

# 000 001 002 003 004 005 FORGET FORGETTING: CONTINUAL LEARNING IN 006 A WORLD OF ABUNDANT MEMORY 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026

## ABSTRACT

027 Continual learning (CL) has traditionally focused on minimizing exemplar memory,  
028 a constraint often misaligned with modern systems where GPU time, not storage,  
029 is the primary bottleneck. This paper challenges this paradigm by investigating  
030 a more realistic regime: one where memory is abundant enough to mitigate for-  
031 getting, but full retraining from scratch remains prohibitively expensive. In this  
032 practical "middle ground", we find that the core challenge shifts from stability to  
033 plasticity, as models become biased toward prior tasks and struggle to learn new  
034 ones. Conversely, improved stability allows simple replay baselines to outperform  
035 the state-of-the-art methods at a fraction of the GPU cost. To address this newly  
036 surfaced trade-off, we propose Weight Space Consolidation, a lightweight method  
037 that combines (1) rank-based parameter resets to restore plasticity with (2) weight  
038 averaging to enhance stability. Validated on both class-incremental learning with  
039 image classifiers and continual instruction tuning with large language models, our  
040 approach outperforms strong baselines while matching the low computational cost  
041 of replay, offering a scalable alternative to expensive full-retraining. These findings  
042 challenge long-standing CL assumptions and establish a new, cost-efficient baseline  
043 for real-world CL systems where exemplar memory is no longer the limiting factor.  
044  
045

## 1 INTRODUCTION

046 As machine learning systems are increasingly considered to be deployed in dynamic, real-world  
047 environments, continual learning (CL) has emerged as a critical paradigm for adapting to evolving  
048 data streams without catastrophic forgetting (Wang et al., 2024a). A central challenge in this setting is  
049 the *stability–plasticity dilemma* (Carpenter & Grossberg, 1987; Mermilliod et al., 2013): models that  
050 maintain high stability across prior tasks often fail to incorporate new knowledge (high stability, low  
051 plasticity), while those that remain highly plastic tend to forget earlier information (high plasticity,  
052 low stability). Various CL scenarios have been explored—most notably in class-incremental learning  
053 (class-IL) for image classification (Masana et al., 2022), and more recently in the continual learning of  
054 large language models (LLMs) (Wang et al., 2024a; 2023). Among CL approaches, *exemplar-based*  
055 *methods*—which store and replay representative samples from past tasks—have become particularly  
056 popular due to their simplicity and effectiveness (Masana et al., 2022; Zhou et al., 2024; Wang  
057 et al., 2023). However, a notable trend in these methods is the use of *highly constrained memory*  
058 *budgets*. For instance, many class-IL benchmarks assume only 20 exemplars per class—roughly  
059 4% of the total training data—are retained across tasks (Rebuffi et al., 2017; Zhou et al., 2024).  
060 Similarly, LLM-focused CL approaches often rely on restricted caches or memory-free mechanisms  
061 to sidestep the issue of long-term storage (Wang et al., 2023). Yet the necessity and realism of such  
062 severe memory constraints remain questionable (Chavan et al., 2023; Yousuf Harun et al., 2023), and  
063 practical solutions to address this gap are still underexplored.

064 In real-world machine learning deployments, this assumption of severely limited exemplar memory  
065 is often misaligned with practical constraints (Prabhu et al., 2023). Modern storage solutions—such  
066 as cloud-based object stores or local SSDs—are both affordable and scalable. In contrast, GPU time,  
067 especially for training large-scale foundation models (*e.g.*, LLMs), constitutes a significant bottleneck.  
068 For example, an AWS instance with 8 A100 GPUs can cost over \$30 per hour, while storing 1TB  
069 of data costs less than \$25 per month (Amazon Web Services, 2024). If the primary goal of CL is  
070 to enable efficient model adaptation to non-stationary data without full retraining from scratch (*i.e.*,

054 avoiding expensive joint training), then *reducing GPU cost*—rather than storage usage—should be  
 055 the main optimization objective.  
 056

057 Building on this observation, we revisit the CL setting under more realistic scenarios where exemplar  
 058 memory constraints are relaxed. Our analysis reveals a critical trade-off across the memory spectrum:  
 059 while traditional memory-constrained setups are often unrealistic and full-data retraining (joint  
 060 training) is prohibitively expensive, a practical "middle ground" of abundant-but-not-exhaustive (*i.e.*,  
 061 *sufficient*) memory regime emerges. It is precisely in this realistic regime that we identify a new  
 062 challenge: while stability improves due to reduced forgetting, plasticity diminishes as the model  
 063 becomes biased toward prior tasks. This highlights the urgent need for cost-efficient mechanisms that  
 064 can restore plasticity without sacrificing stability, a gap our work aims to fill. We further investigate  
 065 how this regime affects existing CL methods across two domains: class-IL and continual instruction  
 066 tuning of LLMs. In class-IL, we observe that many state-of-the-art methods incur significantly  
 067 higher GPU training costs yet offer marginal improvements over naive replay baselines. In continual  
 068 instruction tuning, common model merging strategies often suffer from limited plasticity or require  
 069 storing a separate model per task, which limits scalability.

070 These limitations across both domains point to the need for a new approach that is cost-efficient yet  
 071 effective under abundant exemplar memory regimes. Motivated by this, we propose *Weight Space*  
 072 *Consolidation*, a simple yet effective method that operates directly in the model's weight space. It  
 073 combines (1) *ranking-based parameter resets*, which periodically reset the dormant parameters (mea-  
 074 sured via gradient-based signal accumulation) to their pretrained values to restore plasticity, and (2)  
 075 *weight averaging*, which maintains a running average of model weights during training to encourage  
 076 convergence toward flatter, more stable optima. By modifying weights, our approach facilitates  
 077 fast convergence without additional compute overhead in GPUs. Across class-IL benchmarks and  
 078 LLM continual instruction tuning, our method consistently matches or surpasses the performance of  
 079 state-of-the-art methods while maintaining training costs comparable to naive replay. These results  
 080 demonstrate that, when exemplar memory is no longer the bottleneck, cost-efficient CL is both  
 081 achievable and practical. Our contributions are summarized as follows:  
 082

- We revisit continual learning under relaxed exemplar memory constraints and show that even naive replay can achieve strong performance while significantly lowering GPU costs.
- We conduct an extensive analysis across the memory spectrum to reveal the stability–plasticity trade-off, demonstrating that in the "practical" abundant memory regime, restoring lost plasticity becomes as critical as preserving stability.
- We propose a lightweight and practical method, Weight Space Consolidation, which combines ranking-based parameter resets and weight averaging to address the stability–plasticity trade-off.
- We validate our approach across class-IL tasks (*e.g.*, CIFAR-100, ImageNet-100) and LLM continual instruction tuning (TRACE; Wang et al. (2023)), demonstrating consistent accuracy improvements and 3–4× cost reductions over state-of-the-art methods.

## 091 2 RELATED WORKS

092 **Continual learning.** Continual learning (CL) has been actively studied in various scenarios and  
 093 methodological categories. Among the three scenarios of CL (Van de Ven & Tolias, 2019), class-  
 094 incremental learning (class-IL) has been considered the most challenging and has been the most  
 095 actively studied scenario (Masana et al., 2022). Generally, CL algorithms (including class-IL) can be  
 096 categorized into regularization-based approaches, which penalize changes to important parameters  
 097 for past tasks (Kirkpatrick et al., 2017; Aljundi et al., 2018; Cha et al., 2020; Kang et al., 2022),  
 098 rehearsal-based approaches, which store and replay exemplars from past tasks (Rebuffi et al., 2017;  
 099 Cha et al., 2023), and expansion-based approaches, which expand the model's capacity to balance the  
 100 trade-off between stability and plasticity (Yan et al., 2021; Wang et al., 2022). Additional approaches  
 101 focus on addressing classifier bias toward recent tasks while using the exemplars (Wu et al., 2019;  
 102 Zhao et al., 2020). While exemplar-based methods have demonstrated state-of-the-art performance,  
 103 they typically rely on strict memory constraints, often limiting memory size to a small percentage of  
 104 the dataset (Rebuffi et al., 2017; Zhou et al., 2024). Recent studies challenge the necessity of these  
 105 strict memory constraints, highlighting that the computational cost of maintaining and processing  
 106 memory—especially GPU usage—can far outweigh storage costs (Prabhu et al., 2023; Chavan et al.,  
 107 2023; Harun et al., 2023). This shift in perspective opens the door to relaxing memory limits in order  
 108 to reduce training costs, which is the focus of our work. Lastly, another line of work solely focuses on  
 109 the loss of plasticity in CL (Dohare et al., 2024), where parameter resetting is commonly suggested

108 as a solution (Ash & Adams, 2020; Galashov et al., 2024; Wang et al., 2024b; Farias & Jozefiak, 109 2024). In contrast, we show how both stability and plasticity are issues under realistic CL scenarios. 110

111 **Weight space operations.** A growing body of work has explored directly manipulating model 112 parameters in weight space across various domains, including domain generalization (Wortsman 113 et al., 2022; Cho et al., 2025), multi-task learning (Yu et al., 2024; Yang et al., 2023), and continual 114 learning (Marouf et al., 2025; Marczak et al., 2025; Dziadzio et al., 2024). Most of these approaches 115 operate as post hoc methods by merging the weights of pretrained models. For instance, TIES (Yadav 116 et al., 2024) proposes a selective merging strategy to mitigate interference between different tasks, 117 while Ilharco et al. (Ilharco et al., 2022) demonstrate that simple arithmetic on task-specific weight 118 deltas can edit models without further training. Building on these ideas, recent studies have extended 119 weight-space operations to continual learning. Kozal et al. (Kozal et al., 2024) apply weight averaging 120 techniques in a CL setting, and Marczak et al. (Marczak et al., 2025) introduce a selective merging 121 approach tailored for continual adaptation. However, such methods typically require storing multiple 122 full model checkpoints during training, fail in accumulating various task knowledge (Dziadzio et al., 123 2024), and more critically, may violate the sequential constraints of CL. In contrast, our method 124 operates in weight space *during* training (Izmailov et al., 2018; Jang et al., 2025), requiring neither 125 multiple model copies nor post hoc merging. This enables cost-effective and online editing of the 126 model’s parameters while maintaining compatibility with the CL setup. 127

128 **Positioning.** We clarify the positioning of our 129 work in Table 1. Several recent papers have 130 sought cost-effective methods for CL (Prabhu 131 et al., 2023; Harun et al., 2023; Chavan et al., 132 2023), but do not expand their study on varying 133 exemplar memory scenarios (*e.g.*, constrained/ 134 abundant/ full). On the other hand, we enumerate 135 our experiments across scenarios, illuminating 136 the effect of exemplar memory sizes on the 137 model’s stability and plasticity. While some 138 works have already studied the loss of plasticity, 139 they focus on extreme settings (*i.e.*, full memory) 140 where only plasticity is considered (Dohare et al., 141 2024), neglecting the issue of forgetting (Galashov 142 et al., 2024) or failing to consider the computation 143 costs (Wang et al., 2024b). In contrast, we focus 144 on a realistic setting (*i.e.*, sufficient memory) where 145 both plasticity and stability are considered. 146

### 3 MOTIVATION

147 **Notation.** We generally follow the setting of continual learning (CL) (Masana et al., 2022; Zhou 148 et al., 2024). We consider a sequence of  $T$  tasks, each associated with distribution  $P_t$ . Let  $\mathcal{D}_t$  be 149 the training dataset for task  $t$ , where  $\mathcal{D}_t \sim P_t$ . The tasks are presented in order  $t = 1, \dots, T$ . The 150 model  $F$  (its parameters  $\theta$ ) does not retain explicit access to previous task datasets  $\mathcal{D}_j$  for  $j < t$ , 151 except via an exemplar memory buffer  $\mathcal{M}$  of a capacity of  $K$ . Thus, at the training step of task  $t$ , the 152 model updates its parameters  $\theta$  using the combined data  $\mathcal{D}_t \cup \mathcal{M}_{1:t-1}$  and the task-designated loss 153  $\ell(\mathcal{D}_t \cup \mathcal{M}_{1:t-1}; \theta)$ , where  $\mathcal{M}_{1:t-1}$  includes selected exemplars from earlier tasks. 154

#### 3.1 DEFINING THE SUFFICIENT EXEMPLAR MEMORY REGIME

155 Most prior works assume a strictly limited exemplar memory budget, such that  $K \ll \sum_{t=1}^T |\mathcal{D}_t|$ . 156 Under this constraint, the memory buffer  $\mathcal{M}$  can retain only a small subset of examples from each 157 past dataset  $\{\mathcal{D}_1, \dots, \mathcal{D}_{t-1}\}$ . For instance, common class-IL benchmarks typically allocate only 20 158 exemplars per class, which corresponds to approximately 4% of the total training data (Rebuffi et al., 159 2017; Zhou et al., 2024). As a result, the buffer provides only a partial approximation of the true task 160 distributions  $\{P_1, \dots, P_{t-1}\}$ , leaving the model vulnerable to catastrophic forgetting. 161

162 By contrast, motivated by real-world scenarios where storage cost is relatively low but GPU cost is 163 high, we re-examine CL in a practical regime with *sufficient* memory—enough to mitigate forgetting 164 but where full retraining remains computationally expensive. Therefore, we pursue a practical 165 “middle ground” of abundant-but-not-exhaustive exemplar memory. We define the memory buffer 166  $\mathcal{M}$  to be *sufficient* if it can retain enough samples to approximate the distribution of each previous 167 task  $P_j$  for  $1 \leq j < t$ . Formally, we assume the total memory budget  $K$  satisfies  $K \approx \kappa \sum_{j=1}^{t-1} |\mathcal{D}_j|$ , 168

162 where  $\kappa \in (0, 1]$  determines the fraction of past task data that can be stored. A larger value of  $\kappa$   
 163 implies that  $\mathcal{M}$  contains a more representative subset of earlier examples, though not necessarily the  
 164 entire datasets. In Section 3.2, we investigate when the exemplar memory size becomes *sufficient*  
 165 by experimenting over various memory settings. Under this sufficient exemplar memory setting, the  
 166 mixture distribution  $P_{past}$  of previously encountered tasks at the training step of task  $t$  becomes:  
 167

$$P_{past}^{(t)} \approx \frac{\sum_{j=1}^{t-1} \pi_j P_j}{\sum_{j=1}^{t-1} \pi_j}, \quad (1)$$

170 where  $\pi_j$  denotes the relative importance (e.g., proportional to the number of stored samples or task  
 171 frequency) of each past task, and  $P_j$  represents the corresponding data distribution. In practice, we  
 172 approximate  $\pi_j$  with its empirical counterpart  $\hat{\pi}_j$ , which can be estimated from the samples stored  
 173 in the buffer. During training on task  $t$ , the aggregated past distribution  $P_{past}$  is combined with the  
 174 current task distribution  $P_t$  to form the hybrid training distribution:  
 175

$$P_{train}^{(t)} \approx \lambda P_t + (1 - \lambda) P_{past}^{(t)}, \quad (2)$$

176 where  $\lambda \in [0, 1]$  is a factor that balances the influence of the current and previously observed tasks.  
 177

178 In the next section, we analyze how this training distribution under sufficient exemplar memory  
 179 influences the model’s learning dynamics, leading to improved *stability* but degraded *plasticity*.  
 180



191 Figure 1: Comparison of (y-axis) average class-incremental accuracy and (x-axis) training time  
 192 under different exemplar memory sizes in class-incremental learning for 10-task using CIFAR-100.  
 193 As memory increases, catastrophic forgetting is mitigated (i.e., increase in accuracy), but training  
 194 time (i.e., computation cost) also grows proportionally. Note that the DER, FOSTER, and MEMO  
 195 are expansion-based methods (shown with X mark): FOSTER doubles the model size, while DER  
 196 and MEMO scale with the number of tasks. Compared to these costly methods, Replay and Ours  
 197 demonstrate high accuracy with significantly lower cost, where our method offers the highest cost  
 198 efficiency, closely approaching that of the cost lower-bound cost (i.e., Replay).  
 199

### 3.2 WHAT CHANGES UNDER A SUFFICIENT EXEMPLAR MEMORY REGIME?

200 **Stability.** Under sufficient exemplar memory, the distributions of previous tasks can be closely  
 201 approximated, which effectively reduces forgetting—that is, improves *stability*. Specifically, with  
 202 a large buffer  $\mathcal{M}$ , the empirical distributions  $\tilde{P}_j$  of past tasks approximate their true distributions  
 203  $P_j$  for  $j < t$ . This allows the empirical risk  $\tilde{R}_{1:t}(\theta)$ —computed over the stored exemplars—to  
 204 closely approximate the ideal joint risk  $R_{1:t}(\theta) = \sum_{j=1}^t \mathbb{E}_{x \sim P_j} [\ell(\theta; x)]$ , as if the model were trained  
 205 jointly on all tasks. As a result, the learned parameters  $\hat{\theta}_{1:t}^*$  remain close to the joint optimum  $\theta_{1:t}^*$  in  
 206 parameter space, preserving performance on previous tasks and mitigating catastrophic forgetting.  
 207 For the complete derivation of this result, please refer to Appendix A.1.1.  
 208

209 Experimentally, Figure 1 shows that catastrophic forgetting is substantially reduced when exemplar  
 210 memory is sufficient (e.g.,  $|\mathcal{M}| \geq 200$ ). Notably, the simplest baseline (i.e., Replay) outperforms  
 211 more sophisticated methods while incurring significantly lower training cost (see Figure 1). As a  
 212 result, by the end of each task  $t-1$ , the model serves both as a strong minimizer for previously learned  
 213 tasks  $1:t-1$  and as a reliable initialization for the upcoming task  $t$ .

214 **Plasticity.** We find that under this condition, the challenge shifts from stability to plasticity. We  
 215 conjecture that as exemplar memory becomes increasingly sufficient, the model’s ability to learn



Figure 2: Comparison of (a) average new-task accuracy under different exemplar memory sizes and (b) training loss under full memory in class-incremental learning for 10 tasks using CIFAR-100. As memory increases, the model’s ability to adapt to new tasks declines, resulting in reduced accuracy and slower convergence. Notably, in (b), resetting model weights before each task restores plasticity and facilitates training.

new tasks (*i.e.*, plasticity) gradually deteriorates. At task step  $t$ , the model is trained on a hybrid distribution  $P_{\text{train}}^{(t)} \approx \lambda P_t + (1 - \lambda) P_{\text{past}}^{(t)}$  (Eq. 2), where  $\lambda \in [0, 1]$  controls the emphasis on the new task. As memory size increases,  $\lambda$  decreases, causing the past-task distribution  $P_{\text{past}}^{(t)}$  to dominate. When memory is sufficiently large,  $P_{\text{past}}^{(t)}$  closely resembles  $P_{\text{train}}^{(t-1)}$ , and thus  $P_{\text{train}}^{(t)} \approx P_{\text{train}}^{(t-1)}$ . This similarity results in high gradient alignment (Du et al., 2018), which we quantify via cosine similarity  $\rho_t = \langle \bar{g}_t^{(\text{new})}, \bar{g}_t^{(\text{past})} \rangle / \|\bar{g}_t^{(\text{new})}\| \|\bar{g}_t^{(\text{past})}\|$  (in Eq. 11), where  $\bar{g}_t^{(\text{new})}$  and  $\bar{g}_t^{(\text{past})}$  denote the mean gradients from the new tasks and past tasks, respectively. When  $\rho_t \approx 1$ , the expected gradient  $\bar{g}_t = \lambda \bar{g}_t^{(\text{new})} + (1 - \lambda) \bar{g}_t^{(\text{past})}$  has a reduced norm, causing smaller updates (Yu et al., 2020):

$$\|\theta^{(t)} - \theta^{(t-1)}\| = \eta \|\bar{g}_t\| \leq \eta \|\bar{g}_t^{(\text{new})}\|, \quad (3)$$

which shrinks further as  $\lambda \rightarrow 0$ , where  $\eta$  is the step size. This limits the model’s capacity to adapt, as it tends to reuse previously learned parameters rather than learning new representations.

Such “parameter reuse” behavior has been observed when two sequential tasks are similar, leading to minimal drift across tasks (Lee et al., 2022; Dohare et al., 2024), which is a hallmark of low plasticity. Our interpretation aligns with the stability–plasticity dilemma (Mermilliod et al., 2013; Zhang et al., 2024), where retaining prior knowledge comes at the cost of adapting to new information. It also corroborates observations from Rolnick et al. (2019), which showed that excessive exemplar memory can hinder the learning of new tasks. Please refer to Appendix A.1.2 for a more detailed discussion.

Figure 2a compares the model’s average accuracy on new tasks across various CL methods, which is commonly used to measure the model’s ability to acquire new knowledge (*i.e.*, plasticity) (Liang & Li, 2023; Wang et al., 2024b). Here, we experimentally confirm that as memory increases, the model’s plasticity generally degrades, resulting in lower average accuracy on new tasks (also see Table 6). This aligns with Figure 2b, which depicts the model’s train loss under full exemplar memory. We can observe here that the large memory interferes with convergence under the CL setting. Notably in Figure 2b, we find that reinitializing the model parameters before each task (Dohare et al., 2024; Farias & Jozefiak, 2024) is a simple solution to restoring plasticity, as demonstrated by the low train loss of the model trained with reset and not continually (Orange) in Figure 2b.

## 4 WEIGHT SPACE CONSOLIDATION

Based on insights from the previous section, we propose a cost-efficient CL method—*Weight Space Consolidation*—that leverages weight space operations (*e.g.*, selective resets and running averages) to reconcile the trade-offs of the sufficient exemplar memory regime: high stability and low plasticity.

### 4.1 RANKING-BASED PARAMETER RESET FOR IMPROVED PLASTICITY

The core idea behind our method is that sufficient exemplar memory enables the model to start from a stable initialization (as discussed in Section 3), but remaining too close to this point can hinder plasticity. To address this, we introduce a ranking-based reset technique that selectively reinitializes less important parameters based on their estimated contribution to learning.

270 Before training on the  $t^{\text{th}}$  task, the model parameters—optimized on previous tasks  $1:t-1$ —are stored  
 271 as  $\theta_{\text{prev}}$  (Line 6 in Algorithm 1). Training on the  $t^{\text{th}}$  task proceeds using the task loss  $\ell$  (Line 9), and  
 272 after  $n_{\text{warm}}$  warm-up epochs, we identify *dormant* parameters and gently reset them (Lines 10–11).  
 273

274 To rank parameter importance, we compute a moment-based metric  $\mathcal{S}_l$  for each parameter element  
 275  $l$ , using the first and second exponential moments of its stochastic gradients  $(\hat{m}_l, \hat{v}_l)$ , as in  
 276 Adam (Kingma & Ba, 2017):

$$\mathcal{S}_l = |\hat{m}_l| \cdot \hat{v}_l. \quad (4)$$

277 This score favors parameters that consistently receive strong gradients, while penalizing those with  
 278 low or noisy updates. Specifically, a large  $\hat{m}_l$  indicates that the parameter has received gradients in a  
 279 consistent direction, while a large  $\hat{v}_l$  implies that the parameter has experienced high gradient energy  
 280 overall. By taking the product of the two,  $\mathcal{S}_l$  becomes sensitive to both focused and sustained learning  
 281 signals. Conversely, a low  $\mathcal{S}_l$  suggests that the parameter has received weak or noisy gradients,  
 282 indicating limited contribution to learning. We treat such parameters as *dormant* and reinitialize  
 283 them to recover plasticity. This formulation provides a simple yet effective heuristic for identifying  
 284 underutilized parts of the network based on gradient dynamics during warm-up. In Section 5, we  
 285 compare existing methods that use weight resets for plasticity recovery (see Table 5).

286 In implementation, we retain only the top- $Q\%$  of the parameter element  $l$  (with  $Q=20$  by default  
 287 following (Yadav et al., 2024)), and reset the rest by softly blending them with  $\theta_{\text{prev}}$  (Lines 12–13):  
 288

$$\theta[l] = \alpha \cdot \theta[l] + (1 - \alpha) \cdot \theta_{\text{prev}}[l], \quad \alpha = 0.5. \quad (5)$$

289 This gently pushes the model out of the previous solution basin to improve plasticity, while preserving  
 290 parameters critical to prior tasks—thus maintaining stability.

291 Notably, this operation resembles model merging in the weight space, where two sets of parameters  
 292 are blended. However, unlike conventional model merging approaches that combine multiple trained  
 293 models post hoc, our reset mechanism is applied *during training*, with the explicit goal of restoring  
 294 plasticity. In this context, we treat the merged weights not as a final model, but as an improved  
 295 initialization point that facilitates adaptation to the new task without sacrificing stability.  
 296

## 297 4.2 WEIGHT AVERAGING FOR IMPROVED STABILITY

298 Using the reset model as a fresh starting point, we  
 299 resume training  $\theta$  for the remaining epochs. From this  
 300 point on, we accumulate a running weight average  
 301  $\Theta$  (see Lines 14–16) following the stochastic weight  
 302 averaging (SWA) (Izmailov et al., 2018), which is  
 303 known to promote convergence to flatter optima. The  
 304 running average is updated every  $j$  iterations after a  
 305 warm-up phase of  $n_{\text{warm}}$  steps:

$$\Theta \leftarrow \frac{n_{\text{avg}} \cdot \Theta + \theta}{n_{\text{avg}} + 1}, \quad (6)$$

306 where  $n_{\text{avg}} = i/j$  and  $i$  is the current iteration index.

307 We find that this averaging is particularly effective  
 308 under sufficient exemplar memory settings, where  
 309 data diversity introduces significant gradient variance.  
 310 After the warm-up phase, the model often oscillates  
 311 around multiple distinct low-loss regions due to this  
 312 variance. By averaging weights across these regions,  
 313  $\Theta$  converges to a flatter and more robust minimum  
 314 that consolidates knowledge across both past and  
 315 current tasks (Izmailov et al., 2018; Cha et al., 2020).

316 Importantly, our approach differs from traditional  
 317 model merging methods in CL, which often combine  
 318 independently trained task-specific models to con-  
 319 struct a final model (Ilharco et al., 2022). In contrast,  
 320 our method performs *in-situ* averaging during the training of a single model  $\theta$ , progressively updating

---

### Algorithm 1: Weight Space Consolidation for cost-efficient CL

---

```

1. Input: Model parameters  $\theta$ , training data
    $D_{1:t}$ , memory buffer  $\mathcal{M}$ , average
   interval  $j$ , warming epoch  $n_{\text{warm}}$ 
2. Output: Trained model parameters  $\theta$ 
3. for  $t \leftarrow 1$  to  $T$  do
4.    $\Theta \leftarrow \theta // \text{Init. Averaged Model}$ 
5.   if  $t > 1$  then
6.      $\theta_{\text{prev}} \leftarrow \theta$ 
7.   for  $i = 1 : n_{\text{iter}}$  do
8.     Sample minibatch  $b$  from
       $\{D_t \cup \mathcal{M}_{1:t-1}\}$ 
9.     Update  $\theta$  using  $\ell(b; \theta)$  and SGD
10.    if  $(t > 1 \text{ and } i = n_{\text{warm}})$  then
11.       $\mathcal{I}_{\text{reset}} \leftarrow$ 
         FindDormantParams( $\theta, \theta_{\text{prev}}$ )
12.      for  $l \in \mathcal{I}_{\text{reset}}$  do
13.        Reset weights using
            eq. (5)
14.    if  $(t > 1 \text{ and } i > n_{\text{warm}} \text{ and }$ 
        $i \% j = 0)$  then
15.       $n_{\text{avg}} \leftarrow i/j$ 
16.       $\Theta \leftarrow$ 
          $(\Theta \cdot n_{\text{avg}} + \theta) / (n_{\text{avg}} + 1)$ 
17.     $\theta \leftarrow \Theta$ 

```

---

324  $\Theta$  as a byproduct of the optimization trajectory. This eliminates the need to store and merge multiple  
 325 per-task models, improving our method’s cost-efficiency and scalability to longer task sequences.  
 326

327 At the end of training on task  $t$ , we replace the model parameters with the averaged weights  $\Theta$  (see  
 328 Line 17), which then serve as a stable initialization for the next task, preserving knowledge while  
 329 enabling further adaptation. Please refer to Appendix A.2 for further implementation details.

330 **Summary.** Our method combines two simple yet effective weight-space operations to balance the  
 331 stability–plasticity trade-off in the sufficient exemplar memory regime: (1) ranking-based resets  
 332 recover plasticity by reinitializing dormant parameters, and (2) weight averaging enhances stability  
 333 by converging to flat, robust minima. Both are directly motivated by our analysis in Section 3 and  
 334 introduce negligible overhead, requiring no storage of per-task models or additional backward passes.  
 335

## 336 5 EXPERIMENT

### 337 5.1 EXPERIMENTAL SETTINGS

339 We evaluate our method’s performance and cost-efficiency under various exemplar memory settings.  
 340

341 **Class-IL benchmarks.** We use two standard class-incremental learning benchmarks (Masana et al.,  
 342 2022) via the PyCIL framework (Zhou et al., 2023a): **CIFAR-100**, an image classification dataset  
 343 with 100 classes split into 10 sequential tasks (10 classes each), and **ImageNet-100**, a 100-class  
 344 subset of ImageNet also split into 10 tasks of 10 classes each. We compare our method to seven  
 345 exemplar-based class-IL baselines: iCaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019), WA (Zhao  
 346 et al., 2020), DER (Yan et al., 2021), FOSTER (Wang et al., 2022), MEMO (Zhou et al., 2023b), and  
 347 Replay, a naive baseline that finetunes using current data and stored exemplars.

348 **LLM continual instruction tuning.** We also evaluate on TRACE (Wang et al., 2023), a continual  
 349 instruction tuning benchmark for LLMs across 8 domains. We compare our method against Replay  
 350 and 4 model-merging baselines, following recent findings that such methods can be effectively applied  
 351 to CL (Roth et al., 2024; Dziadzio et al., 2024): Model Soups (Wortsman et al., 2022), SLERP (Jang  
 352 et al., 2024), MagMax (Marczak et al., 2025), and Task Arithmetic (Ilharco et al., 2022).

353 **Architectures and protocol.** For image classification, we use ResNet-32 (He et al., 2016) on CIFAR-  
 354 100 and ResNet-18 (He et al., 2016) on ImageNet-100 (He et al., 2016). For LLM experiments, we  
 355 use an instruction-tuned version of LLaMA-3.2 (Grattafiori et al., 2024). All class-IL results are  
 356 averaged over five seeds and reported as average class-IL accuracy across all tasks after the final  
 357 step (Masana et al., 2022). For TRACE, final scores are reported after completing all sequential tasks.  
 358 We select hyperparameters following the realistic CL evaluation protocol proposed by (Cha & Cho,  
 359 2025). Further details on experimental settings are in Appendix A.5.

### 360 5.2 EXPERIMENTAL RESULTS

362 **Class-IL results.** We report class-incremental learning results in Table 2 and Figures 1, 9. Note that  
 363 DER, FOSTER, and MEMO are expansion-based methods that increase model size over time during  
 364 training. To ensure a fair comparison, we follow the evaluation protocol of (Cha & Cho, 2025) and  
 365 reuse the best hyperparameters found on CIFAR-100 when evaluating on ImageNet-100. From these  
 366 results, we make three key observations: First, as shown in Table 2, under the conventional constrained  
 367 memory setting (*e.g.*, 4% memory), existing class-IL methods outperform Replay. However, as the  
 368 memory size increases, the performance gap narrows substantially. With 20% memory, most methods  
 369 perform similarly to Replay, suggesting diminishing returns of algorithmic complexity in the abundant  
 370 exemplar memory regime. Second, when training cost (*i.e.*, training time) is taken into account,  
 371 Figures 1 and 9 (see Appendix A.4) show that expansion-based methods become highly inefficient.  
 372 For instance, while FOSTER maintains strong accuracy even under abundant exemplar memory,  
 373 its training time is 4–5× higher than that of Replay. Third, our proposed method—Weight Space  
 374 Consolidation—demonstrates both strong performance and high efficiency. Table 2 shows that it  
 375 consistently outperforms existing baselines (except for expansion-based methods) under abundant  
 376 exemplar memory (*i.e.*, over 20% memory). Meanwhile, note that its training cost remains comparable  
 377 to that of Replay, as shown in Figures 1 and 9. Together, these results validate that our method  
 378 effectively mitigates the plasticity–stability trade-off in class-IL using abundant exemplar memory  
 379 with minimal GPU computation overhead.

378 Table 2: Average class-IL accuracy (%) on CIFAR-100 and ImageNet-100 with varying  
 379 exemplar-memory sizes. We report experimental results with varying memory sizes, ranging from  
 380 20 exemplars per class (a common setting in class-IL) to 400/600 exemplars per class (storing 80%  
 381 of the previous dataset in CIFAR-100 and nearly half in ImageNet-100). **Bold** highlights the best  
 382 non-expansion method. We report the standard error across 5 runs.  
 383

| Method | Memory Size (the number of exemplars per class) <sub>(ratio of memory to full data)</sub> |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
|--------|-------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
|        | CIFAR100                                                                                  |                                 |                                 |                                 | ImageNet100                     |                                 |                                 |                                 |
|        | 20(4%)                                                                                    | 80(16%)                         | 200(40%)                        | 400(80%)                        | 20(1.5%)                        | 200(16%)                        | 400(30%)                        | 600(46%)                        |
| DER    | 63.95 $\pm$ 1.9                                                                           | 70.13 $\pm$ 1.6                 | 74.64 $\pm$ 1.1                 | 75.60 $\pm$ 0.9                 | 71.96 $\pm$ 0.6                 | 78.59 $\pm$ 0.7                 | 79.61 $\pm$ 0.5                 | 80.53 $\pm$ 0.6                 |
| FOSTER | 66.22 $\pm$ 1.6                                                                           | 67.67 $\pm$ 1.7                 | 73.53 $\pm$ 0.8                 | 77.28 $\pm$ 0.5                 | 70.14 $\pm$ 0.7                 | 76.01 $\pm$ 0.7                 | 80.94 $\pm$ 0.6                 | 82.79 $\pm$ 0.6                 |
| MEMO   | 61.99 $\pm$ 1.0                                                                           | 70.58 $\pm$ 1.0                 | 73.71 $\pm$ 0.7                 | 75.59 $\pm$ 0.5                 | 66.35 $\pm$ 0.4                 | 77.89 $\pm$ 0.4                 | 80.05 $\pm$ 0.2                 | 81.11 $\pm$ 0.4                 |
| Replay | 48.63 $\pm$ 1.1                                                                           | 63.78 $\pm$ 1.2                 | 71.60 $\pm$ 0.9                 | 75.71 $\pm$ 0.7                 | 50.52 $\pm$ 0.4                 | 73.79 $\pm$ 0.5                 | 78.59 $\pm$ 0.4                 | 81.08 $\pm$ 0.3                 |
| iCaRL  | 49.95 $\pm$ 1.3                                                                           | 64.81 $\pm$ 1.1                 | 72.69 $\pm$ 0.8                 | 75.49 $\pm$ 0.5                 | 50.32 $\pm$ 0.9                 | 73.57 $\pm$ 0.8                 | 78.45 $\pm$ 0.6                 | 80.87 $\pm$ 0.5                 |
| BiC    | 53.65 $\pm$ 0.9                                                                           | 64.74 $\pm$ 0.6                 | 69.15 $\pm$ 0.7                 | 72.50 $\pm$ 0.7                 | 59.31 $\pm$ 0.7                 | 74.14 $\pm$ 0.8                 | 77.51 $\pm$ 0.7                 | 79.29 $\pm$ 0.6                 |
| WA     | <b>61.32<math>\pm</math>1.8</b>                                                           | 66.19 $\pm$ 1.6                 | 71.42 $\pm$ 1.2                 | 73.83 $\pm$ 1.4                 | <b>61.44<math>\pm</math>1.1</b> | 75.85 $\pm$ 0.8                 | 78.79 $\pm$ 0.8                 | 80.21 $\pm$ 0.8                 |
| Ours   | 52.16 $\pm$ 1.2                                                                           | <b>66.89<math>\pm</math>0.9</b> | <b>74.49<math>\pm</math>0.8</b> | <b>77.71<math>\pm</math>0.8</b> | 54.97 $\pm$ 0.5                 | <b>76.43<math>\pm</math>0.5</b> | <b>80.26<math>\pm</math>0.6</b> | <b>82.64<math>\pm</math>0.4</b> |

SLERP
 Avg. (Online)
 Avg. (Offline)
 Task-Arith.
 MagMax
 Ours

Memory = 20%
Memory = 40%
Memory = 60%
Memory = 80%

402 Figure 3: Comparison of average score and relative VRAM usage measured as minutes under different  
 403 exemplar memory sizes in LLM continual instruction tuning for 8-task using TRACE.  
 404

405 **Continual instruction tuning results.** We evaluate our method in a more practical setting of  
 406 continual learning for foundation models, where exemplar memory is abundant. To this end, we  
 407 conduct continual instruction tuning on the TRACE benchmark, following its standard 8-stage setup  
 408 across diverse domains. As strong baselines, we compare with recent model merging approaches that  
 409 have been actively explored for continual learning with foundation models (Roth et al., 2024; Dziadzio  
 410 et al., 2024). Among them, methods such as Task Arithmetic, MagMax, and Model Soup (*i.e.*, Avg.  
 411 (Offline)) require storing all  $T$  task-specific models or representations and merging them post hoc.  
 412 In contrast, methods like Ours, SLERP, and Avg.(Online) operate in a single model trajectory and  
 413 do not require saving all intermediate checkpoints. We denote  $|W|$  as the standard VRAM usage  
 414 of a single model. To ensure a fair evaluation, we follow the protocol proposed by (Cha & Cho,  
 415 2025): all hyperparameters are tuned only under the 20% memory setting, and the same configuration  
 416 is reused across other memory sizes without additional tuning. Figure 3 shows that our method  
 417 consistently outperforms the baselines when the exemplar memory exceeds 20% (Also see Figure 10).  
 418 In particular, we observe that our method achieves 2–9% higher accuracy across all memory sizes  
 419 compared to offline merging approaches like Task Arithmetic and MagMax, which require a relative  
 420 VRAM usage of  $|W| * T$  for saving all previous task models in the GPU. Notably, as summarized  
 421 in Appendix Table 9, these offline merging methods struggle to integrate knowledge from diverse  
 422 tasks (Dziadzio et al., 2024) and tend to underperform under abundant exemplar memory conditions.  
 423 Conversely, our method avoids these issues by operating directly in weight space during training  
 424 and achieves both high performance and GPU efficiency (relative VRAM usage:  $|W| * 2$ ). More  
 425 experimental results or detailed numerical experimental results are introduced in Appendix A.4.

### 426 5.3 ABLATION STUDY

427 We conduct ablation studies to validate the effec-  
 428 tiveness of two key components of our method.  
 429 (1) ranking-based parameter reset for plasticity  
 430 recovery, and (2) weight averaging for stability.

431 **Contribution of each component.** Table 3  
 432 summarizes the performance of our method when

Table 3: Ablation study on CIFAR-100

| Method    | Memory Size  |              |              |              |              |              |              |              |  |
|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--|
|           | 20           | 40           | 80           | 100          | 200          | 300          | 400          | 500          |  |
| Replay    | 48.92        | 56.59        | 63.30        | 65.12        | 70.84        | 73.46        | 75.38        | 76.90        |  |
| w/o reset | 50.23        | 58.19        | 65.01        | 66.50        | 72.33        | 75.00        | 76.98        | 77.92        |  |
| w/o avg.  | 48.73        | 56.89        | 63.43        | 65.22        | 70.81        | 73.49        | 74.99        | 76.47        |  |
| Ours      | <b>52.00</b> | <b>59.69</b> | <b>66.51</b> | <b>67.73</b> | <b>73.57</b> | <b>76.11</b> | <b>77.42</b> | <b>78.25</b> |  |

either reset or averaging is ablated. The baseline Replay uses neither. We find that weight reset alone (w/o avg.) yields limited gains over Replay, while averaging without reset (w/o reset) improves stability but fails to fully adapt to new tasks. Only when both are combined do we observe substantial gains, highlighting that the two operations are complementary and that weight reset primarily serves to enable effective averaging.

**Effectiveness of the importance metric.** Table 4 compares alternative parameter importance metrics used for reset. Our moment-based metric (Eq. 4) performs on par with expensive Hessian-based scores, while being significantly more efficient. Simple metrics like parameter drift also perform well, echoing prior work in pruning (Zhu & Gupta, 2017; Liu et al., 2018). In contrast, using only the first or second moment leads to poor selection, confirming the necessity of combining both for robustness.

**Reset strategies: how and when to reset.** Finally, we investigate two design choices in the reset operation: the reset rule (how to reset) and the reset frequency (when to reset). As shown in Table 5, our soft reset method (a weighted blend with  $\theta_{\text{prev}}$ ) consistently outperforms random reinitialization and hard reversion. This advantage becomes more pronounced with larger memory. We also compare with existing methods (e.g., Shrink & Perturb (Ash & Adams, 2020) and Continual Backprop. (Dohare et al., 2024)), where our method outperforms competitors. Regarding frequency, performing a reset only once after  $n_{\text{warm}}$  works well in most settings. However, in constrained memory regimes, applying multiple resets yields further gains—consistent with findings in sparse reinitialization (Frankle & Carbin, 2019). We provide further analysis in Appendix A.4 on how tuning the reset frequency and retain rate  $Q$  affects performance.

**Continual Learning vs. Full Retraining.** Prior work (Dohare et al., 2024) reports that with *full* exemplar memory, retraining from scratch (i.e., joint-training) can surpass continual learning (CL). In Section 3.2, we revisit this observation theoretically and argue that, under full memory, *per-task resets* (reinitializing weights before each task) recover plasticity while preventing forgetting, yielding strong performance. However, in the more realistic *sufficient* memory regime (e.g., 20–40%), retraining from scratch degrades markedly as forgetting is insufficiently addressed. In these settings, algorithms that leverage prior models (e.g., ours) offer clear advantages, as seen in Table 6. Finally, while maximal replay might appear ideal, it is often impractical at scale (e.g., LLMs). Our approach provides a cost-effective alternative that balances performance with efficiency

## 6 CONCLUDING REMARKS

This paper challenges the long-standing assumption in continual learning (CL) that exemplar memory is the primary bottleneck, arguing that in modern deployments, GPU cost is the true constraint. We investigate the consequences of having sufficient memory—a practical regime where forgetting is largely solved but full retraining from scratch remains prohibitively expensive—and demonstrate that the central challenge shifts from mitigating forgetting to overcoming a loss of plasticity. To address this, we propose Weight Space Consolidation, a lightweight method combining parameter resets and weight averaging to navigate this new stability-plasticity trade-off. Our method is empirically validated across image classification and LLM instruction tuning, where it outperforms strong baselines at a fraction of the cost, establishing a scalable and cost-efficient alternative to full retraining. Ultimately, our findings call for a crucial shift in focus for future CL research: from optimizing for unrealistic memory constraints toward designing computationally efficient algorithms for the real-world scenarios of today.

Table 4: Study of Parameter-Importance Metric on Average class-IL accuracy (%) in CIFAR-100

| Metric         | Cost | Memory Size  |              |              |
|----------------|------|--------------|--------------|--------------|
|                |      | 20           | 200          | 500          |
| Param. Drift   | ↓    | 51.93        | 73.02        | 77.90        |
| Fisher-based   | ↑    | 52.35        | 73.49        | 77.57        |
| Hessian-based  | ↑    | <b>52.81</b> | <b>73.63</b> | 78.16        |
| First Moment   | ↓    | 50.10        | 71.38        | 75.05        |
| Second Moment  | ↓    | 47.29        | 70.44        | 73.89        |
| Ours (eq. (4)) | ↓    | 52.00        | 73.57        | <b>78.25</b> |

Table 5: Study of reset strategies on Average class-IL accuracy (%) in CIFAR-100

| Strategy               | Reset Method | Memory Size  |              |              |
|------------------------|--------------|--------------|--------------|--------------|
|                        |              | 20           | 200          | 500          |
| Random                 |              | 45.30        | 71.56        | 75.11        |
| Revert                 |              | 50.93        | 71.85        | 75.78        |
| Shrink&Perturb 3       |              | 48.26        | 70.32        | 76.05        |
| Continual Backprop. 16 |              | 47.15        | 70.49        | 76.52        |
| Ours (w/o Avg.)        |              | 48.73        | 70.81        | 76.47        |
| Ours                   |              | <b>52.00</b> | <b>73.57</b> | <b>78.25</b> |
| Reset Frequency        |              |              |              |              |
| Every Iter.            |              | 47.38        | 63.11        | 70.32        |
| Every Epoch            |              | <b>53.36</b> | 72.73        | 76.57        |
| Once (Ours)            |              | 52.00        | <b>73.57</b> | <b>78.25</b> |

Table 6: Comparison of **Full Retraining from scratch** and Continual Learning under a standard CL setting. Average class-IL accuracy (%) on CIFAR-100 is reported.

| Method             | Memory Size (# of exemplars per class) (ratio of memory to full data) |              |              |              |              |
|--------------------|-----------------------------------------------------------------------|--------------|--------------|--------------|--------------|
|                    | 20 (4%)                                                               | 100 (20%)    | 200 (40%)    | 300 (60%)    | 400 (80%)    |
| Full Retraining    | 46.15                                                                 | 64.73        | 69.96        | <b>76.02</b> | <b>78.94</b> |
| Continual (Replay) | 48.63                                                                 | 66.11        | 71.60        | 73.29        | 75.71        |
| Ours               | <b>52.16</b>                                                          | <b>67.25</b> | <b>74.49</b> | 75.97        | 77.71        |

486      ETHICS STATEMENT  
487

488 The authors acknowledge and concur with the ICLR Code of Ethics, namely in its pursuit of (1)  
489 human well-being, (2) high standards of scientific excellence, (3) consideration for the societal  
490 impacts (i.e., harms) of AI, (4) honesty & trustworthiness, (5) fairness, (6) mutual respect for other  
491 researchers' works, (7) privacy, and (8) confidentiality.

## 493 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the source code, experimental guidelines, and the scripts used in our experiments. Please refer to the README.md file in the supplementary materials on how to reproduce our experiments. We also used a fixed seed setting, which is implemented in the source code. We also include notebook (.ipynb) files to reproduce the figures appearing in our paper. Lastly, in Section 5.1 and Appendix A.5, we thoroughly explain how our method and its experiments are implemented.

## 501 REFERENCES

503 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.  
 504 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European conference*  
 505 *on computer vision (ECCV)*, pp. 139–154, 2018.

506

507 Amazon Web Services. Amazon ec2 on-demand pricing, 2024. URL [https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h\\_ls](https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls). Accessed: 2025-05-11.

508

509 Jordan T. Ash and Ryan P. Adams. On warm-starting neural network training, 2020. URL <https://arxiv.org/abs/1910.08475>.

510

511 Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic  
 512 gradients, 2020. URL <https://arxiv.org/abs/1705.07774>.

513

514

515 Gerald Beer, RT Rockafellar, and Roger J-B Wets. A characterization of epi-convergence in terms of  
 516 convergence of level sets. *Proceedings of the American Mathematical Society*, 116(3):753–761,  
 517 1992.

518

519 Daniel Brignac, Niels Lobo, and Abhijit Mahalanobis. Improving replay sample selection and storage  
 520 for less forgetting in continual learning. In *Proceedings of the IEEE/CVF International Conference*  
 521 *on Computer Vision*, pp. 3540–3549, 2023.

522

523 Gail A Carpenter and Stephen Grossberg. Art 2: Self-organization of stable category recognition  
 524 codes for analog input patterns. *Applied Optics*, 26(23):4919–4930, 1987.

525

526 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,  
 527 and Sungrae Park. Swad: Domain generalization by seeking flat minima. In M. Ranzato,  
 528 A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances*  
 529 *in Neural Information Processing Systems*, volume 34, pp. 22405–22418. Curran Associates,  
 530 Inc., 2021. URL [https://proceedings.neurips.cc/paper\\_files/paper/2021/file/bcb41ccdc4363c6848a1d760f26c28a0-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2021/file/bcb41ccdc4363c6848a1d760f26c28a0-Paper.pdf).

531

532 Sungmin Cha and Kyunghyun Cho. Hyperparameters in continual learning: A reality check. *Transactions*  
 533 *on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=hiIRCXmbAz>.

534

535 Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flavio P Calmon, and Taesup Moon. Cpr: classifier-  
 536 projection regularization for continual learning. *arXiv preprint arXiv:2006.07326*, 2020.

537

538 Sungmin Cha, Sungjun Cho, Dasol Hwang, Sunwon Hong, Moontae Lee, and Taesup Moon. Rebal-  
 539 ancancing batch normalization for exemplar-based class-incremental learning. In *Proceedings of the*  
*IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20127–20136, 2023.

540 Vivek Chavan, Paul Koch, Marian Schlüter, and Clemens Briese. Towards realistic evaluation of  
 541 industrial continual learning scenarios with an emphasis on energy consumption and computational  
 542 footprint. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.  
 543 11506–11518, 2023.

544 Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Long live the lottery:  
 545 The existence of winning tickets in lifelong learning. In *International Conference on Learning  
 546 Representations*, 2020.

548 Dong Kyu Cho, Inwoo Hwang, and Sanghack Lee. Peer pressure: Model-to-model regularization  
 549 for single source domain generalization. In *Proceedings of the Computer Vision and Pattern  
 550 Recognition Conference*, pp. 15360–15370, 2025.

551 Jack Chong, Manas Gupta, and Lihui Chen. Resource efficient neural networks using hessian based  
 552 pruning. *arXiv preprint arXiv:2306.07030*, 2023.

554 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-  
 555 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):  
 556 768–774, 2024.

557 Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Mehrdad Farajtabar, Razvan Pascanu,  
 558 and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity. *arXiv preprint  
 559 arXiv:1812.02224*, 2018.

561 Sebastian Dziadzio, Vishaal Udandarao, Karsten Roth, Ameya Prabhu, Zeynep Akata, Samuel  
 562 Albanie, and Matthias Bethge. How to merge your multimodal models over time?, 2024. URL  
 563 <https://arxiv.org/abs/2412.06712>.

564 Paul Escande. On the concentration of the minimizers of empirical risks. *Journal of Machine  
 565 Learning Research*, 25(251):1–53, 2024.

567 Vivek F Farias and Adam D Jozefiak. Self-normalized resets for plasticity in continual learning.  
 568 *arXiv preprint arXiv:2410.20098*, 2024.

569 Massimo Fornasier, Lorenzo Pareschi, Hui Huang, and Philippe Sünnen. Consensus-based optimiza-  
 570 tion on the sphere: Convergence to global minimizers and machine learning. *Journal of Machine  
 571 Learning Research*, 22(237):1–55, 2021.

573 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural  
 574 networks, 2019. URL <https://arxiv.org/abs/1803.03635>.

575 Alexandre Galashov, Michalis K. Titsias, András György, Clare Lyle, Razvan Pascanu, Yee Whye Teh,  
 576 and Maneesh Sahani. Non-stationary learning of neural networks with automatic soft parameter  
 577 reset, 2024. URL <https://arxiv.org/abs/2411.04034>.

579 Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via neural pruning, 2019.  
 580 URL <https://arxiv.org/abs/1903.04476>.

581 Annette Rios Gonzales, Nicolas Spring, Tannon Kew, Marek Kostrzewa, Andreas Säuberli, Mathias  
 582 Müller, and Sarah Ebling. A new dataset and efficient baselines for document-level text simplifica-  
 583 tion in german. In *Proceedings of the Third Workshop on New Frontiers in Summarization*, pp.  
 584 152–161, 2021.

586 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and Abhishek Kadian et al.  
 587 The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

588 Md Yousuf Harun, Jhair Gallardo, Tyler L. Hayes, and Christopher Kanan. How efficient are today’s  
 589 continual learning algorithms? In *Proceedings of the IEEE/CVF Conference on Computer Vision  
 590 and Pattern Recognition (CVPR) Workshops*, pp. 2431–2436, June 2023.

592 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image  
 593 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,  
 pp. 770–778, 2016.

594 Yebowen Hu, Tim Ganter, Hanieh Deilamsalehy, Franck Dernoncourt, Hassan Foroosh, and Fei Liu.  
 595 Meetingbank: A benchmark dataset for meeting summarization. *arXiv preprint arXiv:2305.17529*,  
 596 2023.

597 John E Hutchinson. Second fundamental form for varifolds and the existence of surfaces minimising  
 598 curvature. *Indiana University Mathematics Journal*, 35(1):45–71, 1986.

599 Dongseong Hwang. Fadam: Adam is a natural gradient optimizer using diagonal empirical fisher  
 600 information, 2024. URL <https://arxiv.org/abs/2405.12807>.

601 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,  
 602 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint  
 603 arXiv:2212.04089*, 2022.

604 Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-  
 605 eraging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*,  
 606 2018.

607 Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few  
 608 fine-tuned models. In *European Conference on Computer Vision*, pp. 207–223. Springer, 2025.

609 Young Kyun Jang, Dat Huynh, Ashish Shah, Wen-Kai Chen, and Ser-Nam Lim. Spherical linear  
 610 interpolation and text-anchoring for zero-shot composed image retrieval, 2024. URL <https://arxiv.org/abs/2405.00571>.

611 Haeyoung Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark  
 612 Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with  
 613 winning subnetworks. In *International Conference on Machine Learning*, pp. 10734–10750.  
 614 PMLR, 2022.

615 Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and  
 616 generalization. In *Proceedings on*, pp. 51–65. PMLR, 2023.

617 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses  
 618 for scene geometry and semantics. In *Proceedings of the IEEE conference on computer vision and  
 619 pattern recognition*, pp. 7482–7491, 2018.

620 Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity of  
 621 neural networks. In *The Twelfth International Conference on Learning Representations*, 2024.

622 Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with partitioning  
 623 reservoir sampling. In *European conference on computer vision*, pp. 411–428. Springer, 2020.

624 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL  
 625 <https://arxiv.org/abs/1412.6980>.

626 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A  
 627 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming  
 628 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114  
 629 (13):3521–3526, 2017.

630 Jędrzej Kozal, Jan Wasilewski, Bartosz Krawczyk, and Michał Woźniak. Continual learning with  
 631 weight interpolation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 632 Recognition*, pp. 4187–4195, 2024.

633 Seanie Lee, Hae Beom Lee, Juho Lee, and Sung Ju Hwang. Sequential reptile: Inter-task gradient  
 634 alignment for multilingual learning. *arXiv preprint arXiv:2110.02600*, 2021.

635 Sebastian Lee, Stefano Sarao Mannelli, Claudia Clopath, Sebastian Goldt, and Andrew Saxe.  
 636 Maslow’s hammer for catastrophic forgetting: Node re-use vs node activation, 2022. URL  
 637 <https://arxiv.org/abs/2205.09029>.

638 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape  
 639 of neural nets. *Advances in neural information processing systems*, 31, 2018.

648 Yan-Shuo Liang and Wu-Jun Li. Adaptive plasticity improvement for continual learning. In  
 649 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 650 7816–7825, 2023.

651

652 Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of  
 653 network pruning. *arXiv preprint arXiv:1810.05270*, 2018.

654

655 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,  
 656 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for  
 657 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,  
 658 2022.

659

660 Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin  
 661 Clement, Dawn Drain, Dixin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark  
 662 dataset for code understanding and generation. *arXiv preprint arXiv:2102.04664*, 2021.

663

664 Daniel Marczał, Bartłomiej Twardowski, Tomasz Trzciński, and Sebastian Cygert. Magmax: Lever-  
 665 aging model merging for seamless continual learning. In *European Conference on Computer  
 666 Vision*, pp. 379–395. Springer, 2025.

667

668 Imad Eddine Marouf, Subhankar Roy, Enzo Tartaglione, and Stéphane Lathuilière. Weighted  
 669 ensemble models are strong continual learners. In *European Conference on Computer Vision*, pp.  
 670 306–324. Springer, 2025.

671

672 Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van  
 673 De Weijer. Class-incremental learning: survey and performance evaluation on image classification.  
 674 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513–5533, 2022.

675

676 Gabriele Merlin, Vincenzo Lomonaco, Andrea Cossu, Antonio Carta, and Davide Bacci. Practical  
 677 recommendations for replay-based continual learning methods. In *International Conference on  
 678 Image Analysis and Processing*, pp. 548–559. Springer, 2022.

679

680 Martial Mermilliod, Aurélia Bugajska, and Patrick Bonin. The stability-plasticity dilemma: Inves-  
 681 tigating the continuum from catastrophic forgetting to age-limited learning effects. *Frontiers in  
 682 Psychology*, 4:504, 2013.

683

684 Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,  
 685 and Ashwin Kalyan. Numglue: A suite of fundamental yet challenging mathematical reasoning  
 686 tasks. *arXiv preprint arXiv:2204.05660*, 2022.

687

688 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation  
 689 for neural network pruning, 2019. URL <https://arxiv.org/abs/1906.10771>.

690

691 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor  
 692 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward  
 693 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,  
 694 Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning  
 695 library, 2019. URL <https://arxiv.org/abs/1912.01703>.

696

697 Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K Dokania, Philip HS Torr, Ser-Nam Lim,  
 698 Bernard Ghanem, and Adel Bibi. Computationally budgeted continual learning: What does matter?  
 699 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 700 3698–3707, 2023.

701

702 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:  
 703 Incremental classifier and representation learning, 2017. URL <https://arxiv.org/abs/1611.07725>.

704

705 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience  
 706 replay for continual learning. In *Advances in Neural Information Processing Systems*, volume 32,  
 707 2019.

702 Karsten Roth, Vishaal Udandarao, Sebastian Dziadzio, Ameya Prabhu, Mehdi Cherti, Oriol Vinyals,  
 703 Olivier Hénaff, Samuel Albanie, Matthias Bethge, and Zeynep Akata. A practitioner’s guide to  
 704 continual multimodal pretraining. *arXiv preprint arXiv:2408.14471*, 2024.

705 Agam Shah, Suvan Paturi, and Sudheer Chava. Trillion dollar words: A new financial dataset, task &  
 706 market analysis. In *Proceedings of the 61st Annual Meeting of the Association for Computational  
 707 Linguistics (Volume 1: Long Papers)*, pp. 6664–6679, 2023.

708 Sara van de Geer and Martin J Wainwright. On concentration for (regularized) empirical risk  
 709 minimization. *Sankhya A*, 79:159–200, 2017.

710 Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. *arXiv preprint  
 711 arXiv:1904.07734*, 2019.

712 Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Foster: Feature boosting and  
 713 compression for class-incremental learning. In *European conference on computer vision*, pp.  
 714 398–414. Springer, 2022.

715 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:  
 716 theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,  
 717 2024a.

718 Maorong Wang, Nicolas Michel, Ling Xiao, and Toshihiko Yamasaki. Improving plasticity in online  
 719 continual learning via collaborative learning. In *Proceedings of the IEEE/CVF Conference on  
 720 Computer Vision and Pattern Recognition*, pp. 23460–23469, 2024b.

721 Xiao Wang, Yuansen Zhang, Tianze Chen, Songyang Gao, Senjie Jin, Xianjun Yang, Zhiheng Xi, Rui  
 722 Zheng, Yicheng Zou, Tao Gui, et al. Trace: A comprehensive benchmark for continual learning in  
 723 large language models. *arXiv preprint arXiv:2310.06762*, 2023.

724 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,  
 725 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von  
 726 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama  
 727 Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art  
 728 natural language processing, 2020. URL <https://arxiv.org/abs/1910.03771>.

729 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,  
 730 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model  
 731 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing  
 732 inference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022.

733 Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large  
 734 scale incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and  
 735 pattern recognition*, pp. 374–382, 2019.

736 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:  
 737 Resolving interference when merging models. *Advances in Neural Information Processing Systems*,  
 738 36, 2024.

739 Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class  
 740 incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern  
 741 recognition*, pp. 3014–3023, 2021.

742 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.  
 743 Adamerging: Adaptive model merging for multi-task learning. *arXiv preprint arXiv:2310.02575*,  
 744 2023.

745 Md Yousuf Harun, Jhair Gallardo, Tyler L Hayes, and Christopher Kanan. How efficient are today’s  
 746 continual learning algorithms? *arXiv e-prints*, pp. arXiv–2303, 2023.

747 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:  
 748 Absorbing abilities from homologous models as a free lunch. In *Forty-first International Conference  
 749 on Machine Learning*, 2024.

756 Shixing Yu, Zhewei Yao, Amir Gholami, Zhen Dong, Sehoon Kim, Michael W Mahoney, and Kurt  
 757 Keutzer. Hessian-aware pruning and optimal neural implant, 2021. URL <https://arxiv.org/abs/2101.08940>.

759  
 760 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.  
 761 Gradient surgery for multi-task learning. *Advances in Neural Information Processing Systems*, 33:  
 762 5824–5836, 2020.

763 Yipeng Zhang, Laurent Charlin, Richard Zemel, and Mengye Ren. Integrating present and past in  
 764 unsupervised continual learning, 2024. URL <https://arxiv.org/abs/2404.19132>.

765  
 766 Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and  
 767 fairness in class incremental learning. In *Proceedings of the IEEE/CVF conference on computer*  
 768 *vision and pattern recognition*, pp. 13208–13217, 2020.

769 Chenye Zhao, Yingjie Li, and Cornelia Caragea. C-stance: A large dataset for chinese zero-shot  
 770 stance detection. In *Proceedings of the 61st Annual Meeting of the Association for Computational*  
 771 *Linguistics (Volume 1: Long Papers)*, pp. 13369–13385, 2023.

772 Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: A python toolbox for class-  
 773 incremental learning, 2023a.

774  
 775 Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: To-  
 776 wards memory-efficient class-incremental learning. In *The Eleventh International Conference on*  
 777 *Learning Representations*, 2023b.

778 Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-  
 779 incremental learning: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,  
 780 46(12):9851–9873, 2024.

781 Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model  
 782 compression. *arXiv preprint arXiv:1710.01878*, 2017.

783  
 784  
 785  
 786  
 787  
 788  
 789  
 790  
 791  
 792  
 793  
 794  
 795  
 796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809

810 A APPENDIX  
811812 A.1 ABUNDANT EXEMPLAR MEMORY REGIME  
813

814 **Summary.** In the abundant exemplar memory regime, the replay buffer becomes an excellent  
815 proxy for the union of past tasks, which (1) mitigates forgetting (see Appendix A.1.1) but (2) reduces  
816 the effective learning signal for novel information (task), causing high node-reuse and low plasticity  
817 (see Appendix A.1.2). Section 5 empirically quantified this trade-off across different replay ratios on  
818 CIFAR-100 and ImageNet-100.

819 A.1.1 STABILITY: ABUNDANT EXEMPLAR MEMORY MITIGATES CATASTROPHIC FORGETTING  
820

830  
831 Figure 4: The impact of exemplar memory size on catastrophic forgetting. Increased memory  
832 drastically reduces the forgetting between tasks, while it persists.  
833

834 Next, we discuss how a sufficiently large exemplar memory buffer  $\mathcal{M}$  approximates previous tasks'  
835 distributions, thus reducing catastrophic forgetting.  
836

837 Ideally, if we could train jointly on all tasks  $1, \dots, t$ , the obtained model parameter  $\theta_{1:t}^*$  would  
838 minimize the risk:  
839

$$840 R_{1:t}(\theta) = \sum_{j=1}^t \mathbb{E}_{x \sim P_j} [\ell(\theta; x)]. \quad (7)$$

841 which minimizes forgetting by design. By joint-training on all task data up to task  $t$ , we would find  
842  $\theta_{1:t}^* = \arg \min_{\theta} R_{1:t}(\theta)$ , with no conventional notion of forgetting between tasks.  
843

844 Similarly, with a large enough exemplar memory, the replayed data for previous tasks closely  
845 approximates their true distributions ( $\tilde{P}_j \approx P_j$  for all  $j < t$ ). Therefore training on  $D_t \cup \mathcal{M}_{1:t-1}$  (its  
846 distribution eq. (2)) yields a risk  
847

$$848 \tilde{R}_{1:t}(\theta) \approx \lambda \mathbb{E}_{P_t} [\ell(\theta; x)] + (1 - \lambda) \sum_{j=1}^{t-1} \hat{\pi}_j \mathbb{E}_{\tilde{P}_j} [\ell(\theta; x)], \quad (8)$$

849 where  $\hat{\pi}_j$  indicates the empirical importance (i.e., size) of the tasks. Here, we may bound  $|\tilde{R}_{1:t}(\theta) - R_{1:t}(\theta)| \leq \epsilon$  under standard assumptions (e.g., Lipschitz continuity in  $\theta$  (Khromov & Singh, 2024), use of representative samples during empirical risk minimization), with  $\epsilon$  shrinking as the replay buffer size  $K$  increases, leading to  $\tilde{P}_j \approx P_j$ . Assuming  $R_{1:t}$  is  $\mu$ -strongly convex in a neighbourhood of  $\theta_{1:t}^*$  (i.e., locally strong convex), this risk gap implies  $\|\tilde{\theta}_{1:t}^* - \theta_{1:t}^*\| \leq \sqrt{2\epsilon/\mu}$  (Fornasier et al., 2021; Escande, 2024). Intuitively, if the two risk surfaces are proximate, their minimizers are also close in the parameter space (Beer et al., 1992; van de Geer & Wainwright, 2017).

850 In this sense, forgetting of a previous task  $j$  arises when  $\tilde{\theta}_{1:t}^*$  drastically changes its predictions on the  
851 previous task distribution  $P_j$ . But if  $\tilde{\theta}_{1:t}^*$  remains near  $\theta_{1:t}^*$  (which, by definition, does well on previous  
852 tasks by training jointly), it must still perform well on task  $j$ . Hence, if we measure forgetting in the  
853 parameter space as

$$854 \Delta_{j \rightarrow t} = \mathbb{E}_{x \sim P_j} [\ell(\tilde{\theta}_{1:t}^*; x) - \ell(\theta_{1:j}^*; x)], \quad (9)$$

855 the measure of how replay-based parameters after task  $t$  perform on task  $j$  compared to the parameters  
856 after task  $j$ . Here,  $\Delta_{j \rightarrow t}$  remains small if  $\tilde{\theta}_{1:t}^* \approx \theta_{1:t}^*$ . Naturally, since  $\theta_{1:t}^*$  is a reliable minimizer on  
857

all tasks, the small parameter drift ensures that the performance of the model trained under abundant exemplar memory does not degrade on earlier tasks - i.e., forgetting is reduced as exemplar memory becomes larger (Merlin et al., 2022; Brignac et al., 2023).

Experimentally, Figure 4 validates that increasing the exemplar memory size can reduce forgetting (hence improving stability). Here, forgetting is measured as the average over all previously learned tasks of the drop from each task’s best-ever accuracy to its accuracy after the final task (Zhou et al., 2023a). Formally:

$$\text{Forgetting} = \frac{1}{T-1} \sum_{k=1}^{T-1} \left( \max_{1 \leq i \leq T} a_{k,i} - a_{k,T} \right),$$

where we denote  $a_{k,i}$  and  $a_{k,T}$  as the accuracy on task  $k$  immediately after learning task  $i$ , and the accuracy on task  $k$  after learning the final task  $T$ , respectively.

### A.1.2 PLASTICITY: ABUNDANT EXEMPLAR MEMORY DETERIORATES MODEL’S CAPACITY TO LEARN NEW TASKS



Figure 5: A comparison of plasticity loss (measured using the average of the new task accuracy) across different exemplar memory sizes in the 10 task scenario of CIFAR-100 and ImageNet-100. As memory size increases, models lose their ability to learn new tasks.

$\lambda$

We claim that while abundant exemplar memory improves stability, it inevitably suppresses plasticity (Dohare et al., 2024). Let  $\theta^{(t-1)}$  and  $\theta^{(t)}$  denote the network parameters right before and right after training on task  $t$ . Denote by  $g_t(x, y) = \nabla_{\theta} \ell(\theta^{(t-1)}; x, y)$  the per-example gradient when we begin task  $t$ . Under the hybrid distribution of equation 2, the expected update direction is

$$\underbrace{\mathbb{E}_{x \sim P_{\text{train}}^{(t)}}[g_t(x)]}_{\triangleq \bar{g}_t} = \lambda \bar{g}_t^{(\text{new})} + (1 - \lambda) \bar{g}_t^{(\text{past})}, \quad (10)$$

where  $\bar{g}_t^{(\text{new})}, \bar{g}_t^{(\text{past})}$  is the gradient mean over  $P_t$  and  $P_{\text{past}}$ , respectively. Define the gradient alignment

$$\rho_t = \frac{\langle \bar{g}_t^{(\text{new})}, \bar{g}_t^{(\text{past})} \rangle}{\| \bar{g}_t^{(\text{new})} \| \| \bar{g}_t^{(\text{past})} \|} \in [-1, 1], \quad (11)$$

using the cosine similarity (Du et al., 2018; Lee et al., 2021). When the buffer is abundant,  $P_{\text{past}}^{(t)}$  (i.e., past task data at task step  $t$  stored in the replay memory) and  $P_{\text{train}}^{(t-1)}$  (i.e., the mixed train data at task step  $t-1$ ) are close, and by definition the distribution  $P_{\text{train}}^{(t)}$  at task  $t$  is similar to the distribution  $P_{\text{train}}^{(t-1)}$  at task  $t-1$ ; hence  $\rho_t \approx 1$ . Consequently, the effective step taken during task  $t$

$$\| \theta^{(t)} - \theta^{(t-1)} \| = \eta \| \bar{g}_t \| \leq \eta [ \lambda + (1 - \lambda) ] \| \bar{g}_t^{(\text{new})} \| = \eta \| \bar{g}_t^{(\text{new})} \|, \quad (12)$$

where  $\eta$  is the learning rate. Here, Equation (12) shrinks monotonically with  $\lambda$  because  $\bar{g}_t^{(\text{new})}$  and  $\bar{g}_t^{(\text{past})}$  are almost colinear. In the limit  $\lambda \rightarrow 0$  (i.e. the current data is overwhelmed by replay) the update direction collapses onto the span of previous gradients (Yu et al., 2020; Kendall et al., 2018), yielding

$$\| \theta^{(t)} - \theta^{(t-1)} \| \xrightarrow{\lambda \rightarrow 0} 0, \quad (13)$$

918 which encourages the network to remain dormant (i.e., loss of plasticity (Dohare et al., 2024)) between  
 919 tasks.

920 This analysis connects with the *node-reuse* phenomenon studied in (Lee et al., 2022), which claimed  
 921 that when two sequential tasks are similar—as in the case of  $P_{\text{train}}^t$  and  $P_{\text{train}}^{(t-1)}$  under the abundant  
 922 exemplar memory regime—models tend to reuse their nodes (i.e., loss of plasticity), and also aligns  
 923 with the model’s underperformance in training under extreme replay (i.e., full data is provided as  
 924 exemplar memory) as reported in (Rolnick et al., 2019).

925 The results of Figure 5 depict how a model’s plasticity, more specifically its ability to learn new tasks,  
 926 diminishes as exemplar memory becomes abundant. Here, the plasticity was measured using the  
 927 model’s average accuracy on new tasks. In Section 3.2, we also provided another analysis focused  
 928 on the train loss, where we observe that under abundant exemplar memory, convergence becomes  
 929 difficult. In the sequel, we investigate this phenomenon more deeply.

### 931 932 A.1.3 DISCUSSION: NEW CHALLENGES UNDER ABUNDANT EXEMPLAR MEMORY

933 Using exemplar memory results in a hybrid training dataset that combines current task data  $D_t \cup$   
 934  $\mathcal{M}_{1:t-1}$  with replayed samples from previous tasks.

935 This combined dataset introduces several side effects. First, as discussed in Section 3.2, stability  
 936 increases, hence reducing forgetting (Appendix A.1.1). On the other hand, plasticity worsens  
 937 (Appendix A.1.2). In this section, we investigate whether the abundant exemplar memory regime  
 938 poses additional issues.

939 First, gradient interference may occur as the gradients computed on current task samples can conflict  
 940 with those from past tasks, leading to partial cancellation of updates and impeding effective learning  
 941 across tasks. We view that this potentially could lead to a new form of forgetting that distorts  
 942 the learned features and ultimately interfering with the model’s learning process. Second, the  
 943 heterogeneous nature of the hybrid dataset increases the variance of the stochastic gradient estimates,  
 944 resulting in slower convergence. This heightened variance necessitates either more iterations or more  
 945 sophisticated optimization techniques to minimize the loss reliably. Furthermore, imbalances in task  
 946 representation can arise if the replay buffer unevenly captures the diverse distributions of past tasks.

947 Conventional continual learning methods typically address forgetting by assuming that new data is  
 948 markedly different from prior data and focusing on preserving performance on previously learned  
 949 tasks. However, in the abundant exemplar memory regime, where all tasks are presented simulta-  
 950 neously within a combined dataset, these methods fall short. They are not equipped to handle the  
 951 multi-task learning dynamics and the associated balancing issues that emerge when the model must  
 952 integrate and harmonize learning signals from a diverse set of tasks. We believe a more thorough  
 953 investigation is required, and we set this as a key objective of our future work.

### 954 955 A.2 METHOD (CONTINUED.)

956 In this section, we elaborate on our method *weight space consolidation*, highlighting the role of each  
 957 component. The proposed method is a combination of two weight-space operations. (1) ranking-based  
 958 parameter reset (Yadav et al., 2024) and (2) weight averaging (Wortsman et al., 2022).

959 **Ranking-based weight reset.** The weight re-  
 960 set step selects and resets redundant parameters  
 961 in adapting to the new task. The aim of this pro-  
 962 cedure is to find the minimal set of parameters  
 963 that are capable of adapting to the new  $t^{\text{th}}$  task,  
 964 and reinitializing the redundant parameters to the  
 965 mixed value of the previous task model  $\theta_{\text{prev}}$   
 966 and the current model  $\theta$  value using Equation (5),  
 967 which helps recover learned features. In this pro-  
 968 cess, we use a simple metric Equation (4) that  
 969 uses the parameter’s first and second moments  
 970 to measure its importance (Kingma & Ba, 2017;  
 971 Balles & Hennig, 2020; Molchanov et al., 2019;



972 Figure 6: Ablation Study on CIFAR-100. We  
 973 empirically find that resetting and averaging col-  
 974 laboratively benefit each other.

972 Hwang, 2024). In Appendix A.3, we also compare alternative measures (e.g., parameter drift) and  
 973 discuss their limitations.

974 Using this metric, we retain the top- $Q\%$  parameters that have largely drifted during the current task  
 975 and reset the dormant parameters using eq. (5). The idea of resetting model weights is not novel in  
 976 the continual learning literature, but most have focused on improving plasticity (Dohare et al., 2024).  
 977 Conversely, we improve both plasticity and stability using a mixing technique (eq. (5), integrating  
 978 previous and present tasks. In appendix A.4, we provide experimental results on the effect of  $Q$ , the  
 979 percentage of weight reset on model performance (see fig. 11). Furthermore, we study alternative  
 980 variations of our reset method, namely (1) different parameter importance metrics (see Table 4), (2)  
 981 different reset methods and reset frequencies (see Table 5). We find that resetting more frequently  
 982 (e.g., per epoch) displays significant gains in performance especially under limited memory settings.  
 983 We discuss this observation on Appendix A.4.

984  
 985 **Weight Average.** The weight-averaging step aggregates various learned signals into a single model,  
 986 allowing for faster convergence and improved generalization (Izmailov et al., 2018). The underlying  
 987 idea is that the model weights can address catastrophic forgetting, functioning as a substitute for  
 988 replay memory. Using this, we aim to fill the gap between the full exemplar memory setting (i.e.,  
 989 joint-training) and the abundant exemplar memory setting. Another motive behind this approach is  
 990 the new challenges (see section 3.1) rooted in training with a mixture of datasets  $D_t \cup \mathcal{M}_{1:t-1}$ , which  
 991 generally requires more training steps for convergence. In Appendix A.4, we empirically observe  
 992 that the abundant exemplar memory setting complicates training, requiring more training epochs for  
 993 convergence (see Figure 2b). The weight averaging technique is also an emerging practice in the  
 994 continual learning literature (Marouf et al., 2025; Kozal et al., 2024). However, such works merge the  
 995 model weights after training (i.e., offline merging (Dziadzio et al., 2024)), which requires the storage  
 996 of multiple model weights (proportional to the number of tasks). On the other hand, our method uses  
 997 a moving average model that is updated during training (i.e., online merging).

998  
 999 **Why does Weight Space Consolidation work?** Our starting point is the abundant memory  
 1000 regime, where abundant exemplars reduce forgetting but drive the optimizer toward sharp, over-  
 1001 specialized minima that harm plasticity. Weight Space Consolidation is designed to counteract this  
 1002 effect with two complementary weight-space operations. First, targeted re-initialization of dormant  
 1003 parameters restores unused capacity, enabling the network to escape locally saturated directions and  
 1004 learn new tasks. Second, in-situ weight averaging biases training toward flatter regions of the loss  
 1005 landscape, a mechanism that prior work has linked to improved generalization and reduced forgetting  
 1006 (Izmailov et al. (2018); Cha et al. (2021; 2020)). Our experiments further show that this averaging  
 1007 step induces sparsity in the effective parameter usage, and sparsity is known to enhance plasticity  
 1008 by preventing the model from over-relying on a small set of critical parameters Golkar et al. (2019);  
 1009 Dohare et al. (2024). Together, these effects provide an explanation of why our proposed method can  
 1010 simultaneously recover plasticity and maintain stability in the abundant-memory regime.

### 1010 A.3 MEASURING PARAMETER IMPORTANCE

1011 In our work, we measure a parameter’s contribution to learning a new task by using a moment-based  
 1012 score (eq. (4)). However, there are several alternative approaches we could take. In this section,  
 1013 we investigate the alternative measures that could be used to measure a parameter’s importance to  
 1014 learning a new task.

1015 First, we can simply use the parameter drift to measure a model’s contribution to the new task,  
 1016 formulated as:

$$1018 \Delta_l = |\theta[l] - \theta_{prev}[l]|, \quad (14)$$

1019 where  $\theta[l]$  and  $\theta_{prev}[l]$  indicates the  $l^{th}$  parameter of the current model  $\theta$  and the previous task model  
 1020  $\theta_{prev}$ , respectively. However, a problem with this approach is when the previous model  $\theta_{prev}$  should  
 1021 be stored. This is a critical issue in cases we wish to reset *multiple* times.

1022 A more principled alternative weights each parameter by the empirical Fisher diagonal:

$$1024 1025 F_l = \frac{1}{N} \sum_{n=1}^N \left( \partial_{\theta[l]} \log p(y_n | x_n; \theta) \right)^2, \quad (15)$$

which captures how strongly the log-likelihood reacts to perturbations of  $\theta[l]$ . This idea underpins many existing continual learning methods (e.g., EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018)). However, Fisher scores are usually difficult to compute real-time and lack scalability.

Another metric we can use is the Hessian estimate (Yu et al., 2021; Chong et al., 2023). Second-order methods replace  $F_l$  by a Hessian diagonal estimate, which we can efficiently obtain with Hutchinson’s trick (Hutchinson, 1986):

$$\hat{h}_l = \frac{1}{K} \sum_{k=1}^K (v^{(k)} \odot Hv^{(k)})_l, \quad v^{(k)} \sim \{-1, +1\}^{|\theta|}, \quad (16)$$

where each Hutchinson probe costs a single Hessian–vector product. The absolute curvature  $s_l = |\hat{h}_l|$  can then serve as our importance score. However, similar to the Fisher matrix, Hessians are exceptionally costly to compute, especially for large models. In Section 5, we investigate the efficacy of these metrics as a parameter importance measure.

We can also think of differentiating between how a parameter changes (1) between tasks (2) within a task.

**Inter-task Parameter Drift.** When transitioning from one task to the next, the change in the  $l$ -th parameter can be measured as

$$\Delta\theta_{\text{inter}}[l] = |\theta_t[l] - \theta_{t-1}[l]|,$$

where  $\theta_t[l]$  denotes the  $l$ <sup>th</sup> parameter after training on the current task  $t$ , and  $\theta_{t-1}[l]$  represents the  $l$ <sup>th</sup> parameter after training on the previous task  $t - 1$ . A large value indicates that the parameter is highly task-specific, while a small value suggests robustness across tasks.

**Intra-task Parameter Drift.** Alternatively, we can analyze how a parameter evolves during the training process of a single task. Let  $\theta^{(i)}[l]$  denote the value of the  $l$ <sup>th</sup> parameter at the  $i$ <sup>th</sup> iteration during training. Then, the intra-task parameter drift is given by

$$\Delta\theta_{\text{intra}}^{(i)}[l] = |\theta_t^{(i+1)}[l] - \theta_t^{(i)}[l]|.$$

This measure captures the incremental updates of the parameter as the model optimizes its performance on the current task. By comparing both the inter-task and intra-task parameter changes, we gain a more comprehensive understanding of the role each parameter plays in adapting to new tasks as well as the dynamics of learning within a single task. In our future work, we will seek a more reliable metric to express a parameter’s behavior in the weight space.

#### A.4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we provide the full results of our experiments, namely (1) CIFAR-100, (2) ImageNet-100, and (3) TRACE.



Figure 7: Comparison of (a) average class-incremental accuracy and (b) training time under different exemplar memory sizes in class-incremental learning for 10-task using CIFAR-100. As memory increases, catastrophic forgetting is mitigated, but training time (*i.e.*, computational cost) also grows proportionally. Note that DER, FOSTER, and MEMO are expansion-based methods (shown with dashed lines).

Table 7: Average class-IL accuracy (%) on CIFAR-100 with varying exemplar-memory sizes. We report experimental results with varying memory sizes, ranging from 20 exemplars per class (a common setting in class-IL) to 500 exemplars per class (storing the entire previous dataset in CIFAR-100). Bold highlights the best non-expansion method. We report the standard error across 5 runs.

| Method | Memory Size (the number of exemplars per class) <sub>(ratio of memory to full data)</sub> |                             |                             |                             |                             |                             |                             |                             |
|--------|-------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|        | 20 <sub>(4%)</sub>                                                                        | 40 <sub>(8%)</sub>          | 80 <sub>(16%)</sub>         | 100 <sub>(20%)</sub>        | 200 <sub>(40%)</sub>        | 300 <sub>(60%)</sub>        | 400 <sub>(80%)</sub>        | 500 <sub>(100%)</sub>       |
| DER    | 63.95 <sub>±1.9</sub>                                                                     | 67.27 <sub>±1.5</sub>       | 70.13 <sub>±1.6</sub>       | 70.98 <sub>±1.3</sub>       | 74.64 <sub>±1.1</sub>       | 75.05 <sub>±1.3</sub>       | 75.60 <sub>±0.9</sub>       | 75.92 <sub>±1.1</sub>       |
| FOSTER | 66.22 <sub>±1.6</sub>                                                                     | 65.58 <sub>±1.5</sub>       | 67.67 <sub>±1.7</sub>       | 69.01 <sub>±1.2</sub>       | 73.53 <sub>±0.8</sub>       | 76.19 <sub>±0.7</sub>       | 77.28 <sub>±0.5</sub>       | 78.07 <sub>±0.7</sub>       |
| MEMO   | 61.99 <sub>±1.0</sub>                                                                     | 66.59 <sub>±1.1</sub>       | 70.58 <sub>±1.0</sub>       | 71.44 <sub>±0.8</sub>       | 73.71 <sub>±0.7</sub>       | 75.20 <sub>±0.8</sub>       | 75.59 <sub>±0.5</sub>       | 75.83 <sub>±0.5</sub>       |
| Replay | 48.63 <sub>±1.1</sub>                                                                     | 56.80 <sub>±1.4</sub>       | 63.78 <sub>±1.2</sub>       | 66.11 <sub>±1.2</sub>       | 71.60 <sub>±0.9</sub>       | 73.29 <sub>±0.5</sub>       | 75.71 <sub>±0.7</sub>       | 77.02 <sub>±0.5</sub>       |
| iCaRL  | 49.95 <sub>±1.3</sub>                                                                     | 57.12 <sub>±1.3</sub>       | 64.81 <sub>±1.1</sub>       | 66.23 <sub>±1.2</sub>       | 72.69 <sub>±0.8</sub>       | 73.63 <sub>±0.7</sub>       | 75.49 <sub>±0.5</sub>       | 76.16 <sub>±0.7</sub>       |
| BiC    | 53.65 <sub>±0.9</sub>                                                                     | 61.13 <sub>±0.8</sub>       | 64.74 <sub>±0.6</sub>       | 65.59 <sub>±0.8</sub>       | 69.15 <sub>±0.7</sub>       | 71.22 <sub>±0.5</sub>       | 72.50 <sub>±0.7</sub>       | 72.83 <sub>±0.7</sub>       |
| WA     | <b>61.32<sub>±1.8</sub></b>                                                               | <b>63.87<sub>±1.5</sub></b> | 66.19 <sub>±1.6</sub>       | 66.90 <sub>±1.5</sub>       | 71.42 <sub>±1.2</sub>       | 72.15 <sub>±1.5</sub>       | 73.83 <sub>±1.4</sub>       | 74.09 <sub>±1.2</sub>       |
| Ours   | 52.16 <sub>±1.2</sub>                                                                     | 60.34 <sub>±1.1</sub>       | <b>66.89<sub>±0.9</sub></b> | <b>67.25<sub>±1.0</sub></b> | <b>74.49<sub>±0.8</sub></b> | <b>75.97<sub>±0.6</sub></b> | <b>77.71<sub>±0.8</sub></b> | <b>78.16<sub>±0.6</sub></b> |

**CIFAR-100.** The results of the CIFAR-100 class-IL experiment are reported in Table 7. Here, we validate that our method is indeed the strongest among non-expansion methods, and even surpasses expansion-based methods under abundant exemplar memory (see Figure 7a). Specifically, we see that in cases where the exemplar memory size is larger than 16% of the full data, our weight space consolidation method outperforms all non-expansion methods, and begins to match the costly expansion-based methods when the exemplar memory ratio exceeds 40%. The true strength of our method lies in its training cost (see Figure 7b), where our method’s train time is at par with the cheapest baseline (Replay), while taking one-fifth the time of the expansion-based FOSTER (Wang et al., 2022) and non-expansion-based BiC (Wu et al., 2019).



Figure 8: Comparison of (a) average class-incremental accuracy and (b) training time under different exemplar memory sizes in class-incremental learning for 10-task using ImageNet-100.

Table 8: Average class-IL accuracy (%) on ImageNet-100 with varying exemplar-memory sizes. Bold highlights the best non-expansion method. We report the standard error across 5 runs.

| Method | Memory Size (the number of exemplars per class) <sub>(ratio of memory to full data)</sub> |                             |                             |                             |                             |                             |                             |                             |
|--------|-------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|        | 20 <sub>(1.5%)</sub>                                                                      | 50 <sub>(4%)</sub>          | 100 <sub>(8%)</sub>         | 200 <sub>(16%)</sub>        | 300 <sub>(23%)</sub>        | 400 <sub>(30%)</sub>        | 500 <sub>(38%)</sub>        | 600 <sub>(46%)</sub>        |
| DER    | 71.96 <sub>±0.6</sub>                                                                     | 75.53 <sub>±0.5</sub>       | 76.80 <sub>±0.6</sub>       | 78.59 <sub>±0.7</sub>       | 79.42 <sub>±0.5</sub>       | 79.61 <sub>±0.5</sub>       | 79.97 <sub>±0.6</sub>       | 80.53 <sub>±0.6</sub>       |
| FOSTER | 70.14 <sub>±0.7</sub>                                                                     | 67.69 <sub>±0.7</sub>       | 70.74 <sub>±0.5</sub>       | 76.01 <sub>±0.7</sub>       | 79.03 <sub>±0.5</sub>       | 80.94 <sub>±0.6</sub>       | 81.87 <sub>±0.4</sub>       | 82.79 <sub>±0.6</sub>       |
| MEMO   | 66.35 <sub>±0.4</sub>                                                                     | 71.12 <sub>±0.6</sub>       | 74.26 <sub>±0.4</sub>       | 77.89 <sub>±0.4</sub>       | 78.74 <sub>±0.5</sub>       | 80.05 <sub>±0.2</sub>       | 80.37 <sub>±0.4</sub>       | 81.11 <sub>±0.4</sub>       |
| Replay | 50.52 <sub>±0.4</sub>                                                                     | 61.64 <sub>±0.6</sub>       | 68.49 <sub>±0.5</sub>       | 73.79 <sub>±0.5</sub>       | 76.93 <sub>±0.4</sub>       | 78.59 <sub>±0.4</sub>       | 80.25 <sub>±0.5</sub>       | 81.08 <sub>±0.3</sub>       |
| iCaRL  | 50.32 <sub>±0.9</sub>                                                                     | 59.76 <sub>±0.9</sub>       | 67.23 <sub>±1.0</sub>       | 73.57 <sub>±0.8</sub>       | 76.84 <sub>±0.8</sub>       | 78.45 <sub>±0.6</sub>       | 79.63 <sub>±0.6</sub>       | 80.87 <sub>±0.5</sub>       |
| BiC    | 59.31 <sub>±0.7</sub>                                                                     | 65.98 <sub>±0.7</sub>       | 70.63 <sub>±0.8</sub>       | 74.14 <sub>±0.8</sub>       | 76.22 <sub>±0.6</sub>       | 77.51 <sub>±0.7</sub>       | 78.76 <sub>±0.6</sub>       | 79.29 <sub>±0.6</sub>       |
| WA     | <b>61.44<sub>±1.1</sub></b>                                                               | <b>67.52<sub>±0.9</sub></b> | 71.33 <sub>±1.1</sub>       | 75.85 <sub>±0.8</sub>       | 77.53 <sub>±0.8</sub>       | 78.79 <sub>±0.8</sub>       | 79.63 <sub>±0.9</sub>       | 80.21 <sub>±0.8</sub>       |
| Ours   | 54.97 <sub>±0.5</sub>                                                                     | 64.95 <sub>±0.6</sub>       | <b>71.49<sub>±0.6</sub></b> | <b>76.43<sub>±0.5</sub></b> | <b>78.71<sub>±0.4</sub></b> | <b>80.26<sub>±0.6</sub></b> | <b>81.56<sub>±0.4</sub></b> | <b>82.64<sub>±0.4</sub></b> |

**ImageNet-100.** The experimental results in the ImageNet-100 benchmark display a similar pattern. In Figure 8a, we observe a gradual increase in average task accuracy as the exemplar memory size increases, which eventually saturates as it enters the abundant exemplar memory regime. The cost of training increases proportionally to the memory size, where methods like BiC or DER require substantially larger training time. On the other hand, our method displays high accuracy while using roughly one-third half of the training time (see Figure 8b). For detailed results, please refer to Table 8.



Figure 9: Comparison of (y-axis) average class-incremental accuracy and (x-axis) training time under different exemplar memory sizes in class-incremental learning for 10-task using ImageNet-100. Note that the DER, FOSTER, and MEMO are expansion-based methods (shown with X mark).



Figure 10: Comparison of average score on different exemplar memory sizes in LLM continual instruction tuning for 8-task using TRACE. The value inside the parentheses indicates the model weight complexity proportional to the number of models loaded in the VRAM.

**TRACE.** TRACE (Wang et al., 2023) is a continual instruction tuning benchmark for the evaluation of LLMs across eight sequential domains, including science (Lu et al., 2022), policy (Shah et al., 2023), meeting summarization (Hu et al., 2023), multilingual classification (Zhao et al., 2023; Gonzales et al., 2021), code generation (Lu et al., 2021), and math reasoning (Mishra et al., 2022).

Table 9 reports the LLM continual instruction tuning benchmark results in TRACE. Similar to the results in the Class-IL benchmarks (e.g., CIFAR-100, ImageNet-100), we observe a similar pattern where the accuracy grows in accordance with the increase in memory size (see Figure 10). An interesting observation is that offline merging (i.e., model merging methods that merge post-training) tends to underperform, displaying lower scores while requiring the VRAM cost of storing multiple models. This aligns with the empirical results of Dziadzio et al. (Dziadzio et al., 2024), which showed that offline merging methods face difficulties in accumulating the multi-task knowledge. Compared to this, our method In addition, note that for TRACE, we use a different method to measure the train cost, which is the relative VRAM usage. The relative VRAM usage is a scaled version of the training time, which measures the computation cost of the training based on the VRAM usage. This scaling is required to distinguish from models that take a similar time to train, but use different numbers of GPUs. For instance, our method and MagMax require similar time to train, but MagMax requires multiple ( $t$ ) task vectors to be loaded in the VRAM, and this is reflected in the relative VRAM usage measure. Considering this, we visualize the results in Figure 3.

**Zero-Memory Setting** To relate our study to exemplar-free continual learning, we also evaluate all methods in a strict zero-memory configuration on CIFAR-100, where no exemplars are stored in the buffer. We report the results in Table 10. This setting corresponds to the idealized regime suggested in some recent CL work, but lies outside our main assumption of exemplar-based CL with sufficient memory. Consistent with our analysis, removing exemplars leads to severe performance degradation across all algorithms: while most methods reach 69–74% average class-IL accuracy in the 40% memory regime (Table 7), their accuracy drops to 25–53% under zero-memory. DER and MEMO achieve the highest performance (53.37% and 43.98%), and our method still improves

1188  
1189 Table 9: General language understanding and reasoning scores on TRACE with varying exemplar-  
1190 memory sizes. We report the standard error across 5 runs.  
1191

| Method            | # Mem. Size | # of $\theta$ stored | Runtime (min.) | C-STANCE        | FOMC            | MeetingBank     | Py150           | ScienceQA       | NumGLUE <sub>cm</sub> | NumGLUE <sub>ds</sub> | 20Minuten       | Avg. |
|-------------------|-------------|----------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------------|-----------------|------|
|                   |             |                      |                | Acc.            | Acc.            | ROUGE-L         | Similarity      | Acc.            | Acc.                  | Acc.                  | Acc.            |      |
| Fine-tune         | —           | —                    | 137'5          | 0.42            | 0.25            | 0.33            | 0.49            | 0.21            | 0.28                  | 0.51                  | 0.37            | 0.35 |
| Replay            | 0.2         | —                    | 314'7          | 0.43 $\pm$ 0.08 | 0.01 $\pm$ 0.05 | 0.35 $\pm$ 0.08 | 0.50 $\pm$ 0.07 | 0.29 $\pm$ 0.07 | 0.32 $\pm$ 0.06       | 0.38 $\pm$ 0.05       | 0.37 $\pm$ 0.06 | 0.33 |
|                   | 0.4         | —                    | 351'2          | 0.49 $\pm$ 0.09 | 0.21 $\pm$ 0.07 | 0.38 $\pm$ 0.07 | 0.50 $\pm$ 0.05 | 0.47 $\pm$ 0.04 | 0.35 $\pm$ 0.05       | 0.41 $\pm$ 0.06       | 0.39 $\pm$ 0.05 | 0.40 |
|                   | 0.6         | —                    | 394'7          | 0.47 $\pm$ 0.06 | 0.13 $\pm$ 0.05 | 0.38 $\pm$ 0.05 | 0.55 $\pm$ 0.03 | 0.18 $\pm$ 0.04 | 0.40 $\pm$ 0.03       | 0.56 $\pm$ 0.03       | 0.37 $\pm$ 0.04 | 0.38 |
|                   | 0.8         | —                    | 449'4          | 0.49 $\pm$ 0.03 | 0.13 $\pm$ 0.05 | 0.37 $\pm$ 0.03 | 0.57 $\pm$ 0.04 | 0.21 $\pm$ 0.03 | 0.38 $\pm$ 0.03       | 0.56 $\pm$ 0.03       | 0.37 $\pm$ 0.03 | 0.38 |
| SLERP             | 0.2         | 1                    | 375'9          | 0.42 $\pm$ 0.07 | 0.45 $\pm$ 0.05 | 0.31 $\pm$ 0.06 | 0.54 $\pm$ 0.07 | 0.36 $\pm$ 0.03 | 0.29 $\pm$ 0.05       | 0.42 $\pm$ 0.04       | 0.40 $\pm$ 0.04 | 0.39 |
|                   | 0.4         | 1                    | 422'4          | 0.45 $\pm$ 0.06 | 0.42 $\pm$ 0.06 | 0.26 $\pm$ 0.03 | 0.53 $\pm$ 0.06 | 0.33 $\pm$ 0.05 | 0.29 $\pm$ 0.05       | 0.48 $\pm$ 0.06       | 0.43 $\pm$ 0.06 | 0.40 |
|                   | 0.6         | 1                    | 472'9          | 0.42 $\pm$ 0.06 | 0.56 $\pm$ 0.05 | 0.38 $\pm$ 0.05 | 0.57 $\pm$ 0.03 | 0.30 $\pm$ 0.03 | 0.34 $\pm$ 0.04       | 0.54 $\pm$ 0.05       | 0.38 $\pm$ 0.06 | 0.43 |
|                   | 0.8         | 1                    | 526'4          | 0.45 $\pm$ 0.05 | 0.18 $\pm$ 0.05 | 0.37 $\pm$ 0.06 | 0.58 $\pm$ 0.06 | 0.39 $\pm$ 0.04 | 0.37 $\pm$ 0.03       | 0.53 $\pm$ 0.04       | 0.38 $\pm$ 0.04 | 0.41 |
| Avg.<br>(Online)  | 0.2         | 1                    | 374'5          | 0.44 $\pm$ 0.05 | 0.46 $\pm$ 0.06 | 0.33 $\pm$ 0.04 | 0.52 $\pm$ 0.05 | 0.39 $\pm$ 0.06 | 0.31 $\pm$ 0.05       | 0.37 $\pm$ 0.05       | 0.37 $\pm$ 0.06 | 0.40 |
|                   | 0.4         | 1                    | 421'7          | 0.42 $\pm$ 0.05 | 0.41 $\pm$ 0.05 | 0.35 $\pm$ 0.05 | 0.55 $\pm$ 0.03 | 0.43 $\pm$ 0.07 | 0.28 $\pm$ 0.03       | 0.43 $\pm$ 0.03       | 0.44 $\pm$ 0.05 | 0.41 |
|                   | 0.6         | 1                    | 471'4          | 0.45 $\pm$ 0.05 | 0.50 $\pm$ 0.05 | 0.41 $\pm$ 0.04 | 0.55 $\pm$ 0.04 | 0.35 $\pm$ 0.05 | 0.34 $\pm$ 0.03       | 0.52 $\pm$ 0.04       | 0.39 $\pm$ 0.05 | 0.44 |
|                   | 0.8         | 1                    | 524'5          | 0.45 $\pm$ 0.03 | 0.49 $\pm$ 0.05 | 0.35 $\pm$ 0.03 | 0.52 $\pm$ 0.03 | 0.16 $\pm$ 0.04 | 0.35 $\pm$ 0.03       | 0.47 $\pm$ 0.05       | 0.36 $\pm$ 0.04 | 0.39 |
| Avg.<br>(Offline) | 0.2         | $t$                  | 377'1          | 0.48 $\pm$ 0.03 | 0.02 $\pm$ 0.01 | 0.37 $\pm$ 0.03 | 0.58 $\pm$ 0.02 | 0.29 $\pm$ 0.03 | 0.34 $\pm$ 0.05       | 0.51 $\pm$ 0.05       | 0.37 $\pm$ 0.03 | 0.36 |
|                   | 0.4         | $t$                  | 430'6          | 0.45 $\pm$ 0.04 | 0.03 $\pm$ 0.01 | 0.38 $\pm$ 0.02 | 0.58 $\pm$ 0.05 | 0.33 $\pm$ 0.03 | 0.40 $\pm$ 0.03       | 0.48 $\pm$ 0.03       | 0.37 $\pm$ 0.04 | 0.38 |
|                   | 0.6         | $t$                  | 479'3          | 0.44 $\pm$ 0.04 | 0.56 $\pm$ 0.03 | 0.38 $\pm$ 0.04 | 0.59 $\pm$ 0.02 | 0.36 $\pm$ 0.03 | 0.38 $\pm$ 0.04       | 0.53 $\pm$ 0.03       | 0.36 $\pm$ 0.01 | 0.45 |
|                   | 0.8         | $t$                  | 525'4          | 0.50 $\pm$ 0.04 | 0.21 $\pm$ 0.03 | 0.38 $\pm$ 0.03 | 0.59 $\pm$ 0.03 | 0.35 $\pm$ 0.03 | 0.38 $\pm$ 0.02       | 0.49 $\pm$ 0.04       | 0.37 $\pm$ 0.02 | 0.41 |
| Task-Arith.       | 0.2         | $t$                  | 374'6          | 0.51 $\pm$ 0.03 | 0.02 $\pm$ 0.01 | 0.39 $\pm$ 0.05 | 0.56 $\pm$ 0.03 | 0.29 $\pm$ 0.04 | 0.40 $\pm$ 0.03       | 0.52 $\pm$ 0.04       | 0.38 $\pm$ 0.05 | 0.38 |
|                   | 0.4         | $t$                  | 427'6          | 0.49 $\pm$ 0.03 | 0.01 $\pm$ 0.01 | 0.39 $\pm$ 0.05 | 0.59 $\pm$ 0.04 | 0.32 $\pm$ 0.05 | 0.40 $\pm$ 0.02       | 0.53 $\pm$ 0.04       | 0.39 $\pm$ 0.03 | 0.39 |
|                   | 0.6         | $t$                  | 474'9          | 0.50 $\pm$ 0.03 | 0.47 $\pm$ 0.06 | 0.38 $\pm$ 0.05 | 0.60 $\pm$ 0.03 | 0.32 $\pm$ 0.03 | 0.42 $\pm$ 0.03       | 0.52 $\pm$ 0.03       | 0.40 $\pm$ 0.03 | 0.45 |
|                   | 0.8         | $t$                  | 523'1          | 0.49 $\pm$ 0.03 | 0.28 $\pm$ 0.03 | 0.39 $\pm$ 0.03 | 0.57 $\pm$ 0.04 | 0.40 $\pm$ 0.03 | 0.44 $\pm$ 0.05       | 0.48 $\pm$ 0.02       | 0.38 $\pm$ 0.03 | 0.43 |
| MagMax            | 0.2         | $t$                  | 373'3          | 0.49 $\pm$ 0.04 | 0.44 $\pm$ 0.03 | 0.25 $\pm$ 0.06 | 0.26 $\pm$ 0.06 | 0.37 $\pm$ 0.04 | 0.31 $\pm$ 0.03       | 0.48 $\pm$ 0.04       | 0.39 $\pm$ 0.04 | 0.37 |
|                   | 0.4         | $t$                  | 424'8          | 0.46 $\pm$ 0.04 | 0.41 $\pm$ 0.03 | 0.39 $\pm$ 0.05 | 0.26 $\pm$ 0.06 | 0.35 $\pm$ 0.06 | 0.43 $\pm$ 0.04       | 0.43 $\pm$ 0.05       | 0.40 $\pm$ 0.05 | 0.39 |
|                   | 0.6         | $t$                  | 469'9          | 0.59 $\pm$ 0.05 | 0.45 $\pm$ 0.04 | 0.37 $\pm$ 0.04 | 0.32 $\pm$ 0.06 | 0.43 $\pm$ 0.05 | 0.42 $\pm$ 0.04       | 0.45 $\pm$ 0.03       | 0.40 $\pm$ 0.03 | 0.42 |
|                   | 0.8         | $t$                  | 525'6          | 0.32 $\pm$ 0.03 | 0.54 $\pm$ 0.03 | 0.23 $\pm$ 0.04 | 0.25 $\pm$ 0.06 | 0.32 $\pm$ 0.03 | 0.29 $\pm$ 0.04       | 0.51 $\pm$ 0.03       | 0.39 $\pm$ 0.04 | 0.36 |
| Ours              | 0.2         | 1                    | 370'9          | 0.39 $\pm$ 0.05 | 0.13 $\pm$ 0.03 | 0.36 $\pm$ 0.07 | 0.51 $\pm$ 0.07 | 0.32 $\pm$ 0.04 | 0.40 $\pm$ 0.02       | 0.56 $\pm$ 0.03       | 0.39 $\pm$ 0.01 | 0.38 |
|                   | 0.4         | 1                    | 422'6          | 0.41 $\pm$ 0.03 | 0.48 $\pm$ 0.02 | 0.38 $\pm$ 0.05 | 0.55 $\pm$ 0.05 | 0.45 $\pm$ 0.02 | 0.41 $\pm$ 0.03       | 0.30 $\pm$ 0.03       | 0.39 $\pm$ 0.02 | 0.42 |
|                   | 0.6         | 1                    | 465'8          | 0.44 $\pm$ 0.02 | 0.57 $\pm$ 0.02 | 0.35 $\pm$ 0.04 | 0.52 $\pm$ 0.05 | 0.47 $\pm$ 0.02 | 0.38 $\pm$ 0.02       | 0.55 $\pm$ 0.03       | 0.39 $\pm$ 0.01 | 0.46 |
|                   | 0.8         | 1                    | 522'9          | 0.46 $\pm$ 0.02 | 0.47 $\pm$ 0.02 | 0.37 $\pm$ 0.05 | 0.55 $\pm$ 0.03 | 0.46 $\pm$ 0.02 | 0.36 $\pm$ 0.02       | 0.53 $\pm$ 0.01       | 0.40 $\pm$ 0.01 | 0.45 |

1211 over Replay (29.83% vs. 26.07%), but the gap to the sufficient-memory regime remains large. These  
1212 results support our claim that exemplar-free CL is substantially more challenging and currently  
1213 yields accuracy that is insufficient for many real-world deployments, whereas allocating a moderate  
1214 exemplar buffer enables practical performance gains that our cost-efficient method is designed to  
1215 exploit.

1225 Figure 11: Weight reset experiment on CIFAR-100. Most parameters (80%) are redundant in learning  
1226 new tasks. Weight Avg. boosts sparsity, retaining performance with fewer (10%) parameters.  
1227

1228 **Sparsity analysis after reset.** Next, we examine how much of the  
1229 model contributes to learning new tasks. In Figure 11, we vary the  
1230 retain rate  $Q$  in the reset step. We find that resetting up to 80% of pa-  
1231 rameters yields minimal degradation in accuracy, suggesting that only  
1232 a small subset of weights are actively involved in continual learning.  
1233 This aligns with findings in sparse training and pruning (Frankle &  
1234 Carbin, 2019; Chen et al., 2020). We observe that weight averaging  
1235 helps retain performance under extreme resets (e.g.,  $Q=10\%$ ), sug-  
1236 gesting that it encourages robust, sparse models that do not rely on a  
1237 small set of critical parameters.

1238 **Effect of Sampling techniques** In this section, we study the effect of  
1239 batch sampling in exemplar-based continual learning. Prior work has  
1240 examined the role of exemplar selection and sampling, with early re-  
1241 sults suggesting that sophisticated schemes such as reservoir sampling  
1242 may improve performance under severely constrained memory Kim

1224  
1225 Table 10: Average class-IL  
1226 accuracy (%) on CIFAR-100  
1227 under zero memory.

| Method | Memory Size |
|--------|-------------|
|        | 0           |
| DER    | 53.37       |
| FOSTER | 26.43       |
| MEMO   | 43.98       |
| Replay | 26.07       |
| iCaRL  | 29.03       |
| BiC    | 28.29       |
| WA     | 42.10       |
| Ours   | 29.83       |

Table 11: Average class-IL accuracy (%) on CIFAR-100 with varying exemplar-memory sizes using reservoir sampling. Memory Size indicates the number of exemplars per class. The value inside the parentheses indicates the gap between the default random sampling and the reservoir sampling results. Bold highlights the best non-expansion method.

| Method | Memory Size <sub>(ratio of memory to full data)</sub> |                                 |
|--------|-------------------------------------------------------|---------------------------------|
|        | 20 <sub>(4%)</sub>                                    | 200 <sub>(40%)</sub>            |
| DER    | 64.21 <sub>(+0.26)</sub>                              | 74.83 <sub>(+0.19)</sub>        |
| FOSTER | 65.97 <sub>(-0.25)</sub>                              | 73.71 <sub>(+0.18)</sub>        |
| MEMO   | 62.36 <sub>(+0.37)</sub>                              | 73.40 <sub>(-0.31)</sub>        |
| Replay | 49.32 <sub>(+0.69)</sub>                              | 71.66 <sub>(+0.06)</sub>        |
| iCaRL  | 50.34 <sub>(+0.39)</sub>                              | 72.89 <sub>(+0.20)</sub>        |
| BiC    | 53.86 <sub>(+0.21)</sub>                              | 69.27 <sub>(+0.12)</sub>        |
| WA     | <b>61.68</b> <sub>(+0.36)</sub>                       | 71.65 <sub>(+0.23)</sub>        |
| Ours   | 52.49 <sub>(+0.33)</sub>                              | <b>74.63</b> <sub>(+0.14)</sub> |

Table 12: Average class-IL accuracy (%) on CIFAR-100 with varying exemplar-memory sizes on longer task sequences (T=20). Memory Size indicates the number of exemplars per class. The value inside the parentheses indicates the gap between the default task sequence (T=10; 10 tasks) and the longer task sequence setting (T=20; 20 tasks).

| Method | Memory Size <sub>(ratio of memory to full data)</sub> |                                 |
|--------|-------------------------------------------------------|---------------------------------|
|        | 20 <sub>(4%)</sub>                                    | 200 <sub>(40%)</sub>            |
| DER    | 55.42 <sub>(-8.53)</sub>                              | 70.91 <sub>(-3.73)</sub>        |
| FOSTER | 55.94 <sub>(-10.28)</sub>                             | 71.80 <sub>(-1.73)</sub>        |
| MEMO   | 54.61 <sub>(-7.38)</sub>                              | 70.14 <sub>(-3.57)</sub>        |
| Replay | 44.73 <sub>(-3.90)</sub>                              | 70.88 <sub>(-0.72)</sub>        |
| iCaRL  | 45.28 <sub>(-4.67)</sub>                              | 69.24 <sub>(-3.45)</sub>        |
| BiC    | 45.15 <sub>(-8.50)</sub>                              | 68.97 <sub>(-0.18)</sub>        |
| WA     | <b>52.36</b> <sub>(-8.96)</sub>                       | 70.35 <sub>(-1.07)</sub>        |
| Ours   | 49.77 <sub>(-2.39)</sub>                              | <b>76.65</b> <sub>(+0.22)</sub> |

et al. (2020), but more recent large-scale studies report that random and advanced sampling strategies behave similarly in practice Masana et al. (2022). We expect this trend to persist in the abundant-memory regime considered in our work. To verify this, we re-run all methods on CIFAR-100 using reservoir sampling for exemplar selection, ensuring that the memory buffer fairly represents past tasks. As shown in Table 11, the differences with respect to our default random sampling (values in parentheses) are consistently small, and the gap shrinks further as memory size (i.e., number of exemplars per class in class-IL) increases from 4% to 40%. This indicates that, when sufficient memory is available, the choice of sampling strategy has only a marginal impact on overall performance.

An alternative way to improve plasticity is to enforce a fixed ratio of current-task data within each mini-batch by concatenating current and replay examples at the batch level. While such a design can indeed enhance plasticity, it directly reduces stability: aggressively prioritizing current data accelerates catastrophic forgetting of previous tasks and increases GPU cost due to more constrained batch construction. Thus, batch-level concatenation is complementary but cannot replace our approach, which targets the plasticity–stability trade-off through weight-space operations rather than through carefully engineered batches. Moreover, as highlighted by Dohare et al. (2024), loss of plasticity is a general phenomenon in deep continual learning; our Weight Space Consolidation provides a robust way to restore plasticity that is largely independent of specific batch-design or sampling heuristics.

**Effect of Longer Task Sequences** To assess how our findings scale with the length of the continual learning stream, we further evaluate all methods on a longer task sequence with  $T = 20$  tasks on

1296 CIFAR-100, while keeping the total data and exemplar-memory budget fixed. As shown in Table 12,  
 1297 average class-IL accuracy systematically degrades when moving from the default  $T = 10$  setting to  
 1298  $T = 20$ , and this degradation is particularly pronounced in the low-memory regime (20 exemplars  
 1299 per class), indicating that longer task sequences amplify both forgetting and the loss of plasticity.  
 1300 Nonetheless, in the sufficient-memory setting (200 exemplars per class, i.e., 40% memory), our  
 1301 method maintains strong performance and exhibits a comparatively smaller drop than many baselines,  
 1302 demonstrating that our Weight Space Consolidation remains effective even as the task sequence  
 1303 becomes longer.

1304  
 1305 **Additional Experiments.** Lastly, we show that under abundant exemplar memory, convergence  
 1306 becomes difficult, similar to a multi-task learning setting. The results are illustrated in Figure 2b.  
 1307 Specifically, we analyze the training loss of the model under two cases. (1) Continual Learning: train  
 1308 the model across 20 tasks sequentially, with abundant exemplar memory. (2) Full retraining (Joint  
 1309 Training): train individual models for each task using all known task data. For this experiment, we  
 1310 used the CIFAR-100 dataset divided into 20 subtasks. In Figure 2b, we can see that under abundant  
 1311 exemplar memory, converging to the training data becomes difficult, especially for the continual  
 1312 learning model. While a simple solution would be to extend the training epochs for convergence, it  
 1313 would collide with our aim for cost-efficiency. On the other hand, joint-trained models relatively  
 1314 converge better. This result aligns with our conjecture on plasticity (see Section 3.2), the results of  
 1315 (Dohare et al., 2024) that a model sequentially trained on different tasks (i.e., continual learning)  
 1316 suffers a loss of plasticity (i.e., a model’s ability to learn new tasks), as well as the results of (Rolnick  
 1317 et al., 2019), which demonstrated that learning a new task becomes difficult under extreme (i.e.,  
 1318 full ratio) replay memory settings. We believe a thorough investigation of this new phenomenon is  
 1319 required.

## 1320 A.5 EXPERIMENTAL DETAILS

1321 In this section, we report the experimental details of our experiments. In all our class-IL experiments,  
 1322 we have used the PyCIL (Zhou et al., 2023a) library, which allows easy replication. We followed  
 1323 the standard training hyperparameters of the PyCIL library, which are fixed across experiments. For  
 1324 the LLM continual instruction tuning experiments, we have used the TRACE (Wang et al., 2023)  
 1325 library. We followed the default training hyperparameters of the TRACE library. Regarding unique  
 1326 hyperparameters, the average interval  $j$  was set as 5, and the warming epoch  $n_{warm}$  was set as 25% of  
 1327 the total training epochs (default set as 70 under the PyCIL setting).  $j$  and  $n_{warm}$  were selected using  
 1328 a grid search. The hyperparameters searched in the CIFAR-100 benchmark were applied without  
 1329 modification to the ImageNet-100 experiments. In the LLM experiments, the hyperparameters were  
 1330 selected in the 0.2 (20%) memory setting and applied to the other settings. Note that in the TRACE  
 1331 setting, only one epoch is provided in the replay stage, hence, the average interval was set as 20  
 1332 iterations, not epochs. Please refer to Section 4 for a better understanding of each hyperparameter.  
 1333 Regarding the model architectures, we used a ResNet-32 for the CIFAR-100 and a ResNet-18 for the  
 1334 ImageNet-100 experiments, following standard settings in PyCIL. For the TRACE experiments, we  
 1335 used a Llama-3.2-1B model. Lastly, regarding the computing resources, we used a single NVIDIA  
 1336 RTX 6000 GPU for all class-IL experiments. For the LLM experiments, we used three V100 GPUs.  
 1337 For our experiments, we used the 2.2.1 version of Pytorch (Paszke et al., 2019).

## 1338 A.6 RELATED WORKS (CONTINUED.)

1339 **Weight Space Operations.** Recent works have shown that manipulating model parameters directly  
 1340 with weight-space operations (e.g., model merging (Wortsman et al., 2022)) can handle multi-task  
 1341 learning (Yu et al., 2024) and continual learning (Marouf et al., 2025; Marczał et al., 2025) in a  
 1342 more principled way. These techniques usually intervene post-training by merging the weights of  
 1343 different models e.g., (Yadav et al., 2024) suggested a selective merging algorithm that mitigates the  
 1344 interference between different models, while (Ilharco et al., 2022) showed that arithmetic operations  
 1345 on the weight space can edit the model without training. Unlike these post-training interventions, our  
 1346 approach manipulates the model’s weight space amidst training (Izmailov et al., 2018; Jang et al.,  
 1347 2025) without storing multiple model parameters, aiming for cost-effective editing of the continual  
 1348 learner. Another relevant yet overlooked topic is the effect of weight-space operations on model  
 1349 attributes e.g., loss landscape (Li et al., 2018; Kaur et al., 2023) and plasticity (Dohare et al., 2024),

1350 that contribute to continual learning and generalization. This work empirically investigates various  
 1351 aspects of the model to study their effect on the model’s ability to handle distribution shifts. In the  
 1352 continual learning literature, several works have adopted weight-space operations to obtain multi-task  
 1353 solutions without full retraining. For instance, (Kozal et al., 2024) has suggested the use of weight  
 1354 averaging techniques for continual learning, and (Marczak et al., 2025) has extended the idea using  
 1355 task arithmetic. However, these approaches merge models post-training and require the storage  
 1356 of multiple model weights during training. On the other hand, our approach utilizes weight-space  
 1357 operations amidst training, without the redundant storage of multiple model weights. We view this as  
 1358 an important difference in modern settings where the model size is exponentially growing.

### 1359 A.7 LIMITATIONS

1360 While our method demonstrates strong performance and cost-efficiency under abundant exemplar  
 1361 memory, it assumes access to a representative subset of past data, which may not always be feasible  
 1362 in privacy-sensitive or streaming-only environments. Additionally, our analysis primarily focuses  
 1363 on class-incremental learning and continual instruction tuning with relatively clean task boundaries.  
 1364 Future work may explore how the proposed weight-space strategies generalize to more complex  
 1365 settings such as task-agnostic CL, online CL, or continual reinforcement learning.

### 1366 A.8 SOCIETAL IMPACTS

1367 This work focuses on improving a general capability (e.g., continual learning) of machine learning  
 1368 models, and thus does not directly relate to or cause negative societal impacts. However, we do  
 1369 mention and consider the computational cost of deploying models. We believe that the energy  
 1370 consumption issue of modern machine learning models is an important topic, and in that sense, our  
 1371 work on cost-efficient learning algorithms can indirectly contribute to building a sustainable practice  
 1372 for the training and deployment of artificial intelligence.

### 1373 A.9 ASSETS

1374 In our work, many existing assets were used. For the implementation of the models and the learning  
 1375 algorithms, we have used the Pytorch (Paszke et al., 2019) (BSD-3 license) and Huggingface (Wolf  
 1376 et al., 2020) libraries (varies on each library. For instance, the core Transformers library uses an  
 1377 Apache 2.0 license). All of the datasets we have used are public datasets. For instance: CIFAR-100  
 1378 (MIT License), ImageNet-100 (Custom, Non-commercial Research Only, has a separate terms of  
 1379 use). Regarding the language datasets in TRACE: C-STANCE (CC BY-NC 4.0 ), FOMC (CC BY-  
 1380 NC-SA 4.0), MeetingBank (CC BY-NC-SA 4.0), Py150 (MIT License), ScienceQA (MIT License),  
 1381 NumGLUE-cm (MIT License), NumGLUE-ds (MIT License), and 20Minuten (CC BY-NC-SA 4.0).  
 1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403