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ABSTRACT

Continual learning (CL) has traditionally focused on minimizing exemplar memory,
a constraint often misaligned with modern systems where GPU time, not storage,
is the primary bottleneck. This paper challenges this paradigm by investigating
a more realistic regime: one where memory is abundant enough to mitigate for-
getting, but full retraining from scratch remains prohibitively expensive. In this
practical "middle ground", we find that the core challenge shifts from stability to
plasticity, as models become biased toward prior tasks and struggle to learn new
ones. Conversely, improved stability allows simple replay baselines to outperform
the state-of-the-art methods at a fraction of the GPU cost. To address this newly
surfaced trade-off, we propose Weight Space Consolidation, a lightweight method
that combines (1) rank-based parameter resets to restore plasticity with (2) weight
averaging to enhance stability. Validated on both class-incremental learning with
image classifiers and continual instruction tuning with large language models, our
approach outperforms strong baselines while matching the low computational cost
of replay, offering a scalable alternative to expensive full-retraining. These findings
challenge long-standing CL assumptions and establish a new, cost-efficient baseline
for real-world CL systems where exemplar memory is no longer the limiting factor.

1 INTRODUCTION

As machine learning systems are increasingly considered to be deployed in dynamic, real-world
environments, continual learning (CL) has emerged as a critical paradigm for adapting to evolving
data streams without catastrophic forgetting (Wang et al., 2024a). A central challenge in this setting is
the stability–plasticity dilemma (Carpenter & Grossberg, 1987; Mermillod et al., 2013): models that
maintain high stability across prior tasks often fail to incorporate new knowledge (high stability, low
plasticity), while those that remain highly plastic tend to forget earlier information (high plasticity,
low stability). Various CL scenarios have been explored—most notably in class-incremental learning
(class-IL) for image classification (Masana et al., 2022), and more recently in the continual learning of
large language models (LLMs) (Wang et al., 2024a; 2023). Among CL approaches, exemplar-based
methods—which store and replay representative samples from past tasks—have become particularly
popular due to their simplicity and effectiveness (Masana et al., 2022; Zhou et al., 2024; Wang
et al., 2023). However, a notable trend in these methods is the use of highly constrained memory
budgets. For instance, many class-IL benchmarks assume only 20 exemplars per class—roughly
4% of the total training data—are retained across tasks (Rebuffi et al., 2017; Zhou et al., 2024).
Similarly, LLM-focused CL approaches often rely on restricted caches or memory-free mechanisms
to sidestep the issue of long-term storage (Wang et al., 2023). Yet the necessity and realism of such
severe memory constraints remain questionable (Chavan et al., 2023; Yousuf Harun et al., 2023), and
practical solutions to address this gap are still underexplored.

In real-world machine learning deployments, this assumption of severely limited exemplar memory
is often misaligned with practical constraints (Prabhu et al., 2023). Modern storage solutions—such
as cloud-based object stores or local SSDs—are both affordable and scalable. In contrast, GPU time,
especially for training large-scale foundation models (e.g., LLMs), constitutes a significant bottleneck.
For example, an AWS instance with 8 A100 GPUs can cost over $30 per hour, while storing 1TB
of data costs less than $25 per month (Amazon Web Services, 2024). If the primary goal of CL is
to enable efficient model adaptation to non-stationary data without full retraining from scratch (i.e.,
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avoiding expensive joint training), then reducing GPU cost—rather than storage usage—should be
the main optimization objective.

Building on this observation, we revisit the CL setting under more realistic scenarios where exemplar
memory constraints are relaxed. Our analysis reveals a critical trade-off across the memory spectrum:
while traditional memory-constrained setups are often unrealistic and full-data retraining (joint
training) is prohibitively expensive, a practical "middle ground" of abundant-but-not-exhaustive (i.e.,
sufficient) memory regime emerges. It is precisely in this realistic regime that we identify a new
challenge: while stability improves due to reduced forgetting, plasticity diminishes as the model
becomes biased toward prior tasks. This highlights the urgent need for cost-efficient mechanisms that
can restore plasticity without sacrificing stability, a gap our work aims to fill. We further investigate
how this regime affects existing CL methods across two domains: class-IL and continual instruction
tuning of LLMs. In class-IL , we observe that many state-of-the-art methods incur significantly
higher GPU training costs yet offer marginal improvements over naive replay baselines. In continual
instruction tuning, common model merging strategies often suffer from limited plasticity or require
storing a separate model per task, which limits scalability.

These limitations across both domains point to the need for a new approach that is cost-efficient yet
effective under abundant exemplar memory regimes. Motivated by this, we propose Weight Space
Consolidation, a simple yet effective method that operates directly in the model’s weight space. It
combines (1) ranking-based parameter resets, which periodically reset the dormant parameters (mea-
sured via gradient-based signal accumulation) to their pretrained values to restore plasticity, and (2)
weight averaging, which maintains a running average of model weights during training to encourage
convergence toward flatter, more stable optima. By modifying weights, our approach facilitates
fast convergence without additional compute overhead in GPUs. Across class-IL benchmarks and
LLM continual instruction tuning, our method consistently matches or surpasses the performance of
state-of-the-art methods while maintaining training costs comparable to naive replay. These results
demonstrate that, when exemplar memory is no longer the bottleneck, cost-efficient CL is both
achievable and practical. Our contributions are summarized as follows:

• We revisit continual learning under relaxed exemplar memory constraints and show that even naive
replay can achieve strong performance while significantly lowering GPU costs.

• We conduct an extensive analysis across the memory spectrum to reveal the stability-plasticity
trade-off, demonstrating that in the "practical" abundant memory regime, restoring lost plasticity
becomes as critical as preserving stability.

• We propose a lightweight and practical method, Weight Space Consolidation, which combines
ranking-based parameter resets and weight averaging to address the stability–plasticity trade-off.

• We validate our approach across class-IL tasks (e.g., CIFAR-100, ImageNet-100) and LLM contin-
ual instruction tuning (TRACE; Wang et al. (2023)), demonstrating consistent accuracy improve-
ments and 3–4× cost reductions over state-of-the-art methods.

2 RELATED WORKS

Continual learning. Continual learning (CL) has been actively studied in various scenarios and
methodological categories. Among the three scenarios of CL (Van de Ven & Tolias, 2019), class-
incremental learning (class-IL) has been considered the most challenging and has been the most
actively studied scenario (Masana et al., 2022). Generally, CL algorithms (including class-IL) can be
categorized into regularization-based approaches, which penalize changes to important parameters
for past tasks (Kirkpatrick et al., 2017; Aljundi et al., 2018; Cha et al., 2020; Kang et al., 2022),
rehearsal-based approaches, which store and replay exemplars from past tasks (Rebuffi et al., 2017;
Cha et al., 2023), and expansion-based approaches, which expand the model’s capacity to balance the
trade-off between stability and plasticity (Yan et al., 2021; Wang et al., 2022). Additional approaches
focus on addressing classifier bias toward recent tasks while using the exemplars (Wu et al., 2019;
Zhao et al., 2020). While exemplar-based methods have demonstrated state-of-the-art performance,
they typically rely on strict memory constraints, often limiting memory size to a small percentage of
the dataset (Rebuffi et al., 2017; Zhou et al., 2024). Recent studies challenge the necessity of these
strict memory constraints, highlighting that the computational cost of maintaining and processing
memory—especially GPU usage—can far outweigh storage costs (Prabhu et al., 2023; Chavan et al.,
2023; Harun et al., 2023). This shift in perspective opens the door to relaxing memory limits in order
to reduce training costs, which is the focus of our work. Lastly, another line of work solely focuses on
the loss of plasticity in CL (Dohare et al., 2024), where parameter resetting is commonly suggested
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as a solution (Ash & Adams, 2020; Galashov et al., 2024; Wang et al., 2024b; Farias & Jozefiak,
2024). In contrast, we show how both stability and plasticity are issues under realistic CL scenarios.

Weight space operations. A growing body of work has explored directly manipulating model
parameters in weight space across various domains, including domain generalization (Wortsman
et al., 2022; Cho et al., 2025), multi-task learning (Yu et al., 2024; Yang et al., 2023), and continual
learning (Marouf et al., 2025; Marczak et al., 2025; Dziadzio et al., 2024). Most of these approaches
operate as post hoc methods by merging the weights of pretrained models. For instance, TIES (Yadav
et al., 2024) proposes a selective merging strategy to mitigate interference between different tasks,
while Ilharco et al. (Ilharco et al., 2022) demonstrate that simple arithmetic on task-specific weight
deltas can edit models without further training. Building on these ideas, recent studies have extended
weight-space operations to continual learning. Kozal et al. (Kozal et al., 2024) apply weight averaging
techniques in a CL setting, and Marczak et al. (Marczak et al., 2025) introduce a selective merging
approach tailored for continual adaptation. However, such methods typically require storing multiple
full model checkpoints during training, fail in accumulating various task knowledge (Dziadzio et al.,
2024), and more critically, may violate the sequential constraints of CL. In contrast, our method
operates in weight space during training (Izmailov et al., 2018; Jang et al., 2025), requiring neither
multiple model copies nor post hoc merging. This enables cost-effective and online editing of the
model’s parameters while maintaining compatibility with the CL setup.

Table 1: Comparison of continual learning papers
across different criteria.

Paper Constrained
Memory

Abundant
Memory

Full
Memory

Constrained
Computation

Loss of
Plasticity

Catastrophic
Forgetting

Wang et al. (2022) ✓ ✓
Prabhu et al. (2023) ✓ ✓ ✓ ✓
Harun et al. (2023) ✓ ✓ ✓
Chavan et al. (2023) ✓ ✓ ✓

Dohare et al. (2024) ✓ ✓
Galashov et al. (2024) ✓ ✓
Wang et al. (2024b) ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

Positioning. We clarify the positioning of our
work in Table 1. Several recent papers have
sought cost-effective methods for CL (Prabhu
et al., 2023; Harun et al., 2023; Chavan et al.,
2023), but do not expand their study on varying
exemplar memory scenarios (e.g., constrained/
abundant/ full). On the other hand, we enumer-
ate our experiments across scenarios, illuminat-
ing the effect of exemplar memory sizes on the
model’s stability and plasticity. While some
works have already studied the loss of plasticity, they focus on extreme settings (i.e., full memory)
where only plasticity is considered (Dohare et al., 2024), neglecting the issue of forgetting (Galashov
et al., 2024) or failing to consider the computation costs (Wang et al., 2024b). In contrast, we focus
on a realistic setting (i.e., sufficient memory) where both plasticity and stability are considered.

3 MOTIVATION

Notation. We generally follow the setting of continual learning (CL) (Masana et al., 2022; Zhou
et al., 2024). We consider a sequence of T tasks, each associated with distribution Pt. Let Dt be
the training dataset for task t, where Dt ∼ Pt. The tasks are presented in order t = 1, · · · , T . The
model F (its parameters θ) does not retain explicit access to previous task datasets Dj for j < t,
except via an exemplar memory bufferM of a capacity of K. Thus, at the training step of task t, the
model updates its parameters θ using the combined data Dt ∪M1:t−1 and the task-designated loss
ℓ(Dt ∪M1:t−1; θ), whereM1:t−1 includes selected exemplars from earlier tasks.

3.1 DEFINING THE SUFFICIENT EXEMPLAR MEMORY REGIME

Most prior works assume a strictly limited exemplar memory budget, such that K ≪
∑T

t=1 |Dt|.
Under this constraint, the memory bufferM can retain only a small subset of examples from each
past dataset {D1, · · · ,Dt−1}. For instance, common class-IL benchmarks typically allocate only 20
exemplars per class, which corresponds to approximately 4% of the total training data (Rebuffi et al.,
2017; Zhou et al., 2024). As a result, the buffer provides only a partial approximation of the true task
distributions {P1, · · · , Pt−1}, leaving the model vulnerable to catastrophic forgetting.

By contrast, motivated by real-world scenarios where storage cost is relatively low but GPU cost is
high, we re-examine CL in a practical regime with sufficient memory—enough to mitigate forgetting
but where full retraining remains computationally expensive. Therefore, we pursue a practical
“middle ground” of abundant-but-not-exhaustive exemplar memory. We define the memory buffer
M to be sufficient if it can retain enough samples to approximate the distribution of each previous
task Pj for 1 ≤ j < t. Formally, we assume the total memory budget K satisfies K ≈ κ

∑t−1
j=1 |Dj |,
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where κ ∈ (0, 1] determines the fraction of past task data that can be stored. A larger value of κ
implies thatM contains a more representative subset of earlier examples, though not necessarily the
entire datasets. In Section 3.2, we investigate when the exemplar memory size becomes sufficient
by experimenting over various memory settings. Under this sufficient exemplar memory setting, the
mixture distribution Ppast of previously encountered tasks at the training step of task t becomes:

P
(t)
past ≈

∑t−1
j=1 πjPj∑t−1
j=1 πj

, (1)

where πj denotes the relative importance (e.g., proportional to the number of stored samples or task
frequency) of each past task, and Pj represents the corresponding data distribution. In practice, we
approximate πj with its empirical counterpart π̂j , which can be estimated from the samples stored
in the buffer. During training on task t, the aggregated past distribution Ppast is combined with the
current task distribution Pt to form the hybrid training distribution:

P
(t)
train ≈ λPt + (1− λ)P

(t)
past, (2)

where λ ∈ [0, 1] is a factor that balances the influence of the current and previously observed tasks.

In the next section, we analyze how this training distribution under sufficient exemplar memory
influences the model’s learning dynamics, leading to improved stability but degraded plasticity.
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Figure 1: Comparison of (y-axis) average class-incremental accuracy and (x-axis) training time
under different exemplar memory sizes in class-incremental learning for 10-task using CIFAR-100.
As memory increases, catastrophic forgetting is mitigated (i.e., increase in accuracy), but training
time (i.e., computation cost) also grows proportionally. Note that the DER, FOSTER, and MEMO
are expansion-based methods (shown with X mark): FOSTER doubles the model size, while DER
and MEMO scale with the number of tasks. Compared to these costly methods, Replay and Ours
demonstrate high accuracy with significantly lower cost, where our method offers the highest cost
efficiency, closely approaching that of the cost lower-bound cost (i.e., Replay).

3.2 WHAT CHANGES UNDER A SUFFICIENT EXEMPLAR MEMORY REGIME?

Stability. Under sufficient exemplar memory, the distributions of previous tasks can be closely
approximated, which effectively reduces forgetting—that is, improves stability. Specifically, with
a large bufferM, the empirical distributions P̃j of past tasks approximate their true distributions
Pj for j < t. This allows the empirical risk R̃1:t(θ)—computed over the stored exemplars—to
closely approximate the ideal joint risk R1:t(θ) =

∑t
j=1 Ex∼Pj

[ℓ(θ;x)], as if the model were trained
jointly on all tasks. As a result, the learned parameters θ̃∗1:t remain close to the joint optimum θ∗1:t in
parameter space, preserving performance on previous tasks and mitigating catastrophic forgetting.
For the complete derivation of this result, please refer to Appendix A.1.1.

Experimentally, Figure 1 shows that catastrophic forgetting is substantially reduced when exemplar
memory is sufficient (e.g., |M| ≥ 200). Notably, the simplest baseline (i.e., Replay) outperforms
more sophisticated methods while incurring significantly lower training cost (see Figure 1). As a
result, by the end of each task t−1, the model serves both as a strong minimizer for previously learned
tasks 1:t−1 and as a reliable initialization for the upcoming task t.

Plasticity. We find that under this condition, the challenge shifts from stability to plasticity. We
conjecture that as exemplar memory becomes increasingly sufficient, the model’s ability to learn

4
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Figure 2: Comparison of (a) average new-task accuracy under different exemplar memory sizes and
(b) training loss under full memory in class-incremental learning for 10 tasks using CIFAR-100. As
memory increases, the model’s ability to adapt to new tasks declines, resulting in reduced accuracy
and slower convergence. Notably, in (b), resetting model weights before each task restores plasticity
and facilitates training.

new tasks (i.e., plasticity) gradually deteriorates. At task step t, the model is trained on a hybrid
distribution P

(t)
train ≈ λPt+(1−λ)P (t)

past (Eq. 2), where λ ∈ [0, 1] controls the emphasis on the new task.

As memory size increases, λ decreases, causing the past-task distribution P
(t)
past to dominate. When

memory is sufficiently large, P (t)
past closely resembles P (t−1)

train , and thus P (t)
train ≈ P

(t−1)
train . This similarity

results in high gradient alignment (Du et al., 2018), which we quantify via cosine similarity ρt =

⟨ḡ(new)
t , ḡ

(past)
t ⟩/∥ḡ(new)

t ∥∥ḡ(past)
t ∥ (in Eq. 11), where ḡ(new)

t and ḡ(past)
t denote the mean gradients from the new

tasks and past tasks, respectively. When ρt ≈ 1, the expected gradient ḡt = λḡ
(new)
t + (1− λ)ḡ

(past)
t

has a reduced norm, causing smaller updates (Yu et al., 2020):

∥θ(t) − θ(t−1)∥ = η∥ḡt∥ ≤ η∥ḡ(new)
t ∥, (3)

which shrinks further as λ→ 0, where η is the step size. This limits the model’s capacity to adapt, as
it tends to reuse previously learned parameters rather than learning new representations.

Such “parameter reuse" behavior has been observed when two sequential tasks are similar, leading to
minimal drift across tasks (Lee et al., 2022; Dohare et al., 2024), which is a hallmark of low plasticity.
Our interpretation aligns with the stability–plasticity dilemma (Mermillod et al., 2013; Zhang et al.,
2024), where retaining prior knowledge comes at the cost of adapting to new information. It also
corroborates observations from Rolnick et al. (2019), which showed that excessive exemplar memory
can hinder the learning of new tasks. Please refer to Appendix A.1.2 for a more detailed discussion.

Figure 2a compares the model’s average accuracy on new tasks across various CL methods, which
is commonly used to measure the model’s ability to acquire new knowledge (i.e., plasticity) (Liang
& Li, 2023; Wang et al., 2024b). Here, we experimentally confirm that as memory increases, the
model’s plasticity generally degrades, resulting in lower average accuracy on new tasks (also see
Table 6). This aligns with Figure 2b, which depicts the model’s train loss under full exemplar memory.
We can observe here that the large memory interferes with convergence under the CL setting. Notably
in Figure 2b, we find that reinitializing the model parameters before each task (Dohare et al., 2024;
Farias & Jozefiak, 2024) is a simple solution to restoring plasticity, as demonstrated by the low train
loss of the model trained with reset and not continually (Orange) in Figure 2b.

4 WEIGHT SPACE CONSOLIDATION

Based on insights from the previous section, we propose a cost-efficient CL method—Weight Space
Consolidation—that leverages weight space operations (e.g., selective resets and running averages) to
reconcile the trade-offs of the sufficient exemplar memory regime: high stability and low plasticity.

4.1 RANKING-BASED PARAMETER RESET FOR IMPROVED PLASTICITY

The core idea behind our method is that sufficient exemplar memory enables the model to start from
a stable initialization (as discussed in Section 3), but remaining too close to this point can hinder
plasticity. To address this, we introduce a ranking-based reset technique that selectively reinitializes
less important parameters based on their estimated contribution to learning.

5
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Before training on the tth task, the model parameters—optimized on previous tasks 1:t−1—are stored
as θprev (Line 6 in Algorithm 1). Training on the tth task proceeds using the task loss ℓ (Line 9), and
after nwarm warm-up epochs, we identify dormant parameters and gently reset them (Lines 10–11).

To rank parameter importance, we compute a moment-based metric Sl for each parameter ele-
ment l, using the first and second exponential moments of its stochastic gradients (m̂l, v̂l), as in
Adam (Kingma & Ba, 2017):

Sl = |m̂l| · v̂l. (4)
This score favors parameters that consistently receive strong gradients, while penalizing those with
low or noisy updates. Specifically, a large m̂l indicates that the parameter has received gradients in a
consistent direction, while a large v̂l implies that the parameter has experienced high gradient energy
overall. By taking the product of the two, Sl becomes sensitive to both focused and sustained learning
signals. Conversely, a low Sl suggests that the parameter has received weak or noisy gradients,
indicating limited contribution to learning. We treat such parameters as dormant and reinitialize
them to recover plasticity. This formulation provides a simple yet effective heuristic for identifying
underutilized parts of the network based on gradient dynamics during warm-up. In Section 5, we
compare existing methods that use weight resets for plasticity recovery (see Table 5).

In implementation, we retain only the top-Q% of the parameter element l (with Q=20 by default
following (Yadav et al., 2024)), and reset the rest by softly blending them with θprev (Lines 12–13):

θ[l] = α · θ[l] + (1− α) · θprev[l], α = 0.5. (5)

This gently pushes the model out of the previous solution basin to improve plasticity, while preserving
parameters critical to prior tasks—thus maintaining stability.

Notably, this operation resembles model merging in the weight space, where two sets of parameters
are blended. However, unlike conventional model merging approaches that combine multiple trained
models post hoc, our reset mechanism is applied during training, with the explicit goal of restoring
plasticity. In this context, we treat the merged weights not as a final model, but as an improved
initialization point that facilitates adaptation to the new task without sacrificing stability.

4.2 WEIGHT AVERAGING FOR IMPROVED STABILITY

Algorithm 1: Weight Space Consoli-
dation for cost-efficient CL

1. Input: Model parameters θ, training data
D1:t, memory bufferM, average
interval j, warming epoch nwarm

2. Output: Trained model parameters θ
3. for t← 1 to T do
4. Θ← θ // Init. Averaged Model
5. if t > 1 then
6. θprev ← θ

7. for i = 1 : niter do
8. Sample minibatch b from

{Dt ∪ M1:t−1}
9. Update θ using ℓ(b; θ) and SGD

10. if (t > 1 and i = nwarm) then
11. Ireset ←

FindDormantParams(θ, θprev)
12. for l ∈ Ireset do
13. Reset weights using

eq. (5)

14. if (t > 1 and i > nwarm and
i%j=0) then

15. navg ← i/j
16. Θ←

(Θ · navg + θ)/(navg + 1)

17. θ ← Θ

Using the reset model as a fresh starting point, we
resume training θ for the remaining epochs. From this
point on, we accumulate a running weight average
Θ (see Lines 14–16) following the stochastic weight
averaging (SWA) (Izmailov et al., 2018), which is
known to promote convergence to flatter optima. The
running average is updated every j iterations after a
warm-up phase of nwarm steps:

Θ ← navg ·Θ+ θ

navg + 1
, (6)

where navg = i/j and i is the current iteration index.

We find that this averaging is particularly effective
under sufficient exemplar memory settings, where
data diversity introduces significant gradient variance.
After the warm-up phase, the model often oscillates
around multiple distinct low-loss regions due to this
variance. By averaging weights across these regions,
Θ converges to a flatter and more robust minimum
that consolidates knowledge across both past and
current tasks (Izmailov et al., 2018; Cha et al., 2020).

Importantly, our approach differs from traditional
model merging methods in CL, which often combine
independently trained task-specific models to con-
struct a final model (Ilharco et al., 2022). In contrast,
our method performs in-situ averaging during the training of a single model θ, progressively updating
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Θ as a byproduct of the optimization trajectory. This eliminates the need to store and merge multiple
per-task models, improving our method’s cost-efficiency and scalability to longer task sequences.

At the end of training on task t, we replace the model parameters with the averaged weights Θ (see
Line 17), which then serve as a stable initialization for the next task, preserving knowledge while
enabling further adaptation. Please refer to Appendix A.2 for further implementation details.

Summary. Our method combines two simple yet effective weight-space operations to balance the
stability–plasticity trade-off in the sufficient exemplar memory regime: (1) ranking-based resets
recover plasticity by reinitializing dormant parameters, and (2) weight averaging enhances stability
by converging to flat, robust minima. Both are directly motivated by our analysis in Section 3 and
introduce negligible overhead, requiring no storage of per-task models or additional backward passes.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

We evaluate our method’s performance and cost-efficiency under various exemplar memory settings.

Class-IL benchmarks. We use two standard class-incremental learning benchmarks (Masana et al.,
2022) via the PyCIL framework (Zhou et al., 2023a): CIFAR-100, an image classification dataset
with 100 classes split into 10 sequential tasks (10 classes each), and ImageNet-100, a 100-class
subset of ImageNet also split into 10 tasks of 10 classes each. We compare our method to seven
exemplar-based class-IL baselines: iCaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019), WA (Zhao
et al., 2020), DER (Yan et al., 2021), FOSTER (Wang et al., 2022), MEMO (Zhou et al., 2023b), and
Replay, a naive baseline that finetunes using current data and stored exemplars.

LLM continual instruction tuning. We also evaluate on TRACE (Wang et al., 2023), a continual
instruction tuning benchmark for LLMs across 8 domains.We compare our method against Replay
and 4 model-merging baselines, following recent findings that such methods can be effectively applied
to CL (Roth et al., 2024; Dziadzio et al., 2024): Model Soups (Wortsman et al., 2022), SLERP (Jang
et al., 2024), MagMax (Marczak et al., 2025), and Task Arithmetic (Ilharco et al., 2022).

Architectures and protocol. For image classification, we use ResNet-32 (He et al., 2016) on CIFAR-
100 and ResNet-18 (He et al., 2016) on ImageNet-100 (He et al., 2016). For LLM experiments, we
use an instruction-tuned version of LLaMA-3.2 (Grattafiori et al., 2024). All class-IL results are
averaged over five seeds and reported as average class-IL accuracy across all tasks after the final
step (Masana et al., 2022). For TRACE, final scores are reported after completing all sequential tasks.
We select hyperparameters following the realistic CL evaluation protocol proposed by (Cha & Cho,
2025). Further details on experimental settings are in Appendix A.5.

5.2 EXPERIMENTAL RESULTS

Class-IL results. We report class-incremental learning results in Table 2 and Figures 1, 9. Note that
DER, FOSTER, and MEMO are expansion-based methods that increase model size over time during
training. To ensure a fair comparison, we follow the evaluation protocol of (Cha & Cho, 2025) and
reuse the best hyperparameters found on CIFAR-100 when evaluating on ImageNet-100. From these
results, we make three key observations: First, as shown in Table 2, under the conventional constrained
memory setting (e.g., 4% memory), existing class-IL methods outperform Replay. However, as the
memory size increases, the performance gap narrows substantially. With 20% memory, most methods
perform similarly to Replay, suggesting diminishing returns of algorithmic complexity in the abundant
exemplar memory regime. Second, when training cost (i.e., training time) is taken into account,
Figures 1 and 9 (see Appendix A.4) show that expansion-based methods become highly inefficient.
For instance, while FOSTER maintains strong accuracy even under abundant exemplar memory,
its training time is 4–5× higher than that of Replay. Third, our proposed method—Weight Space
Consolidation—demonstrates both strong performance and high efficiency. Table 2 shows that it
consistently outperforms existing baselines (except for expansion-based methods) under abundant
exemplar memory (i.e., over 20% memory). Meanwhile, note that its training cost remains comparable
to that of Replay, as shown in Figures 1 and 9. Together, these results validate that our method
effectively mitigates the plasticity–stability trade-off in class-IL using abundant exemplar memory
with minimal GPU computation overhead.
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Table 2: Average class-IL accuracy (%) on CIFAR-100 and ImageNet-100 with varying
exemplar-memory sizes. We report experimental results with varying memory sizes, ranging from
20 exemplars per class (a common setting in class-IL) to 400/600 exemplars per class (storing 80%
of the previous dataset in CIFAR-100 and nearly half in ImageNet-100). Bold highlights the best
non-expansion method. We report the standard error across 5 runs.

Memory Size (the number of exemplars per class)(ratio of memory to full data)

CIFAR100 ImageNet100

Method 20(4%) 80(16%) 200(40%) 400(80%) 20(1.5%) 200(16%) 400(30%) 600(46%)

DER 63.95±1.9 70.13±1.6 74.64±1.1 75.60±0.9 71.96±0.6 78.59±0.7 79.61±0.5 80.53±0.6

FOSTER 66.22±1.6 67.67±1.7 73.53±0.8 77.28±0.5 70.14±0.7 76.01±0.7 80.94±0.6 82.79±0.6

MEMO 61.99±1.0 70.58±1.0 73.71±0.7 75.59±0.5 66.35±0.4 77.89±0.4 80.05±0.2 81.11±0.4

Replay 48.63±1.1 63.78±1.2 71.60±0.9 75.71±0.7 50.52±0.4 73.79±0.5 78.59±0.4 81.08±0.3

iCaRL 49.95±1.3 64.81±1.1 72.69±0.8 75.49±0.5 50.32±0.9 73.57±0.8 78.45±0.6 80.87±0.5

BiC 53.65±0.9 64.74±0.6 69.15±0.7 72.50±0.7 59.31±0.7 74.14±0.8 77.51±0.7 79.29±0.6

WA 61.32±1.8 66.19±1.6 71.42±1.2 73.83±1.4 61.44±1.1 75.85±0.8 78.79±0.8 80.21±0.8

Ours 52.16±1.2 66.89±0.9 74.49±0.8 77.71±0.8 54.97±0.5 76.43±0.5 80.26±0.6 82.64±0.4
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Figure 3: Comparison of average score and relative VRAM usage measured as minutes under different
exemplar memory sizes in LLM continual instruction tuning for 8-task using TRACE.

Continual instruction tuning results. We evaluate our method in a more practical setting of
continual learning for foundation models, where exemplar memory is abundant. To this end, we
conduct continual instruction tuning on the TRACE benchmark, following its standard 8-stage setup
across diverse domains. As strong baselines, we compare with recent model merging approaches that
have been actively explored for continual learning with foundation models (Roth et al., 2024; Dziadzio
et al., 2024). Among them, methods such as Task Arithmetic, MagMax, and Model Soup (i.e., Avg.
(Offline)) require storing all T task-specific models or representations and merging them post hoc.
In contrast, methods like Ours, SLERP, and Avg.(Online) operate in a single model trajectory and
do not require saving all intermediate checkpoints. We denote |W | as the standard VRAM usage
of a single model. To ensure a fair evaluation, we follow the protocol proposed by (Cha & Cho,
2025): all hyperparameters are tuned only under the 20% memory setting, and the same configuration
is reused across other memory sizes without additional tuning. Figure 3 shows that our method
consistently outperforms the baselines when the exemplar memory exceeds 20% (Also see Figure 10).
In particular, we observe that our method achieves 2–9% higher accuracy across all memory sizes
compared to offline merging approaches like Task Arithmetic and MagMax, which require a relative
VRAM usage of |W | ∗ T for saving all previous task models in the GPU. Notably, as summarized
in Appendix Table 9, these offline merging methods struggle to integrate knowledge from diverse
tasks (Dziadzio et al., 2024) and tend to underperform under abundant exemplar memory conditions.
Conversely, our method avoids these issues by operating directly in weight space during training
and achieves both high performance and GPU efficiency (relative VRAM usage: |W | ∗ 2). More
experimental results or detailed numerical experimental results are introduced in Appendix A.4.

5.3 ABLATION STUDY

Table 3: Ablation study on CIFAR-100
Memory Size

Method 20 40 80 100 200 300 400 500

Replay 48.92 56.59 63.30 65.12 70.84 73.46 75.38 76.90
w/o reset 50.23 58.19 65.01 66.50 72.33 75.00 76.98 77.92
w/o avg. 48.73 56.89 63.43 65.22 70.81 73.49 74.99 76.47
Ours 52.00 59.69 66.51 67.73 73.57 76.11 77.42 78.25

We conduct ablation studies to validate the effec-
tiveness of two key components of our method.
(1) ranking-based parameter reset for plasticity
recovery, and (2) weight averaging for stability.

Contribution of each component. Table 3
summarizes the performance of our method when

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

either reset or averaging is ablated. The baseline Replay uses neither. We find that weight reset
alone (w/o avg.) yields limited gains over Replay, while averaging without reset (w/o reset) improves
stability but fails to fully adapt to new tasks. Only when both are combined do we observe substantial
gains, highlighting that the two operations are complementary and that weight reset primarily serves
to enable effective averaging.

Table 4: Study of Parameter-Importance
Metric on Average class-IL accuracy (%)
in CIFAR-100

Memory Size
Metric Cost 20 200 500
Param. Drift ⇓ 51.93 73.02 77.90
Fisher-based ⇑ 52.35 73.49 77.57
Hessian-based ⇑ 52.81 73.63 78.16
First Moment ⇓ 50.10 71.38 75.05
Second Moment ⇓ 47.29 70.44 73.89
Ours (eq. (4)) ⇓ 52.00 73.57 78.25

Effectiveness of the importance metric. Table 4 com-
pares alternative parameter importance metrics used for
reset. Our moment-based metric (Eq. 4) performs on par
with expensive Hessian-based scores, while being signif-
icantly more efficient. Simple metrics like parameter drift
also perform well, echoing prior work in pruning (Zhu &
Gupta, 2017; Liu et al., 2018). In contrast, using only the
first or second moment leads to poor selection, confirming
the necessity of combining both for robustness.

Table 5: Study of reset strategies on Av-
erage class-IL accuracy (%) in CIFAR-
100

Memory Size
Strategy 20 200 500

Reset Method
Random 45.30 71.56 75.11
Revert 50.93 71.85 75.78
Shrink&Perturb 3 48.26 70.32 76.05
Continual Backprop. 16 47.15 70.49 76.52
Ours (w/o Avg.) 48.73 70.81 76.47
Ours 52.00 73.57 78.25

Reset Frequency
Every Iter. 47.38 63.11 70.32
Every Epoch 53.36 72.73 76.57
Once (Ours) 52.00 73.57 78.25

Reset strategies: how and when to reset. Finally, we
investigate two design choices in the reset operation: the
reset rule (how to reset) and the reset frequency (when
to reset). As shown in Table 5, our soft reset method
(a weighted blend with θprev) consistently outperforms
random reinitialization and hard reversion. This advan-
tage becomes more pronounced with larger memory. We
also compare with existing methods (e.g., Shrink & Per-
turb (Ash & Adams, 2020) and Continual Backprop. (Do-
hare et al., 2024)), where our method outperforms competi-
tors. Regarding frequency, performing a reset only once
after nwarm works well in most settings. However, in con-
strained memory regimes, applying multiple resets yields
further gains—consistent with findings in sparse reinitial-
ization (Frankle & Carbin, 2019). We provide further
analysis in Appendix A.4 on how tuning the reset frequency and retain rate Q affects performance.

Table 6: Comparison of Full Retraining from
scratch and Continual Learning under a standard
CL setting. Average class-IL accuracy (%) on
CIFAR-100 is reported.

Memory Size (# of exemplars per class)(ratio of memory to full data)

Method 20 (4%) 100 (20%) 200 (40%) 300 (60%) 400 (80%)

Full Retraining 46.15 64.73 69.96 76.02 78.94
Continual (Replay) 48.63 66.11 71.60 73.29 75.71
Ours 52.16 67.25 74.49 75.97 77.71

Continual Learning vs. Full Retraining. Prior
work (Dohare et al., 2024) reports that with full
exemplar memory, retraining from scratch (i.e.,
joint-training) can surpass continual learning (CL).
In Section 3.2, we revisit this observation theoret-
ically and argue that, under full memory, per-task
resets (reinitializing weights before each task) re-
cover plasticity while preventing forgetting, yield-
ing strong performance. However, in the more
realistic sufficient memory regime (e.g., 20–40%), retraining from scratch degrades markedly as
forgetting is insufficiently addressed. In these settings, algorithms that leverage prior models (e.g.,
ours) offer clear advantages, as seen in Table 6. Finally, while maximal replay might appear ideal,
it is often impractical at scale (e.g., LLMs). Our approach provides a cost-effective alternative that
balances performance with efficiency

6 CONCLUDING REMARKS

This paper challenges the long-standing assumption in continual learning (CL) that exemplar memory
is the primary bottleneck, arguing that in modern deployments, GPU cost is the true constraint. We
investigate the consequences of having sufficient memory—a practical regime where forgetting is
largely solved but full retraining from scratch remains prohibitively expensive—and demonstrate that
the central challenge shifts from mitigating forgetting to overcoming a loss of plasticity. To address
this, we propose Weight Space Consolidation, a lightweight method combining parameter resets
and weight averaging to navigate this new stability-plasticity trade-off. Our method is empirically
validated across image classification and LLM instruction tuning, where it outperforms strong
baselines at a fraction of the cost, establishing a scalable and cost-efficient alternative to full retraining.
Ultimately, our findings call for a crucial shift in focus for future CL research: from optimizing
for unrealistic memory constraints toward designing computationally efficient algorithms for the
real-world scenarios of today.
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REPRODUCIBILITY STATEMENT

For reproducibility, we provide the source code, experimental guidelines, and the scripts used in
our experiments. Please refer to the README.md file in the supplementary materials on how to
reproduce our experiments. We also used a fixed seed setting, which is implemented in the source
code. We also include notebook (.ipynb) files to reproduce the figures appearing in our paper. Lastly,
in Section 5.1 and Appendix A.5, we thoroughly explain how our method and its experiments are
implemented.
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A APPENDIX

A.1 ABUNDANT EXEMPLAR MEMORY REGIME

Summary. In the abundant exemplar memory regime, the replay buffer becomes an excellent
proxy for the union of past tasks, which (1) mitigates forgetting (see Appendix A.1.1) but (2) reduces
the effective learning signal for novel information (task), causing high node-reuse and low plasticity
(see Appendix A.1.2). Section 5 empirically quantified this trade-off across different replay ratios on
CIFAR-100 and ImageNet-100.

A.1.1 STABILITY: ABUNDANT EXEMPLAR MEMORY MITIGATES CATASTROPHIC FORGETTING
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(b) ImageNet-100

Figure 4: The impact of exemplar memory size on catastrophic forgetting. Increased memory
drastically reduces the forgetting between tasks, while it persists.

Next, we discuss how a sufficiently large exemplar memory bufferM approximates previous tasks’
distributions, thus reducing catastrophic forgetting.

Ideally, if we could train jointly on all tasks 1, · · · , t, the obtained model parameter θ∗1:t would
minimize the risk:

R1:t(θ) =

t∑
j=1

Ex∼Pj

[
ℓ(θ;x)

]
. (7)

which minimizes forgetting by design. By joint-training on all task data up to task t, we would find
θ∗1:t = argminθR1:t(θ), with no conventional notion of forgetting between tasks.

Similarly, with a large enough exemplar memory, the replayed data for previous tasks closely
approximates their true distributions (P̃j ≈ Pj for all j < t). Therefore training on Dt ∪M1:t−1 (its
distribution eq. (2)) yields a risk

R̃1:t(θ) ≈ λEPt

[
ℓ(θ;x)

]
+ (1− λ)

∑t−1

j=1
π̂jEP̃j

[
ℓ(θ;x)

]
, (8)

where π̂j indicates the empirical importance (i.e., size) of the tasks. Here, we may bound |R̃1:t(θ)−
R1:t(θ)| ≤ ϵ under standard assumptions (e.g., Lipschitz continuity in θ (Khromov & Singh, 2024),
use of representative samples during empirical risk minimization), with ϵ shrinking as the replay
buffer size K increases, leading to P̃j ≈ Pj . Assuming R1:t is µ-strongly convex in a neighbourhood
of θ∗1:t (i.e., locally strong convex), this risk gap implies ∥θ̃∗1:t − θ∗1:t∥ ≤

√
2ϵ/µ (Fornasier et al.,

2021; Escande, 2024). Intuitively, if the two risk surfaces are proximate, their minimizers are also
close in the parameter space (Beer et al., 1992; van de Geer & Wainwright, 2017).

In this sense, forgetting of a previous task j arises when θ̃∗1:t drastically changes its predictions on the
previous task distribution Pj . But if θ̃∗1:t remains near θ∗1:t (which, by definition, does well on previous
tasks by training jointly), it must still perform well on task j. Hence, if we measure forgetting in the
parameter space as

∆j→t = Ex∼Pj

[
ℓ(θ̃∗1:t;x)− ℓ(θ∗1:j ;x)

]
, (9)

the measure of how replay-based parameters after task t perform on task j compared to the parameters
after task j. Here, ∆j→t remains small if θ̃∗1:t ≈ θ∗1:t. Naturally, since θ∗1:t is a reliable minimizer on
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all tasks, the small parameter drift ensures that the performance of the model trained under abundant
exemplar memory does not degrade on earlier tasks - i.e., forgetting is reduced as exemplar memory
becomes larger (Merlin et al., 2022; Brignac et al., 2023).

Experimentally, Figure 4 validates that increasing the exemplar memory size can reduce forgetting
(hence improving stability). Here, forgetting is measured as the average over all previously learned
tasks of the drop from each task’s best-ever accuracy to its accuracy after the final task (Zhou et al.,
2023a). Formally:

Forgetting =
1

T − 1

T−1∑
k=1

(
max
1≤i≤T

ak,i − ak,T

)
,

where we denote ak,i and ak,T as the accuracy on task k immediately after learning task i, and the
accuracy on task k after learning the final task T , respectively.

A.1.2 PLASTICITY: ABUNDANT EXEMPLAR MEMORY DETERIORATES MODEL’S CAPACITY TO
LEARN NEW TASKS

0 100 200 300 400 500
Memory Size

60

70

80

Av
g.

 N
ew

 Ta
sk

 A
cc

. Plasticity Loss

DER
FOSTER
MEMO
Replay

iCaRL
BiC
WA
Ours

(a) Plasticity Loss on CIFAR-100
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(b) Plasticity Loss on ImageNet-100

Figure 5: A comparison of plasticity loss (measured using the average of the new task accuracy)
across different exemplar memory sizes in the 10 task scenario of CIFAR-100 and ImageNet-100. As
memory size increases, models lose their ability to learn new tasks.

λ

We claim that while abundant exemplar memory improves stability, it inevitably suppresses plasticity
(Dohare et al., 2024). Let θ(t−1) and θ(t) denote the network parameters right before and right after
training on task t. Denote by gt(x, y) = ∇θℓ(θ

(t−1);x, y) the per–example gradient when we begin
task t. Under the hybrid distribution of equation 2, the expected update direction is

E
x∼P

(t)
train

[gt(x)]︸ ︷︷ ︸
≜ ḡt

= λ ḡ
(new)
t + (1− λ) ḡ

(past)
t , (10)

where ḡ(new)
t , ḡ

(past)
t is the gradient mean over Pt and Ppast, respectively. Define the gradient alignment

ρt =
⟨ḡ(new)

t , ḡ
(past)
t ⟩

∥ḡ(new)
t ∥ ∥ḡ(past)

t ∥
∈ [−1, 1], (11)

using the cosine similarity (Du et al., 2018; Lee et al., 2021). When the buffer is abundant, P (t)
past (i.e.,

past task data at task step t stored in the replay memory) and P
(t−1)
train (i.e., the mixed train data at task

step t − 1) are close, and by definition the distribution P
(t)
train at task t is similar to the distribution

P
(t−1)
train at task t− 1; hence ρt≈1. Consequently, the effective step taken during task t

∥θ(t) − θ(t−1)∥ = η ∥ḡt∥ ≤ η
[
λ+ (1− λ)

]
∥ḡ(new)

t ∥ = η ∥ḡ(new)
t ∥, (12)

where η is the learning rate. Here, Equation (12) shrinks monotonically with λ because ḡ
(new)
t and

ḡ
(past)
t are almost colinear. In the limit λ→ 0 (i.e. the current data is overwhelmed by replay) the

update direction collapses onto the span of previous gradients (Yu et al., 2020; Kendall et al., 2018),
yielding

∥θ(t) − θ(t−1)∥ −−−→
λ→0

0, (13)
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which encourages the network to remain dormant (i.e., loss of plasticity (Dohare et al., 2024)) between
tasks.

This analysis connects with the node-reuse phenomenon studied in (Lee et al., 2022), which claimed
that when two sequential tasks are similar–as in the case of P t

train and P
(t−1)
train under the abundant

exemplar memory regime–models tend to reuse their nodes (i.e., loss of plasticity), and also aligns
with the model’s underperformance in training under extreme replay (i.e., full data is provided as
exemplar memory) as reported in (Rolnick et al., 2019).

The results of Figure 5 depict how a model’s plasticity, more specifically its ability to learn new tasks,
diminishes as exemplar memory becomes abundant. Here, the plasticity was measured using the
model’s average accuracy on new tasks. In Section 3.2, we also provided another analysis focused
on the train loss, where we observe that under abundant exemplar memory, convergence becomes
difficult. In the sequel, we investigate this phenomenon more deeply.

A.1.3 DISCUSSION: NEW CHALLENGES UNDER ABUNDANT EXEMPLAR MEMORY

Using exemplar memory results in a hybrid training dataset that combines current task data Dt ∪
M1:t−1 with replayed samples from previous tasks.

This combined dataset introduces several side effects. First, as discussed in Section 3.2, stability
increases, hence reducing forgetting (Appendix A.1.1). On the other hand, plasticity worsens
(Appendix A.1.2). In this section, we investigate whether the abundant exemplar memory regime
poses additional issues.

First, gradient interference may occur as the gradients computed on current task samples can conflict
with those from past tasks, leading to partial cancellation of updates and impeding effective learning
across tasks. We view that this potentially could lead to a new form of forgetting that distorts
the learned features and ultimately interfering with the model’s learning process. Second, the
heterogeneous nature of the hybrid dataset increases the variance of the stochastic gradient estimates,
resulting in slower convergence. This heightened variance necessitates either more iterations or more
sophisticated optimization techniques to minimize the loss reliably. Furthermore, imbalances in task
representation can arise if the replay buffer unevenly captures the diverse distributions of past tasks.

Conventional continual learning methods typically address forgetting by assuming that new data is
markedly different from prior data and focusing on preserving performance on previously learned
tasks. However, in the abundant exemplar memory regime, where all tasks are presented simulta-
neously within a combined dataset, these methods fall short. They are not equipped to handle the
multi-task learning dynamics and the associated balancing issues that emerge when the model must
integrate and harmonize learning signals from a diverse set of tasks. We believe a more thorough
investigation is required, and we set this as a key objective of our future work.

A.2 METHOD (CONTINUED.)

In this section, we elaborate on our method weight space consolidation, highlighting the role of each
component. The proposed method is a combination of two weight-space operations. (1) ranking-based
parameter reset (Yadav et al., 2024) and (2) weight averaging (Wortsman et al., 2022).
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Figure 6: Ablation Study on CIFAR-100. We
empirically find that resetting and averaging col-
laboratively benefit each other.

Ranking-based weight reset. The weight re-
set step selects and resets redundant parameters
in adapting to the new task. The aim of this pro-
cedure is to find the minimal set of parameters
that are capable of adapting to the new tth task,
and reinitializing the redundant parameters to the
mixed value of the previous task model θprev
and the current model θ value using Equation (5),
which helps recover learned features. In this pro-
cess, we use a simple metric Equation (4) that
uses the parameter’s first and second moments
to measure its importance (Kingma & Ba, 2017;
Balles & Hennig, 2020; Molchanov et al., 2019;
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Hwang, 2024). In Appendix A.3, we also compare alternative measures (e.g., parameter drift) and
discuss their limitations.

Using this metric, we retain the top-Q% parameters that have largely drifted during the current task
and reset the dormant parameters using eq. (5). The idea of resetting model weights is not novel in
the continual learning literature, but most have focused on improving plasticity (Dohare et al., 2024).
Conversely, we improve both plasticity and stability using a mixing technique (eq. (5), integrating
previous and present tasks. In appendix A.4, we provide experimental results on the effect of Q, the
percentage of weight reset on model performance (see fig. 11). Furthermore, we study alternative
variations of our reset method, namely (1) different parameter importance metrics (see Table 4), (2)
different reset methods and reset frequencies (see Table 5). We find that resetting more frequently
(e.g., per epoch) displays significant gains in performance especially under limited memory settings.
We discuss this observation on Appendix A.4.

Weight Average. The weight-averaging step aggregates various learned signals into a single model,
allowing for faster convergence and improved generalization (Izmailov et al., 2018). The underlying
idea is that the model weights can address catastrophic forgetting, functioning as a substitute for
replay memory. Using this, we aim to fill the gap between the full exemplar memory setting (i.e.,
joint-training) and the abundant exemplar memory setting. Another motive behind this approach is
the new challenges (see section 3.1) rooted in training with a mixture of datasets Dt∪M1:t−1, which
generally requires more training steps for convergence. In Appendix A.4, we empirically observe
that the abundant exemplar memory setting complicates training, requiring more training epochs for
convergence (see Figure 2b). The weight averaging technique is also an emerging practice in the
continual learning literature (Marouf et al., 2025; Kozal et al., 2024). However, such works merge the
model weights after training (i.e., offline merging (Dziadzio et al., 2024)), which requires the storage
of multiple model weights (proportional to the number of tasks). On the other hand, our method uses
a moving average model that is updated during training (i.e., online merging).

Why does Weight Space Consolidation work? Our starting point is the abundant memory
regime, where abundant exemplars reduce forgetting but drive the optimizer toward sharp, over-
specialized minima that harm plasticity. Weight Space Consolidation is designed to counteract this
effect with two complementary weight-space operations. First, targeted re-initialization of dormant
parameters restores unused capacity, enabling the network to escape locally saturated directions and
learn new tasks. Second, in-situ weight averaging biases training toward flatter regions of the loss
landscape, a mechanism that prior work has linked to improved generalization and reduced forgetting
Izmailov et al. (2018); Cha et al. (2021; 2020). Our experiments further show that this averaging
step induces sparsity in the effective parameter usage, and sparsity is known to enhance plasticity
by preventing the model from over-relying on a small set of critical parameters Golkar et al. (2019);
Dohare et al. (2024). Together, these effects provide an explanation of why our proposed method can
simultaneously recover plasticity and maintain stability in the abundant-memory regime.

A.3 MEASURING PARAMETER IMPORTANCE

In our work, we measure a parameter’s contribution to learning a new task by using a moment-based
score (eq. (4)). However, there are several alternative approaches we could take. In this section,
we investigate the alternative measures that could be used to measure a parameter’s importance to
learning a new task.

First, we can simply use the parameter drift to measure a model’s contribution to the new task,
formulated as:

∆l =
∣∣θ[l]− θprev[l]

∣∣, (14)

where θ[l] and θprev[l] indicates the lth parameter of the current model θ and the previous task model
θprev , respectively. However, a problem with this approach is when the previous model θprev should
be stored. This is a critical issue in cases we wish to reset multiple times.

A more principled alternative weights each parameter by the empirical Fisher diagonal:

Fl =
1

N

N∑
n=1

(
∂θ[l] log p(yn | xn; θ)

)2

, (15)
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which captures how strongly the log-likelihood reacts to perturbations of θ[l]. This idea underpins
many existing continual learning methods (e.g., EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al.,
2018)). However, Fisher scores are usually difficult to compute real-time and lack scalability.

Another metric we can use is the Hessian estimate (Yu et al., 2021; Chong et al., 2023). Second-order
methods replace Fl by a Hessian diagonal estimate, which we can efficiently obtain with Hutchinson’s
trick (Hutchinson, 1986):

ĥl =
1

K

K∑
k=1

(
v(k) ⊙Hv(k)

)
l
, v(k)∼ {−1,+1}|θ|, (16)

where each Hutchinson probe costs a single Hessian–vector product. The absolute curvature sl =

|ĥl| can then serve as our importance score. However, similar to the Fisher matrix, Hessians are
exceptionally costly to compute, especially for large models. In Section 5, we investigate the efficacy
of these metrics as a parameter importance measure.

We can also think of differentiating between how a parameter changes (1) between tasks (2) within a
task.

Inter-task Parameter Drift. When transitioning from one task to the next, the change in the l-th
parameter can be measured as

∆θinter[l] =
∣∣θt[l]− θt−1[l]

∣∣,
where θt[l] denotes the lth parameter after training on the current task t, and θt−1[l] represents the
lth parameter after training on the previous task t− 1. A large value indicates that the parameter is
highly task-specific, while a small value suggests robustness across tasks.

Intra-task Parameter Drift. Alternatively, we can analyze how a parameter evolves during the
training process of a single task. Let θ(i)[l] denote the value of the lth parameter at the ith iteration
during training. Then, the intra-task parameter drift is given by

∆θ
(i)
intra[l] =

∣∣θ(i+1)
t [l]− θ

(i)
t [l]

∣∣.
This measure captures the incremental updates of the parameter as the model optimizes its perfor-
mance on the current task. By comparing both the inter-task and intra-task parameter changes, we
gain a more comprehensive understanding of the role each parameter plays in adapting to new tasks
as well as the dynamics of learning within a single task. In our future work, we will seek a more
reliable metric to express a parameter’s behavior in the weight space.

A.4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we provide the full results of our experiments, namely (1) CIFAR-100, (2) ImageNet-
100, and (3) TRACE.
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Figure 7: Comparison of (a) average class-incremental accuracy and (b) training time under different
exemplar memory sizes in class-incremental learning for 10-task using CIFAR-100. As memory
increases, catastrophic forgetting is mitigated, but training time (i.e., computational cost) also grows
proportionally. Note that DER, FOSTER, and MEMO are expansion-based methods (shown with
dashed lines).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Average class-IL accuracy (%) on CIFAR-100 with varying exemplar-memory sizes. We
report experimental results with varying memory sizes, ranging from 20 exemplars per class (a
common setting in class-IL) to 500 exemplars per class (storing the entire previous dataset in CIFAR-
100. Bold highlights the best non-expansion method. We report the standard error across 5 runs.

Memory Size (the number of exemplars per class)(ratio of memory to full data)

Method 20(4%) 40(8%) 80(16%) 100(20%) 200(40%) 300(60%) 400(80%) 500(100%)

DER 63.95±1.9 67.27±1.5 70.13±1.6 70.98±1.3 74.64±1.1 75.05±1.3 75.60±0.9 75.92±1.1

FOSTER 66.22±1.6 65.58±1.5 67.67±1.7 69.01±1.2 73.53±0.8 76.19±0.7 77.28±0.5 78.07±0.7

MEMO 61.99±1.0 66.59±1.1 70.58±1.0 71.44±0.8 73.71±0.7 75.20±0.8 75.59±0.5 75.83±0.5

Replay 48.63±1.1 56.80±1.4 63.78±1.2 66.11±1.2 71.60±0.9 73.29±0.5 75.71±0.7 77.02±0.5

iCaRL 49.95±1.3 57.12±1.3 64.81±1.1 66.23±1.2 72.69±0.8 73.63±0.7 75.49±0.5 76.16±0.7

BiC 53.65±0.9 61.13±0.8 64.74±0.6 65.59±0.8 69.15±0.7 71.22±0.5 72.50±0.7 72.83±0.7

WA 61.32±1.8 63.87±1.5 66.19±1.6 66.90±1.5 71.42±1.2 72.15±1.5 73.83±1.4 74.09±1.2

Ours 52.16±1.2 60.34±1.1 66.89±0.9 67.25±1.0 74.49±0.8 75.97±0.6 77.71±0.8 78.16±0.6

CIFAR-100. The results of the CIFAR-100 class-IL experiment are reported in Table 7. Here, we
validate that our method is indeed the strongest among non-expansion methods, and even surpasses
expansion-based methods under abundant exemplar memory (see Figure 7a). Specifically, we see
that in cases where the exemplar memory size is larger than 16% of the full data, our weight
space consolidation method outperforms all non-expansion methods, and begins to match the costly
expansion-based methods when the exemplar memory ratio exceeds 40%. The true strength of our
method lies in its training cost (see Figure 7b), where our method’s train time is at par with the
cheapest baseline (Replay), while taking one-fifth the time of the expansion-based FOSTER (Wang
et al., 2022) and non-expansion-based BiC (Wu et al., 2019).
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Figure 8: Comparison of (a) average class-incremental accuracy and (b) training time under different
exemplar memory sizes in class-incremental learning for 10-task using ImageNet-100.

Table 8: Average class-IL accuracy (%) on ImageNet-100 with varying exemplar-memory sizes. Bold
highlights the best non-expansion method. We report the standard error across 5 runs.

Memory Size (the number of exemplars per class)(ratio of memory to full data)

Method 20(1.5%) 50(4%) 100(8%) 200(16%) 300(23%) 400(30%) 500(38%) 600(46%)

DER 71.96±0.6 75.53±0.5 76.80±0.6 78.59±0.7 79.42±0.5 79.61±0.5 79.97±0.6 80.53±0.6

FOSTER 70.14±0.7 67.69±0.7 70.74±0.5 76.01±0.7 79.03±0.5 80.94±0.6 81.87±0.4 82.79±0.6

MEMO 66.35±0.4 71.12±0.6 74.26±0.4 77.89±0.4 78.74±0.5 80.05±0.2 80.37±0.4 81.11±0.4

Replay 50.52±0.4 61.64±0.6 68.49±0.5 73.79±0.5 76.93±0.4 78.59±0.4 80.25±0.5 81.08±0.3

iCaRL 50.32±0.9 59.76±0.9 67.23±1.0 73.57±0.8 76.84±0.8 78.45±0.6 79.63±0.6 80.87±0.5

BiC 59.31±0.7 65.98±0.7 70.63±0.8 74.14±0.8 76.22±0.6 77.51±0.7 78.76±0.6 79.29±0.6

WA 61.44±1.1 67.52±0.9 71.33±1.1 75.85±0.8 77.53±0.8 78.79±0.8 79.63±0.9 80.21±0.8

Ours 54.97±0.5 64.95±0.6 71.49±0.6 76.43±0.5 78.71±0.4 80.26±0.6 81.56±0.4 82.64±0.4

ImageNet-100. The experimental results in the ImageNet-100 benchmark display a similar pattern.
In Figure 8a, we observe a gradual increase in average task accuracy as the exemplar memory size
increases, which eventually saturates as it enters the abundant exemplar memory regime. The cost
of training increases proportionally to the memory size, where methods like BiC or DER require
substantially larger training time. On the other hand, our method displays high accuracy while using
roughly one-third half of the training time (see Figure 8b). For detailed results, please refer to
Table 8.
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Figure 9: Comparison of (y-axis) average class-incremental accuracy and (x-axis) training time under
different exemplar memory sizes in class-incremental learning for 10-task using ImageNet-100. Note
that the DER, FOSTER, and MEMO are expansion-based methods (shown with X mark).
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Figure 10: Comparison of average score on different exemplar memory sizes in LLM continual
instruction tuning for 8-task using TRACE. The value inside the parentheses indicates the model
weight complexity proportional to the number of models loaded in the VRAM.

TRACE. TRACE (Wang et al., 2023) is a continual instruction tuning benchmark for the evaluation
of LLMs across eight sequential domains, including science (Lu et al., 2022), policy (Shah et al.,
2023), meeting summarization (Hu et al., 2023), multilingual classification (Zhao et al., 2023;
Gonzales et al., 2021), code generation (Lu et al., 2021), and math reasoning (Mishra et al., 2022).

Table 9 reports the LLM continual instruction tuning benchmark results in TRACE. Similar to the
results in the Class-IL benchmarks (e.g., CIFAR-100, ImageNet-100), we observe a similar pattern
where the accuracy grows in accordance with the increase in memory size (see Figure 10). An
interesting observation is that offline merging (i.e., model merging methods that merge post-training)
tends to underperform, displaying lower scores while requiring the VRAM cost of storing multiple
models. This aligns with the empirical results of Dziadzio et al. (Dziadzio et al., 2024), which showed
that offline merging methods face difficulties in accumulating the multi-task knowledge. Compared
to this, our method In addition, note that for TRACE, we use a different method to measure the train
cost, which is the relative VRAM usage. The relative VRAM usage is a scaled version of the training
time, which measures the computation cost of the training based on the VRAM usage. This scaling
is required to distinguish from models that take a similar time to train, but use different numbers of
GPUs. For instance, our method and MagMax require similar time to train, but MagMax requires
multiple (t) task vectors to be loaded in the VRAM, and this is reflected in the relative VRAM usage
measure. Considering this, we visualize the results in Figure 3.

Zero-Memory Setting To relate our study to exemplar-free continual learning, we also evaluate
all methods in a strict zero-memory configuration on CIFAR-100, where no exemplars are stored
in the buffer. We report the results in Table 10. This setting corresponds to the idealized regime
suggested in some recent CL work, but lies outside our main assumption of exemplar-based CL with
sufficient memory. Consistent with our analysis, removing exemplars leads to severe performance
degradation across all algorithms: while most methods reach 69–74% average class-IL accuracy
in the 40% memory regime (Table 7), their accuracy drops to 25–53% under zero-memory. DER
and MEMO achieve the highest performance (53.37% and 43.98%), and our method still improves
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Table 9: General language understanding and reasoning scores on TRACE with varying exemplar-
memory sizes. We report the standard error across 5 runs.

Method # Mem.
Size

# of θ
stored

Runtime
(min.)

C-STANCE FOMC MeetingBank Py150 ScienceQA NumGLUEcm NumGLUEds 20Minuten Avg.
Acc. Acc. ROUGE-L Similarity Acc. Acc. Acc. SAR I

Fine-tune – – 137’5 0.42 0.25 0.33 0.49 0.21 0.28 0.51 0.37 0.35

Replay

0.2 – 314’7 0.43 ±0.08 0.01±0.05 0.35±0.08 0.50±0.07 0.29±0.07 0.32±0.06 0.38±0.05 0.37±0.06 0.33
0.4 – 351’2 0.49±0.09 0.21±0.07 0.38±0.07 0.50±0.05 0.47±0.04 0.35±0.05 0.41±0.06 0.39±0.05 0.40
0.6 – 394’7 0.47±0.06 0.13±0.05 0.38±0.05 0.55±0.03 0.18±0.04 0.40±0.03 0.56±0.03 0.37±0.04 0.38
0.8 – 449’4 0.49±0.03 0.13±0.05 0.37±0.03 0.57±0.04 0.21±0.03 0.38±0.03 0.56±0.03 0.37±0.03 0.38

SLERP

0.2 1 375’9 0.42±0.07 0.45±0.05 0.31±0.06 0.54±0.07 0.36±0.03 0.29±0.05 0.42±0.04 0.40±0.04 0.39
0.4 1 422’4 0.45±0.06 0.42±0.06 0.26±0.03 0.53±0.06 0.33±0.05 0.29±0.05 0.48±0.06 0.43±0.06 0.40
0.6 1 472’9 0.42±0.06 0.56±0.05 0.38±0.05 0.57±0.03 0.30±0.03 0.34±0.04 0.54±0.05 0.38±0.06 0.43
0.8 1 526’4 0.45±0.05 0.18±0.05 0.37±0.06 0.58±0.06 0.39±0.04 0.37±0.03 0.53±0.04 0.38±0.04 0.41

Avg.
(Online)

0.2 1 374’5 0.44±0.05 0.46±0.06 0.33±0.04 0.52±0.05 0.39±0.06 0.31±0.05 0.37±0.05 0.37±0.06 0.40
0.4 1 421’7 0.42±0.05 0.41±0.05 0.35±0.05 0.55±0.03 0.43±0.07 0.28±0.03 0.43±0.03 0.44±0.05 0.41
0.6 1 471’4 0.45±0.05 0.50±0.05 0.41±0.04 0.55±0.04 0.35±0.05 0.34±0.03 0.52±0.04 0.39±0.05 0.44
0.8 1 524’5 0.45±0.03 0.49±0.05 0.35±0.03 0.52±0.03 0.16±0.04 0.35±0.03 0.47±0.05 0.36±0.04 0.39

Avg.
(Offline)

0.2 t 377’1 0.48±0.03 0.02±0.01 0.37±0.03 0.58±0.02 0.29±0.03 0.34±0.05 0.51±0.05 0.37±0.03 0.36
0.4 t 430’6 0.45±0.04 0.03±0.01 0.38±0.02 0.58±0.05 0.33±0.03 0.40±0.03 0.48±0.03 0.37±0.04 0.38
0.6 t 479’3 0.44±0.04 0.56±0.03 0.38±0.04 0.59±0.02 0.36±0.03 0.38±0.04 0.53±0.03 0.36±0.01 0.45
0.8 t 525’4 0.50±0.04 0.21±0.03 0.38±0.03 0.59±0.03 0.35±0.03 0.38±0.02 0.49±0.04 0.37±0.02 0.41

Task-Arith.

0.2 t 374’6 0.51±0.03 0.02±0.01 0.39±0.05 0.56±0.03 0.29±0.04 0.40±0.03 0.52±0.04 0.38±0.05 0.38
0.4 t 427’6 0.49±0.03 0.01±0.01 0.39±0.05 0.59±0.04 0.32±0.05 0.40±0.02 0.53±0.04 0.39±0.03 0.39
0.6 t 474’9 0.50±0.03 0.47±0.06 0.38±0.05 0.60±0.03 0.32±0.03 0.42±0.03 0.52±0.03 0.40±0.03 0.45
0.8 t 523’1 0.49±0.03 0.28±0.03 0.39±0.03 0.57±0.04 0.40±0.03 0.44±0.05 0.48±0.02 0.38±0.03 0.43

MagMax

0.2 t 373’3 0.49±0.04 0.44±0.03 0.25±0.06 0.26±0.06 0.37±0.04 0.31±0.03 0.48±0.04 0.39±0.04 0.37
0.4 t 424’8 0.46±0.04 0.41±0.03 0.39±0.05 0.26±0.06 0.35±0.06 0.43±0.04 0.43±0.05 0.40±0.05 0.39
0.6 t 469’9 0.59±0.05 0.45±0.04 0.37±0.04 0.32±0.06 0.43±0.05 0.42±0.04 0.45±0.03 0.40±0.03 0.42
0.8 t 525’6 0.32±0.03 0.54±0.03 0.23±0.04 0.25±0.06 0.32±0.03 0.29±0.04 0.51±0.03 0.39±0.04 0.36

Ours

0.2 1 370’9 0.39±0.05 0.13±0.03 0.36±0.07 0.51±0.07 0.32±0.04 0.40±0.02 0.56±0.03 0.39±0.01 0.38
0.4 1 422’6 0.41±0.03 0.48±0.02 0.38±0.05 0.55±0.05 0.45±0.02 0.41±0.03 0.30±0.03 0.39±0.02 0.42
0.6 1 465’8 0.44±0.02 0.57±0.02 0.35±0.04 0.52±0.05 0.47±0.02 0.38±0.02 0.55±0.03 0.39±0.01 0.46
0.8 1 522’9 0.46±0.02 0.47±0.02 0.37±0.05 0.55±0.03 0.46±0.02 0.36±0.02 0.53±0.01 0.40±0.01 0.45

over Replay (29.83% vs. 26.07%), but the gap to the sufficient-memory regime remains large. These
results support our claim that exemplar-free CL is substantially more challenging and currently
yields accuracy that is insufficient for many real-world deployments, whereas allocating a moderate
exemplar buffer enables practical performance gains that our cost-efficient method is designed to
exploit.
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Figure 11: Weight reset experiment on CIFAR-100. Most parameters (80%) are redundant in learning
new tasks. Weight Avg. boosts sparsity, retaining performance with fewer (10%) parameters.

Table 10: Average class-IL
accuracy (%) on CIFAR-100
under zero memory.

Memory Size

Method 0

DER 53.37
FOSTER 26.43
MEMO 43.98

Replay 26.07
iCaRL 29.03
BiC 28.29
WA 42.10

Ours 29.83

Sparsity analysis after reset. Next, we examine how much of the
model contributes to learning new tasks. In Figure 11, we vary the
retain rate Q in the reset step. We find that resetting up to 80% of pa-
rameters yields minimal degradation in accuracy, suggesting that only
a small subset of weights are actively involved in continual learning.
This aligns with findings in sparse training and pruning (Frankle &
Carbin, 2019; Chen et al., 2020). We observe that weight averaging
helps retain performance under extreme resets (e.g., Q=10%), sug-
gesting that it encourages robust, sparse models that do not rely on a
small set of critical parameters.

Effect of Sampling techniques In this section, we study the effect of
batch sampling in exemplar-based continual learning. Prior work has
examined the role of exemplar selection and sampling, with early re-
sults suggesting that sophisticated schemes such as reservoir sampling
may improve performance under severely constrained memory Kim
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Table 11: Average class-IL accuracy (%) on CIFAR-100 with varying exemplar-memory sizes using
reservoir sampling. Memory Size indicates the number of exemplars per class. The value inside the
parentheses indicates the gap between the default random sampling and the reservoir sampling results.
Bold highlights the best non-expansion method.

Memory Size(ratio of memory to full data)

Method 20(4%) 200(40%)

DER 64.21(+0.26) 74.83(+0.19)

FOSTER 65.97(−0.25) 73.71(+0.18)

MEMO 62.36(+0.37) 73.40(−0.31)

Replay 49.32(+0.69) 71.66(+0.06)

iCaRL 50.34(+0.39) 72.89(+0.20)

BiC 53.86(+0.21) 69.27(+0.12)

WA 61.68(+0.36) 71.65(+0.23)

Ours 52.49(+0.33) 74.63(+0.14)

Table 12: Average class-IL accuracy (%) on CIFAR-100 with varying exemplar-memory sizes on
longer task sequences (T=20). Memory Size indicates the number of exemplars per class. The value
inside the parentheses indicates the gap between the default task sequence (T=10; 10 tasks) and the
longer task sequence setting (T=20; 20 tasks).

Memory Size(ratio of memory to full data)

Method 20(4%) 200(40%)

DER 55.42(−8.53) 70.91(−3.73)

FOSTER 55.94(−10.28) 71.80(−1.73)

MEMO 54.61(−7.38) 70.14(−3.57)

Replay 44.73(−3.90) 70.88(−0.72)

iCaRL 45.28(−4.67) 69.24(−3.45)

BiC 45.15(−8.50) 68.97(−0.18)

WA 52.36(−8.96) 70.35(−1.07)

Ours 49.77(-2.39) 76.65(+0.22)

et al. (2020), but more recent large-scale studies report that random and advanced sampling strategies
behave similarly in practice Masana et al. (2022). We expect this trend to persist in the abundant-
memory regime considered in our work. To verify this, we re-run all methods on CIFAR-100 using
reservoir sampling for exemplar selection, ensuring that the memory buffer fairly represents past
tasks. As shown in Table 11, the differences with respect to our default random sampling (values in
parentheses) are consistently small, and the gap shrinks further as memory size (i.e., number of exem-
plars per class in slass-IL) increases from 4% to 40%. This indicates that, when sufficient memory is
available, the choice of sampling strategy has only a marginal impact on overall performance.

An alternative way to improve plasticity is to enforce a fixed ratio of current-task data within each mini-
batch by concatenating current and replay examples at the batch level. While such a design can indeed
enhance plasticity, it directly reduces stability: aggressively prioritizing current data accelerates
catastrophic forgetting of previous tasks and increases GPU cost due to more constrained batch
construction. Thus, batch-level concatenation is complementary but cannot replace our approach,
which targets the plasticity–stability trade-off through weight-space operations rather than through
carefully engineered batches. Moreover, as highlighted by Dohare et al. (2024), loss of plasticity is a
general phenomenon in deep continual learning; our Weight Space Consolidation provides a robust
way to restore plasticity that is largely independent of specific batch-design or sampling heuristics.

Effect of Longer Task Sequences To assess how our findings scale with the length of the continual
learning stream, we further evaluate all methods on a longer task sequence with T = 20 tasks on
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CIFAR-100, while keeping the total data and exemplar-memory budget fixed. As shown in Table 12,
average class-IL accuracy systematically degrades when moving from the default T = 10 setting to
T = 20, and this degradation is particularly pronounced in the low-memory regime (20 exemplars
per class), indicating that longer task sequences amplify both forgetting and the loss of plasticity.
Nonetheless, in the sufficient-memory setting (200 exemplars per class, i.e., 40% memory), our
method maintains strong performance and exhibits a comparatively smaller drop than many baselines,
demonstrating that our Weight Space Consolidation remains effective even as the task sequence
becomes longer.

Additional Experiments. Lastly, we show that under abundant exemplar memory, convergence
becomes difficult, similar to a multi-task learning setting. The results are illustrated in Figure 2b.
Specifically, we analyze the training loss of the model under two cases. (1) Continual Learning: train
the model across 20 tasks sequentially, with abundant exemplar memory. (2) Full retraining (Joint
Training): train individual models for each task using all known task data. For this experiment, we
used the CIFAR-100 dataset divided into 20 subtasks. In Figure 2b, we can see that under abundant
exemplar memory, converging to the training data becomes difficult, especially for the continual
learning model. While a simple solution would be to extend the training epochs for convergence, it
would collide with our aim for cost-efficiency. On the other hand, joint-trained models relatively
converge better. This result aligns with our conjecture on plasticity (see Section 3.2), the results of
(Dohare et al., 2024) that a model sequentially trained on different tasks (i.e., continual learning)
suffers a loss of plasticity (i.e., a model’s ability to learn new tasks), as well as the results of (Rolnick
et al., 2019), which demonstrated that learning a new task becomes difficult under extreme (i.e.,
full ratio) replay memory settings. We believe a thorough investigation of this new phenomenon is
required.

A.5 EXPERIMENTAL DETAILS

In this section, we report the experimental details of our experiments. In all our class-IL experiments,
we have used the PyCIL (Zhou et al., 2023a) library, which allows easy replication. We followed
the standard training hyperparameters of the PyCIL library, which are fixed across experiments. For
the LLM continual instruction tuning experiments, we have used the TRACE (Wang et al., 2023)
library. We followed the default training hyperparameters of the TRACE library. Regarding unique
hyperparameters, the average interval j was set as 5, and the warming epoch nwarm was set as 25% of
the total training epochs (default set as 70 under the PyCIL setting). j and nwarm were selected using
a grid search. The hyperparameters searched in the CIFAR-100 benchmark were applied without
modification to the ImageNet-100 experiments. In the LLM experiments, the hyperparameters were
selected in the 0.2 (20%) memory setting and applied to the other settings. Note that in the TRACE
setting, only one epoch is provided in the replay stage, hence, the average interval was set as 20
iterations, not epochs. Please refer to Section 4 for a better understanding of each hyperparameter.
Regarding the model architectures, we used a ResNet-32 for the CIFAR-100 and a ResNet-18 for the
ImageNet-100 experiments, following standard settings in PyCIL. For the TRACE experiments, we
used a Llama-3.2-1B model. Lastly, regarding the computing resources, we used a single NVIDIA
RTX 6000 GPU for all class-IL experiments. For the LLM experiments, we used three V100 GPUs.
For our experiments, we used the 2.2.1 version of Pytorch (Paszke et al., 2019).

A.6 RELATED WORKS (CONTINUED.)

Weight Space Operations. Recent works have shown that manipulating model parameters directly
with weight-space operations (e.g., model merging (Wortsman et al., 2022)) can handle multi-task
learning (Yu et al., 2024) and continual learning (Marouf et al., 2025; Marczak et al., 2025) in a
more principled way. These techniques usually intervene post-training by merging the weights of
different models e.g., (Yadav et al., 2024) suggested a selective merging algorithm that mitigates the
interference between different models, while (Ilharco et al., 2022) showed that arithmetic operations
on the weight space can edit the model without training. Unlike these post-training interventions, our
approach manipulates the model’s weight space amidst training (Izmailov et al., 2018; Jang et al.,
2025) without storing multiple model parameters, aiming for cost-effective editing of the continual
learner. Another relevant yet overlooked topic is the effect of weight-space operations on model
attributes e.g., loss landscape (Li et al., 2018; Kaur et al., 2023) and plasticity (Dohare et al., 2024),
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that contribute to continual learning and generalization. This work empirically investigates various
aspects of the model to study their effect on the model’s ability to handle distribution shifts. In the
continual learning literature, several works have adopted weight-space operations to obtain multi-task
solutions without full retraining. For instance, (Kozal et al., 2024) has suggested the use of weight
averaging techniques for continual learning, and (Marczak et al., 2025) has extended the idea using
task arithmetic. However, these approaches merge models post-training and require the storage
of multiple model weights during training. On the other hand, our approach utilizes weight-space
operations amidst training, without the redundant storage of multiple model weights. We view this as
an important difference in modern settings where the model size is exponentially growing.

A.7 LIMITATIONS

While our method demonstrates strong performance and cost-efficiency under abundant exemplar
memory, it assumes access to a representative subset of past data, which may not always be feasible
in privacy-sensitive or streaming-only environments. Additionally, our analysis primarily focuses
on class-incremental learning and continual instruction tuning with relatively clean task boundaries.
Future work may explore how the proposed weight-space strategies generalize to more complex
settings such as task-agnostic CL, online CL, or continual reinforcement learning.

A.8 SOCIETAL IMPACTS

This work focuses on improving a general capability (e.g., continual learning) of machine learning
models, and thus does not directly relate to or cause negative societal impacts. However, we do
mention and consider the computational cost of deploying models. We believe that the energy
consumption issue of modern machine learning models is an important topic, and in that sense, our
work on cost-efficient learning algorithms can indirectly contribute to building a sustainable practice
for the training and deployment of artificial intelligence.

A.9 ASSETS

In our work, many existing assets were used. For the implementation of the models and the learning
algorithms, we have used the Pytorch (Paszke et al., 2019) (BSD-3 license) and Huggingface (Wolf
et al., 2020) libraries (varies on each library. For instance, the core Transformers library uses an
Apache 2.0 license). All of the datasets we have used are public datasets. For instance: CIFAR-100
(MIT License), ImageNet-100 (Custom, Non-commercial Research Only, has a separate terms of
use). Regarding the language datasets in TRACE: C-STANCE (CC BY-NC 4.0) ), FOMC (CC BY-
NC-SA 4.0), MeetingBank (CC BY-NC-SA 4.0), Py150 (MIT License), ScienceQA (MIT License),
NumGLUE-cm (MIT License), NumGLUE-ds (MIT License), and 20Minuten (CC BY-NC-SA 4.0).
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