Under review as a conference paper at ICLR 2026

SYSTEMATIC EXPLORATION SUPERVISION ENABLES
SCALING BEYOND TRAINING COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models trained on input—output pairs or linear Chain-of-Thought (CoT)
traces often fail when task complexity at test time exceeds the regime seen during
training; reinforcement learning methods can help but suffer from cold-start brittle-
ness when base accuracy is low. We introduce Systematic Exploration Supervision
(SES), a process-level supervision framework that verbalizes complete multi-branch
search traces (sampling alternatives, propagating outcomes, and backtracking to
extract a solution) rather than a single reasoning chain. In textualized Gridworld,
SES preserves 76.5% success when scaling from 10x10 training environments to
unseen 20x20 grids (vs. 19.0% for standard supervised fine-tuning, 26.0% for
inference-time Tree-of-Thought, and 6.0% for GRPO). We further extend SES
to open domains via a bootstrapped trace construction procedure that guarantees
inclusion of at least one valid solution while adding diverse, reward-prioritized
alternatives. Results show substantial improvements on combinatorial reasoning
(Game of 24: 47% vs. 17% best baseline) and competitive performance on logical
reasoning (ProntoQA: 100%), with task-dependent effectiveness patterns. We
demonstrate that SES behavior cannot be induced with few-shot prompting alone,
even with sophisticated models like GPT-o1, suggesting in-weight algorithmic
policy acquisition. Remarkably, our approach achieves 14x parameter efficiency,
with a 0.5B model outperforming 7B baselines. We characterize when SES is
advantageous (large branching factors, low base competence, scaling demands)
and discuss limitations (token length inflation, effectiveness when base models are
already competent). Our findings highlight full-search verbalization as a simple,
offline alternative to inference-time search or costly RL for scaling systematic
reasoning.

1 INTRODUCTION

Recent advancements in language models have demonstrated remarkable proficiency across diverse
tasks (Brown et al., 20205 Touvron et al., 2023} |Chowdhery et al.,[2023; |Chen et al., 2021)), yet they
remain brittle on scaling variants of structured, long-horizon problems. Controlled studies (Einstein’s
puzzle, multi-digit arithmetic (Dziri et al.,2024), Blocksworld (Valmeekam et al.| 2022))) show sharp
failure once instance complexity exceeds training conditions, even for GPT-4 (OpenAl et al.| [2024).
This gap separates memorized pattern replay from reusable problem-solving procedures.

Consider a model trained only on 10x10 grid navigation that must act in a 20x20 grid. The transition
dynamics and optimality criteria are unchanged, yet standard supervised fine-tuning (SFT) collapses.
We hypothesize the missing ingredient is not more examples, but explicit supervision of exploration
structure, i.e. teaching how to enumerate, evaluate, and prune alternatives before committing.

Existing paradigms have complementary but limited strengths: (i) SFT / linear CoT supervise a
single path and fail to endow branching discipline (Wei et al.||2023}; |Kim et al., [2023)); (ii) Inference-
time search (e.g., Tree-of-Thought) performs exploration externally, incurring runtime cost and
sometimes weak generalization; (iii) RL methods (e.g., GRPO (Shao et al., 2024)) can refine policies
but struggle under low initial success (cold start) and sparse rewards. Our goal is an offline alternative
that directly teaches an internalized search operator.

We propose Systematic Exploration Supervision (SES), which verbalizes complete multi-branch
search traces (not just the winning path) so the model learns a reusable exploration procedure.

Under review as a conference paper at ICLR 2026

SES comprises two complementary instantiations: (1) Direct algorithmic supervision (when a
canonical search procedure such as BFS/DFS is available), and (2) Bootstrapped search discovery
that constructs synthetic trees containing at least one verified solution plus diverse, reward-prioritized
alternatives when no explicit algorithm is given. Our contributions:

* Framework: A unified formulation of Systematic Exploration Supervision (SES) that
verbalizes sampling, propagation, and backtracking across branches.

* Scaling result: SES sustains 76.5% success on 20 x 20 grids after training only within
10 x 10 grid (vs. 19.0% SFT, 26.0% ToT, 6.0% GRPO).

* Parameter efficiency: Remarkable 14x parameter efficiency where a 0.5B SES model
(68%) outperforms 7B baseline models, suggesting algorithmic competencies independent
of scale.

* Bootstrapped extension: A tree construction procedure guaranteeing at least one valid
solution while adding reward-ordered, deduplicated alternatives for open-domain reasoning.

* Unpromptable behavior: SES-style reasoning cannot be induced through few-shot prompt-
ing alone, even with sophisticated models like GPT-o1, indicating in-weight algorithmic
policy acquisition.

* Task characterization: Empirical conditions where SES excels (large branching factor, low
base accuracy, complexity extrapolation) vs. regimes where conventional methods remain
preferable.

2 BACKGROUND AND PROBLEM FORMULATION

Our work builds on process supervision (Uesato et al.| [2022; |Lightman et al.| 2023)), which provides
intermediate guidance during reasoning by supervising step-by-step solutions rather than just final
answers. However, existing process supervision focuses on linear reasoning chains that follow a single
solution path. Our contribution extends process supervision to systematic exploration—teaching
models how to structurally explore multiple solution paths, evaluate alternatives, and extract optimal
solutions through explicit search procedures.

The Central Challenge: Training vs. Test Complexity Gap. Current language models exhibit
brittle scaling behavior when test-time complexity exceeds training distributions (Dziri et al., 2024;
Valmeekam et al., [2022)). This brittleness manifests across three key dimensions: (1) Structural
complexity: longer reasoning chains, deeper search trees, and more decision points; (2) Environ-
mental complexity: larger state spaces, increased branching factors, and novel configurations;
(3) Procedural complexity: tasks requiring systematic exploration rather than pattern matching.
Traditional approaches fail because they teach what decisions to make rather than how to organize
exploration when facing unprecedented complexity.

Systematic Exploration vs. Alternative Paradigms. Our approach addresses fundamental limita-
tions in existing reasoning paradigms. Supervised fine-tuning on linear Chain-of-Thought traces
teaches individual solution paths but fails to capture the systematic exploration process underlying
human problem-solving. Reinforcement learning methods can refine policies through environmen-
tal feedback but suffer from cold-start problems when base competence is low and reward signals are
sparse. Inference-time search methods like Tree-of-Thought perform exploration externally, incur-
ring computational overhead and sometimes achieving weak generalization to novel environments.
We introduce Systematic Exploration Supervision (SES) as an offline alternative that directly teaches
internalized search procedures. We briefly survey related work (detailed exposition in Appendix [A).

Complexity-Based Evaluation Framework. We use textualized Gridworld as our primary con-
trolled evaluation environment because it enables systematic complexity scaling while minimizing
confounding factors from domain knowledge. For any environment instance E, we define policy-wise
complexity under model 7y as the negative log-likelihood assigned to the optimal action sequence
7 = (s1,a1,...,8L,aL):

L
C(E,mg) = —» logmg(ay | s¢) M)
t=1

Under review as a conference paper at ICLR 2026

This complexity metric increases with branching factor and path length even when underlying
transition dynamics remain unchanged, providing a principled measure of extrapolation difficulty
that correlates with model performance degradation.

Paper Organization and Contributions. We first formalize our Systematic Exploration Supervi-
sion framework (Section[3) with two complementary instantiations: direct algorithmic supervision
for domains with known search procedures, and bootstrapped search discovery for open-ended
reasoning tasks. We evaluate SES across four different tasks(Section[d). First, we demonstrate SES
in controlled environments (Section[3)) to see complexity scalability, and then extend to open domains
(Section [f) showing task-dependent improvements. We analyze settings when SES excels along with
the conclusion (Section [7).

3 SYSTEMATIC EXPLORATION SUPERVISION FRAMEWORK

3.1 CORE PRINCIPLE: COMPLETE SEARCH PROCESS SUPERVISION

The central insight is that scaling requires understanding not just what decision to make next, but
how to organize exploration. SES verbalizes three components inside each trace: (1) Sampling
(enumerate candidate actions in a canonical or reward-ordered sequence), (2) Propagation (predict
/ note resulting states or intermediate evaluations), and (3) Backtracking (Recover best path once
goal or termination condition is detected, similar to|Kazemi et al.| (2023))). We refer to one supervised
training example as a Systematic Exploration Chain-of-Thought (SE-CoT).

SE-CoT linearizes a tree breadth-wise (default) with optional dead-end markers (e.g., cut) and
concludes with a minimal backtrack listing. This consistent serialization induces an inductive bias for
reusable loop structure ("expand frontier — annotate outcomes — proceed"). SE-CoT is still a CoT,
but enriched with explicit branching structure that teaches systematic exploration of multiple solution
paths.

{ Planner] Language
L } Input © L gses]
(Grid is from (0, 0) to (3, 2).
©.0) World Goal: (3, 2)
: b - | The pitis at (3,
1. Sample actions ¢ ™~ So(-[s) TSee, The balisa(@,)1) @2
up down] __right>_"">~-_left \Current: (0, 0) Y,

2. Propagate Ty(s.a

‘-71, 0 ‘ Output

‘ (01)

up_~Tight! - down‘ right Cognitive map 77
A2 /Step 1:
.1 - m [a.0][eo] (0.1) up (0,1 <deadend> (1, 0) right (-1, 0) <deadend>
: s Step 2:
) T ©.2)up (1,1) “1.1) a1
= & demy S (1, -1) <deadend> (2, 0) right
(0,3) (-1,2) 2 R0 i N stringify || | (0, 3) <deadend> (1, 2) right (-1, 2) <deadend> (2, 1) up (2, -1)
. e <deadend> (3, 0) <deadend>
e -~ Gow Jight ,“,P" > left Step 4:
.3 a1 @2 2.2
1 3) 1 1) 2 2) (2 2) [(1,1) <deadend> (3, 1) right (1, 1) <deadend>
= Step 5:
vp—down ght (3. 2) up (3, 0) <dadend> (4, 1) <deadend>
Backtrack:
i \(3. 2) up (3. 1) right (2.1) up (2,0) right (1,0) right (0,0)
3. Backtrack 7y (@)) 27 (E0) || 1)) ST
N Reverse ptimal plan a;,as. ..., a4,
21 (2,0 F—{ (1,00 -+ 0.0] fight right up right up |

Figure 1: Systematic exploration supervision teaches models the complete algorithmic process as
stringified Chain-of-Thought format, including (a) Sampling - systematic exploration of possible
actions, (b) Propagation - predicting outcomes for each action, and (c) Backtracking - identifying the
optimal path by reversing from the goal to the start.

3.2 METHOD 1: DIRECT ALGORITHMIC SUPERVISION

When complete search algorithms are available, we verbalize the entire search process:

Under review as a conference paper at ICLR 2026

Algorithm 1 Direct Algorithmic Supervision

Input: Problem p with known search algorithm, starting state start, goal state goal
Output: Systematic exploration trace 7
Initialize: map = [], queue = [start]
while goal ¢ map do
s = Pop(queue)
fora € S(s) do
{Sampling}
child = T(s, a) {Propagation}
if child ¢ DEADEND then
map+ = (child, a)
queue+ = child
end if
end for
end while
path = BACKTRACK(goal, start, map)
T = VERBALIZE(map, path)
return T

Each loop iteration is verbalized with (state, candidate actions, outcome / pruning rationale). Dead-
end or dominated states are explicitly labeled, reducing ambiguity during learning. This differs from
linear CoT which only supervises the single realized path: SES provides counterfactual siblings,
teaching why non-chosen actions were rejected. See Appendix [B]for complete formatting templates.

3.3 METHOD 2: BOOTSTRAPPED SEARCH DISCOVERY

For open domains without explicit algorithms, we develop a bootstrapping technique that constructs
synthetic search trees including both correct reasoning paths and plausible alternatives:

Algorithm 2 Bootstrapped Search Discovery

Input: Problem p, LM 7y, branching factor k, depth limit d
Output: Systematic exploration trace 7
Initialize: frontier = [initial_state(p)], explored = [], tree = ||
gold_path = GETGOLDSOLUTION(p)
while frontier # () AND |explored| < d do
current = frontier.pop(0)
actions =[]
fori=1tok do
if current € gold_path AND ¢ = 1 then
a = GETGOLDACTION(current, gold_path)
else
a ~ mg(current, context) {Sample plausible alternative }
end if
next_state = EXECUTE(a, current)
actions.append((a, next_state))
if next_state is valid AND next_state ¢ explored then
frontier.append(next_state)
end if
end for
tree.append((current, actions))
explored.append(current)
end while
T = VERBALIZE(tree, gold_path)
return 7

Under review as a conference paper at ICLR 2026

Guaranteeing a valid solution. We inject the gold action (when known) as the first branch at each
gold state so every constructed tree contains at least one valid solution path. Remaining siblings are
sampled from 7y to approximate plausible alternatives.

Reward-based ordering. After expansion we sort the frontier by a lightweight reward heuristic
R (Inspired by RAP(Hao et al.l 2023)) to prioritize seemingly promising nodes. This ordering
supervision trains the model to rank expansions, not merely list them.

Deduplication. We filter candidate children that semantically duplicate an existing sibling (e.g.,
identical normalized arithmetic expression or logically equivalent intermediate statement). This
encourages diversity and signals that repetition is uninformative, nudging the model toward novel
branch generation.

4 TASK SETTINGS AND EXPERIMENTAL SETUP

We evaluate systematic exploration supervision across both controlled and open-ended reasoning
tasks. Our experimental design allows systematic assessment of scaling capabilities while controlling
for confounding factors.

4.1 TASK DOMAINS

Gridworld. We use textualized Gridworld (Brownl [2015)) as our primary controlled evaluation
environment. States are textual grid descriptions with agent position, goal, obstacles (walls), and pits.
Actions are {up, down, left, right} with boundary and obstacle collision handling. Episodes terminate
upon reaching the goal or exceeding a step limit (set to 2xgrid perimeter). Each environment contains
exactly one valid path from start to goal, ensuring deterministic optimal solutions.

Training environments range from 2x2 to 10x10 grids, while test environments scale up to 20x20.
Detailed construction procedures, complexity analysis, and coordinate placement strategies are
provided in Appendix [C]

Game of 24. A combinatorial puzzle requiring arithmetic operations on four integers (1-9) to reach
exactly 24 (Yao et al.| 2023) States represent multisets of available numbers/expressions; actions
apply binary operators {+, —, X, <} to any pair. Episodes terminate when a single number remains
(success if equals 24, failure otherwise). Training: 1,200 instances; testing: 100 instances.

GSMSK. Grade-school math word problems requiring multi-step arithmetic reasoning (Cobbe
et al.,[2021). We decompose solutions into intermediate expressions where each state is a reasoning
trace while the corresponding action is the next sentence. We use the RAP methodology (Hao et al.,
2023)) to provide reward signals for branch evaluation during bootstrapping.

ProntoQA. Logical reasoning tasks requiring multi-step deductive inference (Saparov & Hel [2023).
States are sets of known facts; actions instantiate inference rules (e.g., transitivity, contraposition).
We use the RAP methodology (Hao et al., [2023)) to provide reward signals for branch evaluation
during bootstrapping. Deduplication employs canonical forms of predicate chains to avoid redundant
explorations.

4.2 EXPERIMENTAL CONFIGURATION

We utilize Llama-3-8B model (Touvron et al.l|2023)) as a base (unless specified) with a maximum
token length of 8,192 per instance. We train the model for 1 epoch for each task. We use one 8 Nvidia
A100 node for both training and inference. For the training steps, we use FSDP framework (Zhao
et al.|2023)) and cosine annealing learning rate scheduler (Loshchilov & Hutter, 2017) for 1 epoch.
We utilize bfloat16 floating-point format and a warmup ratio of 0.03. We set the weight decay as O.

'While the Game of 24 has systematic algorithms for optimal solving, we use our bootstrapped approach
(Algorithm [2)) because verbalizing complete systematic search would result in prohibitively long context lengths,
hence we classify it as an open-domain result.

Under review as a conference paper at ICLR 2026

100 —

80 |- 1

60 - n

40 | N

Success Rate (%)

20

. Bm B B W |

T
SFT Standard CoT GRPO ToT SES (Ours)
] 00 10x10 (In-Domain) 1020x20 (Scaling) \

Figure 2: Success rates showing scaling performance. Systematic exploration supervision maintains
substantially higher performance (76.5%) when scaling to larger environments compared to other
approaches.

We set the batch size of 2 for each GPUs, so the effective batch size is 16 per step. For inference, we
use VLLM framework (Kwon et al., 2023).

5 STRUCTURE SUPERVISION IN GRIDWORLD

We evaluate systematic exploration supervision in textualized Gridworld, where we can systematically
control complexity and measure extrapolation capabilities.

5.1 EXPERIMENTAL SETUP AND ENVIRONMENT CONFIGURATION

Gridworld Construction. Training environments use grid sizes 2x2 to 10x10 with 15-25% obstacle
density, single goal per episode, and 5 random seeds per size configuration. Test environments extend
to sizes up to 20x20 with similar obstacle density. To minimize coordinate bias during extrapolation
testing, grid placement uses uniform sampling within (0,0) to (19,19) bounds, ensuring the entire grid
fits within this range while varying the starting position.

Baseline Methods. We compare against: (1) SFT: Standard supervised fine-tuning on direct action
sequences, (2) Standard CoT: Chain-of-thought reasoning with step-by-step action justification,
(3) GRPO: Group relative policy optimization using environmental rewards (Shao et al., 2024), (4)
Tree-of-Thought (ToT): Inference-time exploration with external search (Yao et al.,[2023)), and (5)
Systematic Exploration: Our approach with complete search process supervision.

Experimental Variants. We evaluate several ablation conditions: w.0. Systematic Search removes
multi-branch exploration; w.o. Backtrack omits the path extraction component; Mark/Unmark
variants indicate whether dead-end states are explicitly labeled; Forward/Backward Construction
refers to the direction of trace generation (start-to-goal vs goal-to-start).

5.2 MAIN RESULTS: SCALING PERFORMANCE

Figure [2]demonstrates our key finding: systematic exploration supervision enables effective scaling
while other approaches fail dramatically. Our approach achieves a remarkable 4x improvement
over standard supervised fine-tuning when extrapolating to larger environments (76.5% vs 19.0%).
Notably, SFT suffers a catastrophic 57 percentage point drop when scaling beyond training com-
plexity, while our method maintains robust performance with only a 22 point drop. GRPO exhibits
particularly poor cold-start behavior, degrading from already-low 24% to merely 6% in scaling
scenarios. Most surprisingly, Tree-of-Thought, despite achieving 95% success in-domain, fails to
maintain its inference-time search advantage when complexity scales (dropping to 26%), suggesting

Under review as a conference paper at ICLR 2026

| —e 100

Scaling Success Rate (%)

: :)
1 : D)
L ! - IS
%0 : : & 50|

Fﬂgﬁg; = — = §
z 4 : =

U S ! L @ 0 ‘ ‘ i M 1

0 1,000 2,000 3,000 5 10 15 20 25
Training Steps Environment Complexity
(a) Training convergence (b) Complexity scaling analysis
—e@— Systematic Exploration (Ours) —&— SFT Standard CoT GRPO —e— ToT

Figure 3: Learning dynamics and complexity scaling. (a) Training convergence shows systematic
exploration supervision reaches 79% scaling performance by step 500, while baselines plateau below
30%. The dashed line at step 625 marks our checkpoint; dotted line shows 5x extended training to
observe baseline convergence. (b) Success rate vs environment complexity demonstrates graceful
degradation for our approach vs. cliff-like failure for baselines.

that external search mechanisms may not transfer effectively across complexity boundaries without
proper internalized search procedures.

We also conduct ablation studies of how each key factor of systematic search contributes to the
improvements. Aside from SE-CoT itself, backtracking adds moderate benefits (+15 points), while
dead-end marking shows mixed effects. Backward construction consistently outperforms forward
construction, aligning with LAMBADA findings (Kazemi et al.| 2023)). Detailed ablation analysis
across multiple construction variants is provided in Appendix [D}

5.3 CONVERGENCE ANALYSIS

Figure [3|demonstrates key findings across training dynamics and complexity scaling. Our approach
achieves rapid convergence (79% scaling performance by step 500, representing 16% of total training)
and demonstrates superior learning efficiency with the first 250 training steps alone exceeding final
baseline performance. We report results at step 625 (our checkpoint), but trained baselines 5x longer
to observe their convergence behavior. Unlike baselines that plateau below 30% regardless of extended
training, our method continues improving throughout training, reaching 88% at convergence. This
sustained improvement suggests systematic exploration supervision provides qualitatively different
learning signals that teach algorithmic reasoning patterns rather than memorizing (linear) solutions.
The complexity analysis reveals graceful degradation across the entire spectrum, maintaining 22%
success at complexity level 25 (67% beyond training boundary) while SFT collapses to 2%. This
smooth scaling pattern strongly suggests our approach learns transferable problem-solving procedures
rather than environment-specific heuristics.

5.4 PARAMETER SCALING AND FEW-SHOT ANALYSIS

Parameter Efficiency Analysis. Our experiments across the Qwen 2.5 model family (0.5B to 7B
parameters) (Qwen et al.||2025) reveal striking parameter efficiency characteristics. Most remarkably,
our 0.5B model achieves 68% scaling performance—dramatically outperforming 7B models trained
with alternative approaches (26% for Standard CoT, 26% for ToT, 19% for SFT, 6% for GRPO). This
represents a 14x parameter efficiency advantage, where our smallest model with 0.5B parameters
outperforms baselines that use 14x more parameters.

The scaling curve for our method is notably flat (68% — 75% from 0.5B to 7B), suggesting that
systematic exploration supervision captures algorithmic competencies that are largely independent
of parameter count. In contrast, baseline methods show steeper parameter dependence: Standard

Under review as a conference paper at ICLR 2026

80 F T T =
& 60| .
en [-
= 40
= 20| oo —s—s | Model | 0-shot | 1-shot | 2-shot | 4-shot
A Standard CoT
0L ‘ L Llama-3 70B 8% 15% 22% 28%
0.5 L5 30 70 GPT-40 12% | 19% | 26% | 31%
Model Size (B) SE-CoT
—e— Systematic Exploration (Ours) —s— SFT Llama-3 70B 0% 0% 0% 0%
Standard CoT GRPO GPT-40 0% 0% 0% 0%
—e— ToT GPT-ol 0% 0% 0% 10%
(a) Parameter scaling (b) Few-shot prompting results

Figure 4: Parameter efficiency and prompting analysis. (a) Our 0.5B model (68%) dramatically
outperforms 7B baselines, showing 14x parameter efficiency. (b) SE-CoT cannot be elicited through
prompting, requiring explicit training.

CoT improves from 15% to 26.5% (77% relative improvement), while SFT shows modest gains from
12.7% to 19% (50% relative improvement). This fundamental difference indicates that our approach
teaches structured reasoning procedures that generalize across model scales, rather than relying on
the brute-force memorization capacity that typically correlates with parameter count.

Few-Shot Prompting Impossibility. The few-shot analysis reveals a fundamental cognitive dis-
tinction between systematic exploration supervision and conventional reasoning approaches. While
standard Chain-of-Thought can be readily induced through few-shot prompting (with strong models
achieving 28-31% performance), SE-CoT traces remain completely inaccessible through prompting
alone across all tested conditions. Even GPT-o1, despite its sophisticated reasoning capabilities
and extensive training, achieves only 10% success in the 4-shot condition, which is statistically
indistinguishable from random performance.

6 PSEUDO-STRUCTURE SUPERVISION IN OPEN-ENDED DOMAINS

We next study how structure supervision helps in open-world domains by applying our bootstrapping
technique (Method 2) to construct synthetic search trees for tasks without explicit algorithms.

6.1 OPEN-DOMAIN RESULTS

Figure [5]demonstrates the versatility of our bootstrapping technique across three distinct open-domain
reasoning tasks, each representing different computational challenges:

Game of 24: Large Search Space Validation. This combinatorial puzzle exemplifies scenarios
where systematic exploration supervision excels. Our approach achieves 47% success—a remarkable
30 percentage point improvement over the next-best method (ToT at 17%) and a 2350% improvement
over zero-shot performance. The dramatic performance gain in this discrete optimization task validates
our hypothesis that structured exploration particularly benefits problems with large branching factors
and sparse solution distributions. The fact that even sophisticated inference-time methods like ToT
struggle (17%) while our offline supervision succeeds suggests that internalized search procedures
can be more effective than external search when facing combinatorial complexity.

GSMS8K: Competent Baseline Analysis. Grade-school math problems reveal important limitations
of our approach. GRPO achieves the highest performance (85%) while our method reaches 82.4%—a
competitive but not superior result. Critically, the strong baseline performance (81.9% SFT vs
59.8% zero-shot) indicates that standard supervision already captures much of the required arithmetic
reasoning patterns. This suggests that systematic exploration supervision provides maximal benefits

Under review as a conference paper at ICLR 2026

100

60 |- — |

40 | N

Success Rate (%)

20 |

'l

T T
Game of 24 GSM8K ProntoQA
Task

’ [0Zero-shot 00 Standard CoT 00 GRPOUIOToT U0 Systematic Exploration (Ours)

Figure 5: Performance across open-domain reasoning tasks. Systematic exploration supervision
shows substantial improvements on Game of 24 (47% vs 0% zero-shot), competitive performance on
GSMSK (82.4% vs 85% GRPO), and strong results on ProntoQA (100% matching ToT). Zero-shot
baselines establish task difficulty.

when base competence is low, with diminishing returns when conventional approaches already
achieve high performance.

ProntoQA: Structured Logic Ceiling Effects. Both our method and ToT achieve perfect perfor-
mance (100%), substantially outperforming the 80% zero-shot baseline. This ceiling effect reveals
that systematic exploration and inference-time search are both highly effective for structured logical
deduction tasks with clear rule-based reasoning patterns. The convergence to perfect performance
suggests that both approaches successfully capture the required deductive reasoning procedures.

Task Characterization. These results reveal clear patterns in method effectiveness. Systematic
exploration supervision excels when: (1) base model performance is poor (0-20%), (2) large search
spaces require systematic exploration, (3) problems involve scaling beyond training complexity, and
(4) algorithmic structure exists or can be constructed. Alternative approaches are preferred when
base models perform well (>50%), well-defined reward functions enable RL optimization, or domain
knowledge dominates systematic search requirements.

7 CONCLUSION & FUTURE WORKS

We introduce systematic exploration supervision, a process supervision framework that teaches
complete search processes to enable scaling beyond training complexity. Our approach addresses cold
start problems in complex reasoning by providing structured supervision of exploration strategies
rather than just correct answers. Key findings include substantial scaling improvements (76.5% vs
19%), "unpromptable” nature requiring explicit training, and method effectiveness depending on task
characteristics. The framework offers a principled approach to teaching systematic problem-solving
strategies with clear guidance on when this approach is preferable to alternatives.

While SES shows possibilities in our selected domains, several limitations exists. First, SE-CoT
exponentially increases output tokens which may reduce effective batch size and approach context
window limits (we chose 20x20 to remain inside 8,192 tokens). Also the comparable results on
GSMBS8K suggest that our approach is not as effective when the base model is already competent.
Future work might include how to improve the performance when the base model is already competent,
how to improve the performance on general tasks, and how to improve the performance on tasks with
high variance in branching factor.

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash
Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos,
Olli Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and
Guoqing Zheng. Phi-4-reasoning technical report, 2025. URL |https://arxiv.org/abs/2504,
21318.

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts
to extrapolation, 2021. URL https://arxiv.org/abs/2110.09485,

Brandon Brown. Q-learning with neural networks: Learning gridworld with g-learning, 2015. URL
http://outlace.com/rlpart3.html. Accessed on June 19, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen

10

https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2110.09485
http://outlace.com/rlpart3.html
https://arxiv.org/abs/2501.17161

Under review as a conference paper at ICLR 2026

Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart
Shieber. Implicit chain of thought reasoning via knowledge distillation, 2023. URL https:
//arxiv.org/abs/2311.01460.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step, 2024. URL https://arxiv.org/abs/2405.14838,

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. Lambada:
Backward chaining for automated reasoning in natural language, 2023.

Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
Seo. The cot collection: Improving zero-shot and few-shot learning of language models via
chain-of-thought fine-tuning, 2023. URL https://arxiv.org/abs/2305.14045|

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.11916|

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023.

Fangjun Li, David C. Hogg, and Anthony G. Cohn. Advancing spatial reasoning in large language
models: An in-depth evaluation and enhancement using the stepgame benchmark, 2024. URL
https://arxiv.org/abs/2401.03991.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. Advances in Neural Information Processing Systems,
36, 2024.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers, 2023.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought,
2024.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira, Hiteshi Sharma, Robert Osazuwa Ness, Nebojsa

Jojic, Hamid Palangi, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval, 2023. URL https://arxiv.org/abs/2309.15129.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2305.14045
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2401.03991
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2309.15129

Under review as a conference paper at ICLR 2026

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, L.ukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture. arXiv preprint arXiv:2402.08164, 2024.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation in
transformer language models, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,

12

https://arxiv.org/abs/2203.02155

Under review as a conference paper at ICLR 2026

Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115,

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought, 2023. URL https://arxiv.org/abs/2210.01240.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change). arXiv
preprint arXiv:2206.10498, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.

Siwei Wang, Yifei Shen, Shi Feng, Haoran Sun, Shang-Hua Teng, and Wei Chen. Alpine: Unveiling
the planning capability of autoregressive learning in language models, 2024b.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL
https://arxiv.org/abs/2402.10200.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Liuchang Xu, Shuo Zhao, Qingming Lin, Luyao Chen, Qiangian Luo, Sensen Wu, Xinyue Ye,
Hailin Feng, and Zhenhong Du. Evaluating large language models on spatial tasks: A multi-task
benchmarking study, 2024. URL https://arxiv.org/abs/2408.14438,

Yutaro Yamada, Yihan Bao, Andrew K. Lampinen, Jungo Kasai, and Ilker Yildirim. Evaluating spatial
understanding of large language models, 2024. URL https://arxiv.org/abs/2310.14540,

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought imitation with
procedure cloning, 2022. URL https://arxiv.org/abs/2205.10816.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on
scaling fully sharded data parallel, 2023.

13

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2210.01240
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2402.10200
https://arxiv.org/abs/2408.14438
https://arxiv.org/abs/2310.14540
https://arxiv.org/abs/2205.10816

Under review as a conference paper at ICLR 2026

A RELATED WORK
Our work intersects with several key research areas:

Process Supervision and Chain-of-Thought. Process supervision (Uesato et al., 2022 |Lightman
et al.| 2023)) provides intermediate guidance during reasoning by supervising step-by-step solutions
rather than just final answers. Recent work (Wang et al.| [2024a) demonstrates that process-level
supervision consistently outperforms outcome supervision across mathematical reasoning tasks.
Chain-of-Thought (CoT) reasoning (Wei et al., | 2023)) teaches sequential reasoning through step-by-
step demonstrations, showing improvements in arithmetic, logical reasoning, and planning tasks.
However, traditional CoT approaches focus on single reasoning paths and fail to capture the systematic
exploration of alternative solution strategies that characterizes human problem-solving.

Reasoning via Supervised Chain of Thought (CoT) Learning Recent advances have shown
that language models can learn to reason by imitating step-by-step reasoning processes (Wei et al.|
2023}; [Kojima et al., [2023; Wang & Zhou, |2024). While standard CoT approaches focus on providing
intermediate reasoning steps to reach a solution, research has expanded to include fine-tuning on CoT
examples (Kim et al.|[2023) and distilling reasoning into models without explicit verbalization (Deng
et al.| 2023;2024). Most closely related to our work, |Yang et al.[(2022) proposed Chain of Thought
Imitation, though their approach focuses on imitation learning of sequential procedures rather than
the complete algorithmic planning process we explore. Despite these advances, conventional CoT
methods typically capture a single reasoning path to a known solution rather than the full algorithmic
process of exploration and decision-making, limiting their extrapolation capabilities.

Reasoning via Reinforcement Learning The current state-of-the-art in reasoning capabilities
comes from models trained with reinforcement learning techniques. |Chu et al.| (2025)) established
the influential paradigm that "SFT memorizes, RL generalizes," pushing the field toward extensive
RL for reasoning enhancement. Approaches like RLHF (Ouyang et al., 2022)) and more recently
GRPO (Shao et al.,|2024) have produced models with enhanced reasoning abilities, exemplified by
DeepSeek-R1 (DeepSeek-Al et al., [2025)), Phi-4 (Abdin et al.,2025)), and other commercial systems.
Alternative RL-based methods include Direct Preference Optimization (Rafailov et al., [2023) and
Reinforced Self-Training (Gulcehre et al.l 2023). While effective, these approaches face significant
challenges including reward design complexity, computational demands, and the chicken-and-egg
problem we identified earlier.

Planning in Language Models Various approaches have explored enhancing language models’
planning capabilities. Tree-structured exploration methods like Tree-of-Thought (Yao et al., 2023)
and more theoretically grounded analyses of planning capability (Wang et al.,2024b) have shown
promise for complex reasoning. Systems like ReAct (Yao et al.| [2022), SwiftSage (Lin et al., 2024),
and Reflexion (Shinn et al.,2023)) combine reasoning with action in interactive environments. Merrill
& Sabharwal| (2024) and [Pfau et al.|(2024) provide theoretical insights into how transformers perform
planning computations. Particularly relevant to our approach, Hao et al.|(2023) frame reasoning as
planning with an internal world model, though without explicitly teaching the planning algorithm
through supervised learning as we propose. In spatial domains specifically, recent evaluations have
revealed limitations in LLMs’ spatial reasoning capabilities (Xu et al.,[2024; [Li et al., 2024} [Yamada
et al., [2024)), highlighting the challenges that our approach addresses.

Transformer Limitations and Extrapolation Our work also connects to fundamental research on
transformer architecture limitations. Studies by Merrill & Sabharwal| (2023), Dziri et al.| (2024)), and
Peng et al.| (2024)) identify inherent constraints in transformers’ ability to perform certain algorithmic
computations, particularly in tasks requiring compositional generalization. Balestriero et al.| (2021)
argues that learning in high dimensions fundamentally involves extrapolation rather than interpolation,
providing theoretical grounding for why extrapolation is such a challenging capability for neural
networks to acquire.

Spatial Reasoning in Language Models. Recent studies evaluate language models’ spatial un-
derstanding and cognitive mapping capabilities (Xu et al2024;[Momennejad et al., 2023 [Yamada
et al.,[2024). These works reveal that while language models show some spatial reasoning abilities,

14

Under review as a conference paper at ICLR 2026

they struggle with forming cognitive maps necessary for effective planning in complex environments.
Our work addresses this limitation by explicitly training models to construct and utilize systematic
exploration strategies.

B INPUT-OUTPUT FORMAT

B.1 FORMAT EXAMPLES: GRIDWORLD

Gridworld Input Instance:

USER: You are given a rectangular gridworld, where you can move up, down, left, or right
as long as each of your x, y coordinate is within O to the x, y size of the grid. If you move
up, your y coordinate increases by 1. If you move down, your y coordinate decreases by 1.
If you move left, your x coordinate decreases by 1. If you move right, your x coordinate
increases by 1.

You will interact with the girdworld environment to reach the goal state, while avoiding the
pit and the wall. You cannot move through the wall or move outside the grid. If you fall
into the pit, you lose. If you reach the goal, you win. For each of your turn, you will be
given the possible moves.

You should respond your move with either one of "up’, ’down’, ’left’, or ’right’.
ASSISTANT: OK

USER: Grid is from (7, 7) to (18, 13). Goal: (18, 13) Current: (7, 7) The pit is at (16, 9),
17,7), (14, 8), (11,9), and (16, 11). The wall is at (11, 7), (15, 10), (18, 12), (9, 9), (8, 7),
(17, 10), (9, 12), (12, 7), (10, 13), (15, 12), (17, 9), (9, 11), (17, 12), (8, 9), (13, 11), (10, 9),
(12,9), (11, 11), (12, 12), (16, 10), (15, 8), (9, 7), (8, 11), (7, 13), (13, 13), and (13, 10).

Gridworld Output Instance (Direct output):
ASSISTANT: up up up up

Gridworld Output Instance (Standard CoT):
ASSISTANT: <think>
Step 1

up

(7, 8)[SEP1][SEP3]
Step 2

up

(7, 9)[SEP1][SEP3]
Step 3

up

(7, 10)[SEP1][SEP3]
Step 4

up

(7, 11)[SEP1][SEP3]
<\think>

<answer>

up up up up
<\answer>

Gridworld Output Instance (SE-CoT):
ASSISTANT: <think>
Step 1

up

(7, 8)[SEP1]

down

(7, 6)[SEP2]

left

(6, 7)[SEP2]

right

(8, 7)[SEP2][SEP3]
Step 2

15

Under review as a conference paper at ICLR 2026

up

(7, 9)[SEP1]
down

(7,)[SEP2]
left

(6, 8)[SEP2]
right

(8, 8)[SEP1][SEP3]
<\think>
<answer>
up up up up
<\answer>

B.2 FORMAT EXAMPLES: GAME OF 24, PRONTOQA, GSM8K

B.2.1 FORMAT EXAMPLES: GAME OF 24

Game of 24 Input Instance:
USER: Input: 2,2, 6, 8

Game of 24 Output Instance (Standard CoT):
ASSISTANT: <think>
Step 1

8 -2 =6[SEP1]

Step 2

6 - 2 =4[SEP1]

Step 3

6 * 4 = 4[SEP1][SEP3]
<\think>

<answer>
8-2)*(6-2)=24
<\answer>

Game of 24 Qutput Instance (SE-CoT):
ASSISTANT:<think>

Step 1

2 +2 =4[SEP1]

2 *2 =4[SEP1]

8 -2 =6[SEP1]

8 * 6 = 48[SEP1]

8 /6 =4/3[SEP1][SEP3]

Step 2

4 + 8 = 12[SEP1]

<\think>

<answer>
(8-2)*%(6-2)=24
<\answer>

B.2.2 FORMAT EXAMPLES: PRONTOQA

ProntoQA Input Instance:

USER: Arthropods are small. Insects are not eight-legged. Lepidopterans are insects.
Invertebrates are animals. Every spider is eight-legged. Insects are arthropods. Every
butterfly is a lepidopteran. Animals are multicellular. Arthropods are invertebrates. Sam is
a butterfly.

16

Under review as a conference paper at ICLR 2026

True or false: Sam is not eight-legged.

ProntoQA Output Instance (Standard CoT):
ASSISTANT:<think>

Step 1

Sam is a butterfly.[SEP1][SEP3]

Step 2

Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3

Sam is a lepidopteran.[SEP1][SEP3]

Step 4

Lepidopterans are insects.[SEP1][SEP3]
Step 5

Sam is an insect.[SEP1][SEP3]

Step 6

Insects are not eight-legged.[SEP1][SEP3]
Step 7

Sam is not eight-legged.[SEP1][SEP3]
Step 8

The answer is true.[SEP4][SEP3]
<\think>

<answer>

true

<\answer>

ProntoQA Output Instance (SE-CoT):
ASSISTANT: <think>

Step 1

Sam is a butterfly.[SEP1][SEP3]

Step 2

Every butterfly is a lepidopteran.[SEP1][SEP3]
Step 3

Sam is a lepidopteran.[SEP1][SEP3]
Step 4

Lepidopterans are insects.[SEP1][SEP3]
Step 5

Sam is an insect.[SEP1][SEP3]

Step 6

Insects are not eight-legged.[SEP1]
Insects are arthropods.[SEP1][SEP3]
Step 7

Sam is not eight-legged.[SEP1][SEP3]
Sam is an arthropod.[SEP1][SEP3]
<\think>

<answer>

true

<\answer>

B.2.3 FORMAT EXAMPLES: GSM8K

GSMBSK Input Instance:
USER: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take?

GSMSK Output Instance(Standard CoT):

ASSISTANT: <think>

Step 1

It takes 2 x 0.5 =<< 2% 0.5 = 1 >> 1 bolt of white fiber.[SEP1][SEP3]
Step 2

17

Under review as a conference paper at ICLR 2026

Soittakes 2 + 1 =<< 2+ 1 =3 >> 3 bolts in total.[SEP1][SEP3]
Step 3

The answer is 3.[SEP1][SEP3]

<\think>

<answer>

3

<\answer>

GSMSK Output Instance(SE-CoT):

ASSISTANT: <think>

Step 1

It takes 2 x 0.5 =<< 2% 0.5 = 1 >> 1 bolt of white fiber.[SEP1]
The robe takes 2 bolts of blue fiber.[SEP1][SEP3]

Step 2

Soittakes 2 + 1 =<< 2+ 1 =3 >> 3 bolts in total.[SEP1][SEP3]
It also takes half as much white fiber, which means it takes 1 bolt of white fiber (since half
of 2is 1).[SEP1][SEP3]

Step 3

The answer is 3.[SEP4][SEP3]

<\think>

<answer>

3

<\answer>

C GRIDWORLD CONSTRUCTION

While exploring the pure planning ability of the language model, we did not want the model to refuse
to explore extrapolated data only because it has never seen the coordinate. To handle the bias, we
adjust the starting position of the grid using uniform sampling while ensuring that the entire grid,
with its x and y coordinates, fits within the range of 0 to 19. This method, illustrated in Figure [f]
minimizes bias related to the unseen x and y coordinates by randomizing the starting point within the
defined bounds.

C.1 ENVIRONMENT CONFIGURATION

Training environments use grid sizes 2x2 to 10x10 with 15-25% obstacle density, single goal per
episode, and 5 random seeds per size configuration. Test environments extend to sizes up to 20x20
with similar obstacle density. Grid placement uses uniform sampling within (0,0) to (19,19) bounds
to minimize coordinate bias during extrapolation testing.

20 20

Ay

Ay

20 20

Figure 6: Visualization of configuring Gridworld instance for train(left) and test(right) dataset. To
evaluate the extrapolation ability, we set the size of the grid as X, Y ~ Unif(2,10) for train and
X,Y ~ Unif(2,20) for test. Also we set the starting point of the grid as Az ~ Unif(0,20 —
X), Ay ~ Unif(0,20 — Y for both train and test.

18

Under review as a conference paper at ICLR 2026

| Train | Test

Mean | 7.90 | 17.28
Min 0.69 0.69
Max | 15.10 | 33.84

(a) Complexity plot of train set (b) Complexity plot of test set (c) Complexity statistics

Figure 7: Complexity analysis of Gridworld environments. Each heatmap (a, b) shows the average
complexity (Equation of Gridworlds of size x x y, where the darkness at each (z,y) coordinate
represents the mean complexity. (a) depicts the training set, and (b) shows the test set, with the
red box (from (2, 2) to (10, 10)) indicating the training boundary. (c) provides summary statistics
of complexity for both train and test sets. Details on train/test dataset statistics can be found in

Appendix[C.2}

C.2 INPUT/OUTPUT STATISTICS

Figures|[8]and [0 present detailed statistics for input and plan token lengths, respectively. Similar to
the complexity analysis discussed in Section [2] notable discrepancies exist between the train and test
datasets, emphasizing the extrapolation challenges posed by larger and more complex Gridworld
environments.

Metric | Train | Test

Mean | 331.98 | 531.09

Min 252 252

Max 631 1323
(a) Input token lengths (train set) (b) Input token lengths (test set) (c) Input token statistics

Figure 8: Input length analysis of Gridworld environments. Heatmaps (a, b) represent the average
input token length for Gridworlds of size x X y, where the darkness at each (z, y) coordinate indicates
the mean token length. (a) shows the training set, and (b) shows the test set. The red box (from (2, 2)
to (10, 10)) outlines the training boundary. Summary statistics are provided in (c).

D COMPLETE ABLATION RESULTS

We conduct comprehensive ablation studies to identify the critical components of systematic ex-
ploration supervision. Table [5|shows the full ablation studies among different configurations with
detailed analysis of each component:

Systematic Search vs. Baseline Methods. The most significant performance gain comes from
systematic search supervision itself. Removing systematic exploration (‘“w.o. All Components")
reduces performance to 27.7%, comparable to standard CoT approaches. This 47-point improvement
demonstrates that explicit multi-branch exploration supervision is the primary driver of scaling
success.

Backtracking Component. Adding backtracking provides moderate but consistent improvements
(+15 percentage points from 29.6% to 76.5%). Backtracking teaches the model to identify and
verbalize the optimal path after exploration, reinforcing the connection between search and solution
extraction.

19

Under review as a conference paper at ICLR 2026

Metric | Train | Test

Mean | 25.70 | 47.49
Min 9 9
Max 55 95
(a) Output token lengths (train set, (b) Output token lengths (test set, (c) Output token statistics,
NONE) NONE) NONE
Metric | Train | Test
Mean | 160.88 | 313.42
Min 44 44
Max 366 646
(d) Output token lengths (train set, (e) Output token lengths (test set, (f) Output token statistics
BWD COT) BWD COT) (BWD COT)
B Metric | Train | Test
- - Mean | 666.31 | 1146.47
Min 108 108
Max 2130 6134
(g) Output token lengths (train set, (h) Output token lengths (test set, (1) Output token statistics
BWD UNMARK) BWD UNMARK) (BWD UNMARK)

Figure 9: Output length analysis of Gridworld environments. Heatmaps (a, b) represent the average
plan token length for Gridworlds of size z x y. The darkness at each (x,y) coordinate indicates
the mean token length. (a, b) depict the direct path approach, (d, €) show Chain of Thought (CoT)
reasoning, and (g, h) illustrate cognitive map reasoning. The red box (from (2, 2) to (10, 10)) outlines
the training boundary. Summary statistics for each approach are provided in (c, f, i).

Dead-end Marking. Explicit marking of invalid states shows mixed effects: beneficial for some
tasks but potentially constraining for others. The BWD UNMARK versions (76.5%) slightly outperform
BWD MARK versions (70.5%) in optimal planning, suggesting that implicit learning of invalid states
may be more robust than explicit annotation.

Construction Direction. Backward construction (goal-to-start) consistently outperforms forward
construction across all variants, aligning with LAMBADA findings (Kazemi et al, [2023) that
backward chaining enhances planning effectiveness.

Terminology Definitions. The following terminologies are used throughout the ablation analysis:

* BWD UNMARK: Backward construction without explicit dead-end marking

* BWD MARK: Backward construction with explicit dead-end marking

* FWD UNMARK: Forward construction without explicit dead-end marking

* FWD MARK: Forward construction with explicit dead-end marking

* W.0. BACKTRACK: Configuration without backtracking component

* W.0. ALL COMPONENTS: Configuration without systematic search or backtracking

20

Under review as a conference paper at ICLR 2026

Systematic search provides +45-47 percentage point improvements for optimal planning. All differ-
ences are statistically significant (p<0.001).

\ w.0. Systematic Search \ with Systematic Search

Optimal Planning | w.o. Backtrack | w.o. All Components | Unmark Deadends | Mark Deadends

BWD Construction | 0.296 +0.021 | 0.277 £ 0.019 | 0.765+0.024 | 0.705 £ 0.022

FWD Construction | 0.295+0.020 | 0.290 £ 0.023 | 0.618£0.026 | 0.585+0.025

Table 5: Complete ablation results with standard deviations across 5 seeds.

E COMPREHENSIVE GRIDWORLD ANALYSIS

E.1 DETAILED PERFORMANCE VISUALIZATION

\ SFT Baseline \ Standard CoT | Systematic Exploration

Success Heatmap 19.0% 26.5% 76.5%

Table 6: Performance heatmaps across different grid sizes. Darkness indicates success rate at each
(x,y) coordinate. Red boxes mark training boundary (10x10). Systematic exploration supervision
maintains strong performance well beyond training bounds while baselines show sharp degradation.

Table[6] provides comprehensive visualization of performance across all grid sizes. We can observe
that all methods perform well within the red box (10x10 training boundary), but both SFT and
Standard CoT show rapid performance drops outside training bounds. On the other hands, our
approach maintains significant performance even in 20x20 environments

E.2 ABLATION STUDY VISUALIZATION

(a) w.o. exploration:(b) w.o. backtrack:(c) unmark deadends:(d) mark deadends:
29.6% 42.3% 76.5% 70.5%

Figure 10: Ablation study heatmaps showing the effect of different components. The progression

clearly shows systematic exploration as the primary driver (+47 percentage points) and backtracking
as secondary (+15 points).

Figure [I0] visualizes the ablation study results across the scaling space. The progression from
(a) to (c) demonstrates how each component contributes to scaling performance, with systematic

21

Under review as a conference paper at ICLR 2026

exploration providing the dramatic improvement from 29.6% to 76.5%. Figure [3]demonstrates that
systematic exploration supervision scales smoothly with complexity, while other methods show sharp
performance cliffs. This suggests our approach learns generalizable problem-solving strategies rather
than memorizing specific patterns.

F USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models to assist in the preparation of this manuscript.
Specifically:

Writing assistance. Large language models were used to aid in polishing and refining the writing
throughout the paper, including improving clarity, grammar, and expression of technical concepts.

Related work discovery. Large language models were employed for retrieval and discovery tasks,
particularly in identifying and organizing relevant related work and ensuring comprehensive coverage
of the literature.

All technical contributions, experimental design, implementation, analysis, and conclusions presented
in this work are the original work of the authors. The use of LLMs was limited to editorial assistance
and literature search support, and did not influence the core scientific contributions or findings
reported in this paper.

22

	Introduction
	Background and Problem Formulation
	Systematic Exploration Supervision Framework
	Core Principle: Complete Search Process Supervision
	Method 1: Direct Algorithmic Supervision
	Method 2: Bootstrapped Search Discovery

	Task Settings and Experimental Setup
	Task Domains
	Experimental Configuration

	Structure Supervision in Gridworld
	Experimental Setup and Environment Configuration
	Main Results: Scaling Performance
	Convergence Analysis
	Parameter Scaling and Few-Shot Analysis

	Pseudo-Structure Supervision in Open-Ended Domains
	Open-Domain Results

	Conclusion & Future Works
	Related Work
	Input-output Format
	Format Examples: Gridworld
	Format Examples: Game of 24, ProntoQA, GSM8K
	Format Examples: Game of 24
	Format Examples: ProntoQA
	Format Examples: GSM8K

	Gridworld Construction
	Environment Configuration
	Input/Output statistics

	Complete Ablation Results
	Comprehensive Gridworld Analysis
	Detailed Performance Visualization
	Ablation Study Visualization

	Use of Large Language Models

