix T (τ):

pj(t+ τ) =
∑
i

pi(t)Tij(τ), (15)

13
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where pi(t) is the probability of being in state i at time t, and Tij(τ) is the probability of transitioning
from state i to j over lag time τ . At equilibrium, MSMs satisfy the stationary distribution condition

π = πT (τ),
∑
i

πi = 1, (16)

where πi denotes the equilibrium probability of state i.

We follow previous works Jing et al. (2024b); Raja et al. (2025) and build MSM using Deeptime
Hoffmann et al. (2021). We first represent protein systems with backbone torsion angles and run
TICA to obtain the top 2 Time Independent Component dimensions. We then perform k-means
clustering of the reference MD simulations into 10 clusters. We then fit a MSM with a lag time of
10 ns. This gives us the transition probability matrix T . The stationary distribution π can be easily
obtained as the left eigenvector of the transition matrix with eigenvalue 1. We use the same settings
to construct MSM for reference MD simulations, dynamic trajectories generated by ProTDyn, and
different portions of reference MD simulations.

We evaluate the following two metrics:

• Stationary distribution Jenson-Shannon divergence We evaluate the stationary distribu-
tion of each MSM state for reference and comparison trajectories, and compute the JSD
between the categorical distributions.

• Transition probability Jensen–Shannon divergence We evaluate the transition probabil-
ity matrix between MSM states for both reference and comparison trajectories, and com-
pute the JSD between the corresponding transition probability distributions.

• Trajectory negative log likelihood We use the stationary distribution of reference MSM
to generate 1000 initial states: s0 ∼ πref, and then propagate a dynamic path of length
L = 20 from each iniitial state for each comparison MSM using its transition proability
matrxi: st+1 ∼ Tst . The probability of a path can thus be written as P (s1, ..., sL) =

− 1
L

∑L
t=1 log Trefst,st+1

. We report the mean negative log likelihood over all trajectories.

B ADDITIONAL EXPERIMENT RESULTS
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Figure 5: Additional results on 5 test CATH1 proteins: free energy surface along the top two TICA
components and dynamic transition pathways. Note that the thermodynamics head of ProTDyn and
baseline model Bioemu are both i.i.d sampler and thus does not have a dynamic trajectory.
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Figure 6: Additional results on another 5 test CATH1 proteins.
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Figure 7: Additional results on 5 test Octapeptides: free energy surface along the top two TICA
components.
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Figure 8: Additional results on another 5 test Octapeptides: free energy surface along the top two
TICA components.
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