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Abstract

Continuous attractors offer a unique class of solutions for storing continuous-
valued variables in recurrent system states for indefinitely long time intervals.
Unfortunately, continuous attractors suffer from severe structural instability in
general—they are destroyed by most infinitesimal changes of the dynamical law
that defines them. This fragility limits their utility especially in biological systems
as their recurrent dynamics are subject to constant perturbations. We observe that
the bifurcations from continuous attractors in theoretical neuroscience models
display various structurally stable forms. Although their asymptotic behaviors to
maintain memory are categorically distinct, their finite-time behaviors are similar.
We build on the persistent manifold theory to explain the commonalities between
bifurcations from and approximations of continuous attractors. Fast-slow decom-
position analysis uncovers the existence of a persistent slow manifold that survives
the seemingly destructive bifurcation, relating the flow within the manifold to the
size of the perturbation. Moreover, this allows the bounding of the memory error
of these approximations of continuous attractors. Finally, we train recurrent neural
networks on analog memory tasks to support the appearance of these systems as
solutions and their generalization capabilities. Therefore, we conclude that contin-
uous attractors are functionally robust and remain useful as a universal analogy for
understanding analog memory.

1 Introduction
Biological systems exhibit robust behaviors that require neural information processing of analog
variables such as intensity, direction, and distance. Virtually all neural models of working memory for
continuous-valued information rely on persistent internal representations through recurrent dynamics.
The continuous attractor structure in their recurrent dynamics has been a pivotal theoretical tool due
to their ability to maintain activity patterns indefinitely through neural population states1–4. They are
hypothesized to be the neural mechanism for the maintenance of eye positions, heading direction,
self-location, target location, sensory evidence, working memory, and decision variables, to name a
few5–7. Observations of persistent neural activity across many brain areas, organisms, and tasks have
corroborated the existence of continuous attractors7–15.

Despite their widespread adoption as models of analog memory, continuous attractors are brittle
mathematical objects, casting significant doubts on their ontological value and hence suitability in
accurately representing biological functions. Even the smallest arbitrary change in recurrent dynamics
can be problematic, destroying the continuum of fixed points essential for continuous-valued working
memory. In neuroscience, this vulnerability is well-known and often referred to as the “fine-tuning
problem”5,16–20. There are two primary sources of perturbations in the recurrent network dynamics:
(1) the stochastic nature of online learning signals that act via synaptic plasticity, and (2) spontaneous
fluctuations in synaptic weights21,22. Thus, additional mechanisms are necessary to compensate for
the degradation in particular implementations, by bringing the short-term behavior closer to that
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of a continuous attractor16,23–29. However, we lack the theoretical basis to understand how much
this matters in practice, i.e. what are the effects of different levels of degradation on memory. This
is fundamental to justify relying on the brittle concept of continuous attractors for understanding
biological analog working memory.

In this study, we explore perturbations and approximations of continuous attractors in the space of
dynamical models. We first report on the differences and similarities between the various structurally
stable dynamics in the vicinity of continuous attractors in the space of dynamical systems models. Our
analysis reveals the presence of a “ghost” continuous attractor (a.k.a. slow manifold) in all of them
(Sec. 2). By assuming normal hyperbolicity we separate the time scales to obtain a decomposition of
the dynamics by separating out the fast flow normal to and the slow flow within the slow manifold. We
derive theoretical results that ensure the existence of a slow manifold and determine its closeness to a
continuous attractor (Sec. 3). We explore task-trained recurrent neural networks (RNNs) to show that
these systems appear naturally as solutions to the task (Sec. 4) and that their generalization capabilities
can easily be studied as the distance to the continuous attractor (Sec. 5). The proposed decomposition
applied to theoretical models and task-trained RNNs reveals a “universal motif” of analog memory
mechanism with various potential topologies. This leads to the connection of different systems with
different topologies as approximate continuous attractors (Sec. 6). Our theory guarantees that
systems close to a continuous attractor (in the space of vector fields) will have similar behavior to it,
implying that the concept of continuous attractors remains a crucial framework for understanding the
neural computation underlying analog memory (Sec. 3.4).

2 A critique of pure continuous attractors
We will first lay out a number of observations about the dynamics of bifurcations and approximations
of continuous attractors used in theoretical neuroscience. Ordinary differential equations (ODEs)
are commonly used to describe the dynamical laws governing the temporal evolution of firing rates
or latent population states1. In this framework, neural systems are viewed as implementing the
continuous time evolution of neural states to perform computations. We will consider a continuous
attractor as a mechanism that implements analog memory computation: carrying a particular memory
representation over time. To define it formally, let x(t) ∈ Rd denote the neural state, and ẋ = f(x)
represent its dynamics. LetM⊂ Rd be a manifold. We sayM is a continuous attractor, if (1) every
state on the manifold is a fixed point, ∀x ∈ M, f(x) = 0, and (2) the fixed points are marginally
stable tangent to the manifold and stable normal to the manifold. In other words, the continuous
attractor is a continuum of equilibrium points such that the neural state near the manifold is attracted
to it, and on the manifold, the state does not move. Marginal stability implies that continuous
systems are structurally unstable, meaning that small perturbations or variations in the system’s
parameters lead to significant changes in the system’s behavior or stability30–33. We will now study
some examples of continuous attractors and how perturbations change their dynamics.

2.1 Motivating example: bounded line attractor

As an illustrative example, we can construct a line attractor (a continuous attractor with a line
manifold) as follows:

ẋ = −x+ [Wx+ b]+ (1)
where W = [0,−1;−1, 0] and b = [1; 1], and [·]+ = max(0, ·) is the threshold nonlinearity per unit.
We get ẋ = 0 on the x1 = −x2 + 1 line segment in the first quadrant as the manifold (Fig. 1A, left;
black line). Linearization of the fixed points on the manifold exhibits two eigenvalues, 0 and −2; the
0 eigenvalue allows the continuum of fixed points, while −2 makes the flow normal to the manifold
attractive (Fig. 1A, left; flow field).

In general, continuous attractors are not only structurally unstable34, they bifurcate almost certainly
for an arbitrary perturbation of f . In this example, small changes to the parameters (b,W) perturb
the eigenvalues and any to the 0 eigenvalue destroys the continuous attractor: it bifurcates to either
a single stable fixed point (Fig. 1A, top) or two stable fixed points separated with a saddle-node in
between (Fig. 1A, bottom). However, interestingly, after bifurcation, continuous attractors seemingly
tend to leave a “ghost” manifold topologically equivalent to the original continuous attractor (note
the slow speed). Furthermore, the flow after the bifurcation is contained in the ghost manifold, i.e.,
it is an invariant manifold. This phenomenon, wherein a continuous attractor is approximated by a
manifold within the neural space along which the drift occurs at a very slow pace, has previously
been discussed35–37.
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Figure 1: The critical weakness of continuous attractors is their inherent brittleness as they are rare
in the parameter space, i.e., infinitesimal changes in parameters destroy the continuous attractor
implemented in RNNs5,16. Some of the structure seems to remain; there is an invariant manifold that
is topologically equivalent to the original continuous attractor. (A) Phase portraits for the bounded line
attractor (Eq. (1)). Under perturbation of parameters, it bifurcates to systems without the continuous
attractor. (B) The low-rank ring attractor approximation (Sec. (S3.4)). Different topologies exist for
different realizations of a low-rank attractor: different numbers of fixed points (4, 8, 12), or a limit
cycle (right bottom). Yet, they all share the existence of a ring invariant set.

2.2 Theoretical models of ring attractors

For circular variables such as the goal-direction (e.g. for navigation38,39 and working memory for
communication in bees40) or head direction, the temporal integration, and working memory functions
are naturally solved by a ring attractor (continuous attractor with a ring topology)41? –49. Other
examples include integration of evidence for continuous perceptual judgments, e.g. a hunting predator
that needs to compute the net direction of motion of a large group of prey50. In this section, we
investigate the bifurcations of various implementations of continuous attractors. Continuous attractor
network models of the head direction are based on the interactions of neurons that (anatomically)
form a ring-like overlapping neighbor connectivity8,51–57. Similarly to the line attractor, the ring
attractor bifurcates with almost any perturbation to the network dynamics. However, the resulting
dynamics continue to follow a familiar pattern: they remain confined to a ghost manifold that closely
approximates the original continuous attractor.

Piecewise-linear ring attractor model of the central complex: Firstly, we discuss perturbations
of a continuous ring attractor recently proposed as a model for the head direction representation
in fruit flies8. This model is composed of N heading-tuned neurons with preferred headings
θj ∈ {2πi/N}i=1...N radians (Sec. S3.2). For sufficiently strong local excitation (given by the
parameter JE) and broad inhibition (JI ), this network will generate a stable bump of activity
corresponding to the head direction. This continuum of fixed points forms a N -sided polygon.

We evaluate the effect of parametric perturbations of the form W←W+V with Vi,j
iid∼ N (0, 1/100)

on a network of size N = 6 (forming an hexagon, see also Sec. S3). We found that the continuum
of fixed points can collapse to between 2 and 12 isolated fixed points (Fig. 2A). As far as we know,
this bifurcation from a ring of equilibria to a saddle and node has not been described previously in
the literature. The probability of each type of bifurcation was numerically estimated (Sec. S3.2).
Surprisingly, the number of fixed points is maintained throughout a range of perturbation sizes and
hence depends only on the direction of the perturbation (Fig. S8).

Bump attractor model: A well-established approach to form a ring attractor in the limit of large
network is with a connection matrix W with entries that follow a circular Gaussian function of
i− j 58,60–62 (Sec. S3.3). This type of ring attractor network can support a stable “activity bump” that
can move around the ring of nonlinear neurons in correspondence with changes in head direction63.
For finite-sized networks, the dynamics are constrained to an attractive invariant ring, covered with
N stable fixed points for a network of size N (Fig. 2B). For such networks the number of fixed points
can change with the size of the perturbation (Fig. S8).
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Figure 2: Perturbations of different implementations and approximations of ring attractors lead to
bifurcations that all leave the ring invariant manifold intact. For each model, the network dynamics
is constrained to a ring manifold with stable fixed points (green) and saddle nodes (red). (A)
Perturbations to Noorman et al. 8 . The ring attractor can be perturbed in systems with an even
number of fixed points (FPs) up to 2N (stable and saddle points are paired). (B) Perturbations to a
tanh approximation of a ring attractor Seeholzer et al. 58 . (C) Different Embedding Manifolds with
Population-level Jacobians (EMPJ) approximations of a ring attractor59.

Low-rank ring attractor model: Low-rank networks can be used to approximate ring attractors64,65.
In the limit of infinite-size networks, one can construct a ring attractor through a rank 2 network
by constraining the overlap of the right- and left-connectivity vectors (see Sec. S3.4). However, in
simulations of finite-size networks with this constraint, the dynamics instead always converge to a
small number of stable fixed points arranged on a ring (Fig. 1B).

Embedding Manifolds with Population-level Jacobians: Approximate ring attractors can be con-
structed by constraining the connectivity so that the networks Jacobian satisfies certain requirements
for a ring attractor to exist59 (see Sec. S3.5). The models constructed with this method also can
contain an invariant ring manifold on which the dynamics contain stable and saddle fixed points
(Fig. 2C). It has been observed that approximate continuous attractor emerge in networks trained on
sampled points with other methods as well66.

Similarity between all bifurcations and approximations of continuous attractors: In all dis-
cussed models of ring attractors, we verify that they suffer from the fine-tuning problem. However,
importantly, we also observe in all the systems the existence of ghosts of the continuous attractor
(either through bifurcation or from finite-size effects) in the form of an attractive invariant manifold.
Therefore, while they are not strictly a continuous attractor in the mathematical sense, they are
approximate ring attractors in the sense that the fixed points and connecting orbits still form a circle.

Is this lawful degradation a universal phenomenon? And if so, how does it relate to the size of the
perturbation? And what are the implications for the memory performance of these approximations?
(Sec. 3). Do these approximations appear as natural solutions to the memory storage problem?
(Sec. 4). And if so, how well do they generalize to longer time requirements? (Sec. 5). Finally,
are continuous attractors in practice still useful as an idealized model of how animals represent
continuous variables? (Sec. 6).

3 Theory of Approximate Continuous Attractors
In this section, we theoretically answer in an implementation-agnostic manner the degradation
questions posed from the exploration. To do so, we apply invariant manifold theory to continuous
attractor models and translate the results for the neuroscience audience (see also Sec. S1).

3.1 Persistent Manifold Theorem

First, we argue that the lawful degradation into a system with a slow manifold is universally guaranteed
(as long as the perturbation is small, and the continuous attractor was normally hyperbolic). Let l be
the intrinsic dimension of the manifold of equilibria that defines the continuous attractor. Given a
perturbation p(x) to the ODE that induces a bifurcation,

ẋ = f(x) + ϵp(x) (2)
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where ∥p(·)∥∞ = 1 and ϵ > 0 is the bifurcation parameter, we can reparameterize the dynamics
around the manifold with coordinates y ∈ Rl and the remaining ambient space with z ∈ Rd−l. To
describe an arbitrary bifurcation of interest, we introduce a sufficiently smooth function g and h,
such that the following system is equivalent to the original ODE:

ẏ = ϵg(y, z, ϵ) (tangent) (3)
ż = h(y, z, ϵ) (normal) (4)

where ϵ = 0 gives the condition for the continuous attractor ẏ = 0. We denote the corresponding
manifold of l dimensions asM0 := {(y, z) | h(y, z, 0) = 0}.
We say the flow around the manifold is normally hyperbolic, if the flow normal to the manifold is
hyperbolic, i.e. the Jacobians ∇zh evaluated at any point on theM0 has d − l eigenvalues with
their real part uniformly bounded away from zero, and ∇yg has l eigenvalues with zero real part.
More specifically, for continuous attractors, the real parts of the eigenvalues of ∇zh are strictly
negative, representing sufficiently strong attractive flow toward the manifold. Equivalently, for the
ODE, ẋ = f(x), the variational system is of constant rank and has exactly (d− l) eigenvalues with
negative real parts uniformly away from zero and l eigenvalues with zero real parts everywhere along
the continuous attractor.

slow manifold
continuous attractor

bifurcation

Figure 3: Persistent manifold theorem applied
to compact continuous attractor guarantees the
flow on the slow manifoldMϵ is invariant and
continues to be attractive. The dashed line
is a trajectory “trapped” in the slow manifold
(which has the same topology as the continuous
attractor).

For any parameterization g, ϵ > 0 induces a bifurcation of the continuous attractor. What can
we say about the fate of the perturbed system? The continuous dependence theorem67 says that
the trajectories will change continuously as a function of ϵ without a guarantee on how quickly
they change. However, the topological structure and the asymptotic behavior of trajectories change
discontinuously due to the bifurcation. Yet, surprisingly, there is a strong connection in the geometry
due to Fenichel’s theorem68.* We informally present a special case due to Jones 73 :

Theorem 1 (Persistent Manifold). LetM0 be a connected, compact†, normally hyperbolic manifold
of equilibria originating from a sufficiently smooth ODE. For a sufficiently small perturbation ϵ > 0,
there exists a manifoldMϵ diffeomorphic toM0 and invariant under the flow of Eq. (3)-(4).

The manifoldMϵ is called the slow manifold which is no longer necessarily a continuum of equilibria.
However, the invariance implies that trajectories remain within the manifold except potentially at the
boundary. Furthermore, the non-zero flow on the slow manifold is slow and given in the ϵ→ 0 limit
as dy

dτ = g(cϵ(y),y, 0) where τ = ϵt is a rescaled time and cϵ(·) parameterizes the l dimensional
slow manifold. In addition, the stable manifold ofM0 is similarly persistent73, implying that the
manifoldMϵ remains attractive. Finally, the persisting invariant manifold is very close in space to
the original continuous attractor (see also Theorem 3).

These conditions are met for the examples in Fig. 1 (see Sec. S2.1 for the corresponding fast-
slow reparametrization‡).As the theory predicts, it bifurcates into a 1-dimensional slow manifold
(Fig. 1, dark-colored regions) that contains fixed points and connecting orbits and is overall still
attractive. Furthermore, Fenichel’s Persistent Manifold theorem explains the bifurcation structure of
the theoretical models discussed in Sec. 2.2. Because continuous ring attractors are bounded, they
persist as an invariant manifold and remain attractive under small perturbations78.

*The Persistent Manifold Theorem has been successfully applied previously in neuroscience 69,70, for example
to reduce the dimensionality of the Hodgkin-Huxley model 71,72.

†See Eldering 74 for results of persistence of noncompact invariant manifolds.
‡As a technical note, for the theory to apply to a continuous piecewise-linear system, it is required that the

invariant manifold is globally attracting 75, which is also the case for the BLA (see also 76,77 for a discussion of
geometric singular perturbation theory for piecewise linear dynamical systems). Therefore, we consider systems
that are at least continuous, but some extra conditions apply if a system is not differentiable.
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3.2 Fast-slow decomposition and the revival of continuous attractors

Consider a behaviorally relevant timescale for working memory, for example, roughly up to a few
tens of seconds. If the relevant dynamical system is orders of magnitude slower, for example, 1000
sec or longer, its effect is too slow to have a practical impact on the behavior. This clear gap in the
fast and slow time scales can be recast as normal hyperbolicity of the slow manifold by relaxing the
zero real part to a separation of time scales (reciprocal of eigenvalues or Lyapunov exponents). In
other words, the attractive flow normal to the manifold needs to be uniformly faster than the flow
on the slow manifold. By taking the limit of the slow flow on the manifold to arbitrarily long time
constant (i.e., to zero flow), we achieve the reversal of the persistent manifold theorem.

Proposition 1 (Revival of continuous attractor). Let Mϵ be a connected, compact, attractive,
normally hyperbolic slow manifold (as parametrized by Eq. (3)-(4)). Let the uniform norm of the
flow tangent to the manifold be ∥ẏ∥∞ = η. There exists a perturbation with uniform norm at most η
that induces a bifurcation to a continuous attractor manifold.

An explicit perturbation is derived in Sec. S5.1. This makes the uniform norm of the vector field
on a (slow) manifold a useful measure of the distance of an approximation to a continuous attractor.
Prop. 1 can be extended to the case where the invariant manifold has additional dynamics to which the
output mapping is invariant (see Theorem 7). These systems can be perturbed onto a decomposable
system where one of the subsystems has a slow flow.

3.3 Relevance of dynamics on the memory performance of the slow manifold

Third, we relate the flow of the manifold (and, through Prop. 1, the size of the perturbation) to the
memory error of the approximation in short-time scale. We also discuss the implications of the
theoretical insights on the memory error in the asymptotic time scale.

In the short-time scale the memory performance is bounded by the uniform norm of the flow tangent to
the manifold. Let x0 ∈M, and φ = p(·)|M be the vector field restricted to the manifold (following
the notation in Eq. 2). The average deviation from the initial memory x0 over time is bounded linearly
(derivation in Sec. S6):

1

volM

∫
M
|x(t,x0)− x0|dx0 ≤ t ∥φ∥∞ (error bound) (5)

Note that this bound is the worst case and tighter for sufficiently small t ≥ 0. Furthermore, for
compact invariant manifolds the error is bounded by the diameter of the manifold and hence this
bound becomes irrelevant for t large.

While the uniform norm gives insight on the short-time scale behavior of the perturbed ODE, we
expect that working memory tasks generalize to longer durations19. The long-time scale behavior
on the slow manifold is dominated by the stability structure, i.e., the topology of the dynamics.
Although we have seen numerous topologies in Sec. 2, the Persistent Manifold Theorem says that
this variability is fundamentally limited, especially in low dimensions (see for more details Sec. S4).
This is especially relevant as previous works have identified a low-dimensional organization of
neural activity to explain the brain’s ability to adapt behavioral responses to changing stimuli and
environments79–81. For a ring attractor, this implies that the stability structure of the invariant manifold
is either (1) composed of an equal number of stable fixed points and saddle nodes, placed alternatingly
and with connecting orbits, or (2) a limit cycle. These different stability structures have different
generalization properties (see Sec. 5). In more complex scenarios, such as two-dimensional attractors,
fixed points can coexist with limit cycles, creating a rich tapestry of possible attractors.

3.4 Implications on experimental neuroscience

Animal behavior exhibits strong resilience to changes in their neural dynamics, such as the continuous
fluctuations in the synapses or slight variations in neuromodulator levels or temperature. Hence, any
theoretical model of neural or cognitive function that requires fine-tuning, such as the continuous
attractor model for analog working memory, raises concerns, as they are seemingly biologically
irrelevant. This challenge is further compounded by the structural constraints imposed by the
connectome, which defines the network’s architecture and limits the possible configurations of
synaptic and circuit dynamics82,83. Moreover, unbiased data-driven models of time series data and
task-trained recurrent network models cannot recover such continuous attractor theories precisely.
Our theory shows that this apparent fragility is not as devastating as previously thought: despite the
“qualitative differences” in the phase portrait, the “effective behavior” of the system can be arbitrarily

6



close, especially in the behaviorally relevant time scales. We show that as long as the attractive
flow to the memory representation manifold is fast and the flow on the manifold is sufficiently
slow, it represents an approximate continuous attractor§. Furthermore, our theory bounds the
error in working memory incurred over time for such approximate continuous attractors. Therefore,
the concept of continuous attractors remains a crucial framework for understanding the neural
computation underlying analog memory, even if the ideal continuous attractor is never observed in
practice. Experimental observations that indicate the slowly changing population representations
during the “delay periods” where working memory is presumably required, do not necessarily
contradict the continuous attractor hypothesis. Perturbative experiments can further measure the
attractive nature of the manifold and their causal role through manipulating the memory content.

4 Numerical Experiments on Task-optimized Recurrent Networks
While our theory describes the abundance of approximate continuous attractors in the vicinity of a
continuous attractor, it does not imply that there are no approximate solutions away from continuous
attractors. In this section, we use task-optimized RNNs as a means to search for plausible solutions
for analog memory for a circular variable. We train a diverse set of RNNs, and then identify the
solution type of trained RNNs to gain insights into its performance, error patterns, generalization
capabilities, and, ultimately, proximity to a continuous attractor.

Understanding the implemented computation in neural systems in terms of dynamical systems is
a well-established practice1,5,86. Researchers have analyzed task-optimized RNNs through non-
linear dynamical systems analysis87? –95 and to compare those artificial networks to biological
circuits36,96,97. Previously, systematic analysis of the variability in network dynamics has been
surveyed in vanilla RNNs, and variations in dynamical solutions over architecture and nonlinearity
have been quantified36,87,90,91,98. Furthermore, working memory mechanisms in RNNs had tendencies
to find sequential or persistent representations through training depending on the task specifica-
tion99. We therefore investigated to what extent training RNNs on a task uniquely determines the
low-dimensional dynamics, independent of neural architectures. We see that all the solutions have a
slow invariant manifold, making all of them an instantiation of approximate continuous attractors.

4.1 Model Architectures and Training Procedure

Building upon prior work, which has shown their capabilities on such tasks, we trained RNNs to either
(1) estimate head direction through integration of angular velocity92,93 (Fig. 4A1) or (2) perform
a memory-guided saccade task for targets on a circle100,101 (Fig. 4A2, details in Sec. S7.1 and see
Sec. S7.3 for how RNNs relate to Eq. 2). We numerically minimized the mean squared error loss
LMSE between the network output and the target output. For each activation function and each
network architecture (vanilla RNN with ReLU, tanh, and rectified tanh activation functions, LSTM,
and GRU), we trained 10 networks per hidden size: 64, 128, and 256 with (hidden) state noise.

4.2 Numerical Fast-Slow Decomposition

For each trained network, we find the slow manifold by integrating the autonomous dynamics, then
selecting the parts of the trajectories that have speed slower than a threshold (Sec. S7.9.1). We identify
the points on the invariant manifold from the simulated trajectories that are projected closest to a
set of points in the output space relevant to the task after convergence, i.e. on the target ring. We
parametrize the one-dimensional invariant manifold by fitting a cubic spline with periodic boundary
constraints to these points (black line in Fig. 4B & C). Normal hyperbolicity is measured by a gap
in the timescales of the system (the eigenvalue spectrum of the linearization along points on the
invariant manifold, Fig. 4E and F).

We find the fixed points on the invariant ring by identifying regions where the direction of the flow
flips (Sec. S7.6.3). Stable fixed points are identified where the flow directions are both pointing
towards this flip point, while saddle nodes are identified where they are pointing away (Fig. 4B & C.)

4.3 Variations in the Topologies of the Slow Manifold Solutions

To understand what solutions the RNNs found to solve the task, we investigate their memory
mechanism. For this, we dissect the dynamics of RNNs by segregating time scales to delineate the
rapid flow normal to the slow manifold, and the flow on the manifold (Sec. S7.6.3). All solutions

§This correspond a type of “ideal pattern” in the vocabulary of Chirimuuta 84 . Our framework proposes a
general approach to abstract away irrelevant details in models for analog memory 85.
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involve a slow manifold with the same topology as the relevant variable in the task. The different
solutions are different in their asymptotic dynamics (Fig. 4). The most often found solution is of the
type fixed point ring manifold (Fig. 4B and C). These solutions are consistent with observations that
persistent activity relies on discrete attractors102,103. Less commonly found topologies includes the
slow torus around a repulsive ring invariant manifold (Fig. 4D). This solution in turn is consistent
with both observations of the possibility of using non-constant dynamics for memory storage19,104

and neuronal circuits underlying persistent representations despite time-varying activity105. All
stability structures (fixed points and limit cycles) are mapped close to the target output circle
(Figs. S15, S19, S20). We also verify the normal hyperbolicity of the trained networks shown in
Fig. 4B and C. The largest eigenvalue of the Jacobian fluctuates around zero (the invariant manifold
is not a continuous attractor), but it is removed from the second largest (Fig. 4E & F).
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Figure 4: Slow manifold approximation of different trained networks on the memory-guided saccade
and angular velocity integration tasks. (A1) Output of an example trajectory on the angular velocity
integration task. (A2) Output of example trajectories on the memory-guided saccade task. (B) An
example fixed-point type solution to the memory-guided saccade task. Circles indicate fixed points of
the system (filled for stable, empty for saddle) and the decoded angular value on the output ring is
indicated with the color according to A1. (C) An example of a found solution to the angular velocity
integration task. (D) An example slow-torus type solution to the memory-guided saccade task. The
colored curves indicate stable limit cycles of the system. (E+F) The eigenvalue spectra for the trained
networks in B and C show a gap between the first two largest eigenvalues.

4.4 Universality amongst Good Solutions

The fixed point topologies show a lot of variation across networks (Fig. 4B,C, Fig. 5 and Fig. S20),
much like the systems next to continuous attractors (Fig. 1 and Fig. 2). Previously, it has been
observed that fixed point analysis has a major limitation, namely, that the number of fixed points must
be equal across compared networks91. Our methodology effectively addresses and overcomes this
limitation. The universal structure of continuous attractor approximations as slow invariant manifolds
allows us to connect different topologies as approximate continuous attractors (Sec. 3.3). For
results on LSTMs and GRUs and a higher dimensional task, see Sec. S7.7 and Sec. S7.9, respectively.

5 Generalization Analysis
In this section, we use task-trained RNNs to study the relationship between dynamics and general-
ization capabilities. When neuroscientists study neural computations in animals, tasks have finite
durations, leaving it unclear whether animals learn the intended computation or a finite-time approxi-
mation. The same issue applies to trained neural networks. We will explore whether the networks
possess the necessary memory for perfect recall or only perform the task within the timescale of their
training.
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The two possible approximations of a ring attractor, a limit cycle or a fixed point ring manifold
(Sec. 3.3), exhibit markedly distinct generalization characteristics. Approximating the system as
a limit cycle results in a memory trace that gradually diminishes over time (c.f. Park et al. 19).
Conversely, the alternative approximation’s memory states are contingent upon the quantity and posi-
tioning of stable fixed points within the system. We describe in detail the generalization properties of
the trained networks¶ on the angular velocity integration task at two different time scales: asymptotic
and finite time.
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Figure 5: Temporal generalization validates theoretical predictions regardless of implementation
detail. (A) Average accumulated angular error versus the maximum flow on the manifold (Eq. 5),
shown for finite time (task duration that the networks were trained on, T1; filled markers) and at
asymptotic time (hollow markers). (B) Normalized validation loss of all trained networks. (C)
Average error and theoretical upper bound over time for two selected networks (corresponding to
arrows in panel D). (D) Average asymptotic error is roughly inversely proportional to the number of
fixed points. (E) Memory capacity is predictive of the average error.

Finite time: Along with the angular velocity integration component of the task, the trained networks
learn to store a memory of an angular variable. We assess the performance of the network to store
the memory of the angle over time. The networks typically perform well on the timescale on which
they have been trained, T1 = 256 time steps (Fig. 5C). The memory error for T1 is, as theoretically
predicted (Eq. 5, see Prop. 2), bounded by the uniform norm of the vector field on the invariant
manifold, and therefore by the distance to a continuous attractor (Prop. 1, Fig. 5A, Sec. S7.6.3 & S6).

Asymptotic time: Looking beyond the finite timescale provides valuable insights into the network’s
ability to store information. For the asymptotic time scale, we capture the asymptotic behavior of the
system by identifying to what part of the state space the system evolves to in the limit t→∞ (see
also Sec.S7.6.2). For a one-dimensional system, this will either be fixed points or a limit cycle. For
the fixed-point type solution, the maximal error is given by the maximal distance to the next fixed
point, while for a limit cycle, this will always be π. We calculate the average fixed point distance by
taking the average of the inter-fixed-point interval for each neighboring pair of fixed points.

We can also quantify the loss of information. Assuming a uniform distribution over the angles, we
define the memory capacity as the negative conditional entropy of the continuous memory given the
asymptotic state, i.e. the stable fixed points (see Sec. S7.6.2 and Eq. 68).

¶We tested all networks with a validation set and took a cutoff for the normalized MSE for the networks we
consider for the analysis at -20 dB (Fig. 5B).
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Error Accumulation in Neural Networks: The mean accumulated error at the time at which the task
was trained has an exponential relationship with the number of fixed points (Fig. 5A). Furthermore,
this error is bounded by the mean distance between stable and unstable fixed points (red dots in
Fig. 5D). This is another indication that the networks rely on a ring invariant manifold to implement
the task. Networks with different numbers of fixed points might have the same performance on the
finite time scale (bounded by T1 ∥φ∥∞) but have vastly different generalization properties because
they differ in the number of fixed points (Fig. 5C).

6 Approximate Slow Manifolds are near Continuous Attractors
In Sec. 2.2, we presented a theory of approximate solutions in the neighborhood of continuous
attractors. When are approximate solutions to the analog working memory problem near a continuous
attractor? We posit that there are four conditions (see for more detail Sec. S5.3): (C1) sufficiently
smooth approximate bijection between neural activity and memory content, (C2) the speed of drift of
memory content is bounded, (C3) robustness against state (S-type) noise, and (C4) robustness against
dynamical (D-type) noise19. The correspondence implied by (C1) translates to the existence of a
manifold in the neural activity space with the same topology as the memory content.|| Persistence (C2)
requires that the flow on the manifold is slow and bounded. S-type robustness (C3) implies non-
expansive flow, i.e., non-positive Lyapunov exponents. Along with D-type robustness (C4), it implies
the manifold is “attractive”, and normally hyperbolic (see also Sec. S5.3.1).

If these four conditions hold, for example for task-trained RNNs, there exists a smooth function with
a uniform norm matching the slowness on the manifold such that when added, the slow manifold
becomes a continuous attractor (Prop. 1 and Theorem 7, see also Sec. S5.4). For the RNN experiments,
we added state-noise while training using stochastic gradient descent, satisfying (C3) and (C4). We
have also verified that (C2) holds (Fig. 5A). Although the stochastic optimization cannot lead to the
continuous attractor solution, it gets to the neighborhood where all approximate solutions share the
same main feature: having a subsystem that has a slow flow.

7 Discussion
Continuous attractors are highly prone to bifurcation under arbitrary perturbations unless they exist
in special parametric forms. This sensitivity to perturbations has traditionally made them seem
unsuitable for modeling neural computation in noisy biological systems, according to conventional
views on robustness. Nevertheless, we demonstrate that continuous attractors can exhibit functional
robustness, making them a crucial concept in explaining the neural computation underlying analog
memory. We show that approximations of analog memory (i.e., theoretical models that satisfy
conditions (C1)-(C4)) must possess slow manifold dynamics, placing them near continuous attractors
within the space of dynamical systems. This implies that both biological systems and artificial neural
networks only need to be near a continuous attractor to effectively solve problems in a manner similar
to the ideal theoretical model, on behaviorally relevant timescales.

Although we expressed our theory in a non-parametric manner with an arbitrary perturbation p(·),
we can easily extend it to particular parametric forms such as biophysical models or an RNN using a
sensitivity of the flow to the parameters (e.g. synaptic weight). Our theory can be applied to latent
dynamical systems estimated from neural recordings107. As a framework, it can abstract out the
details in imperfect dynamical implementations, however, it is an open problem to directly recover
the continuous attractor from neural recordings or extend it to other ideal computational motifs.

Limitations Although, we only explicitly describe the topology and dimensionality of the identified
invariant manifolds for a representative set, the results indicate that most solutions have a ring invariant
manifold with a slow flow. Our numerical analysis relies on identifying a time scale separation from
simulated trajectories. If the separation of time scales is too small, it may inadvertently identify parts
of the state space that are only forward invariant (i.e., transient). However, this did not pose a problem
in our analysis of the trained RNNs, which is unsurprising, as the separation is guaranteed by state
noise robustness (due to injected state noise during training).

The possible solutions that the networks can find are restricted by having a linear output mapping. In
Park et al. 19 , an alternative dynamical solution using oscillators (or quasi-periodic toroidal attractor)
was described, however, a nonlinear readout may be necessary.

||Note that effectively feedforward solutions 106 do not satisfy (C1).
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Code Availability
The code for this project is publicly available at https://github.com/catniplab/back_to_
the_continuous_attractor.
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Supplemental Material
S1 Intuitive definitions of several key concepts used in our paper
Manifold: A part of the state-space that locally resembles a flat, ordinary space (such as a plane or a three-
dimensional space, but more generally -dimensional Euclidean space) but can have a more complicated global
shape (such as a donut).

Invariant set: A property of a set of points in the state space where, if you start within the set, all future
states remain within the set and all past states belong to the set as well.

Normally Hyperbolic Invariant Manifold: A behavior of a dynamical system where flow in the direction
orthogonal to the manifold converges (or diverges) to the manifold significantly faster than the direction that
remains on the manifold.

Diffeomorphism: A diffeomorphism is a stretchable map that can be used to transform one shape into
another without tearing or gluing. A differentiable map with differentiable inverse.

C1 neighborhood of a C1 function: A set of functions that are close to the function in terms of both their
values and their first derivatives.

Compact Set: A set where every sequence of points has a subsequence that converges to a point within the
set. Intuitively, it means the set is closed and bounded, making it “finite” in a certain sense.

Connecting Orbit: A trajectory in a dynamical system that connects two different equilibrium points or
periodic orbits. Specifically, a heteroclinic orbit connects distinct equilibrium points.
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S2 The bounded line attractor
In order to demonstrate the implications of the theory of the persistence of continuous attractors, we rigorously
test the predictions of the theory on the stability of the Bounded Line Attractor (BLA). Our objective is to
assess the practical implications of the theoretical findings of bounded continuous attractors in a small and
tractable system, and second, to contribute empirical evidence that can help refine and extend existing theoretical
frameworks.

The BLA has a parameter that determines step size along line attractor α. Analogously as for UBLA, these
parameters determine the capacity of the network. The inputs push the input along the line attractor in two
opposite directions, see below. The BLA needs to be initialized at β(1, 1) and β

2
(1, 1), respectively, for correct

decoding, i.e., output projection.

Win = α

(
−1 1
1 −1

)
, W =

(
0 −1
−1 0

)
, Wout =

1

2α

(
1
−1

)
, b = β

(
1
1

)
, bout = 0. (6)

Parameter that determines step size along line attractor α. The size determines the maximum number of clicks
as the difference between the two channels. This pushes the input along the line “attractor” in two opposite
directions, see below.

The results from such low-dimensional system can be extended to higher-dimensional systems through reduction
methods from center manifold theory. On the center manifold the singular perturbation problem (as is the case
for continuous attractors) restricts to a regular perturbation problem 108. Furthermore, relying on the Reduction
Principle 109, one can always reduce all systems (independent of dimension) to the same canonical form, given
that they have the same continuous attractor.

S2.1 Fast-slow form
First of all, we will show how to transform the BLA network to the slow-fast form in Eq. 3-4 to explicitly
demonstrate that the theory applies to it. To achieve this, we transform the state space so that the line attractor
aligns with the y-axis. So, we apply the affine transformation Rθ(x − 1

2
) with the rotation matrix Rθ =[

cos θ − sin θ
sin θ cos θ

]
= 1√

2

[
1 1
−1 1

]
where we have set θ = −π

4
. So we perform the transformation x→ x′ =

Rθ(x− 1
2
) and so we have x = R−1

θ x′ + 1
2

with R−1
θ = R−θ . Then we get that

R−1
θ ẋ′ = ReLU

(
W (R−1

θ x‘ +
1

2
) + 1

)
−R−1

θ x′ − 1

2
. (7)

For a perturbed connection matrix W =

[
ϵ −1
−1 0

]
we get

R−1
θ ẋ′ = ReLU

(
1√
2

[
ϵ −1
−1 0

]([
1 −1
1 1

]
x‘ +

1

2

)
+ 1

)
− 1√

2

[
1 −1
1 1

]
x′ − 1

2
(8)

ẋ′ =

[
−1 1
1 1

](
1

2

[
ϵ− 1 −ϵ− 1
−1 1

]
x′ +

1

2
√
2

[
ϵ− 1
−1

]
+

[
1
1

]
− 1

2

[
1
1

])
− x′ (9)

ẋ′ =

([
−2 0
0 0

]
+
ϵ

2

[
1 −1
−1 1

])
x′ +

1

2
√
2

[
ϵ
−ϵ

]
(10)

S2.2 Bifurcation analysis
We will now identify all possible bifurcations from the BLA, to show that indeed all perturbations preserve the
continuous attractor as an invariant manifold.

We consider all parametrized perturbations of the form W←W +V for a random matrix V ∈ R2×2 to the
BLA. The BLA can bifurcate in the following systems, characterized by their invariant sets: a system with single
stable fixed point, a system with three fixed points (one unstable and two stable) and a system with two fixed
points (one stable and the other a half-stable node) and a system with a (rotated) line attractor. Only the first
two bifurcations (Fig. 1A) can happen with nonzero chance for the type of random perturbations we consider.
The perturbations that leave the line attractor intact or to lead to a system with two fixed points have measure
zero in the parameter space. The perturbation that results in one fixed point happen with probability 3

4
, while

perturbations lead to a system with three fixed points with probability 1
4

, see Sec. S2.2.2. The (local) invariant
manifold manifold is indeed persistent for the BLA and homeomorphic to the original (the bounded line).

Stabilty of the fixed point with full support We investigate how perturbations to the bounded line affect
the Lyapunov spectrum. We calculate the eigenspectrum of the Jacobian:

det[W ′ − (1 + λ)I] = (ϵ11 − 1− λ)(ϵ22 − 1− λ)− (ϵ12 + 1)(ϵ21 + 1)

= λ2 − (2 + ϵ11 + ϵ22)λ− ϵ11 − ϵ22 + ϵ11ϵ22 − ϵ12 − ϵ21 − ϵ12ϵ21
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Let u = −(2 + ϵ11 + ϵ22) and v = −ϵ11 − ϵ22 + ϵ11ϵ22 − ϵ12 − ϵ21 − ϵ12ϵ21
There are only two types of invariant set for the perturbations of the line attractor. Both have as invariant set a
fixed point at the origin. What distinguishes them is that one type of perturbations leads to this fixed point being
stable while the other one makes it unstable.

Stability of the fixed points on the axes We perform the stability analysis for the part of the state space
where Wx > 0. There, the Jacobian is

J = −
(
1 1
1 1

)
(11)

We apply the perturbation

W ′ =

(
0 −1
−1 0

)
+ ϵ (12)

with

ϵ =

(
ϵ11 ϵ12
ϵ21 ϵ22

)
(13)

The eigenvalues are computed as

det[W ′ − (1 + λ)I] = (ϵ11 − 1− λ)(ϵ22 − 1− λ)− (ϵ12 − 1)(ϵ21 − 1)

= λ2 + (2− ϵ11 − ϵ22)λ− ϵ11 − ϵ22 + ϵ11ϵ22 + ϵ12 + ϵ21 − ϵ12ϵ21
Let u = 2− ϵ11 − ϵ22 and v = −ϵ11 − ϵ22 + ϵ11ϵ22 + ϵ12 + ϵ21 − ϵ12ϵ21

λ =
−u±

√
u2 − 4v

2
(14)

Case 1: Re(
√
u2 − 4v) < −u, then λ1,2 < 0

Case 2: Re(
√
u2 − 4v) > −u, then λ1 < 0 and λ2 > 0

Case 3: v = 0, then λ = 1
2
(−u± u), i.e., λ1 = 0 and λ2 = −u

ϵ11 = −ϵ22 + ϵ11ϵ22 + ϵ12 + ϵ21 − ϵ12ϵ21 (15)

We give some examples of the different types of perturbations to the bounded line attractor. The first type is
when the invariant set is composed of a single fixed point, for example for the perturbation:

ϵ =
1

10

(
−2 1
1 −2

)
(16)

The second type is when the invariant set is composed of three fixed points:

ϵ =
1

10

(
1 −2
−2 1

)
(17)

The third type is when the invariant set is composed of two fixed points, both with partial support.

b′ =
1

10

(
1 −1

)
(18)

The fourth and final type is when the line attractor is maintained but rotated:

ϵ =
1

20

(
1 10
10 1

)
(19)

S2.2.1 Bifurcation landscape

We will now state our previous observations as a Theorem that characterizes the possible bifurcations of the
BLA.

Theorem 2. All perturbations of the bounded line attractor are of the types as listed above.

Proof. We enumerate all possibilities for the dynamics of a ReLU activation network with two units. First of all,
note that there can be no limit cycle or chaotic orbits.

Now, we look at the different possible systems with fixed points. There can be at most three fixed points 110

Corollary 5.3. There has to be at least one fixed point, because the bias is non-zero.

General form (example):

ϵ =
1

10

(
−2 1
1 −2

)
(20)
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One fixed point with full support:

In this case we can assume W to be full rank.

ẋ = ReLU

[(
ϵ11 ϵ12
ϵ21 ϵ22

)(
x1
x2

)
+

(
1
1

)]
−

(
x1
x2

)
= 0

Note that x > 0 iff z1 := ϵ11x1 + (ϵ12 − 1)x2 − 1 > 0. Similarly for x2 > 0.

So for a fixed point with full support, we have(
x1
x2

)
= A−1

(
−1
−1

)
(21)

with

A :=

(
ϵ11 − 1 ϵ12 − 1
ϵ21 − 1 ϵ22 − 1

)
.

Note that it is not possible that x1 = 0 = x2.

Now define

B := A−1 =
1

detA

(
ϵ22 − 1 1− ϵ12
1− ϵ21 ϵ11 − 1

)
with

detA = ϵ11ϵ22 − ϵ11 − ϵ22 − ϵ12ϵ21 + ϵ12 + ϵ21.

Hence, we have that x1, x2 > 0 if B11 + B12 > 0, B21 + B22 > 0 and detA > 0 or if B11 + B12 < 0,
B21 +B22 < 0 and detA < 0.

This can be satisfied in two ways, If detA > 0, this is satisfied if ϵ22 > ϵ12 and ϵ11 > ϵ21, while if detA < 0,
this is satisfied if ϵ22 < ϵ12 and ϵ11 < ϵ21. This gives condition 1.

Finally, we investigate the condition that specify that there are fixed points with partial support. If x1 = 0 then
(ϵ22 − 1)x2 + 1 = 0 and z1 < 0. From the equality, we get that x2 = 1

1−ϵ22
. From the inequality, we get

(ϵ12 − 1)x2 + 1 ≥ 0, i.e. 1
1−ϵ12

≥ x2. Hence,

1

1− ϵ12
≥ 1

1− ϵ22
and thus

ϵ22 ≤ ϵ12. (22)
Similarly to have a fixed point x∗ such that x∗2 = 0, we must have that

ϵ11 ≤ ϵ21. (23)

Equation 22 and 23 together form condition 2.

Then, we get the following conditions for the different types of bifurcations:

1. If condition 1 is violated, but condition 2 is satisfied with exactly one strict inequality, there are two
fixed points on the boundary of the admissible quadrant.

2. If condition 1 is violated, and only one of the subconditions of condition 2 is satisfied, there is a single
fixed point on one of the axes.

3. If condition 2 is violated, there is a single fixed point with full support.

4. If both conditions are satisfied, there are three fixed points.

We now look at the possibility of the line attractor being preserved. This is the case if v = 0. It is not possible
to have a line attractor with a fixed point off of it for as there cannot be disjoint fixed points that are linearly
dependent 110 Lemma 5.2

S2.2.2 Probability of bifurcation types

We will now calculate which proportion proportion of the bifurcation parameter space is results in the different
bifurcation types. The conditions that result in three fixed points are

0 < ϵ11ϵ22 − ϵ11 − ϵ22 − ϵ12ϵ21 − ϵ12 − ϵ21,
ϵ22 ≤ ϵ12,
ϵ11 ≤ ϵ21.
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Therefore, because

ϵ22 ≤ ϵ12,
ϵ11 ≤ ϵ21.

we always have that

0 < ϵ11ϵ22 − ϵ11 − ϵ22 − ϵ12ϵ21 − ϵ12 − ϵ21.

This implies that this bifurcation happens with probability 1
4

in a ϵ-ball around the BLA neural integrator with
ϵ < 1. We conclude that the single stable fixed point type perturbation happens with probability 3

4
.

S2.3 Structure of the parameter space
We will present the structure of the bifurcation space through a slice in which we fix ϵ11 and ϵ12. First, we
summarize which conditions result in which bifurcation in Table 1. We derive that the local bifurcation in this
slice has the structure as shown in Fig. S6.

Table 1: Summary of the conditions for the different bifurcations.

1FP (full) 1FP (partial) 3FPs 2FPs LA

C1 ✓ ✗ ✓ ✗ ✗

C2 ✗ only Eq22 or 23 ✓ ✓ ✗

ε22 

ε21 

det A > 0

det A < 0
     3FPs

ε11 - ε12

ε11 - 1
 b =

ε12 - 1
ε11 - 1

 a =

ε 22 
= aε 21

+ b

ε22 = aε11+ b ε21 = ε11

ε21 > ε11

ε21 < ε11

det A = 0

Figure S6: A slice of the parameter space of the BLA for a fixed ϵ11 and ϵ12.

S2.4 Smoother activation functions
It is well-known that activation functions (σ in Eqs. 61 and 64), which can take many forms, play a critical role
in propagating gradients effectively through the network and backwards in time 111–113. Activation functions
that are Cr for r ≥ 1 are the ones to which the Persistence Theorem applies. The Persistence Theorem further
specifies how the smoothness of the activation can have implications on the smoothness of the persistent invariant
manifold. For situations where smoothness of the persistent invariant manifold is of importance, smoother
activation functions might be preferable, such as the Exponential Linear Unit (ELU) 114 or the Continuously
Differentiable Exponential Linear Units (CELU) 115.
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S3 Ring perturbations
To computationally investigate the neighborhood of recurrent dynamical systems that implement continuous
attractors, we investigate 5 RNNs that are known a priori to form 1 or 2 dimensional continuous attractors.

We define a local perturbation (i.e., a change to the ODE with compact support) through the bump function
Ψ(x) = exp

(
1

∥x∥2−1

)
for ∥x∥ < 1 and zero outside, by multiplying it with a uniform, unidirectional vector

field. All such perturbations leave at least a part of the continuous attractor intact and preserve the invariant
manifold, i.e. the parts where the fixed points disappear a slow flow appears.

The parametrized perturbations are characterized as the addition of a random matrix to the ODE.

S3.1 Simple ring attractor

We further analyzed a simple (non-biological) ring attractor, defined by the following ODE: ṙ = r(1 −
r), θ̇ = 0. This system has as fixed points the origin and the ring with radius one centered around zero, i.e.,
(0, 0) ∪ {(1, θ) | θ ∈ [0, 2π)}. We investigate bifurcations caused by parametric and bump perturbations of
the ring invariant manifold (see Sec. S3), which is bounded and boundaryless. All perturbations maintain the
topological structure of the invariant manifold.

S3.2 Heading direction network

The networks proposed in 8 are composed ofN heading-tuned neurons whose preferred headings θj uniformly tile
heading space, with an angular separation of ∆θ = 2π/N radians. These neurons can be arranged topologically in
a ring according to their preferred headings, with neurons locally exciting and broadly inhibiting their neighbors.
The total input activity hj of each neuron is governed by:

τ ḣj = −hj +
1

N

∑
k

(W sym
jk + vinW

asym
jk )ϕ(hk) + cff , j = 1, . . . , N, (24)

with
W sym

jk = JI + JE cos(θj − θk), (25)
where JE and JI respectively control the strength of the tuned and untuned components of recurrent connectivity
between neurons with preferred headings θj and θj and vin is an angular velocity input which the network
receives through asymmetric, velocity-modulated weights

W asym = sin(θj − θk). (26)

Fixed points In the absence of an input (vin = 0) fixed points of the system can be found analytically by
considering all submatrices W sym

σ for all subsets {σ ⊂ [n]} with[n] = {1, . . . , N}. A fixed point x∗ needs to
satisfy

x∗ = −(W sym
σ )−1cff (27)

and
x∗i < 0 for i ∈ σ. (28)

We bruteforce check all possible supports to find all fixed points. We use the eigenvalues of the Jacobian to
identify the stability of the found fixed points. We evaluate the effect of parametric perturbations of a network of
size N = 6 with JE = 4 and JI = −2.4 by identifying all bifurcations (Fig. 2A).

Connecting orbits We approximate connecting orbits through numerical integration of the ODE intialized
in close to the identified saddle points along the unstable manifold.
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Measure zero co-dimension 1 bifurcations Measure zero co-dimension 1 bifurcations of the ring
attractor network fall into two types, see Fig. S7.

Figure S7: Measure zero co-dimension 1 bifurcations of the ring attractor network8.

Measure zero co-dimension N bifurcation The limit cycle is the only bifurcation that we found that can
be achieved on only a measure zero set of parameter values around the parameter for the continuous attractor.

Independence of norm of perturbation on bifurcation As we can see in Fig. S8, the topology of the
system is maintained through a range of bifurcation sizes when the bifurcation direction is fixed.
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Figure S8: Rows show the bifurcations resulting from perturbations from the matrices with the same
direction in Fig. 2A but with different norms (columns).
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S3.3 Ring attractor approximation with tanh neurons
We investigated the bifurcations around the approximate ring attractor constructed with a symmetric weight
matrix for a tanh network 58,62. The functional form of W is the sum of a constant term plus a Gaussian centered
at θi − θj = 0:

W (θi − θj) = J− + (J+ − J−) exp

[
− (θi − θj)2

2σ2

]
, (29)

with the dimensionless parameter J− representing the strength of the weak crossdirectional connections, J+ the
strength of the stronger isodirectional connections, and σ the width of the connectivity footprint.

Such ring attractor approximations are similar to the ones in 60,61,116,117. However, some have other nonlinearities,
e.g., the sigmoid is used in 61. Another line of related models can be found in 118, 119 and 120.

Loss of function: Sensitivity of continuous attractors to perturbations We will show that there
are differences at how well approximations perform at different timescales. We measure how performance of
different models for the representation of an angular variable drop as a function of perturbation size Fig. S9
through the memory capacity metric (Sec.S7.6.2). For each perturbation size, we sample a low rank (rank 1,2 or
3) random matrix with norm equal to that perturbation size. We determine the location of the fixed points through
the local flow direction criterion as described in Sec. 4.2 This invariant manifold was found to be consistently
close the the original invariant ring attractor. The initial ring had 2N fixed points (N stable, N saddle) on this
invariant ring manifold. The memory capacity of this initial configuration is N log(N) for the 2N uniformly
spaced fixed points.

Figure S9: Degradation of performance across perturbation sizes. System behavior at the asymptotic
time scales measured through memory capacity.

S3.3.1 Mean field approaches

Another line of models 121–124 also relies on connection weights with translational invariance

J(x, x′) =
A√
2πa

exp

[
− (x− x′)2

2a2

]
(30)

where J(x, x′) is the neural interaction from x′ to x and the ensemble of infinite neurons are lined up so that
x ∈ (−∞,∞).

Weak random spatial fluctuations in the connection strength are to be expected when learning the coupling
function with Hebbian plasticity. In the 1D case, it is well known that the presence of such synaptic heterogeneity
causes a drift of an input-induced activity pattern to one of a finite number of attractor positions which are
randomly spread over representational space 16,20. Similarly, in 2D, spatial fluctuations in the connection strengths
cause a slight perturbation of the bump shape 125. Frozen stabilisation has been proposed as alternative method
to construct a neural networks to self-organise to a state exhibiting (high-dimensional) memory manifolds with
arbitrarily large time constants 126.
127 analyzes an Ising network perturbed with a specially structured noise at the thermodynamic limit. Although
their analysis elegantly shows that the population activity of the perturbed system does not destroy the Fisher
information about the input, they do not consider a scenario where the ring attractor is used as a working
memory mechanism, it is rather used to encode instantaneous representation. In contrast, our analysis involves
understanding how the working memory content degrades over time due to the dynamics. We are not aware of
any mean field analysis that covers this aspect.
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S3.4 Ring attractor approximation with a low-rank network

The networks consisted of N firing rate units with a sigmoid input-output transfer function 64:

ξ̇i(t) = −ξi(t) +
N∑

j=1

Jijϕ(xj(t)) + Ii, (31)

where xi(t) is the total input current to unit i, Jij = gχij + Pij is the connectivity matrix, ϕ(x) = tanh(x) is
the current-to-rate transfer function, and Ii is the external, feedforward input to unit i. The random component
gχ is considered unknown except for its statistics (mean 0, variance g2/N ). A general structured component of
rank r ≪ N can be written as a superposition of r independent unit-rank terms

Pij =
m

(1)
i n

(1)
j

N
+ · · ·+

m
(r)
i n

(r)
j

N
, (32)

and is in principle characterized by 2r vectors m(k) and n(k).

To approximate a ring attractor we can consider structured matrices where the two connectivity pairs m(1) and
n(1), m(2) and n(2) share two different overlap directions, defined by vectors y1 and y2. We set:

m(1) =
√

Σ2 − r21 x1 + r1y1, (33)

m(2) =
√

Σ2 − r22 x2 + r2y2, (34)

n(1) =
√

Σ2 − r21 x3 + r1y1, (35)

n(2) =
√

Σ2 − r22 x4 + r2y2, (36)

where Σ2 is the variance of the connectivity vectors and r21 and r22 quantify the overlaps along the directions y1
and y2.

We keep the following parameters for the analysis: Σ = 2, ρ = 1.9 and g = 0.1.

Figure S10: Some examples of networks dynamics for sizes N = 10, 100, 1000.

Our theory explains the phenomenon of the existence of a ring invariant manifold in these low-rank networks
as follows. We can think of the finite size realization as a small perturbation to the infinite size network on
the reduced dynamics in the m1,m2 plane (independent of the parameter g for the random part of the matrix)
(Fig. 2B). For very small networks the ring structure is destroyed and only the plane persists as a slow manifold.

S3.5 Embedding Manifolds with Population-level Jacobians

We fit three networks with the Embedding Manifolds with Population-level Jacobians (EMPJ) method 59.

The networks are RNNs of N = 10 neurons with a tanh activation function and τ = 0.05 time constant. To
use EMPJ we need to specify our desired k fixed points and m eigenvectors and eigenvalues per fixed point.

To do this we choose k = 3 points {(xi, yi)}Ni=1 in the 2D ring with radius r = 1 that are equally spaced from
0.1 to 2π radians. Then we specify the vectors orthogonal to the ring in those points (Vo = {(xi, yi)}Ni=1, same
as the points) and tangent (Vt = {(−yi, xi)}Ni=1). Finally we associate the negative eigenvalue −1/τ to the
orthogonal eigenvectors and different eigenvalues to the tangent eigenvectors. We use −1, 0 or 1 depending on
whether we want the points to be stable, center or unstable in the direction of the slow ring manifold.

Since these determined dynamics are only in a 2D plane, we use a random linear mapping D : R2 → RN to
map the fixed points and the eigenvectors to a 10-dimensional space. First, we sample a random from orthogonal
matrixA from theO(N) Haar distribution and then we take the first two columns of this matrix to beD = [A]12.
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EMPJ then returns a network parameters that satisfy these constraints. Furthermore, due to the particular solver
used, that regularizes the magnitude of the parameters, we get that all the other eigenvalues not specified are also
set to −1/τ (for details see 59).

Finding fixed points As we remark in Sec. S3.5.1, EMPJ networks are not robust to S-type noise, therefore
we cannot apply our analysis of identifying the invariant set through the convergence criterion of numerically
integrated trajectories. We therefore find fixed points through the Newton-Raphson method. We iteratively solve

J(xi)dxi = xi (37)

where J(xi) is the Jacobian of the system at xi and xi+1 = xi − dxi. The iteration stops when |dx| < δ for a
tolerance threshold δ. We initialize x0 on the invariant ring uniformly. The maximum number of iterations was
set to 10.000 and the tolerance level to δ = 10−8.

S3.5.1 Lack of S-type robustness

We remark that the resulting invariant manifold is not robust to S-type perturbations. Although the fixed points
that are constrained in the fitting procedure are attractive in all directions, some of the points along the ring
might not be. For on-manifold perturbations (in the plane in which the ring is embedded), S-type perturbations
do lead to flow towards the invariant ring (Fig. S11A). However, for (small) off-manifold perturbations, the
trajectories typically diverge away from the invariant ring (Fig. S11B). This indicates that the basin of attration
is very small and hence this approximation is not robust to S-type noise.

All of the perturbations were sampled as x(0) = x(0) + η with x(0) ∈ span(D). For the on-manifold
perturbations η ∈ span(D) and ∥η∥2 = 10−2. For the off-manifold perturbations η ∈ R10 and ∥η∥2 = 10−5.

Figure S11: Trajectories of the third network in Fig. 2C. Starting point in red, end of trajectory in
blue. (A) On-manifold S-type perturbations from the ring. (B) An example of an off-manifold S-type
perturbation from the ring.

S3.5.2 Higher dimensional manifolds

We furthermore fit a torus and a sphere continuous attractor with the EMPJ. The networks we used haveN = 100
neurons. For finding fixed points with the Newton-Raphson method, we used 1.000 as the maximum number of
iterations and a tolerance level of δ = 10−5.

Torus Figure S12 illustrates the stability structures of the approximate torus attractor fitted with EMPJ. The
ratio of the radii of the two rings is adjusted for visualization purposes.

Sphere Fig. S13 illustrates the stability structures of the approximate sphere attractor fitted with EMPJ.
Similar to the torus, points initialized off the sphere converge onto the sphere attractor (Fig. S13).

S3.5.3 Other fixed point fitting methods

Storing multiple continuous attractors has been worked out in 128, with a similar approximation as our theory
suggests. The different stored patterns form a discrete approximation of the continuous map (resulting in
quasicontinuous maps, which corrspond to the approximate contintuous attractors in our theory).
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Figure S12: The approximate torus attractor. (A) Points initialized on a grid off of the torus (blue)
converge onto the torus attractor (red). (B) The found fixed points on the approximate torus (green:
stable, red: saddle). (C) The found fixed points projected onto the two 2D subspaces that defined the
two rings of the torus.
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Figure S13: The approximate sphere attractor. (A) Points initialized on a grid off of the sphere (blue)
converge onto the torus attractor (red). (B) The found fixed points on the approximate sphere (green:
stable, red: saddle). The two subfigures show rotated versions of the location of the fixed points on
the sphere.

S4 Persistence Theorem
Understanding the long-term behavior of dynamical systems is a fundamental question in various fields, including
mathematical biology, ecological modeling, and neuroscience. Fenichel’s Persistence Theorem provides critical
insights into the behavior of such systems, particularly in relation to the stability and persistence of invariant
manifolds under perturbations.

Fenichel’s Persistence Theorem extends the classical theory of invariant manifolds, offering conditions under
which normally hyperbolic invariant manifolds persist despite small perturbations. This theorem is particularly
powerful in analyzing systems where perturbations are inevitable, providing a framework for understanding
how qualitative features of the system’s dynamics are maintained. In this section, we delve into the specifics of
Fenichel’s Persistence Theorem, outlining its key components, assumptions, and implications.

Invariance One of the main concepts in the Persistence Theorem is the notion of an invariant manifold.
Intuitively, this just means that trajectories stay inside the manifold for all time. Local invariance is a bit more
involved and allows for the possibility of leaving the manifold, but only through it’s boundary.

Definition 1. A set M is locally invariant under the flow from Eq. 3-4 if it has neighborhood V so that
no trajectory can leave M without also leaving V . In other words, it is locally invariant if for all x ∈
M, φ(x, [0, t] ⊂ V implies that φ(x, [0, t]) ⊂M , similarly with [0, t] replaced by [t, 0] when t < 0.

Definition 2. A set S is said to be forward invariant under a flow φt if for every point x in S and for all t ≥ 0,
the image of x under the flow at time t, denoted φt(x), remains in S. This can be written as:

φt(x) ∈ S for all x ∈ S and t ≥ 0.

Small perturbation In the context of Fenichel’s Persistence Theorem, a “sufficiently small Cr perturbation
of the vector field f” refers to perturbations that are small in the Cr norm. The Cr norm measures the size of a
function and its derivatives up to order r.

Formally, let f : Rn → Rn be the original smooth vector field and let f̃ be a perturbed vector field. The
perturbation f̃ is a sufficiently smallCr perturbation if the difference f̃−f has a smallCr norm. Mathematically,
this can be expressed as:
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∥∥∥f̃ − f∥∥∥
Cr

< ϵ,

where ϵ is a small positive number, and the Cr norm is defined as:∥∥∥f̃ − f∥∥∥
Cr

= max
0≤k≤r

sup
x∈Rn

∥∥∥Dk(f̃(x)− f(x))
∥∥∥ .

Which gives a constraint on how much each of the k-th derivatives Dk of the perturbed vector field can differ
from the original.

In summary, a perturbation f̃ is considered sufficiently small in the Cr sense if the difference between f̃ and
f , along with their derivatives up to order r, is uniformly small across the domain. For C1 perturbations, this
defines a C1 neighborhood of functions, within which the persistence of the manifold is ensured by Fenichel’s
theorem. For r = 0, we get the uniform norm (defined as ∥f∥)∞ := sup(|f |), see also Sec.S6).

Closeness Finally, to formalize what is meant by that the persistent invariant manifold is very close to the
original continuous attractor, we need a notion of distance between the manifolds.

Definition 3. Let (M,d) be a metric space. For each pair of non-empty subsets X ⊂ M and Y ⊂ M , the
Hausdorff distance between X and Y is defined as

dH(X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}
,

where sup represents the supremum operator, inf the infimum operator, and where

d(a,B) := inf
b∈B

d(a, b)

quantifies the distance from a point a ∈ X to the subset B ⊆ X .

In conclusion, the Hausdorff distance provides a rigorous mathematical framework to quantify the “closeness”
or “similarity” between two sets.

S4.1 Fenichel’s Persistent Manifold Theorem
This section will introduce the original Fenichel’s Persistent Manifold Theorem, laying the groundwork for
understanding how normally hyperbolic invariant manifolds persist under perturbations in systems with distinct
time scales. By examining this foundational theorem, we can build a deeper understanding of the stability and
behavior of complex dynamical systems.

In the study of dynamical systems, particularly those involving multiple time scales, understanding the behavior
of solutions near invariant manifolds is crucial. These manifolds often determine the long-term dynamics of the
system and their stability properties. The Fenichel’s Persistent Manifold Theorem provides a powerful framework
for analyzing such systems by demonstrating the persistence of normally hyperbolic invariant manifolds under
small perturbations. This theorem is particularly relevant in systems where variables evolve on different time
scales— typically referred to as “slow” and “fast” dynamics. By reformulating the system with a change of
time-scale, we can explore how the dynamics on these manifolds behave, especially when perturbed. Consider
the system given by Equations 3-4, which can be rewritten using a rescaled time variable, τ , to distinguish
between the fast and slow dynamics as follows:{

ϵx′ = g(x, y, ϵ)

y′ = h(x, y, ϵ)
(38)

where ′ = d
dτ

and τ = t/ϵ. The time scale given by τ is said to be fast whereas that for t is slow, as long as
ϵ ̸= 0 the two systems are equivalent.

The functions g and hin Eq. 3-4 are both assumed to be Cr (for r > 0 on a set U × I where U ⊂ Rd is open,
and I is an open interval, containing 0.

Suppose that the set M0 is a subset of the set {h(x, y, 0) = 0} and is a compact manifold, possibly with
boundary, and is normally hyperbolic relative to 38.

Theorem 3 (Theorem 1 in 73). If ϵ > 0, but sufficiently small, there exists a manifoldMϵ that lies within O(ϵ)
ofM0 and is diffeomorphic toM0. Moreover it is locally invariant under the flow of Eq. 3-4, and Cr , including
in ϵ, for any 0 < r <∞. Finally,Mϵ has O(ϵ) Hausdroff distance toM0 and has the same smoothness as g
and h.

If the invariant manifoldM0 is attractive, then the only way trajectories can escape the invariant setMϵ after
perturbation, is in negative time through the boundaries. This guarantees that the persistent manifoldMϵ is still
attractive.
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S4.2 Fundamental limitations of the topology of bifurcated continuous attractors

S4.2.1 Flow on a line

Theorem 4 (One Dimensional Equivalence). Two flows and in are topologically equivalent if and only if their
equilibria, ordered on the line, can be put into one-to-one correspondence and have the same topological type
(sink, source or semistable).

S4.2.2 Flow on a ring

The flow on a ring can be described by the differential equation 129:

dθ

dt
= f(θ), (39)

with θ ∈ [0, 2π].

The simplest type of flow on a ring is the uniform circular flow, where each point moves with a constant angular
velocity f(θ) = ω. If |f(θ)| > 0 for all θ, there is a circular flow with a variable speed.

There is a fixed point for each unique θ for which f(θ) = 0. The nature of the flow around these fixed points
can be classified into:

• Stable fixed points: Points where the flow tends to as time progresses (f(θ) > 0 for all θ ∈ [0, θ]∩V
and f(θ) < 0 for all θ ∈ [θ, 2π] ∩ V for some open ball V around θ).

• Unstable fixed points: Points from which the flow diverges (f(θ) < 0 for all θ ∈ [0, θ] ∩ V and
f(θ) > 0 for all θ ∈ [θ, 2π] ∩ V for some open ball V around θ).

For a detailed discussion of how bifurcations of a continuous attractors depend on the symmetry of the continuous
attractor, see for example The Equivariant Branching Lemma (Lemma 1.31 in 130). If the solutions are symmetric
under rotations (a circular symmetry such as for a ring attractor). As you change the bifurcation parameter,
you find that new solutions appear that also respect this rotational symmetry. The lemma tells you that these
new solutions will align with specific symmetries (like different rotation angles), which are described by the
irreducible representations of the symmetry group.

S4.3 Consequences to system identification
Fenichel’s Persistence Theorem has several significant implications for modelling and system identification in
dynamical systems. Because the theorem provides a guarantee that small perturbations in the system do not lead
to significant changes in the qualitative behavior of the system, we can be (slightly) wrong for example about the
exact nonlinearity of a neuron’s transform function. For example, if neurons are only approximately ReLU the
theory developed in 131 still holds (at the behaviorally relevant timescales). More generally, when reconstructing
computational system dynamics to understand how cognitive functions are implemented in the brain, our theory
shows that small deviations in the identified system can still lead to behaviorally equivalent models for neural
computation 4.
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S5 Near Perfect Analog Memory Systems are close to Continuous Attractors
We will give some clarifications and proofs of the claims on systems near perfect analog memory systems.

S5.1 Revival of the continuous attractor from a slow manifold
We provide a proof of Prop. 1 which is dependent on the ϵ-Neighborhood Theorem**, which we state here.

Theorem 5 (ϵ-Neighborhood Theorem 132). Let Y ⊆ Rn be a smooth, compact manifold. Then for a small
enough ϵ > 0, each w ∈ Yϵ := {w ∈ Rn | ∃y ∈ Y : ∥y − w∥ < ϵ} has a unique closest point in Y , denoted
π(w). Moreover, π : Yϵ → Y is a submersion with π|Y = id.

We now prove Prop. 1.

Proof. It is sufficient to show that there is a perturbation p that has zero flow off ofMϵ but for which f +p = 0
onMϵ for the full system f as defined in Eq. 2. Define

p(x) =

∫
Mϵ

−δ(x− y)f(y)dy,

with the Dirac delta function δ(x) = δ(x1)δ(x2) . . . δ(xd). It is then easy to check that f(x) + p(x) = 0
for all x ∈ Mϵ and f(x) + p(x) = f(x) for all x ̸∈ Mϵ. Hence, we have a continuous attractor atMϵ. If
smoothness is important, we can construct the following perturbation. From the ϵ-Neighborhood Theorem 133,
we get that there exists a smooth positive function δ :Mϵ → R+, such that if we let Nδ be the δ-neighborhood
ofMϵ,

Mϵ := {y ∈ Rn : |y − x| < δ(x) for some x ∈Mϵ},
then each y ∈ Nδ possesses a unique closest point πδ(y) in Mϵ with the map πδ : Mδ → Mϵ being a
submersion.

We can then define a bump function

ψ(y) =

{
exp

(
− 1

1−(πδ(y)−y)2

)
if y ∈ (−δ − πδ(y), δ − πδ(y))

0 otherwise
(40)

Then the perturbation
p(y) = −ψ(y)f(πδ(y))

is smooth and creates a continuous attractor atMϵ.

S5.2 Output mapping
This paper focuses on a linear output mapping for simplicity. Errors can be minimized with a nonlinear mapping,
if there is an output that is mapped off of the output manifold, we can always adjust the output mapping to
correct for this, if the space of output mappings is general enough. However, this can only be applied for
errors off of the output manifold. If there is memory degradation along the output manifold, it is not possible
to choose another mapping that corrects for this error. Therefore, we choose a linear output mapping for our
analysis. In some cases, linear output mappings are found to support neural computation, for example for motion
direction-discrimination 134.

S5.3 Approximate solutions to an analog working memory problem
We will now discuss the conditions for when approximate solutions to an analog working memory problem are
near a continuous attractor. We consider approximate solutions to an analog working memory problem to be
systems of the form 61 or 64 (in both cases following a linear decoder), which have a small memory error over
time in output space.

S5.3.1 Robustness

Noise, practically defined as unpredictable components of the system’s behavior, comes from many sources. The
concept of S- and D-type noise is based on 19.

S-type robustness S-type noise encapsulates reversible changes in the neural state such that the deterministic
part of the dynamics itself remains unchanged. Neural dynamics must be robust to perturbations and stimuli that
push the neuronal activity away from the continuous attractor 135.

**Not to be confused with the perturbation parameter ϵ.
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D-type robustness D-type noise, in the space of recurrent network dynamics parameterized by the synaptic
weights. This corresponds to slight changes to the ODE, i.e. perturbations. Previously, it robustness to D-type
noise was considered to correspond to structurally stability 19.

Here we shortly discuss what we consider to be a necessary and sufficient condition for D-type robustness. We
can use the concept of Lipschitz persistence to define D-type robustness. Mañe showed that if an invariant
manifold is Lipschitz persistent then it must be normally hyperbolic 136. To understand the concept of Lipschitz
persistence, we need to define the Lipschitz section and Lipschitz constant.

Definition 4. Let M be a C∞ boundaryless manifold and V ⊂M a C1 compact boundaryless submanifold.
Assume that M is a submanifold of Rn. Let NV be a C1 subbundle of TM |V satisfying TV ⊕NV = TM |V .
If η is a section of NV , define the Lipschitz constant of η by

Lip(η) = sup

{
∥η(x)− η(y)∥
∥x− y∥ | x, y ∈ V, x ̸= y

}
.

We say that η is a Lipschitz section if Lip(η) < +∞. Let ΓL(NV ) be the space of Lipschitz sections of NV
endowed with the norm

∥η∥L = sup {∥η(x)∥ | x ∈ V }+ Lip(η).

Let Diff1(M) be the space of C1 diffeomorphisms with the topology of the C1 convergence on compact subsets.

Definition 5. Let f ∈ Diff1(M). We say that V is a Lipschitz persistent invariant manifold of f if there exists
a neighborhood U of V such that for all δ > 0 there exists a neighborhood Uδ of f such that if g ∈ Uδ there
exists η ∈ ΓL(NV ) with ∥η∥L < δ satisfying Vg = graph(η), where graph(η) = {expx(η(x)) | x ∈ V },
Vg = g(U).

Observe that this definition implies Vf = V , hence f(V ) = V . Moreover, the Lipschitz persistence is
independent of the bundle NV .

For a flow φt (coming from the solutions of an ODE) we can fix t = τ ∈ R>0 so that we get a homeomorphism
φτ . This allows us to apply this result to apply to our case.

In the case where V is a point, then it is a hyperbolic fixed point and the persistence follows trivially from the
implicit function theorem.
Remark 1. It is sufficient to take a persistent manifold that is uniformly locally maximal. If V is persistent and
uniformly locally maximal, then V has to be normally hyperbolic 136.

Definition 6 (Uniformly locally maximal). There exist neighborhoods U of V in M and U of f in the space
Diff1(M) of C1-diffeomorphisms of M , such that for any g ∈ U , Ng =

⋂
k∈Z g

k(U) is a C1-submanifold
close to V , with Nf = N . The latter property implies the uniqueness of the invariant submanifold.

S5.4 Near Perfect Analog Memory Systems are close to Decomposable Systems with a
Continuous Attractor

We now prove a more general statement about the kind of systems that are close to perfect analog memory
systems. The theory guarantees that a system that satisfies conditions (C1)-(C4) will have a continuous attractor
in the following sense. For such a system there exists a decomposition such that the system can be effectively
decomposed into a continuous attractor (attractive invariant manifold with zero flow) and a component on which
a (possibly “fast” flow) can exist buy which get quenched by the out put projection. These additional dynamics
orthogonal to decoding have been observed for motor movement preparation 137,138.

For this part of the theory, we need to consider the output manifoldMoutput, the manifold on which we determine
the error over time as in Sec. S6. For this section, we will consider the output mapping to be a smooth (possibly
nonlinear) mapping g : X → Y between the neural state space X = RdX and the output space Y = RdY . For
a circular variable this will be the ring S1.

The construction of a perturbation relies on finding the necessary minimal structure in the invariant manifold
for which we can guarantee closeness to a continuous attractor. Therefore, first of all, we need this closeness
in terms of the geometry of the manifold, which we guarantee through the notion of a fibration of the output
mapping. Second, we need to guarantee that the flow is bounded in a sense so that our perturbation is also
bounded by this amount. We will characterize this by the vector field normal to the fibers of the fiber bundle. A
fiber bundle is a mathematical structure that allows us to study spaces that are locally like a product space but
globally may have a different structure. So we first state the definition of a fiber bundle and a trivial fibration.

Definition 7. A fiber bundle is a structure (E,B, π, F ) where:

• E is the total space,

• B is the base space,

• π : E → B is a continuous surjection called the projection map, and
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• F is a topological space called the fiber.

This structure must satisfy the local triviality condition: for each b ∈ B, there exists an open neighborhood U of
b such that there is a homeomorphism

φ : π−1(Ub)→ Ub × Fb

that commutes with the projection onto U , meaning that the following diagram commutes:

π−1(Ub) Ub × Fb

Ub Ub

φ

π pr1

id

where pr1 : Ub × Fb → Ub is the projection onto the first factor.

So, around every point in the base space, you can “zoom in” and see that the bundle looks like a straightforward
product of the base space and the fiber and φ is providing this trivialization.

Definition 8. We say that a projection map π : E → B is locally trivial if each point b ∈ B is contained in an
open set U having the property that EU := π−1(U) is trivial over U .

We will rely on the concept of a submersion to characterize how the output space needs to relate to our invariant
manifold.

Definition 9 (Submersion). Let M and N be differentiable manifolds and f : M → N be a differentiable map
between them. The map f is a submersion at a point p ∈ M if its differential Dfp : TpM → Tf(p)N is a
surjective linear map.

This allows us to characterize what kind of structure the invariant manifold needs to have, namely it can be see
as the direct product of the output manifold and some other manifold which described over what part of the
invariant manifold the output mapping is invariant.

Theorem 6 (Ehresmann’s lemma 139). If a smooth mapping f : M → N , whereM andN are smooth manifolds,
is

1. a surjective submersion, and

2. a proper map

then it is a locally trivial fibration.

Remark 2. If a manifold M is compact, then the above smooth map is a proper map. If we do not have a
submersion or that the output mapping is transversal to the output manifold, we have a situation in which the
flow on the invariant manifold can be arbitrarily fast (even though memory is degrading slowly). This happens
when the flow is in a singularity of the output mapping.

For our statement we want that the invariant manifold can be decomposed into a space that is diffeomorphic
to the output manifold and another compact manifold: Mϵ =Mslow ×Mnull withMslow ≃ MY . We can
relax this to allow for the possibility of some torsion along the invariant manifold. For this to hold, it is sufficient
that the output mapping must be a submersion because this makes it a locally trivial fibration. So we get that
g : X → Y defines a locally trivial fiber mapping.

The second assumption we need is to have a bound for the speed of trajectories along the fibers, which will
correspond to a speed along the output manifold, resulting in memory degradation. We need to assume that there
is a slow flow (in the direction ofMslow). We characterize the relevant maximal size of the vector field that
needs to be perturbed as the supremum over the uniform norms of the vector field normal to the fibers of the
fiber bundle.

Theorem 7. LetMϵ be a connected, compact, normally hyperbolic slow manifold (as parametrized by Eq. (3)-
(4)) with the real part of the eigenvalues of ∇zh all negative. Further, assume that this manifold can be
decomposedMϵ =Mslow ×Mnull withMslow ≃MY and that the uniform norm of the flow tangent toMϵ

restricted toMslow be ∥ ˙(y)slow∥∞ = η. Then, there exists a perturbation with uniform norm at most η that
induces a bifurcation to a system that is decomposable into a continuous attractor and a system with a non-zero
flow.

In other words, after applying this perturbation, the slow component of the perturbed system satisfies ẋ′|slow = 0
for the system ẋ′ = f(x) + p(x). Furthermore, the trajectories of the resulting system form a fiber bundle
where the output projection serves as the bundle projection. Each fiber consists of trajectories that are mapped to
the same value inMoutput, meaning that the fibers describe an invariance under the output projection.
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Proof. Assume that the output mapping is a submersion from the invariant manifold Mϵ to the output
manifold Moutput. Ehresmann’s lemma implies that this implies that we have a locally trivial fibration
(Mϵ,Moutput, g,Mnull). We construct the perturbation p as the part of the vector field that us normal to
the fibers g−1(y) for each y ∈ Moutput. By construction, this perturbation has uniform norm at most η. This
perturbation makes the vector field normal to each fiber zero. That implies that each fiber is an invariant
submanifold ofMϵ. From the structure of the fiber bundle it follows that there is a continuum of such invariant
submanifolds. Hence, the perturbed system is decomposable into a system that is a continuous attractor and a
system with a non-zero flow.

Remark This perturbation can be made smoothness, along similar lines as above. We can take aϵ-
Neighborhood around the invariant manifold on which we extend the above vector field with bump functions to
get a smooth vector field that still results in an attractive invariant manifold.

Example An example of an approximate continuous attractor solution of the form with a decomposable
system of which one of the subsystems is close to a continuous attractor is the torus solution in Fig. 4D. In this
case, the system can be perturbed slightly such that there exists a continuum of limit cycles laid out over a ring.
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S6 Upper bound for the memory performance on a short time scale
We will now formalize the statement about an upper bound dependent on the uniform norm of the vector field on
the slow manifold in Sec.3.2 and provide a proof.

Proposition 2. LetM be a normally hyperbolic slow manifold as in Prop. 3.2. Let x0 ∈ M, and φ = f |M
be the flow restricted to the manifold. The average deviation from the initial memory x0 over time is bounded
linearly

1

volM

∫
M
|x(t,x0)− x0| dx0 ≤ t ∥φ∥∞ . (41)

Proof. Numerical integration of the ODE gives

x(t,x0) =

∫ t

0

φ(x(τ))dτ + x0

≤
∫ t

0

∥φ∥∞dτ + x0

= t∥φ∥∞ + x0

From this, we get

1

volM

∫
M
|x(t,x0)− x0|dx0 ≤

1

volM

∫
M
t∥φ∥∞

= t ∥φ∥∞ .

We formulate here a theory of continuous attractor approximations in terms of memory loss over time. It can be
used uniform norm of vector field on the manifold to bound the memory performance on the short-time scale.
Let x0 ∈M, and φ = p|M be the flow restricted to the manifold. We will show that the average deviation from
the initial memory x0 over time is bounded linearly as in Eq. 5.

S6.1 Ring attractor
For a ring attractor we can give more tight bounds on the accumulated error for the angular memory. Suppose
we have a dynamical system x ∈ RN with autonomous dynamics ẋ = Fθ(x) and solutions x(t,x0) uniquely
defined for each x0. Let us define the error (i.e. the average deviation from the initial memory) for an attractor as

L(T ) := 1

volM

∫
M
|x(t,x0)− x0|dx0 (42)

If we further assume that the memory is not simply the state of the network, we need to take into consideration a
decoder of the memory. Suppose that there is an invertible decoder mapping f : U → RN . For a ring variable,
we can take this to be the projection onto the plane Wout and then applying the arctan:

g(x) = arctan(Woutx). (43)

In the case of the ring attractor, the memory we would like to encode is α ∈ U = [0, 2π), the error is defined as
|x− y|o = oπ(|x− y|) where:

oπ(x) =

{
x if x < π

2π − x if x ≥ π
(44)

If we call α̂θ(α0, t) = g(φθ(f(α), t)) we get the expression of the memory loss for this kind of memory as:

L(T ) = 1

2π

∫ 2π

0

(|α̂θ(α0, t)− α0|) dα0 (45)

General bounds Define the following functions:

ϵ+(t) = sup
α0

oπ (|α̂θ(α0, t)− α0|) ≥
1

2π

∫ 2π

0

oπ (|α̂θ(α0, t)− α0|)

ϵm(t) =
1

2π

∫ 2π

0

oπ (|α̂θ(α0, t)− α0|) dα0

ϵ−(t) = inf
α0

oπ (|α̂θ(α0, t)− α0|) ≤
1

2π

∫ 2π

0

oπ (|α̂θ(α0, t)− α0|)

(46)

34



Then we get the bounds for the loss L(T ) as:

1

T

∫ T

0

ϵ−(t)dt ≤ L(T ) = 1

T

∫ T

0

ϵm(t)dt ≤ 1

T

∫ T

0

ϵ+(t)dt (47)

Speed bounds

We can define the maximum, average and minimum memory error speed as:

vϵ+ = sup
α0

d

dt
(oπ (|α̂θ(α0, t)− α0|))|t=0

vϵm =
1

2π

∫ 2π

0

d

dt
(oπ (|α̂θ(α0, t)− α0|))|t=0dα0

vϵ− = inf
α0

d

dt
(oπ (|α̂θ(α0, t)− α0|))|t=0

(48)

Notice then that since:
ϵ+(t) ≤ min(tvϵ+ , π)

ϵ−(t) ≥ tvϵ−
(49)

then,
1

T

∫ T

0

ϵ+(t)dt ≤ min

(
1

T

∫ T

0

tvϵ+dt, π

)
= min

(
Tvϵ+

2
, π

)
1

T

∫ T

0

ϵ−(t)dt ≥ 1

T

∫ T

0

tvϵ−dt =
Tvϵ−

2

(50)

and we get:

Tvϵ−

2
≤ 1

T

∫ T

0

ϵ−(t)dt ≤ L(T ) = 1

T

∫ T

0

ϵm(t)dt ≤ 1

T

∫ T

0

ϵ+(t)dt ≤ min

(
Tvϵ+

2
, π

)
(51)

Finally, if the error is uniform enough we can expect ϵm(t) ≈ tvϵm and

L(T ) = 1

T

∫ T

0

ϵm(t)dt ≈ 1

T

∫ T

0

tvϵmdt =
Tvϵm

2
(52)

Within manifold case Let’s assume that we have managed the system Fθ have a slow manifoldM∈ RN

in bijection with U , i.e. f |M is not a mapping but a bijective function and:

∀x ∈M ẋ = ϵθ(x)
∂f
∂α

(f−1(x))

|| ∂f
∂α

(f−1(x))||
(53)

Then we have a slow manifold in the form of a ring attractor, we have f(0) = f(2π) and:

α̂θ(α0, t) =

(
α0 +

∫ t

0

ϵθ(α0, s)ds

)
mod 2π (54)

Then:

α̂θ(α0, t) = oπ

(∣∣∣∣(α0 +

∫ t

0

ϵθ(α0, s)ds

)
mod 2π − α0

∣∣∣∣)
= oπ

(∣∣∣∣(α0 +

∫ t

0

ϵθ(α0, s)ds

)
mod 2π − α0 mod 2π

∣∣∣∣)
= oπ

(∣∣∣∣∫ t

0

ϵθ(α0, s)ds mod 2π

∣∣∣∣)
(55)

where we used that α0 ∈ [0, 2π) ⇒ α0 = α0 mod 2π and that |x mod 2π − y mod 2π| = |(x − y)
mod 2π|.

The final equation of the loss in this case has the form:

L(T ) = 1

2π

∫ 2π

0

1

T

∫ T

0

oπ

(∣∣∣∣∫ t

0

ϵθ(α0, s)ds mod 2π

∣∣∣∣) dtdα0. (56)

Slow manifold bounds

In this case, if we have N fixed points in the ring-like slow manifold, we know that:

ϵ+(t) ≤ min

(
2π

N
, π

)
, (57)

and therefore:

L(T ) ≤ min

(
2π

N
, π

)
. (58)
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S7 Slow manifold in trained RNNs
We will provide a detailed description of the tasks, architectures, training methods, and analysis techniques used
in our numerical experiments with trained RNNs.

S7.1 Tasks

Memory guided saccade task The total time length of a trial is 512 steps. The time delay to the output
cue was sampled from

Tdelay ∼ U(50, 400). (59)

We applied a mask mi,t = 0 for 5 time steps (t = Tdelay + j for j = 0, . . . 4) after the go cue (Eq. 65).

Angular velocity integration task The time length of a trial is 256 steps. The input is an angular velocity
and the target output is the sine and cosine of the integrated angular velocity. Velocity at every timestep is
sampled from as a Gaussian Process (GP) for smooth movement trajectories, consistent with the observed animal
behavior in flies and rodents.

k(x, y) = exp

(
−∥x− y∥

2ℓ2

)
, (60)

with length scale ℓ. The length scale of the kernel was fixed at 1.
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Figure S14: Description of the angular velocity integration task. (A) The angular velocity integration
task. (B) The output of the angular velocity integration in the output space, color coded according to
the integrated angle. An example of an input is shown with constant velocity and it is provided until
one turn is completed.

Double angular velocity integration task The Double Angular Velocity Integration Task is an extension
of the Angular Velocity Integration Task, where two independent instances of the task are performed simulta-
neously. In this case, you have two separate angular velocities, each sampled from its own Gaussian Process,
representing two distinct movement trajectories. For each of the two angular velocities, the integration over time
is performed separately, resulting in two sets of outputs: one for each angular velocity, making the output space
four dimensional.

Grid cells are known to exhibit periodic firing patterns that form a hexagonal grid across an environment, and
these patterns are often modeled as existing on a toroidal surface (a doughnut-shaped surface) 140. The reason for
this is that the activity patterns of grid cells are continuous and wrap around seamlessly, meaning that if you move
far enough in one direction, the grid pattern will repeat itself. This toroidal structure allows for the continuous
representation of space without boundaries, which is crucial for efficient path integration. In the context of the
Double Angular Velocity Integration Task, where two independent angular velocities are integrated, the resulting
four-dimensional output space can be considered as two 2D subspaces (one for each angular velocity).

Unbounded tasks Regarding tasks with an unbounded range, such as navigation tasks, two points bear
mentioning. For planar attractors are diffeomorphic to R2, note that they do not conform to the assumptions on
normally hyperbolic invariant manifolds, since R2 is not compact. There are suitable generalizations of this
theory to noncompact manifolds 74, but we do not pursue them since they require more refined tools, which
would only obscure the point that we are trying to make. Tangentially, we would also like to point out that we
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assume that neural dynamics are naturally bounded (e.g. by energy constraints) and hence sufficiently well
described by compact invariant manifolds.

S7.2 Output projection of the invariant manifold
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Figure S15: Output projection of slow manifold approximation of the trained networks of Fig. 4. All
stability strutures are colored according to the decoded angle shown in Fig. S14B, target output circle
shown in red. (A) An example fixed-point type solution to the memory-guided saccade task (Fig. 4B).
(B) An example of a found solution to the angular velocity integration task (Fig. 4C). (C) An example
slow-torus type solution to the memory-guided saccade task. The colored curves indicate stable limit
cycles of the system (Fig. 4D).

The output projection of the invariant manifolds and stability structures (fixed points and limit cycles) is very
close to the target output circle, as shown in Fig. S15.

S7.3 Discretization
Computational neuroscientists often train RNNs as models of neural computation and interpret them as dynamical
systems 36,87,101. Our experiments connect to existing literature. We examined vanilla continuous-time RNNs for
this work. The time-discretized version of RNN network activity is given by

xt = ϕ(WinIt +Wxt−1 + b) + ζt

yt = Woutxt + bout
(61)

where xt ∈ Rd is the hidden state, yt is the readout, It ∈ RK is the input, ϕ : R → R is an activation
function that acts on each of the hidden dimensions, ζt

iid∼ N (0, σ2 = 1/100I) is a state noise variable, and
W,b,Win,Wout,bout are parameters. We will shortly explain the discretization procedure, i.e., the steps for
going from Eq. 64 to Eq. 61. Let tn = n∆t.

The Euler-Maruyama method for a stochastic differential equation (Eq. 64)

dx = (−x+ ϕWinI(t) +Wx+ b)) dt+ σdWt

is given by :
xn+1 = xn + (−xn + ϕ(WinIn +Wxn + b))∆t+ σ∆Wn,

with ∆Wn =W(n+1)∆t −Wn∆t ∼ N (0,∆t).

Now subsitute ∆t = 1:

xt+1 = xt + (−xt + ϕ(WinIt +Wxt + b)) + σ∆Wt, (62)
= ϕ(WinIt +Wxt + b) + σ∆Wt. (63)

If we introduce the noise term ζt = σ∆Wt, which represents the discrete-time noise, we have derived the
discrete-time equation:

xt = ϕ(WinIt +Wxt−1 + b) + ζt.

So, assuming Euler-Maruyama integration with unit time step, the discrete-time RNN of (61) corresponds to the
stochastic differential equation:

dx = −xdt+ ϕ(WinI(t) +Wx+ b) dt+ σ dW. (64)

where dW is a Wiener process that models the intrinsic state noise in the brain. See for more detail on
correspondences between discrete- and continuous-time RNNs in 141 and 142. Our experiments connect to existing
literature. In future studies, it would be interesting to perform experiments with Neural SDEs 143
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S7.4 Network architectures
In all network architectures a linear output is used. Furthermore, for the angular velocity integration tasks we
used an additional mapping from the output to the hidden layer to initialize the hidden state on the initial position
along the ring from which the network needed to integrate from.

Vanilla We used vanilla RNNs with different nonlinearities (ReLU, tanh and rectified tanh) for the recurrent
layer.

LSTM The number of units for the trained LSTMs was half of that of vanilla RNNs to match the number of
paramters 144.

GRU We also trained Gated Recurrent Units (GRU) 145 for which we used the same number of hidden units
as the vanilla RNNs.

S7.5 Training methods

We trained RNNs with PyTorch 146 on the three tasks Fig. S14. For the vanilla RNNs, we used a time step of
∆t = 0.1. The parameters were initialized were initialized using the Xavier normal distribution 147. For the
recurrent weights we used Wij ∼ N (0, g/

√
N) with a high gain g = 1.5. The initial hidden state was initialized

using the output to recurrent mapping matrix Wotr : R2 → RN which was trained together with the other
parameters.

Adam optimization with β1 = 0.9 and β2 = 0.999 was employed with a batch size of 64 and training was run
for 5000 gradient updates. The batches were generated on-line, similar to how animals are trained with a new
trial instead of iterating through a dataset of trials.

The best learning rate 10−2 was chosen from a set of values {10−2, 10−3, 10−4, 10−5} by 5 initial runs for all
nonlinearity and size pairings with the lowest average loss after 100 gradient steps. Training a single network
took around 10 minutes on a CPU and occupied 10 percent of an 8GB RAM.

We numerically minimized the loss L which was the mean squared error (MSE) between the network output
y(t) and the target output ˆy(t):

LMSE := ⟨mi,t(yi,t − ŷi,t)2⟩i,t, (65)
with a mask mi,t with i the index of the output units and t the index for time. We implemented a mask, mi,t, for
modulating the loss with respect to certain time intervals for the memory guided saccade task (see Sec. S7.1).

Although some of the models did not learn the task, most networks converged to a loss below 10−2 (Fig. S16).
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Figure S16: Training loss across gradient steps.
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S7.6 RNN analysis methods

S7.6.1 Evaluation Metric

After training, we report the normalized mean squared error (NMSE) to asses the how good a found solution is:

NMSE =
E[(y − ŷ)2]

E[y]
, (66)

where y is the target and ŷ is the prediction.

S7.6.2 Asymptotic behavior and memory capacity

We determine the location of the fixed points through the local flow direction criterion as described in Sec. 4.2
and determine the basin of attraction

Basin(x∗) := {x ∈M | lim
t→∞

φ(t, x) = {x∗}}. (67)

through assesing the local flow direction for 1024 sample points in the found invariant manifold.

We construct a probability distribution of what part of state space we end up in an infinite time through the
calculation of the size of the basins of attraction of stable fixed points as a proportion of the ring. We characterize
the memory capacity of the network by calculating the entropy of this probability distribution of the network.

This follows from the following observation. If we assume that the angular variable that needs to be encoded X
is uniformly distributed and the encoding Y is distributed according to the histogram given by the asymptotic
behavior of the networks (i.e., the fixed points), then the memory capacity as the negative conditional entropy of
the continuous memory given the asymptotic state, i.e.,

−H(X|Y ) =
∑
y∈Y

p(y)

∫
x∈Basin(y)

p(x|y) log p(x|y) =
∑
y∈Y

vol Basin(y) log(vol Basin(y)). (68)

S7.6.3 Fast-slow decomposition

We simulated 1024 trajectories without noise with inputs from the task and let the networks evolve for 16 times
the task definition lengths. We took the cutoff to identify the slow manifold to be 10−3 of the highest speed
along each trajectory. We believe that this guarantees the identification of the slow manifold in a system that has
a fast-slow decomposition. We sampled 1024 points from these points to fit a periodic, cubic spline (black line
in Fig. 4, S19, S20).

Finding fixed points We then find fixed points by identifying where the flow reverses by sampling the
direction of the local flow for 1024 sample points along the found invariant manifold. We assess the direction
through projection onto the output mapping and calculate the angular flow. If the flow is pointing towards a
point where the flow reverses then we consider there to be a stable fixed point. If the flow s pointing away from a
reversal point then we consider the fixed point there to be a saddle. We find that long integrated trajectories of
the network converge to the found stable fixed points through this independent method.

Eigenspectrum along the invariant manifold We use the eigenvalue spectrum as evidence for normal
hyperbolicity. Normal hyperbolicity of an attractive ring invariant manifold implies that the eigenvalue spectrum
has a gap in its eigenvalue spectrum. To measure this, we linearize at reference points on the invariant manifold
(calculate the Jacobian) and calculate the eigenvalues. The largest eigenvalue (real part) for such a manifold needs
to be much closer to zero than the second largest. For LSTMs and GRUs the eigenspectrum was approximated
by autodifferentiation of the networks w.r.t. the states on the identified invariant manifold.

For a stable system, where the eigenvalues have negative real parts, the time constant τ is given by the negative
inverse of the eigenvalue’s real part: τ = − 1

ℜ(λ)
, where ℜ(λ) denotes the real part of the eigenvalue λ. For the

two example networks in Fig.4, there is a time scale separation between the dynamics on and off the invariant
manifold because there is only one eigenvalue close to zero.

Vector field on invariant manifold We assess the vector field for the ODE (Eq. 64) without noise and
input) on the found invariant manifoldM by calculating it in the state space and then projecting it onto the
output space:

α̇ = Woutf(α̂) (69)
for sampled points α̂ ∈ M. These points α̂ ∈ M on the manifold are associated with the points on the ring
through the mapping α = Woutα̂.

This vector field in the output space captures in what direction and how quickly angular memory will decay. The
vector field suggests that the system indeed has an invariant manifold (Fig. S17). Furthermore, the vector field
and fixed points are consistent with each other, as the vector field flips direction around found fixed points.
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Figure S17: The projected vector field on the found invariant manifold for the system Fig 4C. (A) The
found vector field aligns well with the ring in the projected output space. (B) The norm of the vector
field is low around found fixed points as expected, but is higher for points that are just slow points.

There are some inconsistencies around saddle nodes, where the vector field seems to point off of the manifold.
This is probably just inaccuracies coming from numerically calculating the vector field and the exact location of
the invariant manifold. For the bound discussed in Sec. 3.2, we calculate the uniform norm of the found vector
field

∥f∥∞ = sup
α

Woutf(α), (70)

see also Sec. S6.

For LSTMs and GRUs the vector field was approximated by taking the difference the initial and the next state
after initializing the network from states on the identified invariant manifold.
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S7.7 LSTM and GRU results
The trained LSTMs and GRUs share the same pattern observed in the trained vanilla RNNs: a ring slow invariant
manifold (Fig. S18C and D). The fixed point topologies in the LSTM and GRU networks show a lot of variation
in the number of fixed points, paralleling the systems adjacent to continuous attractors from Fig. 1, as seen
in Figure 5D. These variations are similar to those discussed in Figures S18B. Additionally, the angular error
and memory capacity measures across different time scales are comparable to those illustrated in Figure S18A,
highlighting the generalization properties influenced by the topology of the solutions. These results underline
the universality of our findings beyond vanilla RNNs.
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Figure S18: The different measures for memory capacity reflect the generalization properties implied
by the topology of the found solution. (A) The average accumulated angular error vs. the uniform
norm on the vector field shown. Angular error at T1 = trial length (filled markers) and limT1 →∞
(hollow markers). Points are jittered to aid legibility. (B) The number of fixed points vs. average
accumulated angular error, with the average distance between neighboring fixed points (magenta).
(C,D) Invariant manifold (black) of a trained LSTM (C) and GRU (D) with stable fixed points (green)
and saddle nodes (red).
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S7.8 Identified invariant manifold output projections
The identified invariant manifolds in the trained networks (Fig. S19 and Fig. S20). However, not all solutions
can be meaningfully analyzed with the slow-fast decomposition method. For example, the solution at the center
of the tanh, N = 256 block, the found invariant manifold is not correctly captured. This is true for the networks
that have not learned the task correctly (networks with a NMSE higher than -20dB).

64
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8
25

6

ReLU tanh rectified tanh

Figure S19: Representative identified invariant manifolds (projected onto the output space, in black)
with the fixed points (cyan for stable, orange for saddle and black for unstable). The reference target
ring is shown in grey.
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Figure S20: The identified invariant manifolds with the fixed points (cyan for stable, orange for
saddle and black for unstable) for all inferred networks (except the ones in Fig S19).
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S7.9 Double angular integration task
The analysis of networks trained on the double angular velocity integration task indicates a torus shaped invariant
slow manifold as predicted by our theory (Fig.S21A and B). Furthermore, the angular memory error (measured
as the sum of the two separate angular errors) of the trained networks show the same conformity to the theoretical
bound as defined by the uniform norm of the vector field on the identified invariant manifold. These results
underline the universality of our findings beyond 1D tasks.
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Figure S21: Networks trained on a double angular velocity integration task. (A) Initializations (blue)
and fixed points (orange) of an example network. (B) Fixed points on a 2D parametrization of
the torus for the example network. (C) The sum of the total mean angular error (sum of the two
seperate angular errors over the two rings) is bounded by the uniform norm of the vector field. (D)
Generalization for longer memory depends on the number of fixed points in the network.

Two dimensional attractors have been proposed to simultaneously represent heading direction and uncertainty of
it 82,148.

S7.9.1 Methods

Fixed point search In our study, we implemented a method to analyze the convergence and uniqueness of
fixed points within our data. Specifically, we considered a convergence threshold of 10−4, meaning that the
iterative process was halted when the change in the solution between consecutive iterations fell below this value,
indicating convergence. Additionally, to assess the uniqueness of the fixed points, we applied a broader threshold
of 10−2, ensuring that any fixed points identified within this margin were considered distinct.

Double Mean Angular Error The Mean Angular Error (MAE) was computed as the sum of the individual
angular errors observed in the data. This measure provides an aggregate view of the angular errors for the two
separate subtasks.

Uniform Norm of the (Projected) Vector Field To evaluate the uniform norm of the (projected) vector
field, we calculated the sum of the individual uniform norms of the vector field components.
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S7.10 Comparison to other methods

Fixed point analysis 87 and 149 are primarily concerned with a pointwise definition of slowness, by compari-
son normal hyperbolicity requires a uniform separation of timescales over the entire invariant manifold. In 87, it
was observed that structural perturbations (random gaussian noise in the parameters with zero mean and standard
deviation) still leads to the same approximate plane attractor dynamical structure is still in place, however no
explanation is provided for these observations. Our theory can explain why perturbations to the trained RNN.
The Persistence Manifold Theorem (Theorem 1) guarantees that for small perturbations (of size ϵ) the persistent
invariant manifold will be at the approximate same place (it will be at a distance of order O(ϵ)).

Piecewise linear recurrent neural network 37 identifies asymptotic behaviors in dynamical systems,
fixed point dynamics and more general cases cycles and chaos. We look beyond asymptotic behavior and
characterize attractive invariant manifolds, thereby also identifying connecting orbits (or heteroclinic orbits)
between fixed points. Although we developed new analysis methods for dynamical systems to find slow
manifolds in them, we do not propose a new general framework for analysis of all dynamical systems. Finally, 37

provides analysis tools for Piecewise-Linear Dynamical Systems, while our methods are generally applicable to
RNNs with any activation function.

45



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
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Justification: The paper does not use any data from human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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